

Official magazine for users of HEATH

Introducing -

THE NEW H8* COMPUTER

* H8 is a Registered Trademark of the Heath Company

PC Board Mounts Additional Pair of Connectors to Plug Into 90 Pin Bus

Optional 40 Pin Connector Assembly Converts H8 Boards to 90 Pin Bus

Fully Assembled Motherboard - $\$ 250.00$

Featuring the TRIONYX T-H90 MOTHERBOARD A Professional-Quality Bus for the H8 Computer

- 3-Layer Board Has Center Ground Plane
- Designed For 4 MHZ Bus Operation
- 7 Auxillary Positions For Port Addressable Bus Interface Cards
- Completely Compatable With Original H8 Computer

PC Board \$ 75.00

25 Pin Gold Connectors - Set of $20 \quad \$ 45.00$

- Build Motherboard to Original H8 Standard

20 Pin Gold Connectors - Set of 18
$\$ 34.00$

- Add Additional 40 Pins for 90 Pin Bus

25 Pin Gold Connectors - Set of $14 \quad \$ 35.00$

- Add 7 Auxillary Card Positions
- 90 Pin Bus Has:
- Additional Ground Connections For Reliable Operation
- 8 Additional Data Bits For 16 Bit CPU Board
- Additional Address Lines For Expanded Memory Capacity
- Bank Select Lines For Memory Management
- Additional Lines For Special Control Signals and Future Defined Functions

Power Supply Parts for Motherboard $\$ 16.00$

- Includes Extra +18 Volt Filter Capacitor

Bus Termination Card - Complete Kit $\$ 29.50$
PC Board Connector Expansion Kit $\quad \$ 15.00$

- Adapts Original H8 PC Boards to 90 Pin Bus: Contains PC Board, Two 20 Pin Connectors, Mounting Blocks and Hardware - One Kit Required Per PC Board

The new T-H90 Motherboard has been designed to provide completely reliable operation of the H8 computer through the use of gold-plated connectors and a well grounded bus. The bus has been expanded from 50 to 90 lines and 7 additional card slots have been added. Full implementation of the Motherboard functions will transform the H 8 into a commercial grade computer.

Check - Money Order • VISA • MASTERCARD • C.O.D.
Phone Orders Welcome (714) 830-2092 - Send For Free Brochure TRIONYX ELECTRONICS, INC. P.O. BOX 5131, SANTA ANA, CA 92704

on the stack

The Second National Hug Conference
Approaches Bob Ellerton 5
Keyword-based Filing and Retrieval Jim Tysinger 13
A Z-100 Font Editor Marc Aagenas 19
Using the H/Z-29 Terminal Pat Swayne 25
The Wand vs. The Star John Immerwahr 29
Personal Checks and Balancing Don Thomas 33
Millionaire: A Stockmarket Simulator Tom and David Huber 37
Getting Started With Assembly Language (\#4) Pat Swayne 40
A Simple Separate Keyboard for the
H/Z-89 Ernst S. Duesterhoeft 43
"Changing Gears" in Your 4MHz H-89 Peter Shkabara 45
Using AUTOEXEC.BAT Gerry Kabelman 47
Addressing Envelopes/Labels Charles 'Karl' Romer 48
Programming Graphic Shapes David E. Warnick 55
Patch Page Pat Swayne 59
Draw and Print a Picture In MBASIC Ron White 61
Introduction to Z-BASIC Part VII Gerry Kabelman 63
BDOS ERROR Bill Simpson 65
Computer Aided Instruction Part 3 Walt Gillespie 68
Give HERO Something To Do With His Time Pat Swayne 71
Modem Tutorial 83, Part 2 Walt Jung 75
What Does SET SY: Set? Bill Tavolga 80
Schedule of Events 7
HUG Price List 53
Discussion Group Schedule . 8 Update on Vendors 83
Conference Registration 9
Current Local HUG Clubs 86
Vendor/Booth Locations 10
Odds and Ends Sale 17
Questions and Answers 91
Buggin' HUG 92
HUG New Products 50

[^0]
Welcome To The

O'Hare Hyatt Regency

Itl's that time again folks! With August rapidly drawing near, the final plans for the Second National HUG Conference are taking shape. We at HUG are busily collecting the loose ends, contacting speakers, preparing the Vendor Exhibit Area, and talking with the people at the O'Hare Hyatt Regency to ensure that the weekend you spend with other HUGgies is both entertaining and enjoyable. What have we cooked up for August 19, 20, and 21 ? Let's take a look!

The Vendor Exhibit Area

Probably one of the most enjoyable sections of the HUG National Conference is the Vendor Exhibit Area. This is the place where each of us gets a chance to look over the products and services offered by companies supporting the Heath/Zenith computers. Also, we might have the chance to chew-the-fat with individuals who we have met only through articles, networks, or phones. This year, the Vendor Exhibit Area is a real Who's Who of the Heath/Zenith family. With forty booths and forty-three exhibitors, we're sure you will find something to look at during the weekend.
Each of the vendors has been kind enough to donate a door prize (or they can't eat supper). Most of the door prizes this year will be given away at the Vendor Exhibit Area. Every two hours, six numbers will be selected at random from a file of attendees by computer. These numbers will be placed on a screen at the Heath Users' Group Booth. To claim a prize, you must bring your ticket with the matching number to the HUG Booth. If a door prize is not claimed within the two hour period, another six numbers are selected and displayed on the screen. Be sure to stop by the HUG Booth for details.

Of course, the Heathkit Electronic Centers will be represented again this year. Rumor (from a very reliable source) suggests that you might bring "a lotta green or a lotta plastic". In other words, be prepared for some excellent buys on software and hardware. As a warm-up to the National HUG Conference, Heathkit Electronic Centers will be offering "odds-and-ends" hardware items at greatly reduced prices (see information elsewhere in this issue). Items that are not
sold locally will be available at the Conference along with other goodies that the Centers have selected as "Conference Specials".

Directly in front of the Vendor Exhibit Area, HUG will have three large bulletin boards available for the following purposes:

> Wanted/Trade - This bulletin board will be available for those of you wishing to purchase or trade items.
> For Sale - This bulletin board will be available for those of you wishing to sell computer related hardware or software.
> Messages - This bulletin board will be available for general messages of any nature.

These bulletin boards are reserved for the users. Special forms will be available for these boards. We ask that the ads on the boards are for personal equipment only and that the ad only be removed by the individual who placed it there.
The booth arrangements are included with this article so you can be familiar with the vendors attending and their general location. The final program of events, along with any changes, will be available at the Registration Booth. Be sure to sign in even if you have received your tickets in advance from HUG. The Vendor Exhibit Area will be open to the users at 4:00 p.m. Friday, August 19, 1983.

What is a NUA Lounge?

On a final suggestion from a "computer widow", a NUA Lounge will be established for the weekend. What's a NUA? A NUA is a Non-User-Attendee. The NUA Lounge will be a place to relax your tired feet. HUG will have coffee, pop, etc. available in this area for the same hours that the exhibits are open. Twice during the Conference, a short meeting will be conducted for the beginner or the curious to become familiar with the fascinating world of micro-computers (see schedule for details).
Dropping in on the NUA Lounge will be a good idea for all of us.

Not only will this area be a place to relax, the Lounge will be a place to gain access to some great public-domain software. Bob Todd has agreed to set up a copying facility for his vast collection of "public" disks. Bring your blanks as Bob suggests that he will be able to handle all of the typical formats (no paper tape please).
Also, the NUA Lounge will have a large map of the United States to display the locations of the Local HUG Clubs that we have listed in this issue. Any additions/corrections to this list may be requested at the Conference by contacting one of the HUG Staff at the Registration Booth or HUG Booth.

It is our hope that each of you will enjoy the NUA Lounge as a new addition to the Second National HUG Conference. Plan on stopping in for a "sit" or a little conversation.

Friday night at the Second National HUG Conference

The official opening for the Second National HUG Conference is scheduled for Friday evening. At 8:00 p.m., a cash bar will be available in the Rosemont Ballroom. Ceremonies are scheduled for 9:00 p.m. After a brief introduction of the National HUG Staff members, special awards will be presented to selected individuals and groups.
These awards are presented for special contribution to the Heath/Zenith user community.
Following the awards presentation, our group will be hearing from Pat McNamara, Sales Manager, Zenith Data Systems. Pat has been asked to give a short presentation on the future direction of the Heath/Zenith computer product line. Without giving away his presentation, Pat addresses some of the more difficult questions you, as concerned users, have voiced in the past.

Moving on to Saturday

Saturday morning brings out the speakers for the Second National HUG Conference. The Conference schedule includes 24 discussion groups on eight topics. The rotating nature of the discussions will allow you to attend six of the possible eight topics. Careful planning, using the schedule included with this article, will enable you to make the most of your time during the weekend. As a suggestion, make at least two schedules since a session may fill up quickly depending on interest. Clubs who have more than one member in attendance may wish to record a session or take careful notes to be distributed to other attendees or club members. Since there will be three possible times to hear a particular discussion or speaker, please use your good judgement when a group fills.

Activities throughout Saturday include the Vendor Exhibit Area, the Discussion Groups, and the Heathkit Electronic Center. These activities, of course, are the warm up to the Second National HUG Conference Dinner.

Dinner Highlights

If you were fortunate enough to attend the First National HUG Conference, then you are aware of the efficiency of the O'Hare Hyatt Regency staff. A cash bar and reception area will be available in the United A and United B rooms Saturday evening at 6:30 p.m. At 7:30 p.m., dinner will be served.

After our dinner, we will again be privileged to hear from Mr. Bill lohnson, President of the Heath Company. Bill will be delivering the Keynote Address.
The most exciting event of the First National HUG Dinner was the drawing for a " Z " Machine, an $\mathrm{H}-89$ computer and the $\mathrm{H}-25$ printer. What's up this year? All indications would point to even more excitement this year.
Bill Johnson has indicated that he's going to be giving away a "pet"

Pictured are three HUG-hers modeling the T- Shirts that will be available only at the 2 nd National HUG Conference at $\$ 6.50$ each.
that you can build yourself. HMMMMM? Hey Bill!? Does it vac the RUG?

How about Joe Schulte, President of VEC (Heathkit Electronic Centers)? Joe told HUG that he had a thing with an " H " that looks like a machine with a " Z ". Any more clues, Joe?

HUG contacted Don Moffet, President of Zenith Data Systems. What did Don say? Well, Don was on his way to lunch (it's good to catch him at a weak moment), and after about two seconds he suggested that a 30-30 rifle might be appropriate for some lucky HUGgie. Don does it again!
Of course, HUG has some other goodies planned for the evening that we are sure will be of interest to all who plan to attend. As last year, you must be present to win any of the prizes available on Saturday evening. So, don't plan on a Big Mac or another party this year!
As we retire for the evening, plan on visiting with some of your HUG friends around the various facilities provided within the Hyatt. Last year, the HUG staff had a great time talking with, and meeting HUGgies from all over the country. It's nice to attach names with faces as the Conference progresses.

Sunday Overview

Sunday morning, Discussion Groups and the Vendor Exhibit Area open early to ensure that you have a chance to grab that last little piece of information or a last look at the products offered for the Heath/Zenith computer products.
Sunday afternoon features a HUG Club gathering in the Rosemont Ballroom with a presentation from one of our West Coast groups. Last year, we had the pleasure of hearing from Bill Johnson of the Capital Heath Users' Group. Bill gave us a well organized talk on the trials of establishing a local group. This year we will hear from the West Coast. It is hoped that the viewpoints presented at this important gathering will help other clubs just getting started or aid existing clubs to become more active.
HUG is preparing some information that will be presented at this gathering and is designed for club participation. The nature of this information will benefit the exchange of knowledge throughout the HUG community. Further, Bob Todd has agreed to share his knowi-
edge on gaining access to various public-domain software libraries. We hope that each of the clubs will have a representative available for this important session.

The Second National HUG Conference in Review

As you can see, the weekend at the Second National HUG Conference is going to be packed with activity. The outstanding backing of the Heath Company, VEC, and Zenith Data Systems will, to say the least, contribute to a very exciting Saturday evening.

We at HUG wish to extend our thanks to the vendors participating in the Second National HUG Conference as well as the vendors that continue to advertise in REMark. Without this group of loyal Heath/ Zenith computer enthusiasts, there would be no possibility of a conference the likes of the National HUG Conference.

NOTE: The schedule of vendors and events for the Second National HUG Conference may be modified from the contents of this article. Changes to the schedule or Vendor Exhibit Area will be available at the Registration Booth. Changes that may occur during the Conference will be announced within the Vendor Exhibit Area. Tickets that have been purchased in advance are now being mailed every two weeks. If you have not received your tickets and it has been more than four weeks, please contact the Heath Users' Group for verification of your reservation to the Saturday night dinner party. Those of you planning to attend for one day may purchase tickets at the Registration Booth. Remember, however, tickets purchased for one day do not include dinner. You may win door prizes available during the day in the Vendor Exhibit Area. You are not eligible for prizes selected at the dinner unless you have purchased a ticket for, and attend, the dinner celebration.

Second National HUG Conference Schedule of Events

Friday, August 19, 1983

Saturday, August 20, 1983

Sunday, August 21, 1983

7:30 am	ens
,00	Vendor Exhibit Area Opens
8:00 a	rly Discussion Groups Begin
10:30 am	ate Discussion Groups Begin
1:00 pm	Registration Booth Closes
2:00 pm	HUG General Meeting Begins
3:30 pm	. . Closing Remarks
4:00 pm	Close of Second National HUG Conference

Morning Session (Early)

Time	Room	Subject	Speaker
8:00 am	(C)	Communications/Modems	Dale Lamm
8:15 am	(D)	Z100/S100 Interfacing	Jim Buszkiewicz
8:30 am	(B)	ZDOS 2.0	Brian Barnes
8:45 am	(A)	Robotics/Educational Products	Ron Johnson
9:00 am	(NUA)	. Introduction to Computing	Gerry Kabelman

Morning Session (Late)

10:30 am	(D)	M Panel Discussion	(Panel)
10:45 am	(B)	H8/H89 Hardware	Bruce Denton
11:00 am	(A)	Z100 Interlace Mode	Dave Perkins
11:15 am	(C)	Software - Heath/Zenith	Bill Zurney

Afternoon Session (Early)

12:45 pm	(C)	Communications/Modems	Dale Lamm
1:00 pm	(D)	Z100/S100 Interfacing	Jim Buszkiewicz
1:15 pm	(B)	ZDOS 2.0	Brian Barnes
1:30 pm	(A)	Robotics/Educational Products	Ron Johnson
2:00 pm	(NUA)	. Introduction to Computing	Gerry Kabelman

Afternoon Session (Late)

3:15 pm	(D)	CP/M Panel Disscussion	(Panel)
3:30 pm	(B)	H8/H89 Hardware	Bruce Denton
3:45 pm	(A)	Z100 Interlace Mode	Dave Perkins
4:00 pm	(C)	Software - Heath/Zenith	Bill Zurney

August 21, 1983
Morning Session (Early)

Morning Session (Late)

10:30 am	(D)	Panel Discussion	(Panel)
10:45 am	(B)	H8/H89 Hardware	Bruce Denton
11:00 am	(A)	Z100 Interlace Mode	Dave Perkins
11:15 am	(C)	Software - Heath/Zenith	Bill Zurney

Afternoon Session

,00	(Rosemont)	General Meeting	Club Presentation
2:45 pm	(Rosemont)	General Meeting	blic Domain Software
3:30 pm	(Rosemont)	General Meeting	Closing Remarks

[^1]
The 1983 HUG National Conference Is Filling Up

Registration Form In Now!!

NATIONAL
 HUG CONFERENCE III

Official Conference Registration Form O'Hare Hyatt Regency Hotel, Chicago, Illinois August 19, 20 and 21

Name(s) \qquad
Address \qquad
Company
City State \qquad Zip

Enclosed is $\$ 20.00$ per individual to attend The Second National HUG Conference to be held the weekend of August 19, 20 and 21 1983. Please send ticket(s) and information regarding hotel reservations.

AMOUNT ENCLOSED
NUMBER ATTENDING-

For our information:
Which Heath/Zenith computer do you now operate? \qquad
Are you a Non-User-Attendee? \square YES $\quad \square$ NO
Are you a Heath/Zenith related vendor? \square YES $\quad \square$ NO

For your information:

Space limitations for the dinner to be held Saturday August 20, 1983, will restrict the number of attendees for that dinner to 1000. Therefore, it is important that you register as soon as possible. Visitor tickets for those of you simply attending and not planning to stay for the dinner and prize drawings will be available at the registration booth for $\$ 10.00$. Send your registration form or a suitable copy to:

Heath Users' Group

Attention: National HUG Conference Registration
Hilltop Road
Saint Joseph, Michigan 49085

Special Note to Vendors:

Vendor Information Packages will be made available to Heath/Zenith Related Vendors who are planning to exhibit their products while at the conference. Three times more space is available this year for the purpose of showing those products of interest to owners of Heath/Zenith computer products.

[^2]Vendor/Booth Locations

MAGNOLIA MICROSYSTEMS CP/M Plus" Released!

Under development since late last year, CP/M-Plus ${ }^{\text {tm }}$ support is finally available for Z89 and Z90 computers with our 128K RAM board and either Zenith's Z89-37 (Z90) or our own 77316 Double Density disk controller.

With the banked RAM available on our 128 K board, disk performance is dramatically enhanced through the use of Hashed Directory tables, Directory Buffers, and LRU Data Buffers.

New utilities and features include a 'Help' command; optional Password protection and Time and Date Stamping of files; Console Redirection to or from disk files; and many others.

Digital Research's list price for $\mathrm{CP} / \mathrm{M}-\mathrm{Pl}$ us is $\$ 350$, but as an introductory special, it will be included AT NO EXTRA CHARGE with our 77318 128K RAM board if purchased before September 1, 1983!

Our implementation of CP/M-Plus REQUIRES the use of our 128K RAM board. We have no plans to implement the non-banked memory version because most of the advantages of CP/M-Plus are not available (or practical) in the non-banked version.

We are including the SOURCE code for our BIOS, together with Digital Research's MAC, RMAC, LINK, and SID software development tools, so you may make whatever modifications necessary for your specific application.

When ordering, be sure to specify which double density controller and size drive you boot from: Zenith's Z89-37 (Z90) or Magnolia's 77316 (5-inch or 8 -inch).

Customers who purchased the 128 K RAM board after our announcment of CP/M-Plus at CP/M-83 in San Francisco (who provide astisfactory proof-of-purchase) can obtain CP/M-Plus for the nominal $\$ 50$ cost of the $\mathrm{CP} / \mathrm{M}-$ Plus documentation (plus shipping and handling).

Earlier purchasers of the 128 K RAM board who are also registered owners of the Magnolia Microsystems release of CP/M 2 (who provide satisfactory proof-of-purchase) can update to CP/M-Plus for $\$ 100$ (plus shipping and handling).
$C P / M$ is a registered trademark, and $C P / M-P l u s, ~ M A C, ~ R M A C, ~ S I D ~ a n d ~$ the DR logo are trademarks of Digital Research

$\$ 59500$

128K RAM Board with CP/M-Plus ${ }^{\text {tm }}$

Double Density Controller reduced $\$ 100$

now only $\$ 495$.

Save $\$ 100$ on the most versatile controller available for the Z89 or Z90! Supports four 5 -inch and four 8 -inch single or double-sided Shugart compatible drives. Read and Write over 27 different (including all current Zenith Z89/Z90) media formats.

Everything is the same as before except the price! Includes a copy of $\mathrm{CP} / \mathrm{M}^{\mathrm{tm}}$ 2.2, cables for both 5 - and 8 -inch disk drives, and a new Monitor (Boot) EPROM.

Subsystems reduced also -- take $\$ 100$ off of all the double-density floppy disk subsystems shown in our price list dated $3 / 11 / 83$. For example, our popular Dual 8 -inch Double-Sided Subsystem was \$2695, now only $\$ 2595$!

MAGNOLIA MICROSYSTEMS, INC. 2264-15th Ave West • Seattle, WA 98119 (206) 285-7266 • (800) 426-2841

Keyword-based Filing

 and Retrieval:
A Specialized DBMS for the H/Z-89

Jim Tysinger
118 Shannon Hts. Dr.
Verona, PA 15147

Abstract

About the Author: lim Tysinger is a manager of data processing systems at Westinghouse Electronic Corporation. He has been involved in business data processing for fifteen years, mostly in the hardware planning and operating system software areas. Prior to these responsibilities in large computer systems, he developed digital process control programs in assembly language. Personal interests include photography and electronic equipment. He began using his $\mathrm{H}-89$ in 1980 for record keeping tasks at home, resulting in the development of the ideas and methods presented in this article.

Abstract

General data base management systems provide a framework and structure for the orderly collection, storage, manipulation, and display of operational data. These general systems are frequently complex, both in the initial data base setup and in the use of the system to generate reports. Specialized data base management software is available for specific functions such as keeping a business inventory or maintaining mailing lists, or for the somewhat less specific function of filing and retrieval. Although functionally-specialized systems are more restricted in application than general systems, welldesigned specialized systems are easier to use, especially for those with little or no data processing experience. In addition to the issue of complexity, the performance-related elements of processing speed and data storage capacity can also limit the practical usefulness of any of these systems in the personal computer environment. This article addresses the specialized data base management function of filing and retrieval by means of keyword association, and offers an approach to dealing with the limitations of processing speed and data storage capacity in desktop machine configurations.

Background

It is useful to make a distinction between "data" and "information". Data can be defined as a collection of facts, and can consist of text material, character strings, numeric values, or all of these in combination. To use a general DBMS, the user must begin by developing the design of the data base which will contain his collection of facts. A definition statement must be associated with the data to describe the various data elements. To illustrate, the table in Figure 1 is provided to represent a simple data base. The values in the table are the data elements. Each row represents one record in the data base. Other names for a data base record are data base entry or data base item. The data definition statement is represented by the column
headings. Note that in our example, the column headed "License Number" contains an element of data which is unique for each record, and can be used to distinguish a specific record from all others. This is the "primary key" in our simple data base. There may be more than one column containing a data element which is unique for each record. This means that there may be several candidates for the primary key. One of these candidates is chosen as the primary key by

Pigure 1. Vohicles of the XYZ Auto Rental Agoncy					
Lioense Number	Vohiole Type	Year Purchased	Color	$\begin{aligned} & 12 / 31 / 82 \\ & \text { M1loago } \end{aligned}$	Condistion
106298	Car	1980	Green	25700	Good
P64281	Car	1981	Groen	15400	Good
690703	Truak	1981	Bed	15700	Good
R63704	Van	1979	Yellor	38600	Fasr
683421	Truok	1980	White	20400	Yair
P04711	Car	1979	Blue	51900	Palr
P04621	Car	1979	Blue	66070	Poor

the user, who is usually his own data base designer in the personal computer environment. Data definition, the relationships of data in records, and the existence of the primary key make it possible to apply a process to our data base and display the results in an orderly manner.

Information can be defined as knowledge derived through the processing of data. This processing is usually preceded by the framing of an inquiry to be applied against the data. If the data is organized appropriately, the inquiry can be processed quickly and completely, providing the desired information. In the case of our simple data base, we could ask, "How many vehicles have more than 50,000 miles of usage?" The identification of the two cars having this characteristic provides the desired information. Unique identification is guaranteed by the primary key. In addition to answering an inquiry, many data base systems provide the ability to format and display the entire data base, ordered by all or part of the record content. Such an ordered list may display desired information. In summary, a fundamental feature of data base management systems is to provide the structure for the derivation of information from data.

A Filing and Retrieval DBMS

So far, some characteristics of general data base management systems have been discussed. No description of the processes of data definition or data collection was given, nor was there any discussion of the language of the inquiry or of the structure of the data base. In the case of general systems, these topics could be the subjects of other articles or in fact, books. If some or all of the above structures and processes are pre-defined and incorporated into the data base manager, then that system can be considered to be a specialized type of data base manager. Filing and retrieval by means of keyword association is one such type of specialized data base management. The table in Figure 2 represents a data base which we can use to illustrate filing and retrieval by keywords. The data is taken from the catalog of REMark articles in Issue 24. The structure is similar to the previous example, but in this specialized case, much of the data definition can be incorporated into the software of the filing
and retrieval system. Some flexibility can be retained if at least one field is definable by the user. The primary key is supplied by the system as a unique sequence number generated as the item is stored. It is useful to implement variable-length fields for the keywords and the abstract, so that neither the number of keywords associated with an item nor the length of the text contained in the abstract is restricted by an arbitrary limitation. For the purpose of the illustration, the content of the abstract is omitted, but can be assumed to be text material of user-desired length in each item. The item can contain all of the filed data or as in our illustration, the item can refer to the full text of material which is not contained in the data base.

Retrieval of items from the data base is accomplished by means of keyword association. An inquiry into the data base is set up by specifying a search argument containing keywords, which the system then compares with those associated with each item at the time it was stored. The items meeting the search criteria are selected from the data base for display. For example, the specification of GAMES as the search argument would cause items 2,3 , and 5 to be selected. Depending upon the features of the system, the search argument may be able to accommodate logical operators (AND, OR, NOT), and may be able to use a date as part of the search criteria. If we used an inquiry specifying that both GAMES and ASSEMBLY be associated with items to be retrieved, then only item 5 would be selected.

The keyword association mechanism works well as long as the same keywords occur to the user at retrieval time as those which were used at the time the items were stored. If the use of keywords is inconsistent, the retrieval process will not produce the intended results. Some of the data may be unable to contribute to the development of the information if items are omitted in the selection process as a result of keyword inconsis-

Pigure 2. 1 Catalog of ramark artiolos					
Itam	Date	Subjeot	Iasue/Pego	Keywords	Abatraot
1	1/1/78	A Numisantio Inventory	1/21	basic, Corns, INVENTOEY	(oomments)
2	1/1/78	Mastoraind	1/23	GAMBS, BASIC, MASTERMIND	(oomenta)
3	1/1/78	Mini-Mim	1/24	gangs, basic, MININIM	(oommenta)
4	1/1/78	Sorting Strings	1/26	$\begin{aligned} & \text { SORT, ORIER, } \\ & \text { BASIC } \end{aligned}$	(comments)
5	10/1/79	The sight queeno Problear	8/27	$\begin{aligned} & \text { asserbly, } \\ & \text { GAMES } \end{aligned}$	(oommenta)

tency. To avoid this problem, some thought must be given to the keywords used when the items are stored. The system can help by providing the user with the ability to request a list of the keywords used in the data base. The use of a scheme to select productive keywords and avoid those which are inconsistent, redundant, or useless, is called a keyword strategy. This strategy may not be completely clear in the user's mind at the time he decides to build a data base. The variable-length keyword field makes it possible to associate many keywords with each item and then pick up the trends from the total keyword listing as the data base grows. The user's skill at developing keyword strategies usually improves rapidly as a result of experimentation.

Filing and Retrieval Applications

The opportunities for application of a filing and retrieval system are restricted only by the imagination of the user. Applications range from keeping lists of names (customers, club members, subscribers, etc.) to building an on-line reference library or preparing a bibliography for the writing of a book. For example, a keyword-association system is effective in building a data base of problem definitions based on symptoms described by keywords. Such a data base can aid in the diagnosis of problem situations where a logical combination of symptoms leads to a set of potential or probable specific causes. Other useful applications include an on-line catalog of magazine articles, books, or other prepared material pertaining to a field of technology or a study of some physical science. The amount of data necessary to do an adequate job in some of these areas may overwheim the microprocessor environment, but it is sometimes possible to use small machines where the scope of data can be limited. The process of building a data base for one of the purposes mentioned can actually help an individual develop a sound, analytical approach to the organization of the pertinent data. The computer system can become an extension of the user's ability to make connections between elements of data that may otherwise go undetected.

Until recent years, only simple tools were available to aid in these processes. Card index systems or filing procedures based on some ordering of the elements of stored data are examples of such tools. The advent of personal computers at affordable prices and the development of data base management software for them has resulted in the availability of more sophisticated tools for storing, organizing, and displaying selected data. As electronic calculators have evolved
into a popular tool for accurately and rapidly performing tedious processes of mathematics, a keyword-association data base management system can become an effective tool in organizing data and developing information.

Data Collection and Distribution

Unless the internal structure of the data base is simple enough to permit data addition, modification, and deletion directly by means of an editor, these functions must be addressed by the data base management system. If the data base manager uses any internal indexing techniques to facilitate location of stored data, the provision of a data collection capability is a requirement. This is one area where "user friendliness" comes into play. The system can provide a prompt for each field of data, along with some indicator of the field length to make data entry an easier task. A facility for immediate modification of entered data is a helpful addition. Error correction is not usually a problem in interactive data entry mode. If the user violates a format convention monitored by the system, an error indication can be given, and the user can correct the problem before proceeding. On the output side, many systems offer the user a choice of displaying results on the screen or printing them on a hardcopy device. These input and output schemes satisfy the requirements of the user in what may be called a "closed" environment. The term "closed" can be applied to an application which requires input only from the keyboard and delivery of output only to display devices such as a CRT or printer.
A means of transmitting data in machinereadable form either to or from a data base management system is an additional capability which may save the user many hours at the keyboard. A DBMS having these capabilities provides a definition of interface specifications to the input process and from the output process. A user can prepare a file according to the input process specifications and feed that file into the data base manager instead of keying the data directly into the DBMS. If the user has already collected data in text files, there is a possibility that most of the effort of preparing those files can be salvaged. A program written in BASIC or some other appropriate language may be able to re-format the data into a form acceptable as input to the DBMS. On the output side, the user may wish to use output from the DBMS as input to a program he has prepared. In this case, such a program may be written to accept data in the form supplied by the DBMS, or another program may be used to re-format the data. The operations described here may be termed "batch mode". Operations where
the user interacts directly with the software in each transaction can appropriately be called "interactive mode".
Some provision must be made for the correction of format errors which may occur during operation in batch mode. One way the DBMS could handle the situation would be to produce a transaction report containing error indications for format errors. A second method would be to switch to interactive mode for the correction and then resume operation in batch mode. Either method can provide enough flexibility to give the user a reasonable way to handle errors when operating in batch mode.

Processing Speed

One of the strengths of microcomputers is the speed with which strings of characters may be manipulated in main memory. Logical operations, character comparisons, and simple arithmetic can be performed at the hardware level with single machine instructions. These functions do not require whole routines or sets of multiple operations to complete, as do routines for square roots, trigonometric functions, and even multiplication and division on the 8080 or Z80based machines. Selective retrieval of data based on logical functions, character string comparisons, and other simple operations can therefore be accomplished very quickly by 8080 or $Z 80$ machines. The bit manipulation capability of these machines allows storage of the results of comparisons in bit arrays, permitting not only high speed access but also very dense packing of these results. Hundreds of character comparisons
can be made, the results stored in bit arrays, and logical decisions performed on those results in one or two seconds of elapsed time. All of this can lead to fast selection time as long as the data to be used in the selection process is resident in main memory, frequently referred to as RAM (Random Access Memory). When selection data must be streamed from the disk, the relatively slow access time and data rate of this device significantly affects retrieval time.

One search technique which avoids disk accesses during the selection process operates on a RAM-resident array instead of the actual disk-resident data base. In this technique, the searchable portions of stored data (in our case, the keywords) are extracted from the data base and are encoded by the DBMS into a densely-packed array which can be contained in RAM. The keywords are compressed and indexed to avoid an unreasonable limit on the volume of searchable data. A system using this technique will work best, however, in computers having the fully-expanded RAM configuration. The extraction process can occur at a time when it does not cause lengthy and annoying delays. As an example, ordering and indexing of keywords can be accomplished as the data is entered into the data base, "stacking the deck" so to speak, for the search technique. The resulting data base consists of several physical files as illustrated in Figure 3. These files are used as a coordinated set by the DBMS. The index and keyword array files are usually relatively small compared to the main file. To achieve the full speed bene-

Pigure 3.
A Keyword DEMS File Layout

fit, they must be RAM-resident during the use of the data base to which they belong. In addition to providing greater selection speed, these compact files provide the key to addressing large data bases. Large data bases are discussed in a later section.

Although indexing and keyword extraction offer many advantages, there are some disadvantages. Activity in the data base becomes dependent upon pointers and sector keys in the index files. Updating the data is not a straightforward task within the DBMS software, and recovery of the data base from a damaged file is complicated. The problem of recovery will be discussed later. To address the update problem, a data base unload/reload feature becomes a requirement instead of simply an extra capability. The term "unload" means that data contained in the data base is moved from the internal DBMS structure to an ordinary sequential file to permit modification by software using standard file manipulation techniques. When unloaded, a data base entry can be modified easily by an editor and then reloaded by the DBMS. In summary, indexing and extraction techniques provide a significant selection speed advantage, although adding the unload/reload operations to the task of changing a data base entry.

Large Data Bases

Personal computers are well suited for the data base management application if the limited size of the mass storage media (floppy disk) is not a problem, or if the system can effectively deal with this constraint. Space conservation is important in data bases used in the desktop computer environment. The use of special terminator characters to define the end of fields and the end of records in the internal data base structure prevents the loss of space resulting from the implementation of fixed-length or boundary conventions. Although some systems require each record to begin at a sector boundary, this programming convention is wasteful of space and is not dictated by hardware or storage media constraints. Even with careful conservation of disk space, however, many practical DBMS applications require a very large space for the data base.
File access methods in use on microprocessors today do not usually permit a single file to span several diskettes. Such a file would be very clumsy to manipulate, even if the access methods allowed it. It is not a bad practical approach to divide a large set of data into manageable pieces, but yet consider them as one common collection of data. Each small part is a physical data base, and the whole logical data base is made up of all of these physical parts. This leads to tech-
niques for allowing a large logical data base to consist of a number of physical data bases which are considered by the DBMS to be connected during some of its functions. Because each physical data base can be updated or modified individually, the obvious function which must allow for the logical connection of physical files is the search. There are probably many ways to accomplish this, only one of which will be used to illustrate the point. If the data base files use specific three-character file extensions, then the DBMS can select its data base files from the contents of a diskette. In this scheme, the user would place physical data bases to be treated as part of a large logical data base together on one or more diskettes. The large logical data base would consist of several diskettes containing only physical data bases that belong to the same set. As long as
commodated by one diskette. This approach is illustrated in Figure 4. A very large data base can be searched with a reduced number of dismounts and mounts using this method. It is true that any change in one of these physical data bases will necessitate a re-copy of its index and extraction files to the search diskette, but many applications requiring extremely large data bases do not require constant updating. If the user is willing to perform a few file-copying chores and keep track of his data base activity, then this multiple data base search technique may offer a solution to the problem of dealing with large data bases.

Backup and Recovery

Few problems can be as discouraging as the loss of a data base containing the product of many hours work. Such problems can occur

the DBMS software can examine the contents of a diskette volume (DIRECT.SYS), discriminate between file types by means of the file name extension and provide a dismount/ mount feature, all physical data bases on many separate volumes could be searched with one specified search argument.

When the number of volumes to be searched becomes large, dismounting and mounting diskettes becomes tiresome. The indexing technique discussed earlier provides a means of dealing with this problem. Usually, the index file and keyword extract files are small subsets of the data base. They are also the only files required for the search process. If only these index and extraction files for each physical data base are copied to a common diskette, the searchable portions of many physical data bases can be ac-
because of physical damage to the storage media, a hardware malfunction, a procedural error in using the computer, or an error in the software system. Data base systems using indexing techniques and data compression methods are more vuinerable to hardware or procedural errors (and program bugs) than systems using ordinary sequential files. Although well-designed and thoroughly-tested systems can go a long way toward preventing the loss of data, no system can be absolutely safe in this regard. Every user will eventually encounter that situation where there is a fervent effort to "put things back the way they were" before the catastrophe occurred, rather than start over from scratch. A data base unload capability may be of some value in the case where the internal linkages have been damaged. If the unload is completely successful
or recovers a large part of the data base, the work involved in rebuilding it is appropriately reduced. For this reason, the unload function should contain some diagnostic capability. If the problem is a physically damaged diskette or a deleted file, there is some software around for possibly recovering the files, although luck plays a substantial role in the success of this recovery process.
The best procedure by far is one which operates primarily before the fact rather than after the fact. The user's exposure to loss of data can be significantly reduced by performing frequent backups of data bases. Although this procedure requires additional diskettes and the discipline to copy files and keep a log of activity, it is the most simple and straightforward way to maintain an escape route for use in those unfortunate times. The timing of the backup copies is determined by the frequency of the update sessions and by the amount of data entered in each session since the last backup. Common sense is a good regulator of the amount of vulnerability the user can tolerate. This may not be a very sophisticated approach, but the simple procedures work best in some cases.

An Implementation

It is frequently easier to discuss ideas than it is to develop a software system which implements them. There is, however, a filing and retrieval system which is designed to incorporate the ideas discussed in this article. AUTOFILE Version 3.0 (HUG Part Number 885-1110) was written to provide a filing and retrieval capability in the HDOS environment. The data base structure supported by AUTOFILE will accommodate the example described by Figure 2 and similar examples discussed under Filing and Retrieval Applications. AUTOFILE is specifically written for the H/Z-89, as it uses the full Z80 capability to optimize speed and efficiency of operation. While it will function in a single disk drive configuration, two drives provide much greater flexibility for large data bases. Further operational information on AUTOFILE can be found in the HUG software catalog and in Issue 23 of REMark.

> ATTENTION!! Don't Wait To Read About lt!!! Join Us At The SECOND NATIONALHUG CONFERENCE
> It's guaranteed fun for all!!!

Big News "Odds and Ends"
 Sale from Heath!

With the approach of the Second National HUG Conference, Heath Company is announcing a "last chance" sale on miscellaneous stock items. These items can be ordered from your local Heathkit Electronics Center or mail order should you desire. The following is a list of the items available. Items that are not sold before the National HUG Conference will be available at the Heathkit Electronics Center Booth established within the O'Hare Hyatt Regency during the Conference.

H8 Equipment	Description
H-8	H8 Computer
H-8-2	Parallel Board
H-8-5	Serial Board
H-8-9	PAM-GOROM
H-8-10	Wire-Wrap Board
H-8-19	Z80/37/67 Key Caps
H-17	Floppy Disk with Supply
HA-8-1	Extender Board
HA-8-3	Color Graphics Board
HA-8-6	Z80 CPU Board
HA-8-8	Orgin 0 Modification
WH-8-41	4-Port Serial Board
WH-8-37	Soft-Sectored Controller Board
WH-8-47	8-inch Interface Board (H/Z-47)
WH-8-51	Molex to "D" Connector
WH-8-64	64K Memory Board
H-11 Equipment	Description
H-11-1	4K Memory Board (Kit)
WH-11A	Wired H-11
WH-11UL	ULApproved H-11 (Wired)
WH-11-5	Serial Board (Wired)
WH-11-51	Molex to"D" Connector
WHA-11-5	Serial Board (Wired)
WHA-11-16	16K Memory Board (Wired)
WHA-11-32	32KMemory Board (Wired)

Information on pricing or further information about the products described above can be obtained by calling the Computer 800 \# for all calls except those originating in Michigan.

Computer Line 1-800-253-7057
Michigan 1-616-982-3285
To give you an idea of the price reduction, take a look at the following!
WH-11A Wired H-11 Computer
Normally $\$ 1995.00$ Now $\$ 800.00$

 win up to $\$ 500$ worth of prizes. Microcomputing magazine, in conjunction with the Heath Company, manufacturers of the HERO 1, invites all HERO 1 programmers to submit their best applications to this contest. Entries will be judged in the following categories:

1. Standard HERO 1 with arm.

2. Modified HERO 1, including additional RAM or ROM, as well

 as any mechanical or electrical modifications.Prizes will be awarded to the top three entrants in each category. Two $\$ 500$ gift certificates (one from each category) will be awarded. Each first place winner will select the prizes of his choice, worth up to $\$ 500$, from the latest Heath Company catalog. A \$100 gift certificate. good toward any purchase from the Heath catalog, will be awarded to both second place winners. Third place winners from each category will receive a copy of Microcomputing columnist Mark Robillard's new book, "HERO 1 Advanced Programming and Interfacing," plus a one-year paid subscription to Microcomputing magazine.

CONTEST RULES

1. All programs must be submitted both on cassette tape and in hard copy form. A brief, written description of the application must accompany each entry.
2. Entries in the modified category must include a complete description of the alterations performed on the robot. 3 . The contest is open to all HERO 1 owners, except

employees of Wayne Green Inc. (publisher of Microcomputing), and the Heath Company and and their immediate families.
3. All entries. including programs, become the property of Microcomputing.
4. All entries must be received by Microcomputing by September 1, 1983.

Send submissions to:
Robotics Contest Microcomputing 80 Pine Street Peterborough, N.H. 03458
7. Contestants may submit more than one entry in one or both categories. Entries will be judged on originality and technical feasibility. The more practical and easily adaptable the application, the better. Winners will be announced in the December 1983 issue of Microcomputing. So rev up your robot, and let's put the Heath's HERO through its paces!

We are driven! That is, we in Software Consultation do attempt to respond to the needs of our customers. Often times a customer will call with a question that we can't answer straight away, at least not without some research. Well, from just such a question regarding the use of the ALTCHAR.SYS file on the Z-100 comes this article and program. In learning how the ALTCHAR.SYS file is used, I wrote a program to create and modify this type of file. It is called FONTED.BAS and runs on the Z-100 under ZBASIC.

Introduction

The Z-100 is a study in flexibility. Eight and sixteen bit microprocessors, the $\$ 100$ bus, monochrome and color graphics, and, a soft keyboard/character-set. This flexibility surrounding the keyboard and display makes it very easy to market the computer in aimost any country in the world. With a simple change of key caps and the ALTCHAR.SYS file, the Z-100 contains the proper keys and display characters to make it feel as at home in France or Italy as it does in the U.S.A. But this tractability shouldn't be limited to just supporting Foreign keyboard layouts and character fonts. Instead, it opens up the possibility for useful alternate graphics and interesting keyboard (Dvorak?) layouts. Maybe a game disk with specialized graphics, modified ASCII characters and a remapped keyboard. I will leave the creativity up to you, the program to implement it follows the article.

What is ALTCHAR.SYS ?

What is ALTCHAR.SYS ? A common question at software consultation, with a fairly simple answer. ALTCHAR.SYS is a file which contains the keyboard mapping, character font data, and display mapping changes/additions in information used by Z-DOS and CP/ M85 to decode and display characters. That sounds like a lot but it is divided into three distinct parts, each of which are quite simple. The Z-100 uses three tables for input/display. The keyboard map, the font data table, and the display map. At boot time, each table is initialized to its default condition and then ALTCHAR.SYS is read in and its contents are used to make changes in each of the standard tables.

The keyboard map contains 255 entries. Each key is assigned a location in the key map and the default value of a key is equal to its location in the map. An example follows:

(legerid $c=$ contral, 5 h $=$ shifted)							
map location	: 0	1	2	3	.. FE		(these numbers are in
char assigned	: 0	1	2		... FE		hexadecimal and they
key struck	:csti2	cA	cB	cC			come from the $z-190$
char generat	c\&	CA	cB	c C			Users Manual p. B.10)

From the example, if you struck a control C, the keyboard would generate a 03 and in our default map above, a 03 (the key struck) would be sent to Z-DOS. Now from Appendix B of the Z-100 Users' Manual, we know that 03 is the value assigned to control C and that is what we get. But if we modify this keyboard map, we can get different characters generated by substituting the char assigned value (see examples) with a new value.

$$
\begin{aligned}
& \text { (legend } c=\text { control, } 5 h=\text { shifted) } \\
& \text { map location : } 0 \quad 1 \quad 2 \quad 3 \ldots \text { FE } \\
& \text { char assigned: } 0 \quad 21 \quad 2 \mathrm{~A} \quad 3 \ldots \mathrm{FE} \\
& \text { key struck :csh2 } C A \quad C B \quad C C \\
& \text { char generated: } C E \text { ! } \quad C C
\end{aligned}
$$

In this modified keyboard map, if we struck a control B , we would get an exclaimation point sent because the map has that character assigned to the control B map location. In effect, we have remapped the control B key code.
These changes are what you find in ALTCHAR.SYS for the keyboard map. This part of the file is terminated by 2 FF 's (hexadecimal). If you examined the GRAPHICS.CHR file on your disk, you would find that the first two bytes in it are FF's, why, because there are no changes in the keyboard map. It contains only the graphics data font and the display map.
The character font data section of the file is structured differently, for each character in the file there is a descriptor or index byte and nine data bytes (the actual displayed character). This portion of the file ends with an FF byte as the descriptor. The data for each character looks like this:

Note that the value of the descriptor is 21 Hex, not 41 Hex as you would expect for the letter "A". All the descriptors for nongraphics characters are the ASCII value of the character minus $32(20 \mathrm{Hex})$. This allows more efficient use of memory since the first 32 ASCII codes are non-printable. The graphics characters start where the lower case characters would normally be but the descriptor value is 2 higher than the ASCII lower case equivalent. See the example below:

Descriptor:	Data bytes:	76543210	
			-+
60 H	06 H	11	!
	00 H	21	
	1 CH	3!	$X X X$
	3EH	4)	$X X X X X X$
	3EH	51	$x \times x \times x$
	3EH	61	$x \times x \times X$
	1 CH	71	$X X X$
	60 H	$8:$	
	00 H	91	;

The ASCII character associated with the graphics bullet or ball is the " \uparrow " which is 5E Hex or 2 less than the 60 Hex of the descriptor. This is done to allow the full ASCII displayable character set enough room in the table since the last character is the " - " which has a value of 7E Hex (5E hex as a descriptor in the font table, remember to subtract $32(20 \mathrm{Hex})$). The font data table is terminated by an FF Hex in the descriptor position. This may all seem a bit confusing, but not to worry, the descriptor conversion is handled by the FONTED program and all you need to do is select which character, graphics or otherwise, you wish to work with.

The last section of the ALTCHAR.SYS file is the display map. The display map is where Z-DOS goes to decide what character to display. The map defaults to displaying the character passed to it by the keyboard map, but with modification of the map, you could display the letter Z whenever the key map passed the letter A. I won't go into any further detail on this, since FONTED contains no provisions for modifying the display map, it merely creates a default version.

What is FONTED.BAS?

FONTED.BAS is a program written in ZBASIC that can create or modify ALTCHAR.SYS type files. FONTED.BAS works with the keyboard map and font data tables but does not work with the display map! The program is menu driven and allows selection of which map or table you wish to work with.

FONTED.BAS Cautions!

FONTED.BAS is reasonably well debugged, but there are some Caveats. First, the key map section of the program will allow approximately 60 key changes to be displayed, more than this can be made, but you won't see them all at once. Second, the font data table display cannot exceed 72 characters, there isn't enough room on the screen for anymore characters. These two limitations are not that drastic, but they are limitations that you should be aware of in case you intend to modify the whole key map or font data table. One final reminder, this program does not modify the display map, it merely creates a one-for-one map for the graphics portion. The program could be modified to allow display map changes, a section of code similar to the keyboard map routine would have to be added. I will leave that up to you.

Using FONTED.BAS

Once you have entered the program and feel confident about the accuracy of it, then it's time to give it a try. Start with a disk containing ZBASIC, FONTED.BAS, and all the alternate character files from Z-DOS \#1 disk. Run the program and select GRAPHICS.CHR as your working file. When you get to the main menu, select the KEY MAP option and you will see that there are no numbers displayed. This is correct, the file GRAPHICS.CHR is the standard ALTCHAR.SYS file on your disk and there are no changes made in the key map. Exit from this section by typing FF and then enter the FONT option. What you will see displayed are characters in the current ALTCHAR.SYS file and their modified equivalents found in the file you are working with. The graphics characters are an exception to this rule, they are represented by their lower case equivalents.

To examine or add a character to this table, simply type in the character (in proper case) and specify whether or not it is in the graphics section of the table. The program will search the file for the character and if it is found, put an enlarged font matrix with the character in it on the right side of the screen. If the character is not found, then it will assume you want to add it to the file
and put a blank matrix on the screen for your use. Using the cursor keys and the function keys, you can turn on or off any of the pixels that make up a character or object. By following the prompts in the 25th line, you can save the character you have modified or created or throw it away. Experiment with this part of the program, change one of the graphics characters, discover what new and interesting characters you can create.
When you are done and back at the main menu, you can optionally save the file back onto disk with any changes you have made. Now to implement this file, you should copy it to an operating system disk and rename it ALTCHAR.SYS.
Experiment, make a practice system disk, modify the ALTCHAR.SYS file on it, and then reboot that disk. Any changes you made will now show up on the keyboard and screen as you use it. Another idea is to try looking at the file FRENCH.CHR. It has many keys remapped and some characters changed in the font table for the special accent markings the French use. If you are daring, try installing this file as ALTCHAR.SYS on your practice disk. Many of the keys are remapped and just trying to use simple commands becomes interesting.

In closing, I hope that this program spawns other programs that use special character sets, graphics, etc. We need a good Chess game, this program can create the men. I also encourage any modifications to this program that you might make. However, because of my position in ZDS Software Consultation, I cannot offer any assistance regarding this program during my normal working hours. Please direct any correspondence to me through HUG. Thank you.

```
10. Iritialization
20 ON ERROR GDTO 2790
30 IIMM 2%.(74),Z1%.(74),72%(8), 23!(433)
40 DIM ARRAY%.(2000), KYBD%(255)
56 X=400:Y=35:X1=X+18:Y1=Y+12: CURSORX=X:CURSGRY }=Y+1
60. 5ignon banner
70 CLS:LINE (231,98)-(392,126), 2,B
80 LOCATE 12,31:PRINT" FontEd Ver. 1.01 "
90 LOCATE 13,30:PRINT" By Marc 0. Aagenas "
100 LDCATE 14,36:PRINT" 5/03/83"
110 FOR [1=0 TO 100@:NEXT D:SCREEN 0,0
120. build graphic pixel and font cursar
130 LINE (X,Y)-(X1,Y1),,B:GET}(X,Y)-(X1,YY) , Z%
140 PAINT (X+2,Y+2),,7:GET (X,Y)-(X1,Y1), Z1%.
150\operatorname{LINE}(X,Y+14)-(X+18,Y+14):GET(X,Y+14)-(x+18,Y+14),Z2%.: GLS
160. load default values into keyboard array
170 FOR K = 0 TO 255:KYBD%(K)=K:NEXT K
180. main program
1 9 0 ~ P R I N T ~ " F o n t ~ E d i t o r " ~
200 PRINT:INPUT "FILE NAME PLEASE -->"; AAA$
10. attempt to open file sequentially
220. will execute on error if it does not exist
230 OPEN "I",1,AAA&:CLOSE #1
240, operi and lead in file separatirig into keymap
and font arrays
256 CLS:PRINT "Found file":PRINT"Loading Key Map"
260 OPEN "r", 1, AAAt, 1
276 FIELD #1,1 AS AAS
280 WHILE ASC(AA&) <> (&HFF)
290 GET #1
306 AAI=ASC (AA%)
310 GET #1
329 KYBD%(AA1)=ASC(AA&)
336 WEND
340 GET |! 'get last FF before font table
350 FRINT "Loading Character Font"
360 FONDX= 0
370 ARRAYY%(FONDX)=ASC(AA&)
380 IF ARRAY% (FONDX) =255 THEN GOTO 480
390 WHILE ASC(PAS)<> (&HFF)
```

500 KEY 1, "F1":KEY 2, "F2":KEY 3, "F3":KEY 4, "N":KEY 5, "F":KEY
6, "D": KEY 11,CHR(5)
510 CLS: LOCATE 10,30: SCREEN ${ }^{\circ} 0,1$
520 PRINT "Edıt Key Map \rightarrow-> \langle F1〉"tLUCATE 12,30:PRINT "Edıt F
ont --〉〈 〈F2〉"
530 LOCATE 14,30:PRINT"Exit - -> <F3>"
540 LOCATE 16,30:PRINT"Select one ! <
556 LOCATE 16, 44:ACT $s=$ INPUTs (2)
560 IF ACT = "F1" THEN PRINT ACT:GOSUB 860
570 IF ACT $=$ "F2" THEN PRINT ACT $3: G O S U B 1020$
580 IF ACTs= "F3" THEN PRINT ACTs:GOSUB 1056
590 IF ACT $=$ " " THEN GOTO 510: REM return from a gosub rest
art menu
600 BEEP:GOTO 550
610. this routine converts a 2 byte hex string int
o the
6.20. decimal equivalent (A3) and returfis
630 LÚCATE 25,29
640 A4 $=0$
650 A $=1$ INPUT (2)
$660 \mathrm{Al}=\operatorname{ASC}(\mathrm{MIDt}(\mathrm{As}, 1,1))$
670 A2 $=\operatorname{ASC}(M \operatorname{MD}(A 3,2,1))$
680 IF $A 2=13$ THEN SWAP $A 1, A 2: A 1=48$
690 PRINT CHRy (A1) CHR (A2);
706 SWAP A1,A4:GOSUB 760
710 IF A4=255 THEN GOTO 630
726 SWAP A1,A4:A1=A1*16:SWAP A2,A4
730 GOSUB 760
740 IF $A 4=255$ THEN GOTO 630
750 SWAP A2, A4: A3 $=$ A2 2 A1: RETURN
760 IF ($\mathrm{A} 4>47 \mathrm{AND} \mathrm{A4}\langle 58$) OR (A4 >64 AND A4 : 71) OR (A4/9
6 AND A4 (103)
THEN ELSE PRINT CHR\$(7):A4=255:RETURN
770 A4 $=A 4-48$
780 IF A4>9 THEN A4=A4-7
790 IF A4) 15 THEN A4=A4-32
800 RETURN
816 .
display all non-default enitries in the keybd
array
820 PRINT "Key map changes for ";AAA3;" file";PRINT
83n̆ FOR K $=0$ TO 255
846 IF KYBD\% (K)<>K THEN PRINT "Key \rightarrow "HEX $(K) ;$ " $=" ; H E X \&\{K$
YBD\%(K)),
856 NEXT K: RETURN
860 FOR $Y Y=0$ TO 10日: NEXT $Y Y$:CLS:SCREEN 0,0 , a short del
ay loop
870. start of keybd map modification routine
880 PRINT "The key map you are about to see contains two HEX
ADECIMAL"
890 PRINT "numbers for each key listed. The first number is
the key number,"
900 PRINT "refer to your Z-100 manual Appendzx Bip. B-10) fo
r a list of all heys."
910 FRINT "The second number is the swap or nieto value to tie
generated by thas key."
920 PRINT "This value represents the key code thiat will be g
enerated when the hey"
936 INFUT "represented by the 1 st number is struck. Please
hit RETURN when
ready to proceed"; ZZZZ
940 CLS: GOSUB 820
950 keydd map input hander
960 LOCATE 25, 1:PRINT "Input key number in hew. \cdots (FF to exi
t) "; :GOSUB 610
970 IF A3 $=255$ THEN ACT $\mathbf{s}=$ " ": RETURN
FOR $X 1=1$ TO 9
GET * 1
ARRAYY. (FONDX $\left.+X_{1}\right)=\operatorname{ASC}($ AAs $)$
NEXT X_{1}
GET \#1
FONDX $=F O N D X+X 1$
$A R R A Y \%(F O N D X)=A S C(A A \$)$
980 LOCATE 25, 42:PRINT "present value $-->$ "; HEX (KYBDY:(A3))
990 ATEMP $=$ A3
1000 LUCATE 25,65:PRINT "new value \rightarrow ") ":G0SUB 640
$1016 \mathrm{KYBDY}($ ATEMP $)=$ A3: GUTO 740
1020 SCREEN 0,0:CLS:GOSUR 1360
1530 ACT\& =" ":RETUFiN
1040 flie save routine
1050 SCFFEN 0, 0:CLS
1060 PFINT "Save Font and Keyboard Maps as tile --." "+hant + "
くY>";:INPUT; 「ES\&
1070 IF LEN (YESt $)=0$ OR YESt $=$ "Y" OR YES $4=$ "y" THEN ELSE
CLS:END
1080 LOCATE 3, 1:PRINT "Writang File !"
1070 OFEN " r ", 1, AARE, 1
1100 FIELD $\# 1,1$ AS BT 4
1110 FOR $K D X=0$ TO 254
1120 IF KYBDY.(KDX) < KKDX THEN GOSUB 1320
1136 NEXT KDX:GOSUB 1320
1140 FOR FÜNDX $=0$ TO 2000 STEP 10
1150 IF ARRAY\% (FONDX) $=255$ THEN 1200
1160 FOF $F D X=0$ TO 9
1170 LSET BT $s=C H F \$($ ARRAYY. (FONDX $+F D X))$: PUT \#1
1180 NEXT FDX: NEXT FUNUX
1198 add display map to file
$1200 \mathrm{FF}=255: 005 \cup \mathrm{~B} 1316$
1210 FOR DISP $=96$ TO 128
1220 LSET BT $3=$ CHR 3 (DISP) ; PUT M1
1230 LSET BT $s=$ CHF* (DISP) :PUT 整
1240 NEXT DISP
$1250 \mathrm{FF}=255$: \cos UB 1310
1260 GOSUB 1310
$1276 \mathrm{FF}=($ \&H1A): GOSUE 1310
1286 CLOSE \#1
1290 SCREEN 0, 1:PRINT:PRINT " DONe " ":SCREEN 0, 6
1300 END all done !!!!
1310 LSET BT $\%=$ CMR $\$(\mathrm{FF})$: PUT \#1: RETURN
1320 LSET BT $i=$ CHF q (KDX): PUT $\# 1$
1330 LSET BT $3=$ CHF $t(\mathrm{KYBDF},(\mathrm{KDX}))$; PUT \#1
1340 RETURN
1350 CLS: INFUT "Warit instructions ($\langle N\rangle$ "; INS 3
136.6 INPUT "Want instructions ! 〈N"; INS
1376 IF LEN $\left(\right.$ INS ψ) $=0$ OR INS $s=" N "$ OR INS $i=" n^{\prime \prime}$ THEN 15.20
1380 PRINT "The font editor allows you to create alternate c
haracter fonts for"
1340 PRINT "any of the displayable characters, minluding the
H/Z-19 graphics"
1400 PRINT "characters.":PRINT
1410 PRINT "The next screen you see will contalni all the imod
ified characters,"
1420 FRINT "their fonts and all the (remaining) graphics cha
racters. If you wish"
1430 FRINT "to change a font or add a font to the file, then
enter the proper"
1440 PRINT "letter for the character and specify (if needed)
whether or not the"
1450 PRINT "GRAFHICS equivalerit is desured. A entarged font
will be displayed "
1460 PRINT "and (if found in font file) the current represen
tation of this"
1476 FFINT "character will be dispiayed. Using thic cursor he
ys you can modify or "
1480 PRINT "on a cell by cell basis any of the cells in this
character."
1490 PRINT:FRINT "Commands for saving, deleting and restori
rig cari te found on the"
1506 PRINT "bottor of the screen."
1510 INPUT "When ready to proceed hit RETURN ' "; $x \times x x$
1520 CLS: SCREEN 1,1
1525 . print font display header
1536 RESTORE 1580
1540 FOR LL $=1$ TO 5: READ AA
1556 FOR LLL $=1$ TO 9:LOCATE LL, 5*LL1: PRINT AAI;
1560 NEXT LLI
1560 NEXT LL
1570 NEXT LL
1586 DATA "CiF", "HiO", "A2N", "RiT", "k k" . Cr

1585 - display character position and forit table equ	2160 IF ASC(T4) > 27 AND ASC(T6) < 32 THEN GOSUB 2210
ivalent	2176 if $\mathrm{T}_{6} \mathbf{6} \mathbf{=} \mathrm{~N}$ " THEN GOSUB 2396
1590 SCREEN 6, O:FONDX $=0$	2180 If T \% $=$ "F" THEN GOSUB 2410
1600 FOR LL $=7$ T0 24 STEP 2	2196 IF T $6=$ " ${ }^{\prime \prime}$ THEN RETURN
1610 FOR LL1 $=1$ T09	2200 GOTO 2150
1626 GOSUB 1850	2210 ARROW $=(\operatorname{ASC}($ T 3) -27$)$
$1636 \quad$ OONDX $=F O N D X+X X X$	2220 ON ARROW GOSUB $2240,2280,2310,2340$
1640 IF ARRAYY. (FONDX) $=255$ THEN ELSE NEXT LLI: NEXT LL	2236 RETURN
1645. 25 th line display and screen prompts	2240 IF CURSORX $=>540$ THEN RETURN
1656 P1 $=1: P 2=20: P 3=40: P 4=60$	2250 GOSUE 2380
1660 LOCATE 25,F1:SCREEN 0,1	2260 CURSORX $=$ CIJRSORX +26
1670 PRINT "Enter Character in proper cast (U/L) $\langle\mathrm{F} 11\rangle=$ ext	2270 G0TO 2370
 1680 LOCATE 25,P3-2:PRINT CARs+" "::PRINT "; Graphics Font	2280 IF CURSORX $<=400$ THEN RETURN 2290 GOSUB 2386
	2300 CURSORX $=$ CURSORX-20: GOTO 2370
1690 SCREEN 0,0	2310 IF CURSORY $<=49$ THEN RETURN
1695 adjust character for proper position in fonit	2320 gosub 2380
table?	2336 CURSORY=CURSORY-16: G0TO 2370
	2346 IF CURSORY $\Rightarrow 177$ THEN RETURN
$(C A R 1)+2) \quad E L S E \quad C A R=(A S C(C A R b)-32)$	2350 GOSUE 2380
1710. find character in font table	2366 CURSORY $=$ CURSORY +16 : GOT0 2376
1720 FONDX $=0$	2376 PUT (CURSORX, CURSURV), Z2\%, PSET: RETURN
1736 IF ARRAYY, (FONLX) $=255$ THEN GOSUB 2576:PRINT "NOT IN FO	2330 PUT (CUSSORX, CURSORY), Z2\%: RETURN
NT FILE WILL CREATE";GOTO 1770	2390 PUT (CURSORX, CURSORY-14), Z1\%, OR
1740 IF ARRAYY.(FONDX) = CAR THEN ELSE FONDX=FONDX+10:G0T0	2490 PSET(DOT1 + (CURSORX-400)/20,LINE + (CURSOR -35$) / 1 t-1), 7: \mathrm{R}$
736	ETUFN
1756 gosub 2576 , clear 25th line	2410 PUT (CURSURX, CURSORY-14), Z\%. AND
1760 FRINT "FOUND CHARACTER WILL DISPLAY"	2420 PSET (DOT $1+($ CURSORX - 400) $/ 20$, LINE $+($ CURSORY-35)/18-1), 0:R
1776 LINE $1=99:$ D0T $1=600$	ETURN
1780 PUT(DOT1,LINE1), Z\%, AND	2430 GOSub 1970 clear font
1790 GGSUE 1880	2440 FOR COUNT $=0$ T0 8
1806 Gasub 1976	2456 GOSUE 2496
1810 GOSUB 2040	2486 A $=$ PEEK (LIN + BYT)
1820 LOCATE 25, 1:SCREEN ©, 1:FRINT "Use arrow keys for moventie	2470 LINE1=LINE1+1: NEXT COUNT
nit : F4 = pixel on : F5 = pixel off : F6= Done	2480 G0T0 2576 , clear 25 th line
1830 G0SUB 2150	2490, screen position calculator
1840 GOTO 2580	2500
1850 IF ARRAYY. (FONDX $)=255$ THEN RETURN	2510 returns byt and lin as variables
1860 LOCATE LL, LL. $1 * 5$: IF ARRAYY. (FONDX) 695 THEN PRINT CHRt (AR	2520 LIN1=(LINE1) 9 9:LIN2=(LINE1) MOD 9
RAYY.(FINNDX) +32) ELSE PRINT CHRq(ARRAYY.(FONDX)-2)	2530 DT $1=$ DOT1 $18:$ DT $2=$ CUOT 1 MOD 8
1870 LINE1 $=(L L-1) * 9:$ DOT $1=(() L L 1 * 3)+1) * 5)-1$	
1880. this routifie copies the character bytes from	2550 BYT $=$ DT1 $: 1 \mathrm{IF} \mathrm{DT} 2=0$ THEN ELSE BYT $=\mathrm{BY}$ (+1
the forit table	2560 RETURN
1890, and pokes them into the specified screen memo	2576 LOCATE 25, 1:PRINT " "CHR3(27)+" 1 ";:RETURN 'clear 25 th
ry location 1960 If ARRAY\% (FONDX $)=255$ THEN RETURN	line 2586 ! thas routine will save the newly created or an
1910 DEF SEG=(3HE000)	odified
1920 GOSUB 2520	2596. font character into the font array and displa
1930 FOR $X X X=1$ TO 9	y it on the screen
1946 A $=$ ARRAY\%. (FONDX + XXX)	2006, in the display font table
1950 POKE (LIN+BYT + ($(x \times x-1) * 128)), A$	2610 Gosub 2570 , clear 25th line
1960 NEXT XXX:SCREEN (0,0 : RETURN	2620 LOCATE 25, 1:PRINT "Save character in Font Array Y/N --
1970. this routine puts the font matri: on the scre	>":GOSUB 2776
en	2630 IF ANS $=1$ THEN 2640 ELSE. 2740
1980 FOR COL $=0$ TO 7:PUT $(X+1$ COL*20), Y), 2\%, OR: NEXT COL	2640. copy new character into font array
1990 GET (4 ¢6, 35)-(566, 51), 23!	2650 LINE1 $=99:$ DOT1 $=600$
2000 FOR ROW $=1$ TO 8: FUT $(x, y+($ ROW * 16$)$), 23 ! $:$ NEXT ROW	2600 G0SUB 2490
2916 RETURN	2680 FOR INDEXE $=1$ T0 9
2926	2690 ARRAYY. (FONDX + INDEX0) $=$ PEEK($(\operatorname{LIN+BYT})+(($ INDEX $0-1) * 128))$
203 PR PRINT "FATAL LOAD ERROR -- ";ERRORIt;" FURMAT -- END OF "ERROR16:" NOT FOUND": STOP	2700 NEXT INDEX(2710 IF ARRAY\% (FONDX) $=255$ THEN ARRAY\% ($F O N D X$) $=$ CAR ELSE 1520
2040. this routine coples the character being exafin	2720 ARRAYY. (FONDX +10) $=255$, put new end of font marker in
ried wito the ront 2050 liatrix liat	array
2060 FOR ROW $=0$ TO 8	2736 G0T0 1526 ,
$2076 \mathrm{FOR} \mathrm{COL}=0$ T0 7	2740 GUSUB 2570 clear 25 th line
2080 IF (POINT(DOT1+COL,LINE1+ROW))) 1 THEN PUT ($x+$ (COLS $2(6), Y+$ (ROW* 16)) Z 21%, OR ELSE PUT $(x+(C O L * 20), \gamma+($ ROW* $1 t)), Z \%$, AND	2750 PRINT "EXIT BACK TO MAIN MENU Y/N -->"; ; GOSU8 2776 2760 IF ANS=1 THEN RETURN ELSE GOTO 1520
2090 NEXT COL: NEXT ROW	
2160 PUT (CURSORX, CURSORY), 22\%: RETURN	F SSi="N" OR SS ="n" THEN ANS $=2$ ELSE BEEP: OUTO 2770 2736 PRINT SS 1 ; RETURN
2116 . this routine drives the font matrix cursor	2796 IF ERR $=53$ THEN PRINT "NEW FILE Y/N \rightarrow ";:GGSUB 2770
2120 . cursorx \& cursory point to cursor	2790 IF ERR=53 THEN PRINT "NEW FILE Y/N ->"; GUSUUB $27 / 6$ 2806 IF ANS $=2$ THEN RESUME 200
2130) x affiset would be $+/-20$	2816 ARRAYY. (0) $=255$, FUT END OF ARRAY CHARACTEF IN ARFAY
2140 , y offset would be +/-16	2820 RESUME 5000
2150 Ti=INKEY 3 : IF LEN(T) $=0$ THEN GOTO 2150	

Ashton-Tate
d BASE II* $\$ 450$
FPL $\$ 450$
Bottom Line Strategist* \$295
Friday \$225
Everyman's DB Primer \$14
*Now available under ZDOS.
Fox \& Geller
QuickCode $\$ 239$
dUTIL $\$ 69$
dGRAPH (Z80) \$239
Humansoft
dBPLUS $\$ 110$

Terms: Some disk formats not available from original producer. In these cases we can copy to a compatible format for you for a $\$ 2 /$ disk media charge. Add 2% shipping and handling plus $5 \% \%$ sales tax if shipped to a Missouri address. Alaska, Hawaii, FPO's, APO's, and Canadian orders add 5% shipping. Prices above contain a 2% prepayment discount, add this 2% for approved purchase orders. Software Wizardry, Inc. also handles many other compatible products (both hardware and software). Call or write for our FREE price list on these items.

VSA

Eliminate the

 Limitations!
Recapture the Excitement of High Technology in your H/Z89-90

DG SUPER 89

The Super 89 (Now including 128K Memory and the Super 89 Electronic Disk) replaces the central processor board in the Heath/Zenith $89-90$ series computers to bring your 89-90 to current state-of-art technology. The Super 89 transforms the Heath/Zenith $89-90$ into a powerful, professional quality system meeting the needs of today and tomorrow. The Super 89 is fully compatible with all Heath/Zenith products and also supports many peripheral devices from other manufacturers. New software and hardware are enhanced with the Super 89 by using all the features of the Z 80 technology.

The Highlights of the Super 89:

- Shipped with 128 K memory
- Includes Super 89 Electronic Disk
- Twice the operating speed $(4 \mathrm{MHz}+)$
- Memory Capacity to 256 K in Software Bank Selectable 64 K blocks
- CP/M and HDOS Compatible without modification
- Twice the number expansion slots (Six)
- Real time clock on-board
- Two serial I/O Ports
- Designed for multi-user capability
- Parity checking for RAM assures integrity of memory transfer operations
- Arithmetic processor provision facilitates mathematic operations

Expanded Memory Capacity

This feature allows you to use the advantages of the more sophisticated programming languages: enables you to use enhanced memory software such as print spoolers and electronic disks to increase spped: allows the use of "scratch pad" memory to increase efficiency; and provide for multi user capabilities.

Super 89 Electronic Disk

This software package for the Heath/Zenith CP/M 2.2.03 allows the Super 89 user to access auxiliary RAM as a very fast mass storage device. Provides up to 180 K bytes (fully populated) of storage area that is accessible without the slowness of disk drives. The Electronic Disk also includes display capability for the Real Time Clock.

Peripheral Expansion

This important feature lets you use your Super 89 in more ways with peripherals from DG, Heath and many other manufacturers.

Real Time Clock

The Real Time Clock allows you to program activities and control functions according to time; allows the use of interactive time functions with an electronic disk: and is very useful in accounting functions.

Parity Checking

This feature ensures the integnity of memory transfer operations. The Super 89 alerts you if a parity error occurs.

Full CP/M and HDOS Compatibility

The Super 89 supports full compatibility with the HDOS or CP/M disk operating systems. This feature gives you the best of both worlds in the amount of existing software you may use.

Ease of Installation

The Super 89 is simple to install and takes only minutes. No soldering required. Simply remove the old CPU board, configure and install the Super 89 to eliminate the limitations.

SUPPORT PRODUCTS for the SUPER 89

Arithmetic Processor $\$ 200.00$

The Super 89 has on-board provisions for the optional AM9511A. This is a separate processor that features basic arithmetic as well as exponential, logarithmic, trigonometric and binary functions. Calculations are high speed and can be accomplished as a "hardware subroutine". This device is a must for anyone using any amount of mathematical computation whether complex functions or arithmetic calculations.

Enhanced Super 89 Monitor

$\$ 49.00$Gives you all the features of Heath's MTR-89 monitor plus the ability to display all the Z 80 register contents: Single-step through a program and set up break-points; Supports H / Z and other manufacturers of disk systems: Improved system diagnostic routines: and Supports the Super 89 Real Time Clock.

MP/M II is a multi-user, multi-tasking operating system for use with the Super 89. Supports up to four users and the Z37, Z47 and Z67 disk systems. Compatible with CP/M software.
DG Super 89/128 K 829.00
DG Super 89/192 K 909.00
DG Super 89/256 K 989.00
Documentation Only 25.00

Using the
 H/Z-29 Terminal

Pat Swayne
Software Engineer

HHeath has come up with another "goodie" in the new H/Z-29 video display terminal. I have one connected to the H 8 in my HUG office now, and I like it so much that I have just about retired my poor old H-19. However, it took a bit of effort to interface it to my system and get it working with all of my software. In this article, I will present my experiences with the H/Z-29 so that others thinking of getting one can easily get it "up and running". But first, I would like to explain some of the features of this terminal that make it so likeable.

H/Z-29 Features

Probably the first thing you notice about the H/Z-29 is that it has a detachable keyboard. It is the first product from Heath/Zenith to have one (unless you count the ZT-1). That means that not only can you type with the keyboard in your lap, but if you prefer to keep the keyboard on the desk, you can put the screen where you want it. I know that some people prefer not to have it so close to their face as it is with fixed keyboard terminals.
The keys themselves are made in the so-called "sculptured" design. My first experience with that kind of keyboard was on an Intel 200series Microcomputer Development System, about three years ago, and I hated it. I guess they have learned something about keyboards since then, because this keyboard is a joy to use. The keys are easier to press than H/Z-19 or H/Z-89 keys, and a fast typist can really fly on the H/Z-29. Pressing several keys at once does not cause erroneous responses as on the $\mathrm{H} / \mathrm{Z}-19$.
The numerical keypad has double size zero and ENTER keys, and a comma key in addition to the usual H/Z-19 keys. There are arrow and HOME keys on the main keyboard, but the $2,4,5,6$, and 8 keys can also serve as arrow and HOME keys when the keypad is shifted. There are two new function keys not found on the $\mathrm{H} / \mathrm{Z}-19$ or the H / Z 89. The F9 key, which produces ESC 0 I, and the HELP key, which produces ESC ${ }^{f}$ (tilde). The blue, red, and white keys are replaced with F6, F7, and F8, and the ERASE key is at the right end of the top row, instead of in the middle of the row as on the H/Z-19.
All of the things that you would normally have to be set up using switches inside the case, or escape codes typed in while OFF LINE, can be set on the H/Z-29 keyboard via a special Set Up mode. A SET UP switch located at the left end of the top row, toggles between the set up and operating modes. Set up menus, which appear on the 25 th screen line, are accessible by typing the letters A through G and T (for the Tab menu) while you are in the set up mode. The individual items in each menu are altered by typing a number listed beside the item. For example, to change the baud rate, you press B to select the appropriate menu, then press the number 1 until the rate desired appears on the 25 th line. The rate displayed increments once each time you press the 1 key until the highest rate (19200) is reached,

and it starts over with the lowest (75). Tab stops can be set anywhere you want them when you select the Tab menu, by moving a cursor on the 25 th line (filled with numbers when you press T) with the arrow keys and pressing the up arrow to set a tab, or the down arrow to clear one. Of course, you should bear in mind that these tab stop settings affect only what appears on the screen. You would have to reset the tab stops on your printer (if they can be set) to make a printout of your text look like it did on the screen, unless you use standard settings. And remember that in CP/M, tabs are expanded to spaces when a file is TYPEd to the screen.

Once you have set things the way you want them, you can press the SET UP key again to temporarily record the settings, or SHIFT-SET UP to record them permanently. On this last point, there was a slight boo-boo in the manual in that the only place where it said that SHIFT-SET UP permanently recorded set up changes was in the discussion of the tab settings. I scratched my head a little until I found that. However, that should be corrected soon, if it has not been done already.
The H/Z-29 has several new video features that you will probably have fun playing with. There are several video attributes that you can set, including half intensity, underline, and blinking. There is also an alternate character set that inlcudes sub- and super-script characters and new graphic characters. All of the attributes and special characters can be selected on a character by character basis. For those of you who already have or will soon get an H/Z-29, here is a BASIC program that illustrates the attributes and alternate characters.

```
10 DIM B$(15)
20 Es=CHR$(27):S}=E{+"s":Ns=S}+"0":A &=S}+CHR$(64)
30 FOR I=0 TO 15:READ B&(I):NEXT I
40 PRINT E%;"E":PRINT
50 PRINT "HERE ARE THE H29 VIDEO ATTRIBUTES:"
```

:PRINT:PRINT

60 FOR I $=0$ TO 15

70 PRINT "THIS IS ATTRIBUTE NO. ";
Ss;CHRs(I+48);Bs(I);Ns;
80 IF I/2< \langle INT(1/2) THEN PRINT :GOTO 100
90 PRINT TAB(40);
100 NEXT I
110 PRINT :PRINT As;"THESE";Ns;" ";A\&;"ARE";Ns;" ";
120 PRINT As;"alternate";Ns;" ";As;
"CHARACTERS"; Ni;".":PRINT
130 DATA ZERO, ONE, TWO, THREE, FOUR,FIVE, SIX, SEVEN, EIGHT, NINE
140 DATA TEN, ELEVEN, TWELVE, THIRTEEN, FOURTEEN, F IFTEEN

This program was written to run under just about any version of BASIC, including MBASIC, Benton Harbor BASIC, and BASIC-E. Notice in line 110 that we must switch to normal characters (with $\mathrm{N} \$$) to print spaces between words because the space produces a graphic character while you are in the alternate set.
Some of the new features on the H/Z-29 are available only through ANSI escape codes. Among these are the blinking rate (when the blinking attribute is set) and setting the screen clock. The screen clock cannot be read from an escape code, which is a bit of a disappointment. An engineer who was involved in the design of the H/Z29 told me that they ran out of ROM space to add everything they wanted. The code is in (2) 4 K ROMs. Bigger ROMs could be used, so perhaps there will be a HUG ROM for the H/Z-29 in the future.
The processor in the H/Z-29 is an 8051 running at about 7 MHz . The 8051 is an improved version of Intel's 8048 controller processor family. There are not one but two of Intel's new video controller chips. One puts the characters on the screen and the other controls the attributes.
One of the nicest things about the $\mathrm{H} / \mathrm{Z}-29$ is the complete absence of "video tearing" on the screen during rapid screen writing. If you do not know what video tearing is, run this program on your H/Z-19 or H/Z-89 (in line 30, there are 40 spaces between the quotes).

```
10 E$=CHR$(27):PRINT E$;"E"
20 FOR I=1 TO 10:PRINT E&;"p";
30 PRINT "
40 PRINT E$;"q":NEXT I:PRINT
50 FOR I=1 TO 100
60 PRINT "SCREEN TEARING DEMONSTRATION";E$;"A"
70 NEXT I:PRINT
```

The program will print a white (reverse video) rectangle on your screen and then print the message in line 60100 times on the same line. During that time, tearing will be visible in the white area. On the $H / Z-29$, you can hardly tell that this program is running, and with video games, the creatures move cleanly with no tearing at all.
There has been some apprehension expressed that the H/Z-29 is slower than the H/Z-19, so you have to run it at a slower baud rate. In a way, that is true. The H/Z-29 takes longer to process escape sequences and certain other characters, and at high baud rates it can fall behind the incoming data with the result that "garbage" appears on the screen. However, provision is made for either hardiware (CTS) or software (XON-XOFF) handshaking so that the H/Z-29 can signal the computer to wait until it catches up. With proper handshaking, you can run the H/Z-29 at full speed (19,200 baud) and there is no visible slowing of the display (compared to the H/Z-19) when you play video games, etc.

Connecting the H/Z-29 to Your Computer

If you use only HDOS (not CP/M), you will be happy to know that HDOS supports XON-XOFF handshaking, so all you have to do is set up the H/Z-29 for software handshaking, connect it to your computer, and go. At least, I thought that was all you had to do, but it didn't work when I first tried it. It seems that HDOS sets up pin 5 (RTS) of the RS-232 lines to the wrong polarity. So I opened up the shell on one end of my RS-232 cable, clipped the wire going to pin 5 , and presto! It worked. If you have one of the new molded RS-232 cables, break off pin 5 at the male end of the cable, or clip the wire going to pin 5 inside the H/Z-29 cabinet. Pin 5 does not seem to be required for normal operation with either hardware or software handshaking.
If you use CP/M, you must patch your BIOS to use hardware handshaking since $C P / M$ does not support XON-XOFF and since patching in hardware handshaking is easier than patching in XON-XOFF. If
you use both HDOS and CP/M, you should patch both to use hardware handshaking to avoid having to switch handshaking modes when you switch operating systems. I have worked out patches for both operating systems to support hardware handshaking.

Patching HDOS

The following patch will convert HDOS 2.0 to hardware handshaking with the terminal. The patch should be made using the program PATCH.ABS that is supplied with HDOS.

>PATCH

PATCH Issue $\$ 50.06 .00$

File Name? HDO8.8Y8
 Patch ID? IFOUIC
 Prerequisite Code? IFBEIADPGEFFCF

Address? 20127

$020127=146 / 131$
$020130=071 /$
$020131=333 /$
$020132=373 / 356$
$020133=3461$
$020134=001 / 020$
$020135=3121$
$020136=1311$
$020137=071 /$
$020140=361 / 000$
$020141=323 / 000$
$020142=372 / 000$
$020143=3031$
$020144=160 / 146$
$020145=071 / \wedge D \quad$ (Control-D typed)
Address? ^D
Patch Check Code? OPEOPINB
PATCH Issue \#50.06.00
File Name? ${ }^{\text {a }}$
After this patch is made, HDOS will handshake properly with the H/Z-29. This patch overwrites the part that allows HDOS to work with the oid H8-5 interface card. It does not disable software handshaking, so that will still work.
Here is the code that is patched (part of the routine SCOUT in HDOS.SYS).

OLD		
Scout9	LDA	S.CDB
	CPI	1 ; 18 -4?
	JZ	SCOUT92
SCOUT91	IN	3730 ; H8-5 PORT
	ANI	1
	JZ	SCOUT91
	POP	PSW
	OUT	372Q
	JMP	SCOUT95
SCOUT92	IN	355Q
NEW		
scout9	LDA	S. $C D B$
	CPI	1
	JZ	Scour91
Scout91	IN	3569 [H6 PORT
	ANI	200
	JZ	SCOUT91
	NOP	
	NOP	

NOP	
STMP	SCOUT92
SCOUT92 IN	$355 Q$

$355 Q$

Patching CP／M

The following patch will convert CP／M 2．2．03 to hardware handshaking．This patch is a bit more difficult to implement than the HDOS patch due to the fact that the location of the patch area may not be in the same place in everyone＇s BIOS，and so must be calculated．When you see＂xxxx＂，it refers to a 4 digit hex number whose value is unim－ portant to the patch．Any other combination of lower case letters，such as＂bbbb＂，refers to a 4 digit hex number that will be used later，and so must be remembered．This patch is only valid if the CRT routines in the BIOS have not been modified．

After the patch is made，reboot the system to put the new BIOS into memory．CP／M will now handshake properly with an H／Z－29 with hardware handshaking set．As with the HDOS patch，this one overwrites code used to communicate with the H8－5 card．You must use an H8－4 card or equivalent in an H 8 to use this patch．

What About the H／Z－89？

If you would like to use an H／Z－29 with an H／Z－89 computer，there are two approaches you can take．One is to remove the cable that goes to the Terminal Logic Board from P513 on your CPU board，connect a short RS－232 cable（Heath P／N 134－1073）to P513，and connect the H／Z－29 to the other end．Another approach might be to replace the Terminal Logic Board and keyboard in an H／Z－89 with the ones from an H／Z－29．To my knowledge，that has not been tried，and would probably be quite a project．If I ever try it，I will write about it in REMark．

IT＇S
IMPORTANT!!
THAT YOU SIGN UP
NOW FOR THE
SECOND
NATIONALHUG
CONFERENCE
see registration
on page 9 of
this issue

A）DDT
DDT VERS 2.2
$-\mathrm{L}, 2$
0000 JMP aea3
0003
$-L 18,1 A$
0018 JMP bbbb
001 B
一杪bbb，aead
xxxx cecc

Hecce，10A
dddd xxxk

Hdddd， 200
teee xxxx
－IBIOS．SY8
－R
NEXT PC
yyzz 0100
－Leeee

eeet	LXI	H， 0037
xxxx	LXI	D，xx×x
ffff	LDA	0036
xxxx	RAR	
$x \times x \times$	JC	9999
xxxx	CALL	xxxx
xkxx	JZ	$\mathrm{x} \times \mathrm{xx}$
x×xx	LDAX	1）
xxxx	ORA	A
exxx	JNZ	$x \times x \times$
xxxx	DCR	A

－Hffff， 200
xxxx hhhh
$-H g g 9 g, 200$
1iii $\times \times \times x$
－Affl？
ffff CALL gggg
кхxx NOP
xxKx $\sqrt{2}$ hhhh
xxxx
－Ailif
iiii IN EE
xxxx NOP
xxxx LXI H， 37
xXxX ANI 10
xxxx RET
xxxx－
${ }^{-1} \mathrm{C}$
A）SAVE Un BIOS．NEW

A）STAT BIOS．SYS BR／W
AンREN BIOS．OLD＝BIOS．SYS Rename the old BIOS．
A $)$ REN BIOS．SYSmBIOS．NEd Replace it with the new one．
A）STAT BIOS．SYS BR／O Set the R／O attribute．
AンSTAT BIOS．SYS \＄SYS Set the SYS attribute．

Remove the R／O attribute from the old
Locate the address of the BIOS warm boot entry point in your system．It will always end with the number 3，and so we have shown it here as＂aaa3＂．

Locate the address of the CRT interrupt service routine in your system， indicated here as＂bbbb＂．

Find the offset from the start of the BIOS to the CRT interrupt service routine by subtracting the above two addresses． Replace the 3 in the varm boot address with a zero before subtractiriq．

Find the offset from the start of the BIOS to the CRT output status routine， which is 10 A （tiex）bytes above the CRT interrupt service routine．

Find the actual address of where the CRT status routine will be when you load the BIOS into memory．Jot down the result （eete）for later use．

Load your BIOS into menory．Jot down the number＂yyzz＂for later use．

Disassemble the BIOS at the calculated CRT output status routine address（eeet） to make sure we are at the right point． Note the addresses marked with characters other than＂xxxx＂．Do not make the patch if this disassembly does not show what we have shown here．

Subtract 200 （hex）froth address ffff，and add 200 to address gggg．Save the re－ sults for later．

Insert the first patch at address ffff．
（Type a period．）
Insert the second patch at iiii．
（Type a period．）
（Type Control－C．）
Save the patched BIOS on your disk．Use the number＂yyzz＂you jotted down earlier to calculate＂nn＂as follows：If＂zz＂is 00，convert＂yy＂to decimal and subtract one to get＂rin＂．If＂zz＂is not zero， convert＂yy＂to decimal but do not sub－ tract one． BIOS．
Set the SYS attribute.

MORE SOLUTIONS

DSM-24O for the H/Z 89-90

ESM-24O for the Expansion

Why run half speed when you can run full speed? Install one of these KRES Modules in your H/Z 89-90 and cut computation time in half. The supplied HDOS or CP/M software will allow you to operate at regular or double speed (2 or 4 MHZ).

Either version with software \$79.95

the BACKPLATE

a neater solution

Are you tired of having wires and cables stuffed out the holes of your computer when they should be mounted? The KRES Backplate is an upgrade replacement for the existing rear panel on your H/Z 89-90.
With this KRES solution, you should be able to run every cable you will ever need out the back of your computer cleanly and neatly.
${ }^{\text {rappr200 }}$

DTE All prices FOB Irvine, CA California Residents add 6\% tax

ENGINEERING
P.O. Box 17328, Irvine, CA 92713
(714) 559-1047
or (213) 957-6322
Bulletin Board: (714) 559-8579

A Review of Two Top-of-the-Line Word Processing Packages

John Immerwahr
Philosophy Department
Villanova University
Villanova, Pa 19085

For those of us who are neither number crunchers nor computer game freaks, word processing is one of the applications that can make a computer really pay for itself. For anyone who does a significant amount of writing, the most obvious benefit is that word processing makes it possible to eliminate much of the expense and delay of having a professional typist retype text into clean copy. Changes and corrections are so easy to make that even sloppy typists can easily produce beautiful final products. An even more important advantage is that many writers also find that they compose more quickly and more fluently with word processing. Many professional writers use it as an aid to the composition process itself, rather than merely as a way of eliminating secretarial expenses.
There are a wide variety of word processing programs available for Heath/Zenith computers, including inexpensive but serviceable programs such as Software Toolworks' combination of PIE for editing and TEXT for printing (total cost of about \$70). But serious writers will also want to look at the two top-of-the-line word processing packages offered, Micropro's WordStar (\$395) and Peachtree's Magic Wand (\$295). These programs (which require the CP/M operating system) are both outstanding pieces of software. Magic Wand has a capability for doing form letters with individualized addresses. WordStar can do this even better, but only if you buy the optional Mailmerge program (\$135).
One thing should be clear from the start. WordStar is a much more powerful program than Magic Wand. There is nothing that Magic Wand can do that can't be done in one way or another with WordStar, and WordStar has many capabilities that Magic Wand cannot duplicate. But as in all things, sheer power should not be your only criterion for selecting an expensive piece of software. For many users, the less ambitious Magic Wand may be equally good or even superior. In the final analysis, your choice will depend on your needs, and on your pocketbook. Here is a point-by-point comparison:

1. Documentation. Let's start by looking at the manuals that come with these programs. Both come in handsome black and silver looseleaf binders, but the resemblance ends there. The Magic Wand manual is laid out in beautifully written exercises that introduce you to the program in a logical step-by-step manner comprehensible even to someone who knows nothing about computers or word processing. Each step is illustrated with examples, and sample lessons are included on the disks. In addition to the lessons,
there is also a more formal reference manual where experienced users can check on specific points.

The WordStar manual, on the other hand, is an example of the kind of writing that has given computers a bad name among the uninitiated. Basically it is a reference document, useful for an experienced programmer but virtually worthless to the novice. Fortunately, WordStar is such a popular program that independently published manuals are also available. My favorite is INTRODUCTION TO WORDSTAR by Arthur Naiman (Sybex, 1982- about $\$ 12$). This is a nice breezy presentation that walks you through WordStar and compensates for the fact that no suitable manual comes with the package.
2. Compatibility with Heath/Zenith 89. One of the nice things about the H/Z-89 is its compliment of extra keys. In addition to the usual keys, it has a number keypad and nine special function keys. These keys make the H/Z-89 an excellent choice for word processing. The most important feature in word processing is speed and ease of use. Writing is very time consuming, and anything that can speed up the process is a real plus. Having special keys with unique functions can dramatically increase efficiency.
Magic Wand is beautifully married to the H/Z-89 keyboard. Casual inspection of the keyboard indicates that the number keys on the keypad already have additional markings (arrows on some and letters on others). Magic Wand assigns functions to these keys that correspond to the existing markings; the arrow keys move the cursor in the directions indicated, and the IC key, for example, activates the Insert Character mode. Magic Wand also assigns functions to all of the special function keys. By happy coincidence, all but two of the Magic Wand commands are accommodated by one of the existing keys.
Astoundingly, WordStar makes no use of these keys whatsoever. Instead the commands must be executed by pushing two keys at once, the control key and some other key. Instead of using the cursor arrow keys on the keypad, for example, the writer must push the control key and the S key to move the cursor to the left, or push the control key and the D key to move the cursor right.
As with the lack of a good manual, this problem can be corrected. An enterprising independent dealer named Patrick McNally (PO Box 578, Haleiwa, Hawaii, 96712) sells a neat little package called 89/Star. This program automatically changes WordStar so that it
takes advantage of all of the numberpad keys and the special function keys. McNally's program is very easy to install and costs about $\$ 20$. In addition to assigning WordStar commands to all of the special function keys, 89/Star even writes labeis for the keys on the bottom line of the screen.
Magic Wand is also much more modest in its requirements for hardware. The program is designed to make life easy for someone who only has one disk drive, and 48 K is plenty of memory. Because of its complexity, WordStar requires a great deal more disk space and more RAM. You could write short documents with only one disk drive, but it would be extremely inconvenient to do so, and 64 k is strongly recommended.
3. Ease of Learning. When it comes to ease of learning, the advantages are all on the side of Magic Wand. The explanation for this is simple, since Magic Wand can do less, there is less you have to learn. Given its tremendous power, WordStar necessarily has many more commands and options. WordStar tries to compensate for this with an impressive system of menus. The instructions for what to do actually appear at the top of the screen. If you want to move some text around, the menu tells you to press control and K. When you do that a new menu appears that gives the commands for many different options. Theoretically you don't have to remember anything in WordStar, because the system is always producing a new menu for you that tells you what your choices are. But in the final analysis, complicated is complicated, and you can only be really efficient when you don't have to read about a command each time you use it. Most people will become proficient much sooner with the Wand.
4. Editing. By now you've probably gotten the idea that Magic Wand is a lot easier to get started with. But in the long run, this is less important than it might seem. Neither system is really that difficult to learn, and in a few days or weeks you will be really proficient with either one. So don't be put off by the difficulties in getting started with WordStar - think about the long run too.
Once you have mastered the system, WordStar's power really begins to pay off. For example, one of the most important things in word processing is moving the cursor around. Nothing slows you down more than having to bang around trying to get where you want to be. Suppose, for example, that you want to move the cursor to make a change at the right hand end of a line of text. Magic Wand lets you move the cursor to the right one space at a time. If you get bored, you can hold the repeat key down, but you are still only going one space at a time. The Star lets you move one space at a time, one word at a time, and there is even a command to move immediately to the right hand end of the line.
The other commands are much the same. Like all word processing programs, Magic Wand lets you search automatically for a string (a word or phrase) and, if you wish, change it to something else. This is a real advantage in making corrections. Rather than hunting around for the place where you want to change a misspelling, for example, search/replace will find the place for you and make the change all at once. WordStar does this too, of course, but it gives you many more options as to how to do it. You can search forward or backward in the document (only forward in the Wand), you can have the changes made automatically or the program will ask you about each one (only automatic in the Wand) and you can tell WordStar not to distinguish between upper and lower case. Suppose, in other words, that you want to change every occurence of the word "college" to "university." Magic Wand will only look for "college" but will ignore "College". The Star can be instructed
to look for both. Generally wherever Magic Wand has one way to do something, WordStar will have several. Once you master these commands and options, they give you real power and speed.
5. Printing. Here again, the advantages are with WordStar. The big problem with Magic Wand is that you never really know what your document is going to look like on the page until you actually print it out. Since printing can be time consuming, this is a real disadvantage. For example, you don't want a chart broken between two pages, or you don't want a section title to be the last line on a page. Magic Wand gives you commands to control for some of these things, but ultimately there is a lot of guesswork involved. There is a way to preview the text on the screen, but even when you do this you only get an approximation of what you will actually see when your document is printed out.
The real strength of WordStar is that there are no surprises. You see exactly what you are going to get on the printed page. If your paper is double-spaced, you will see it double-spaced on the screen. If your document is right-justified, you will see it justified on the screen. You always know exactly where the page breaks will fall, so there is never a danger of breaking a chart in two pieces, or leaving a straggling line at the top or bottom of the page. This is a tremendous advantage whenever you write a document where the format is important. For anyone who is producing final copy that has to look just right, this alone would dictate the choice of WordStar over Magic Wand.
For doing "quick and dirty drafts", however, Magic Wand has some advantages too. First it prints out more quickly, and it also has a helpful quick-print feature that lets you knock out a simply formatted hard copy without even saving your text to disk. Magic Wand also allows you to examine and pull in pieces of other texts that you have already written (WordStar only allows you to pull in the whole document, rather than a section of it).
6. Compatibility with the Epson MX-80 printer. The Epson MX-80 is one of the more popular dot matrix printers. One of its strengths is that it has a variety of print formats, plus a set of graphics characters. It is possible to use these features with Magic Wand, but you have to read the manuals rather carefully to find out exactly how to do it. The secret is the OUT command, issued either in the text or at print time, followed by certain printer codes, will turn on or off the different print modes. The codes are all given in the Epson Manual as statements in BASIC, but it is easy to translate them into commands Magic Wand understands. LPRINT $\mathrm{CHR} \$(27) \mathrm{CHR} \(69) is the BASIC command to turn on intense type. OUT 27,69 in Magic Wand accomplishes the same thing. You can even use the OUT command to put graphic characters in your text.
The distributed version of WordStar does allow you to double print characters, but it does not seem to be possible to produce any of the other Epson print modes. Here again Patrick McNally comes to the rescue with Ep/Star. This is another program to modify WordStar so that it can use the special Epson print modes. Turning these modes on and off is cumbersome in Magic Wand but you don't have to buy a special program to do it. Once you do have the modification, it is much easier to use these special features from WordStar (but if you bought both programs, the manual, and MailMerge, WordStar would cost you $\$ 287$ more than Magic Wand).
7. Compatiblity with other computers. The complexities of WordStar create problems if you want to interface with other word processing systems. I frequently produce texts which I send over the telephone to a dedicated wordprocessor in another city. As
it turns out, I can only send Magic Wand files. The reasons for this are a bit technical, and I won't explain them in detail. Some word processors use the eighth bit as a way of distinguishing between hard returns and soft returns, and hard spaces and soft spaces. Some modem transfer programs don't even transmit the eighth bit, and few other word processing programs will recognize these characters. Magic Wand, on the other hand, produces a pure ASCII file that can be easily understood by almost any other program (including WordStar).

Overall Assessment

So which one is right for you? As usual, the answer will depend on your needs. If you are doing longer documents or drafts, where formatting is not that crucial, and if you want a cheaper, faster, and easier system, Magic Wand is for you. I happen to own both. I started out with Magic Wand but then got WordStar to be compatible with co-authors who were using it. I prefer to use Magic Wand when I am doing a draft version of an article that has few charts or tables. But when I need to do something like a resume, or a proposal that must look perfect, I immediately fire up WordStar.

About the Author:

John Immerwahr is a Professor of Philosophy at Villanova University, and a Senior Project Consultant for the Public Agenda Foundation. He uses his computer primarily for word processing and for writing educational software for his pre-school children.

Now be able to run standard 8 " Shugart compatible drives and $5.25^{\prime \prime}$ drives (including the H37 type) in double and single density, automatically with one controller.
Your hard sectored 5.25" disks can be reformatted and used as soft sectored double density disks. The FDC-880H operates with or without the Heath hard sectored controller.

NEW PRICE \$495 Includes controller board CP/M boot prom, I/O decoder prom, hardware/software manuals BIOS source listing. HDOS driver now available for $\$ 40.00$. $5-20$ day delivery-pay by check C.O.D., Visa, or M/C.

Contact:

C. D. R. Systems Inc 7210 Clairemont Mesa Bivd San Diego, CA 92111 Sal. (619) 560-1272

3 GOOD REASONS
 TO SELECT GENERIC SOFTWARE PRODUCTS FOR YOUR SOFTWARE NEEDS

1 PROFESSIONALLY DESIGNED AND WRITTEN PROGRAMS
Computer software is not a part-time hobby at GENERIC! Our software authors have years of experience in the computer industry. We knew about computers long before HEATHIZENITH started selling them. You can buy software from someone who is just "learning about computers," or you can buy GENERIC and benefit from our computer training and experience!
2 COMPLETE AND EASY-TO-USE DOCUMENTATION
Using a good program without documentation is about like learning to fly a good plane without operating instructions - you hope you can figure it out before you crash! At GENERIC. we feel that good documentation is as important as a good program. It is our goal to keep our customers as well as our programs from crashing!
3 COURTEOUS, FULL-TIME CUSTOMER SUPPORT STAFF
Ever deal with a company that provides parttime or no support? Ever call a company with a technical question only to get "we can't answer that question here?" GENERIC provides a full. time support staff that is capable of answering your technical questions. We provide telephone support weekdays during business hours. If after the sale support is important to you, then consider the GENERIC difference!

Generic Software

QUALITY SOFTWARE PRODUCTS

P.O. BOX 790 MARQUETTE, MI 49855

 Call: (906) 475-7151 10 am- 5 pm ESTCall or write for more information about our full line of products and our FREE Summer 1983 catalog.

गु Z. 100 SOFTWARE! !

That's right! Our complete line of quality software products is available now on softsector disks for CP/M-85!

ATTENTION SOFTWARE AUTHORS: GENERIC SOFTWARE is interested in high quality and well documented software for HEATHIZENITH computers. GENERIC offers professional packaging, and high royalties. If you are interested in making money from the software you develop, then request our FREE booklet, "SOFTWARE AUTHOR'S KIT"!

At GENERIC, we do one thing ... SOFTWARE . . . and we do it right!

Visit the
GENERIC SOFTWARE booth at the
1983 National HUG Conference in Chicago,
August 19, 20 and 21!
$\star \star$ SPECIAL OFFER $\star \star$

Many of our fine software products will be available at low sale prices before and during the HUG Conference. To receive sale prices and information, request HUG CON-83 Special Software Offers!

Ask about GENERIC SOFTWARE products at your local HEATHKIT Store or ZENITH Dealer, or contact GENERIC directly.

Personal Checks

 and BalancingDon Thomas 3797 Southfield Dr.
St. Joseph, MI 49085

The programs CHECK.BAS and BALANCE.BAS are all written in a user friendly, self-prompting style. The check book program for example prints out as a standard checkbook register does. The programs were originally written for my wife as I was learning BASIC programming. All of my family check records are now kept on the computer. Note that in all of my programs I use a default no-return unless otherwise prompted.

CHECK.BAS is more easily managed using monthly data files so the first prompt asks the month's entries to be used, such as JAN. The program will add the .DAT extension. Using 100 K drives, I used SY1: for my data files, however, you are prompted for the drive you wish to use for data storage. The program will ask if you want to initialize a data file. Be careful when answering ' Y ' to this as it is used when starting new monthly data files on the disk. Old files may be renamed from HDOS such as JAN1983. DAT for permanent storage. The program asks if you wish to add entries to the checkbook. You may either add now or after you see the register printed out. An editor, of sorts, is present to remove the last line entered in case of a mistake. You may now make more entries or get a hard copy printout of what you have. This printout is in standard checkbook form.

BALANCE.BAS reconciles your checkbook register to the bank's monthly statement. You are first asked to enter how much the bank thinks you have in your account. Then you are asked to enter your outstanding deposits. Enter them one at a time until finished, then just hit a return to continue with the program. Entering outstanding checks is done in the same way as the deposits, but you also enter the check number. When you are done entering checks, the computer will show you your adjusted balance. If the balance doesn't agree, the computer will then help you find your mistake by showing you the difference between your figures and the bank's figures. It can also read back your outstanding checks and deposits.

CHECK.BAS

30 LINE INPUT＂Do you wish to add entries to the check book？＂；Als

320 REA OPEN FILE TO READ IT
334 PRINT Cars（27）＋＂［＂
349 DPEA＂ 1 ＂， $11, \mathrm{C} 15$
350 FOR $j=1$ TO 10e：INPUT $11,53(\mathrm{~J})$
360 IF SS（J）（J）EOF＂THEN NEXT J
370 CLOSE ：1
30 PRINT CPR（27）＋＂।

$420 \mathrm{~B}=\mathrm{a}_{1} \mathrm{C}=\mathrm{C}$
430 LINE INPUT＂Is this a deposit entry？＂；A1s

450 Line ineut＂Check No．＂；As
460 LIE INPUT＂Date check witten＂； 828
470 LINE INPUT＂Description of check＂；B3s
488 INPUT＂Ans．check written for＂；B
190.0070520

510 LIE INPUT＂Date of Deposit．＂；B28
$520 \mathrm{D}=\mathrm{D}-\mathrm{B}_{1} \mathrm{D}=\mathrm{D}+\mathrm{C}$
530＇WRITE QD INFO NO NEW TO DISK
540 OPEN ${ }^{0} 0{ }^{\circ}, 11, \mathrm{C} 18$
550 IF $K>1$ THEN FOR $I=1$ TO J－1
560 PRINT 11，5s（1）
570 MEXI I
5et PRIIT 11, USING $\mathrm{Fs} ; \mathrm{At}, \mathrm{B} 28, B 38, B, C, D$
590 PRINT 11，＂EEF＂
600 COSE 11
610＇PEAD DISK AND DISPLAY ON TUEE
620 OFEN＇ 1 ＇， $11, \mathrm{Cls}$
638 PRINT CARs（27）＋${ }^{\circ} \mathrm{E}^{-}$
640 PRINT CARS（27）＋＂［＂
C50 FOR J＝1 TO 100
660 INPUT 11，55（J）
670 IF SS（J）$x^{*} E[F=$ THEN 700
680 PRINT Ss（J）
690 MEXT J
700 close 11
710 PRINT Capl（27）＋${ }^{\circ}$ ．

740 PRINTIPPINT
TSe LINE INPUT＂Do gou wish to correct the last entry？＂；Als

776 PRINT：PRINT
780 LINE INert＂Do you have anymore entries？＂；Als

80 PRINT，PRINT NOTE：If you require a printout，LP：nust be loaded．＂
810 LINE INPUT＂Do you vish a priatout？＂；Als

83 REL DATA FILE INIT．SUBROUTIE
S4O OFEN＂0＂，01，C1S
850 PRINT 01 ；；＂W0．DATE DESCRIPTION CK．ANT．DEP．AIT．
－BALAMCE＇
860 PRINT 11，；＂
876 PRINT 11，＂EOF＂
88 CLOSE I 10 REM
890 coto 399
$90 \mathrm{OPEI}{ }^{\circ} \mathrm{I}$＂，01，C1s
910 FOR $=1$ TO 100_{1} INPUT $11,58(\mathrm{~J}):$ IF S $\mathrm{S}(\mathrm{J})=$＂EOF＇TIEN 930
920 NEXT J
930．CLOSE 11
949 OPEM＂ 0 ＂，01，＂ PP_{1}＊
SSO FOR $=1=1$ T0
960 IF $\mathrm{S}(\mathrm{J})={ }^{\circ} \mathrm{EOF}$＂THeN 1000
970 PRINT 11, ；Ss（J）
980 NEXT JICUOSE
990 PRINT
1000 a．OSE：PRINT：PRINT＂D_{0} gou vish to return to the operating systew？＇；

1026 GEM READ IN TO REHOVE LAST EMTRY

1033（PFEN＇I＂，01，C18
1040 FOR J $=1$ TO 100
1050 INPUT $11,56(\mathrm{~J})$

1070 IEXT J
1ese C．OSE O1
1090 KEI CEIS RID OF LAST ENTRY IF IESIRED
1100 たJー1
1110 OPEN $0^{0} 0^{2}, 01, \mathrm{Cl} 5$
1128 IF K＞1 THEN FOR $\mathrm{I}=1$ To J
1130 PRINT $11,53(1)$
1140 EEXT I
1150 PRINT 01，＂EOF＂
1160 CLOSE 11：c000 610
1176 PRINT
1160 PRINT＂CAUTION！！！！ARE YOU SURE？？THIS REMOVES ALL DATA FROM SPECIFIED＊
－FILE！！〈N〉＂；
$1190^{\text {＇The midaie stationt on the mext line is a line feed cause no }}$
auto lile feed after he ineut statert．（Chuses te mext line
10 BE PRIMTED ON SNE LINE）．（LOOK AT EID OF 1010）
1200 AfallPUTS（1）：PRINT As：PRINT CIRs（27）；CAPs（10）：
IF $A S==^{*} Y^{*}$ OR $A s={ }^{*} y^{*}$ THEN s4e ELSE 300
1210 PRIIIT ：PRINT＂Do you wish to return to the operating system？＂；
$1220 \mathrm{x}=\mathrm{IN}$
1230 PRINT：IF ERR－53 THEN PRINT＂File not located，do you wish to see the＊

1240 IF ERRZ65 THE PRINT＂Hit return and type in something stupid！＂；
1250 IF ERR＝57 THEN PRINT＂Load Ip：then rerun progran＂：SYSTEM
1260 IF ERR＝57 OR ERR265 OR ERY＝53 THE 1284
1270 ON ERFOR COTO O

1300 RESV左 10
1310 PRINT：PRINT：RESET DRS
1320 RETUPN
1330 PRINT CHRs（13）：PRINT：IF DRA＝＂SYe：＂THEN FILES
1340 IF DRI＝＊SY1：＂THEN FILES＊SY1＊
1350 IF IRTs＂SY2：＂THEC FILES＂SY2＂
1360 PRINT：PRINT ${ }^{3}$ Hit return to continue＇；：COTO 1250

m．	DATE	DESCRIPTION	CWK．A．t．	DEP．AFT．	BALANCE
＊${ }^{\text {H }}$	01－JAN		0.60	532.00	532.60
201	－2－JMN	REIT	280.00	0．00	332.00
202	23－J6W	CAR PAMETT	28.44	0.00	311.56
EOF					
MO．	DATE	DESCRIPTION	CHEAMT．	DEP．ANT．	BPLANCE
＊＊	$01-\mathrm{FEB}$		8.08	187.06	187.00
101	（1－FEB	K－WART	10.15	0.00	176.85
102	01－FEB	KROCER	55.26	6.08	121.59
103	03－FEB	GAS	21.28	0.00	10.31
＊＊	$10-\mathrm{FEB}$		－ 00	2000.00	2100.31
105	$19+E B$	RENT	500.00	0.00	1600.31
EOF			CHECK．BAS printout		

BALANCE．BAS

10 REM URITTEN BY－－DON THOHAS
2 REM 3797 SOMFIFD
30 REA
3797 SouTFIEL
4．CLEAR
50 C．EAR 4000
60 $\mathrm{V}=200$
70 DIM $\propto(V), C O(V), D 1(V)$

98 PRIMT CVRs（27）＋＂E＂
100 PRIMT TAB（5）＊＊；
110 IIPUT＂Enter banh＇s balance for the end of the month＂；BB
120 PRINT ：PRINT
130 PRINT＂List outstanding Deposits．＂
$140 \mathrm{H}=\mathrm{W}+1$
150 IIPUT＊Deposit Amount＂；D1（W）

160 D0 $020+101(\mathrm{~K})$
170 IF DI $(W)=\Rightarrow$ TEEN 190
180 como 140
190 PRIIT ：PRIMT
200 PRIMT＂List all outstanding Checks．＂
210 上 $\mathrm{J}+1$
220 INPUT＂Check number＂；ON（J）
230 IF $\mathrm{CN}(\mathrm{J})=0$ THEI 278
249 IIPUT＂Check amount＂；©C（J）
$250 \mathrm{~B}=8+\mathrm{C}(\mathrm{J})$
260 COTO 210
$278 \mathrm{~F}=\mathrm{DOHEB} \mathrm{F}=F-8$
280 PRIMT CARB（27）＋＂E＂
290 PRIIT＂Nake sure you bave entered all service clarges and dividonds＂
300 PRINT＂to gour checkbook．
310 PRINT
320 PRIIT CARs（27）；CARs（70）

340 PRIIT CARS（27）；QRe4（71）
350 PRIIIT＂Your end of month balance is＂；
360 PRINT USING F8；F
370 PRIIT Cars（27）＋＊F＂

390 PRIIT CHR3（27）${ }^{\circ} 0^{\circ}$
400 PRINTIPRINT
410 PRIIT＇Bank Bali＇i：PRINT USIM Fs；B8；
420 PRIIT＇Outstanding Depa＇；；PRIMT USIMG Fs；D0；
438 PRINT＂Outstanding Checks：＇；iPRIIT USINO Fi；B
440 PR1IIT＊
450 PRIMITPRITT
460 PRIIT
470 IIPUT＂Does this agree vith jour checkbook balance ${ }^{\circ}$ ；as
490 Prilt

500 INPUT＂What is your checkbook belance＂；CB
510 CBF－ $\mathrm{CB}:(\mathrm{CE}=\mathrm{ABS}(\mathrm{GB})$
520 PRIMITPRIITTOThe difference between your checkbook and the statement is＂；
530 PRIIT USIIG F8；08；apRIIIT＂Dollars＂
540 PRIIT ：IIPUT＂Do gou wish to see gour outstanding checks listed＂；PSS

568 PRINT
570 INPUT＂Do you wish to see your outstanding deposits listed＂；P1

590 PRINT
600 INPUT＂Do you wish to try again 〈M〉＂；\downarrow s

634 PRINT
640 Taj－1：$⿲ 丿=1$
650 INPU＂Do you wish this printout to be on the printer＂；F Fs

670 OPEA＂ 0 ＂， 11,0 Ps
609 PRINT $11, ;^{2}$－

700 FOR $K=1$ TO T
710 PRINT 11， $\mathrm{C}(\mathrm{J})$ ；
720 PRINT il，USIMG Fs；CC（J）
730 Jntl
740 MEXT K
750 ClOSE
760 PETUPN
T70 mex：
780 W 1
790 IIPUT＂Do you uish to see the depasits on the printer＂；As

816 PRIIT
820 СРЕN＂ $00^{\circ}, 11$, LPs
839 PRINT $11_{1} ;$＂Outstanding Deposits＂
840 FOR $Z=1$ TO wiw

$8501 \mathrm{l}=1$
870 next 2
890 ClCSE
890 RETUW

 EEROM \＆EPROM PROGRAMMER

YOU＇VE ALREADY GOT THE SMARTS IN YOUR COMPUTER，SO WHY BUY A MICROPROCESSOR

BASED PROM PROGRAMMER？
The DumBurner communicates with your personal computer through an RS－232 serial port，and operates
in conjunction with the supplied software．
－Programs \＆Verifies 16 K through 128 K Single Voltage EPROMs
＊Erases，Programs \＆Verifles 2815 \＆ 2816 EEROMs
－Programming Characteristics selected by
convenient Personallty Jumper Plug
＊Program／Verify Mode Display with Bicolor LED
－Program Pulse Timing Independent of CPU
＊Transfer Disk Files to EPROM
＊Transfer EPROM Contents to Disk File

DumBurner II Programmer with
Software（source Included－ 2732A and Blank 64K
Programming Plugs Included） $\mathbf{\$ 1 9 9}$ DumBurner II Bare PC board set with Software umBurner $16 \mathrm{~K} / 32 \mathrm{~K}$
Programmer with Software
DumBurner $16 \mathrm{~K} / 32 \mathrm{~K}$ Bare PC
board with Software
RS－232 Interconnect Cable

Software Available for Heath H8／H89 or Zentth Z90 under HDOS or CP／M；Heath／Zenith Z100 Under P／MBS，TRS－80 Model 1 Solware vail．August＇83．8＂CP／M Media avail．September＇83．
Ross Custom Electronics
1307 Dartene Way－Sulte Al2 Goultfor Clty．Novada B9ogs PHONE（7O2）293．7426

[^3]

THE FAST FULL SCREEN EDITORS FOR HEATH／ZENITH PERSONAL COMPUTERS

Both ZED and ZED85 are ideal for word processing applications and for editing program source code files and data files．

Their ergonomic design enable the user to focus on the content of the file being edited rather than on the commands used to edit the file．
－ZED runs under CP／M on Z－89 and Z－90 computers
－ZED－85 runs under CP／M－85 on Z－100 computers
Both products are available from Heath／Zenith dealers or directly from Zeducomp．ASK YOUR DEALER FOR A DEMONSTRATION！

PRICE：\＄35

P．O．BOX 68 STIRLING，N．J． 07980 （201）755－2262
VISA，MASTERCARD，CHECK CP／M is a trademark of Digital Research，Inc．

BE A HAPPY HUGGER.

Z-100 Users! Call us for floppy \& hard disk add-on prices. We have 8" \& 5114" drives for you!

Get to know Floppy Disk Services.

We are contracted dealers for Siemens, Shugart and Tandon disk drives. You may do a double take when you see our prices, but there's no catch-we simply buy in large quantities and sell at reasonable prices.
We've sold thousands of drives to our Heath/Zenith friends. And with our good service and fair guarantee, we keep our friends friendly.

Check our prices on these Heath/Zenith compatible drives..

FDD-100-5 'flippy' (Just like your internal H89 drive)
$\$ 215.00$
FDD-221-5 DS/DD 96tpi (80 track)
\qquad
FDD-200-5 same as $100-5$ but
double sided (2 heads)
250.00

FDD-100-8d5 SS/DD 8 inch with 3 ms step!

Sale! 240.00

2 for $\$ 450.00 \mathrm{ea}$.
FDD-200-8 DS/DD 8 inch 3ms step

Sale!
345.00

New Shugart half height dlsk drives!!

SA-455 double sided, double density, 48 tpi half height $5 \frac{1}{4}$ " step time to 6 ms ! 295.00

2 for $\$ 245.00$ ea.
SA-465 double sided, double density, 96tpi
half height $51 / 4$ " step time to 6 ms !
350.00

2 for $\$ 295.00$ ea.
SA-860 double sided, double density, 8 inch half height. Step time to 3 ms !

2 for $\$ 445.00$ ea.
PAYMENT POLICY We accept Mastercard, Visa, personal checks \& M.O. We reserve the right to wait 10 working days for personal checks to clear your bank. All shipping standard UPS rates unless otherwise requested. New Jersey residents must add 6% sales tax.
Due to production deadlines, prices in this ad could be as old as 2 months. If in doubt, call!

Prices and specs subject to change without notice

Dual Heath Add-on
FDD-100-5
CP/M and H88-89-90 are registered trademarks of Digital Research and Heath Co., respectively.

Dual Half Height or Single Full Size $8^{\prime \prime}$

Need an enclosure for $51 / 4$ or $8^{\prime \prime}$?

Single vertical case w/ps A\&T
styled to match Heath color \$ 50.00
Dual vertical case with power
supply A\&T 75.00

Dual horizontal case with dual
floppy supply A\&T 125.00

Dual horizontal 8" A\&T 275.00

Holf Height Enclosures

Floppy Disk Services has designed these new half height enclosures from the ground up! We had you, the end user in mind and designed these 5 models:
Vertical dual $51 / 4$ half height
\$ 75.00
Single full size $5 \frac{1}{4}$ or up to 2 half height $\ldots \ldots$.... 125.00*
Dual side by side horizontal half height $51 / 4 \ldots$. 125.00*
Dual side by side horizontal half height 8 inch ... 295.00*
Single full size 8 inch or up to 2 half height 295.00*

* These enclosures are of professional design and have data cableing options available at extra charge.
** all of the above enclosures include A\&T with power supply.

Magnolia $8^{\text {" }}$ Controller

Magnolia Microsystems controller for the Heath H88, 89, 90 enables you to use any combination of 8 or $51 / 4$ single or double sided, single or double density-up to 4 of each size drive! You even get CP/M in 8 and $51 / 4$ format serialized for you. This controller is available at a special price of $\$ 525.00$.

Our pledge to you...

All Floppy Disk products are brand new and 100% warranted. If you are unhappy with our systems or components for any reason, we will refund your money promptly. There are two requirements: 1. the equipment must be in as good shape as you received it; and 2 . you must call or write for a return authorization. This offer is good for 30 days, beginning with your invoice date. Feel free to call us with any questions.
We make Huggers happy. Call today!
Toll Free Order Line (800) 223-0306 Tech Help or Info. (609) 799-4440

741 Alexander Rd.
Princeton, NJ 08540

"Millionaire, The Stock Market Simulation," is an offering from Blue Chip Software. I had the opportunity to put this educational stock market simulator through its paces and can readily report that it is also a very challenging game.

In our home, educational simulations have proven to be the most popular and enduring of computer games. Our favorite is George Blank's Santa Paravia en Fiumaccio, first published for the TRS80 in Softside Magazine a number of years ago. The game is an excellent takeoff of the traditional Hamurabi (originally published in David Ahl's "101 BASIC Computer Games" (DEC) and has provided us with hours of entertainment in both a solitaire and competitive atmosphere. Millionaire has the potential to be just as entertaining and educational.
Essentially billed as a "Stock Market Simulation," Millionaire simulates the rise and fall of the stock market (and perhaps your savings as well). Five major industries (Computer, Oil \& Gas, Retail, Auto, and Heavy) are represented by three stocks from each group. The represented companies are Control Data, IBM, and NCR (Computers); Conoco, Exxon, and Mobil (Oil and Gas); K-Mart, Sears, and Tandy-Radio Shack (Retail); GM, American Motors, and Bendix (Auto); and United States Steel, Dow Chemical, and Caterpiller Tractor (Heavy).
As the game progresses through each week, it reflects the somewhat typical behavior of the market with its overall trends, peaks and valleys, and maverick stocks (those that seemingly defy the rest of the market-for good or bad). The activity for each week is illustrated with a graph showing previous weeks' performances as well as a selected graph of one of the five industries (based on the performance of the three stocks of that group). The other industry's graphs may also be viewed as well as those for individual stocks.

Weekly news bulletins, which effect stock performance, are randomly displayed. By carefully monitoring these bulletins, one can sometimes judge performance of an individual stock. Occasionally, no news is displayed. When that happens, the market tends to rise a bit, fulfilling the old adage, "no news is good news", although live had a long losing trend continue right through two or three weeks' worth of "no news". Along with a news report, a capsule summary of stock activity is produced, showing the year's high and low, and week's close and change of each stock. Also shown are new highs and lows, the number of stocks that were "losers" and "winners", the gain or loss of the market (in points), and the performance of an average share.

The play of the game is straight-forward: you buy and sell stocks. Of course, knowing when to buy or sell can be somewhat tricky. The simulation also supports corporate histories, loans, margin accounts, and call and put options. The basic functions are explained in the documentation. However, not enough background information is provided to let the novice in on the secrets of buying and selling with "calls" and "puts". However, this is also true of the entire package; if you don't know the first thing about the stock market, then you will feel like you have been assigned to deep left field in a kids softball game.
I have found that most documentation that accompanies software falls short. The programmer and/or author evidently knows the material very well; well enough to assume far too much on the part of the average user. Documentation should be complete enough to explain not only the operation of the program, but also the concepts behind the program. By this I do not mean the programming trade secrets, but rather, the concepts of the application. For instance, if the program in question is a General Ledger package, then the concepts of assets, liabilities, chart of accounts, profit, loss, gross, and net need to be explained in simple terms. In the case of Millionaire, the subject is the stock market, so the

concepts of stocks, investing, margin, call and put options, effect of taxes, all could be explained. For instance, when I consulted the family World Book Encyclopedia, I found margin described, but not call and put transactions. Filling in the concepts can make the difference between average documentation and great documentation. Of course, the documentation has to read easily, as well.
Packaging for this product is outstanding. My first impressions of the padded folder, gold labels and embossing, clean layout, and clear instructions, told me that this product was well worth looking at. All criticism of documentation aside, this product does do what it was intended to do; and, by not being as complete as it could be, the game forced us to visit our local library and find out more about the stock market. An added plus to the game is that it is very educational. It closely parallels situations that have recently happened in the market. The news is timely, well within the last ten years-for instance, the oil embargo, the discovery of oil on Alaska's North Shore, market diversity, labor problems, and the recession.

We (my son and I) tested the CP/M version on an H-100 under the CP/M-85 operating system. For those of you who are not familiar with this operating system, it operates almost the same as an H- 8/H-19 combination, H/Z-89, or Z-90 Computer and graphics under CP / M. Therefore, the results we experienced will be essentially the same as with those machines.
Getting the game up and running was not as easy as one-two-three. The instructions were written (evidently) for an earlier version of the game (one that required a copy of MBASIC, Microsoft's BASIC Interpreter), and so the loading instructions were wrong.
Our machine language version required some undocumented doctoring. After we transferred the files to a bootable CP/M-85 disk, we started Millionaire by entering an M . (We discovered a .COM file by that name.) This brought up the introductory screen, but with a lot of strange numbers and letters in front of each line. In addition, nothing that we entered via the keyboard seemed to display correctly. Going back to the directory, I discovered another file by the name of T.COM. Running this file produced a straightforward display of terminal types. Selecting the Heath 19/89 option, I returned the program. Now everything worked perfectly.
Exploring the T.COM program a bit further, I found that most common terminals were represented and, if you are running a home brew terminal with your $\mathrm{H}-8$ and CP/M, you can even enter the special codes needed for the game and create a new terminal type for your own system. Once set into the system, the terminal characteristics (for clear screen and direct cursor addressing) will be stored and used with the main program every time you start it.
Getting the simulation started is time consuming. However, there is a good reason for this: each of the fifteen stocks has 91 weeks' activity (according to the documentation) created randomly each time the program is started with a new session. This insures a truly random play of the market so that no two games are ever the same. It also appears that the activity is not really random in the true sense of the word. Some very clear trends appear in each game, much the same as a series of trends will appear given any particular world- or nation-wide year and events. This tendency toward real life puts this whole program a mark above the average; the programmer(s) did their research very well and the extra time is well worth the added realism to the real world.
However, the time consumed is long enough to make you wonder if your computer died on you. On our machine, it took about four minutes to get a game started. It took only about a minute
and a half if a previous session was being loaded.
The object of the game, to become a millionaire, is accomplished by advancing through different levels (or status) during the play of the game. It will take more than one 91-week session to advance from novice through investor, speculator, professional, broker, and finally to millionaire. Each 91-week session took about an hour to complete. In one session, I obtained nearly 180 percent of my initial investment, while in another session, I saw a loss of better than 20 percent. My son did much worse and quit early on several occasions. However, after he had watched me play through a game or two, he took heart and tried again with much better results.

This experience brings to mind one that I had while teaching computer science at a local community college: high school and junior high students have some problems relating to real life situations. In the case of this simulation, the action of the stock market depends upon a wide number of variables, including many that are not of the obvious cause and effect variety. For some reason it takes the experience that age provides to truly grasp the importance of seemingly unimportant details. In that regard, this simulation, because of the relationship between various types of news events and the result on the market, provides a real teaching tool that is rarely found, even in games like Santa Paravia.
The play is excellent, with plenty of random happenings to keep things interesting. However, we did note several irregularities with real world experience, mostly in the form of the news bulletins. For instance, there was a news bulletin reporting dividend earnings for Tandy stock. Tandy is not a dividend stock-it is a growth stock. In several instances, "wildcat" strikes were reported for companies that have never experienced such labor problems. Items of this nature have no bearing, however, on how the game is played; they simply do not reflect the real world.
The histories given for each corporation are accurate, informative, and interesting. However, the capsules are marred by typing errors, mostly limited to poor spacing around punctuation. Given the cost of this game and care put into the rest of the package, the sloppy typing should have been corrected long ago.
A word of warning to the uninitiated. Like all simulations, there are limitations to the realism achievable, and this game should not be construed in any manner as being exactly identical to the real world. It does come the closest of any simulator to real life stock market investing and activity as any I have seen, but it does not and can not possibly take into account all of the many variables that affect the various stocks in the market.

One feature I would like to see (although it would take away from the realism of the simulation) and would really make this game ideal for pure entertainment: competition against one or more other players. For this reason alone, Millionaire probably will never replace Santa Paravia in our home.

Summary ratings:

$$
\begin{array}{ll}
\text { Packaging and production } & : \mathbf{1 0} \text { (top-notch) } \\
\text { Documentation accuracy } & : \mathbf{7} \text { (getting started) } \\
\text { Documentation completeness }: 5 \text { (not enough background) } \\
\text { Documentation on disk } & : 9 \text { (sloppy typographical errors) } \\
\text { Playing interest } & : \mathbf{8} \text { (non-competitive) } \\
\text { Playing challenge } & : \mathbf{1 0} \text { (excellent) } \\
\text { Playing time } & : 8 \text { (slightly long) } \\
\text { Features } & : \mathbf{1 0} \text { (unusually complete) }
\end{array}
$$

Cost to performance value:

As a game

As a simulation
For education
: 6 (expensive)
: 10 (unusually real)
: 10 (with additional assignments)
Vendor: Blue Chip Software19824 Ventura Blvd., Suite 125
Woodland Hills, CA 91364
(213) 881-8288
Price: $\$ 69.95$ ($8^{\prime \prime}$ disk)
$\$ 59.95$ ($5^{\prime \prime}$ disk)
Machines: TRS-80, Apple, IBM PC, Osborne One,
and $C P / M$ (including all
Heath/Zenith Systems
that run 8-bit CP/M
version 2.2 or higher).

Reviewers:

Tom Huber, originally from the Pacific Northwest, has been affiliated with the computer, business machine, and electronics industry since 1965, and is currently employed by Heath Company as a computer publications writer/editor. His interests include spectator sports (pro basketball and football, auto and unlimited hydroplane racing), computers and their applications, and raising a family of 3 daughters and one son. He serves as New Products editor for REMark and was editor for 80-U.S. Journal, a TRS-80 publication, for a year.
His son David, who provided valuable play information for this review is 13 and active in school sports. He interests include scouting, basketball, football, bowling, computers and electronics.

Getting Started with Assembly Language

(We're Getting There...)

Pat Swayne Software Engineer

If you have recently completed an introductory study of assembly language such as the Heath Assembly Language course, then this series of articles is for you. In it, I am attempting to bring you from a theoretical knowiedge of assembly programming to a practical one. But if you are reading REMark for the first time, I urge you to obtain the last three issues and read the previous installments of this series.

Part V - Using A Printer In CP/M

As I pointed out last month, new assembly programmers sometimes find using a printer in their programs difficult. This is because the operating system (HDOS or CP/M) does not provide as much support for printers as it does for the console (keyboard and screen). I also pointed out that studying someone else's program does not always help, because they do not explain what they are doing. So, for those of you who are reading only the CP/M installments in this series (Shame on you!), I will repeat the second of my rules for assembly language programming.

Rule 2. Include a generous amount of comments in your program, with the idea in mind that someone else may be trying to learn from your work, even though your purpose in writing it is not to teach.

Readers of last month's instailment will recall that HDOS treats all input/output devices (console, printer, disk, etc.) in about the same way, and that you can "talk" to any of them using the same system routines. CP/ M is very different in this area. Each of its 5 logical devices (Console, List (printer), Reader*, Punch*, and Disk) (The Reader and Punch devices are throw- backs to earlier days of computing, when paper tape was used for program storage. In modern CP/M systems, they are often used for modern communication.) is supported by its own system routines (BDOS functions). So while the HDOS discussion on printer output serves as an introduction to disk operations, this CP/M discussion of printers will have no bearing on disk use.

A Computer Typewriter (in CP/M)

As with the HDOS segment on printers, the sample program I have chosen for this discussion turns your computer into a simple typewriter, with the ability to correct a line before it is committed to paper. Listing 1 shows the program, which, as usual, is an assembly translation of a BASIC program. The BASIC program in this case is written for CP/M Microsoft BASIC.

After the initial comments, the program has the usual EQUate table that defines system calls and other parameters that will be used in the program. The only new definitions (that were not in the last CP/M example program) are the LSTOUT BDOS function and an external STACK definition. The other functions and definitions were covered in the last CP/M installment.
The program starts in the same way as the

CP/M console example, by getting the value of the stack pointer as maintained by CP / M, setting a new stack for the program, and saving the CP/M stack value. Before, however, we used some space within the program for the stack, but this time we are going to use an external stack. The label STACK is made equal to 100 H , which means that the stack will start at the Transient Program Area (TPA) where the program starts and work down. This practice is acceptable as long as your program will not be using that area of memory, or will not use any BDOS functions that use that area, and you do not use up more than 128 bytes of stack space. The area just below the TPA is called the "default DMA
area", and is often used for disk operations. Since our program performs no disk I/O, we can use that area for a stack and save space within the program itself.

The first four lines of the BASIC program are translated using the BDOS Type function. Line 50 is translated by the BDOS Line Input function, and is done like the previous CP/M program with two notable differences. The first is that there is no reserved space within the body of the program for the input buffer, but instead it is just put at the end of the program, and characters typed into it just extend beyond the program. This practice is acceptable as long as the buffer area re-
quired is of a definite size that is not so big as to overwrite the operating system. In this case, only 82 bytes maximum beyond the end of the program are required.
The second difference in this program is that the input string is terminated with a line feed with the high bit set (line feed plus 80H), instead of with a dollar sign as before. This is because we are not going to print the input line on the console using CP/M's text string printing function, but on a printer one character at a time. Unlike HDOS, CP/M cannot print blocks of text in one operation, so a programmer must develop his/her own routine to print the text, and therefore can use anything he/she wants to terminate the block of text.
The line input section of the program saves the address of the start of the input line of text so that the first character can be checked to see if it is a period (to translate line 60 of the BASIC program). If it is, the program returns control to CP/M by restoring the CP/M stack and RETurning to the Console Command Processor.
We arrive at the section of the program that translates line 70 with the HL register already pointing to the beginning of the line of text and the first character in the A register. The first thing that is done is to AND the character with 7FH to strip the 8th bit, in case it is set. Then the character is printed using CP/M's one and only BDOS function call (function 5) that directly supports the List (printer) device. While this is done, the A, F, and HL registers are saved on the stack because CP / M does not guarantee preservation of any registers during BDOS function calls. After the registers are restored, the program compares the stripped character in the A register with the one in memory, which should be the same unless it is the last character in the text string. The text pointer is incremented and the next character is taken from memory, and then the program jumps back to print another character unless the end of the text was found by the compare operation.
Line 80 is translated by a jump back to the label LOOP. This is followed by the data and storage area that holds the introductory screen message (at the label TYPEL) and the start of the line input buffer (at LINE). The number of characters that can be typed into one line is limited to 80 here, and the actual text area extends beyond the program end.
Next month, I plan to depart from the procedure I have been following and examine someone else's program, to see where rules are followed or broken. Then in the following months, we will get into disk operations.

MORD PROCESSIKG IS NOW MORE THAN PROC ESSIIG WORDS.

WORD PROCESSING WITH GRAPHICS...PEOPLE CAN SEE WHAT YOU MEAN.
IMAGE adds a new dimension to word processing... graphics! Now, you can combine text and linear graphics to create BAR CHARTS, FORMS, ORGANIZATIONAL CHARTS, FLOW CHARTS, BLOCK LETTERS, and much more. The result? More powerful and more effective communication.

People can SEE what you mean.

TOP MARKS FROM INFOWORLD

IMAGE won top marks from INFOWORLD for its innovation, quality, reliability, and ease of use:
"IMAGE certainly deserves accolades in the performance category."
"The documentation is simply superb. It is professionally done from cover to cover."
"Without a doubt, this program is easy to use."
"The program is bombproofed so well that I had trouble finding any errors."

IMAGE is a trademark of MicroArt Corporation.

InfoWorld

Software Report Card

Image

All quotes are from InfoWorld's IMAGE software review, by Marty Petersen, June 14, 1982.
sopongith tses by Appuiar Computirg inc anub sidiary of CW Communications lic

EXTRAORDINARY VALUE...
"The modest \$295 Price Tag is a Bargain."
IMAGE runs on any Zenith Z/89 or Z/90 computer, on any Heath H/89 or H/90 computer, or on any Z-80based CP/M system linked to a $\mathrm{Z} / 19$ or $\mathrm{H} / 19$ terminal.
TO ORDER CALL TOLL FREE:
1-800-MICROART (1-800-642-7627)
in Oregon, call: 1-692-3950
OR WRITE:
MicroArt
 Corporation 200 Market Bldg. Suite 961 Portland, OR 97201

[^4]
A Simple

Separate

Keyboard \square
Ernst S. Duesterhoeft
Box 37
Helenville, WI 53137

For The H/Z-89

TThere have been many times that I longed for the convenience of a separate keyboard on my H/Z-89.

While there are many places where the convenience of the all-inone makes it desirable, using the $\mathrm{H} / \mathrm{Z}-89$ for word processing on a desktop is not one of them. I was continually searching for the best arrangement, but nothing seemed to work. This went on for quite some time until I saw a TRS-80 Model II with its separate keyboard. I knew that I had found the solution.

The first thing that I did was to turn my H/Z-89 (H/Z-19) on its side and remove the six screws which hold the keyboard in place, lifted it out and disconnected the flat cable which plugged into the PC board under the keyboard.
With the keyboard laying on the bench l examined the construction of the base for the ' 89 '. I found that there would be no structural problems involved in removing the front part of the base. When I measured the piece of the base which would remain, I found that it would be about an inch short of being deep enough to hold the keyboard. After thinking about it for a while I decided that it would be a simple matter to fabricate an extension to the rear of the base out of several small pieces of wood. Using 5-minute epoxy, these could be glued into place and with a small amount of sanding would give a finished look to the case for the keyboard. A similiar solution was used to cover the hole under the frame for the CRT on the base of the H/Z-89. These modifications can all be accomplished without the use of power tools.
The only part of the modification that held any doubts in my mind was connecting the keyboard to the $\mathrm{H} / \mathrm{Z}-89$. Unlike the TRS-80, which converts the keyboard information to a serial format and uses a shielded 5 wire cable, the H/Z-89 uses a 34 conductor flat cable to connect the keyboard to the terminal board. The possibility of stray noise getting into the keyboard controller and causing errors was greatly increased with an unshielded cable lying around unprotected. This fear has proven to be unfounded, since in several weeks of use not a single error has been detected. Also I have not been able to detect a change in the level of radio-frequency interference as a result of this modification.
The two rubber feet which were fastened to the front part of the base should be removed and replaced under the main part of the computer. This is easily accomplished by removing the outside two of
the four screws which hold the front panel in place, discarding the flat washers, and installing the rubber feet.
The only parts which I needed to purchase were four small rubber feet to place under the keyboard and a 36 inch, 34 cond. flat cable assembly with a male connector on one end and female connector on the other.

To use the keyboard, it is a simple matter of connecting it to the computer with the extension cable. The only caution required is to make sure that the correct position of pin one must be maintained.
An alternate solution to the cable would be to use a cable with a female socket on each end and connect directly to the terminal PC board and then route the cable out the rear of and underneath the cabinet.

To finish the project I plan to custom mix both colors used on the H/Z-89. I will use a small spray gun to apply the finish. If there is sufficient interest I can have small spray cans filled. For further information please send inquiries to me, Ernst S . Duesterhoeft, Box 37 , Helenville, WI 53137.

Photo 1. Front view of cabinet showing the cut-off line. The screw which is shown under the cut-off line holds a rubber foot which should be moved to the frame screw immediately above it.

Photo 2. Front view of cabinet after keyboard base has been cut off. At this point the two front rubber feet have been relocated under the two outside frame screws.

Photo 4. End view of keyboard base showing the first piece of the extension being clamped after glueing.

Photo 3. Side view of keyboard after cutting off the base.

Photo 5. View of the keyboard base before final trimming. The three pieces of wood were installed one at a time allowing time for the glue to cure.

Photo 6. End view of the keyboard base showing the extension to the base after final trimming and sanding. Ready to finish.

"Changing Gears" in Your $4 \mathrm{MHz} \mathrm{H-89}$

Peter Shkabara
Analytical Products
29924 Road 168
Visalia, CA 93291

We all owe Pat Swayne a bit of gratitude for publishing his excellent 4 MHz conversion article in the November issue of REMark. In using the conversion, however, I soon discovered the need to be able to switch back and forth between the two clock speeds. Since I run under CP/M, it is easy to switch the clock by patching the Control byte. However, this will kill the ability to use disk access! In order to retain disk operations, the BIOS needs to be patched each time the clock speed is changed. SET.COM is a program which I created to perform this task - easily and conveniently.
Several versions of SET.COM have been developed. Some will automatically detect and adjust for the Heath BIOS version and memory size. There is even a version for CDR Systems, Version 2.7 BIOS. The assembly source listing shown here is a simplified version of SET.COM which will still do the required task. This version is easy to change, and will allow itself to be adapted to user modified BIOS or versions not already included in the program.
Only 8080 codes and mnemonics have been used to allow assembly of the file using the ASM.COM assembler which is included with $C P / M$. To use this listing, the required EQUATES have to be set as needed. Address offsets are already included for Heath $\mathrm{CP} / \mathrm{M} \mathrm{BIOS}$ hard sector Versions 2.2.02 and 2.2.03. For other versions, the user needs to find actual locations of the timing values, calculate their offset in relation to BIOS start address, and then install them at the appropriate locations in the CUSTOM area of the source listing. The CUSTOM EQU equate must be set to TRUE.
For those not familiar with ASM.COM, the procedure to assemble the file consists of calling the utility by typing ASM followed by the name of the assembly source file. For example:

A $>$ ASM SET $<$ CR $>$

Then sit back and let the program do the work. Don't you wish that you had the 4 MHz conversion already installed? Assembly takes half the time at 4 MHz . Be sure that the source file is of the type ASM (e.g., SET.ASM).
The assembler will display any errors it finds in the assembly source file. Since the error messages are somewhat cryptic, look carefully at what is indicated to be an error to make any needed corrections. Hopefully you will not have any error messages.
When the assembly procedure is done you will have a file called SET. HEX on the disk. Before the program can be run, it must be converted to a COM file. This conversion is done by the use of the LOAD.COM program which is also a part of the CP/M package. Once you have a HEX file, simply type in LOAD followed by the name of the file to be loaded. For example:

A>LOAD SET<CR>

The loading process is fairly quick, and in almost no time you will have a ready to run program.
For those less adventurous, Analytical Products has been selling a disk with several versions of SET.COM and source code. Also included on the disk are several SUBMIT files with instructions for their use. The SUBMIT files allow the user to automatically create a bootable disk which will boot up at 4 MHz . Heath CP/M BIOS Versions 2.2.02 and 2.2.03 and CDR Systems BIOS Version 2.7 are fully supported. Cost of the disk is only $\$ 8.00$ (California residents add 6% tax) and are supplied in Heath hard sector format.
HDOS and soft sector format versions of SET.COM are under development.

;ASSEMRLY SOURCE CODE FOR SET.COH
;Created by
Peter Shkabara
11/27/82
29924 Road 168
Visalia, CA 93291
209/747-3235
; All rights reserved
;This progran vill set the nodified h89 to operate at 2 or 4 kHz
;REF RERark Issue 34 -November '82 p25
i
iMod 2/5/83 - adapted for Rekark article
added IF statements to assenble for version 2.2.02 or 2.2.03
and automatic eemory size adjustment
i4 MHz operation is enabled by setting the '4' bit at output port F2
Modified by P. Swane, HOO (pin 9 option and other iaprovements)

; begin eguates

To Automatically Load A Z-BASIC Program

Gerry Kabelman, C.E.T.
Zenith Data Systems

The AUTOEXEC.BAT file in Z-DOS is a series of ASCII commands to automatically do something when Z-DOS is booted-up. The AUTOEXEC.BAT is called a batch file. Several batch files may be linked together. First let's take a look at a simple one command batch file and then some more complex files.

Before writing a batch file, it is a good idea to sit down and decide what is going to be done. For example, if you wish to load Z-BASIC and run the program DEMO.BAS, the following line will have to be executed.

ZBASIC DEMO

The above line is the only thing that needs to be in the batch file. The batch AUTOEXEC.BAT is the file batch looked for by Z-DOS on boot-up. If a file with the name AUTOEXEC.BAT is found, then Z-DOS will attempt to execute that file. If the AUTOEXEC.BAT is NOT found, Z-DOS will ask for the date and time and place the operator at the Z-DOS command prompt.

What is the easiest way to create a batch file? Well, since my background is in Z-BASIC, I found that a Z-BASIC program will do the job very nicely.

```
10. AUTO. EAS Version 05.25.83 DK:
20 OPEN"O", , "AUTOEXEC.EAT"
30 FRINT #1, "ZEASIC DEMO"
40 CLOSE:ENII
```

That is one of the simplest programs around, however, it is very useful in creating batch files for Z-DOS. For HDOS users, do you remember the PROLOGUE.SYS? (See Issue \# 9, page 14 of REMark for a sample listing of PROLOGUE.ASM.)

Using a batch file allows Z-DOS to by-pass the DATE and TIME commands for programs that do not require the use of the DATE or TIME.

The above program is about as simple a batch file that there can be, however, many additional commands could be added. For example, the time and date for those programs requiring them.

23 PRINT \# 1,"DATE"
 24 PRINT \# 1,"TIME"

Another addition could be the DATETIME feature that Frank Clark wrote for Issue 40, Page 31 of REMark.

22 PRINT \#1,"DATETIME"
 25 PRINT \# 1,"DATETIME"

Other commands such as the directory command (DIR), copying disk (DSKCOPY) or any other command under Z-DOS may be used in a batch file.

Linking several batch files may be done by providing the last line of a batch file as the link to the next batch file. Using the above example, another line could be added to link to the AUTO2.BAT batch file.

35 PRINT \#1,"AUTO2.BAT"

The AUTO2.BAT batch file could be created like this.
10. AUTOZ.BAT Version 05.25.83 Gik:

26 OPEN" ${ }^{2}, 2$, "AlTOZ. EAT"
30 FRINT \#2, "DIF"
40 FRINT \#2, "ZEASIC DEMOZ"
50 FRINT \#2, "AUTOEXEC. EAT"
60 CLOSE:END

The AUTO2.BAT will first take a look at the directory of the default drive, load Z-BASIC, and the program DEMO2.BAS. Once the DEMO2.BAS program is finished and the SYSTEM command is executed by either Z-BASIC or the operator, the AUTOEXEC.BAT file is again run, leaving us in a continuous loop. A CTRL-C during the execution of the batch file will prompt us to end the batch file.

Two special commands have been set aside for use in batch files, they are REM and PAUSE. The REM command may be used like the REM command in Z-BASIC, for adding comments to assist the user. When using the REM command, the information after the REM will be printed on the screen to tell the user that maybe a program is loading or to please stand by, etc.

32 PRINT \# 2,"REM This is the directory of the default drive."
The PAUSE command will print any message following the PAUSE and ask that any key be pressed to continue. A CTRL-C may be pressed at this time to terminate the batch command.
34 PRINT \#2,"PAUSE Press CTRL-C to terminate or"
Try using batch files, as they will turn your Z-100 into a turnkey type system.

Addressing Envelopes/Labels

Charles 'Karl'J. Romer

P.O. Box 8796 CRB

Tucson, AZ 85738


```
16 CL{=CHF%(27)+"E":' ADDRIML.BAS for CP/M 2.203 and MX-80 FT (04 Dec 82)
20 PRINT CL: TAB(3)"# * ADDRESSING ENVELOPES/LABELS - INLINE * #*:PRINT
30 PRINT"ENTER PERSON'S NPWE - if not a person's name PRESS <CR>:-"
40 LINE INPUT N:IF NS=""THEN PRINT"ENTER CONPANY NANE:":LINE INPUT CS:GOT0 70
50 PRINT:PRINT"ENTER PERSON'S TITLE - if no title PPESS <CR\rangle:-",ILINE INPUT TS
60 PRINI:PRINT "ENTER COHPNYY NHE-if no Company name PRESS (CR):":LINE INPUT CS
70 PRINT:PRINT'ENTER ADLRESS - if no address PRESS <CR>:-":LINE INUT AS
80 PRINT:PRINT"ENTER CITY, STATE and ZIP:-"ILINE INPUT L{:PRINT CLs
S0 PRINT *PFESS 'R' FOR REVIEN OR 'P' FOR PRINTOUT: - ';:RP$=INPUTS(1):PRINT RPS
100 PRINT:IF RPS="R"OR RPS="r"OR RPT }=\mathrm{ "P"OR RPS }=\mathrm{ " p"THEN 110 ELSE 90
110 EHs=CHFS(27)+"E":DHF=CHRs(27)+"F"
120 IF RPS="R"OR RPS="r"TIEN EM="":DME=":POKE 3,105
130 PRINT'PPESS 'E' FOR ENELOPE OR 'L' - LABEL(s):- ";:EL{INPUTS(1):PRINT Els
140 PRINT:IF EL.f="E"OR El{="e"THEN 170 ELSE IF EL&="L"OR EL%="|"THEN 160
150 GOTO 130
160 INPUT"ENTER NMREER OF LABELS DESIRED - PRESS (CR):- ",MLIPRINT
170 IF PPY=*R*OR RP\="r*THEN 190
180 PRINT"PREPARE PRINTER - HEN READY PFESS (CR):-"ILINE INPUT Z9%:POKE 3,169
190 A=LEN(Ns); B=LEN(T$):CxLEN(C)): D=LEN(A$):E=LEN(LS);IF B)A THEN A=B
200 IF C)A THON A=C
210 IF D>A THEN A=D
220 IF E)A THEN A=E
230 IF EL{="E"OR EL{="e"THEN M=35 ELSE M=INT(16-A/2)
240 IF EL ="L"OR ELi=*)"THEN FOR I=0 TO NLIS=0:IF I=N. THEN 540
250 IF N3="*THEN IF T 
260 GOTO 280
270 LPRINT:S =S +2:G070 320
280 IF NH=*"THEN LPRINT YAB(M)ENCCS:S=S+1:GOTO 310
290 LPRINT TAB(M)E+NNs:S=S+1:IF T&=**THEN 300 ELSE LPRINT TAB(M)DHTS:S=S+1
300 IF C 
310 IF A$="*THEN 320 ELSE LPRINT TAB(M)DMAB:S*S+1
320 LPRINT TAB(M)DM&L{:IF EL%="L"OR EL&=*|"THEN 340
339 IF RPS="R"OR RP\="r"THEN 380 ELSE 540
340 IF S=2 THEN LPRINT:LPRINTILPRINT:GOTO }37
350 IF Sa3 THEN LPRINT:LPRINT:GOTO }37
360 IF S=4 THEN LPRINT:GOTO 370
370 NEXT
380 PRINT;PRINT"NEED TO MAKE CORRECTIONS? (Y/N):- ";:Y&=INPUTS(1):PRINT Y%
```



```
400 GOTO 380
4 1 0 ~ P R I N T " 0 1 ~ ( N A N E ) ~ " W S : P R I N T " 1 2 ~ ( T I T L E ) ~ " T S I P R I N T " 0 3 ~ ( C O N P A N Y ) ~ " C S ~
```



```
4 3 0 ~ P R I N T " P R E S S ~ : ~ T O ~ B E ~ C O R P E C T E D ~ O R ~ < C R > ~ I F ~ O K ~ " ; : N C S = I M P U T \$ ( 1 ) : P R I N T ~ N C \& : P R I N T ~
440 IF NCS =* 1**THEN PRINT Ns ELSE IF MC& =* 2"THEN PRINT Ts
450 If NC }=\mathrm{ =3"THEN FRINT C& ELSE IF NC&="4"THON PRINT A$
469 IF NCS=*5*THEN PRINT LS ELSE IF NC =CHRP(13) THEN 540
470 PRINT"IS THIS THE ENTRY TO BE CORPECTED? (Y/N):- ";:Y&xINPUTS(1):PRINT Y4
480 IF Ys="Y*OR Y{="y"THEN 500 ELSE IF Y{="N*OR Y&="ก"THEN PRINT CL&:GOTO 410
490 GOTO 478
500 PRINT:PRINT*REENTER ENTIRE LINE INCLUDING CORRECTION:-"ILINE INPUT ECS
510 IF NCS="!"THEN Ns=ECS ELSE IF NC%="2*THEN T&=ECS ELSE IF NC$=*3*THENC&NECS
520 IF NC{=*4*THEN A = =EC ELSE IF NC =*5"THEN L{=EC$
530 PRINT CLs:PRINT NH:PRINT TS:PRINT Cs:PRINT As:PRINT Ls:GOTO 380
540 PRINT"DO YOU HNNT TO CONTIME? (Y/N):- ";Y&=INPUTS(1);PRINT Y{:PRINT Cl&
```



```
560 00T0 540
```

AsAs a supplement to SPW.BAS (see REMark Issue 35), here is a CP/M program that will permit you to directly address an envelope using a friction/traction type printer such as the Epson MX-80 FT. As an added feature, the label portion of this program has also been included.
This program is presented as strictly 'bare bones', there are no program comments. In contrast to SPW.BAS, this program grew to more than twice the length of the Single Page Writer. However, it does provide some very interesting features! In addition to the addressing of envelopes, provisions were made for the addressing of labels. One particularly significant aspect of this program is that its purpose is primarily for the home computerist. Since you use this program every time you want to print an address on an envelope or label(s), you DON'T need to accumulate a large data file. You use it like a typewriter except with word processing features. Also, since it is an MBASIC program, many of the parameters can be changed as desired.
Here are some of its features:

1. You can print any number of address lines from two up to five lines.
2. Upper or lower case characters or any combination can be used in any or all addresslines.
3. For distinctive appearance, the first line of the address is emphasized.
4. All of the address lines are close spaced except the two line address. This was specifically designed to provide one space between the first and second line so it wouldn't look so skimpy.
5. Review and correction features have been incorporated to permit changes without the need to redo the entire address.
6. Any number of labels from one and on can be selected and reviewed or printed. Note: I prefer to print just one label at first for alignment purposes.
7. Once an address has been entered, you can review or print it for an envelope or
label(s), or make any changes to it. You can do any of these repeatedly until you decide to discontinue the program.
8. All address lines start at the same column position - all are in line. Hence the file 'ADDRINL.BAS' and the title 'ADDRESSING ENVELOPES/-INLINE'.
9. Label addresses are automatically centered on conventional 3 1/2 inch wide labels according to the longest line of the address.
10. Responses to entry or other function requests can be made with either upper or lower case characters.
In addition to the above, a surprise will be presented near the end of this article!

Now, since there are no comments within the program, a line by line description follows.

Line 10. Assigns the string variable CL\$ to CLEAR SCREEN. Also, identifies the program file as 'ADDRINL.BAS'.
Line 20. Clears screen and displays program titie.
Lines $\mathbf{3 0}$ to $\mathbf{8 0}$. Entries for all address information.

Line 90. Choice for either review or printout.

Line 100. Insures that the proper character for a review or printout had been selected, i.e., ' R ', ' r ', ' P^{\prime} ', or ' p '.

Line 110. Assigns string variables EM\$ and DM $\$$ to emphasize and de-emphasize printing. These are for the Epson printer function codes.
Line 120. Nullifies string variables EM\$ and DM\$ to prevent catastrophic video graphic interference when in the review mode. The POKE 3, 105 sets all LPRINT statements to go to the video display.

Line 130. Choice for either envelope or label(s).

Lines $\mathbf{1 4 0}$ to $\mathbf{1 5 0}$. Insures that the proper character had been selected for envelope or label(s), i.e., ' E ', 'e', ' L ', or ' 1 '.
Lines 160 to 180 . Self explanatory. Also, the POKE 3,169 in line 180 lets the LPRINT statements to go to the printer.
Lines 190 to 220. Determines the numerical length of each line in the address and selects the longest for label centering.
Line 230. Sets the left hand margin for the address on the envelope ($M=35$) or makes necessary calculations to center the address on labels.

Note: You can change the address location on the envelope by changing the value for
' M '. M=35 is for a $91 / 2$ inch envelope.
Line 240. If the label mode was selected, it starts the FOR/NEXT loop ($S=0$) for proper spacing between $15 / 16$ inch labels and sets the counter $(1=0$ TO NL) for the number of labels requested.
Lines 250 to $\mathbf{3 2 0}$. Displays for review or prints out all the entered address lines.

Line 330 . The IF/THEN must be true if you want to CORRECT any of the address lines. If it is not true, then it will ask if you want to continue. You MUST have selected both REVIEW and ENVELOPE modes to be able to make address line corrections.
Lines 340 to $\mathbf{3 7 0}$. Determines the proper spacing between 15/16 inch labels for any number of address lines.
Lines 380 to 400. Self explanatory.
Lines 410 to 530. Identifies and displays all entries so that line corrections can be made, if necessary. Verifies the line to be corrected and upon correction, displays the result.

Lines 540 to 560 . Offers choice of continuing with the same address or terminating the program.

General comments: If you are interested in programming and whether you can use this program or not, I would like to suggest that you first READ it through and then follow the LOGIC of each mode of operation. There are any number of goodies imbedded in the program that could prove very useful in some of your future programs. Some of the goodies are brand new to me as I was obliged to develop them to accomplish a new function. I would also like to suggest that you experiment with this program to try out other ideas of your own and especially if you own a printer other than the MX-80 FT. Developing a new program for a useful purpose can be most educational and a lot of fun.
With ADDRINL.BAS loaded in MBASIC, perform the following:

1. Changes to lines:

10	ADERIL to ADDPCNT
20	ILITE to CEMERED
100	110 to 105
170	190 to 230
230	
250	TAB(H) to TAB(H-C)
280	TAB(H) to $T A B(k-C)$
290	$T A B(m)$ to $T A B(H-N)$ and $T A B(N)$ to $T A B(n-T)$
300	TAB(H) to TAB(H-C)
310	TAB(H) to $\operatorname{TAB}(1-A)$
329	TAB(H) to $\operatorname{TAB}(H-L)$

2. Delete linest

190, 250, 210 and 220
3. Enter IInest

TEINT(LEN(T\$)/2):C=INT(LEN(C)/2):

$A=1 N(\operatorname{LEN}(A 3) / 2)$

*) $110 \mathrm{~L}=\mathrm{INT}(\mathrm{LEN}(\mathrm{L} \xi) / 2) \mathrm{t}$

4. Type RENM (CR>

5. Type SAME "ARORONT",A 〈CR>
*) Enter the two lines all on OE continuous line.
*) It is necessary only to insert
'L=INT(LEN(Ls)/2):'
in existing line 110 .
You may not favor ADDRCNT.BAS just as I didn't, at first. I was particularly unimpressed with the labels for mailing purposes. I never really liked using labels for personal correspondence. A label somehow makes it look cold and impersonal. This is probably due to my having received too many pieces of junk mail with labels on them. On the other hand, I don't mind using labels on packages. However, I did discover some very useful purposes for the centered type labels along with a fringe benefit - making my wife happy!
If you don't mind fooling your computer when it asks you to 'ENTER Person's Name', etc., you can surreptitiously enter such items as 'DILL PICKLES', 'PEACH PRESERVES', etc. Of course, you could make these into multiple line labels to include date put up and by whom. Other uses could be for loose leaf covers, identification for many kinds of storage boxes and a lot more. The nice part of this program is that you can easily print as many or as few special labels as you want whenever you want them. I particularly like the centered type labels for these purposes.

In conclusion, I'd like to encourage everyone interested in computering to share your ideas with the rest of us by writing up your pet programs or interesting goodies and send them in to HUG for publication. I am sure you will find the effort most gratifying in many ways. Happy Computering!

IT'S
IMPORTANT!! that you sign up NOW FOR THE SECOND NATIONAL HUG CONFERENCE
see registration on page 9 of this issue

885-1126
HDOS UTILITIES by PS:
\$20.00

Introduction: This disk contains a collection of HDOS utility programs for listing files on a disk, examining text files, and testing memory.

Requirements: These programs require the HDOS operating system version 1.5 to 2.0 and will run on any $\mathrm{H} 8 / \mathrm{H} 17$ or $\mathrm{H} / \mathrm{Z}-89,90$ with at least 32 k of memory. The H/Z-19 or H/Z-29 terminal is required to use the DIR19 and SEE programs with an H8. The SEE program will also work on H/Z-100 computers under HRUN. The ALLRAM program is only for ORG-0 compatable H/Z-89,90 computers with 64 k of RAM.

The following files are included on the disk.

README	.DOC	SEE	ABS
DIR19	.ABS	SEE	ASM
DIR19	.ASM	PPRT	.ABS
PDIR	ABS	PPRT	.ASM
PDIR25	.ABS	ALLRAM	.ABS
PDIR	.ASM	ALLRAM	.ASM

Author: All programs are by Patrick Swayne, HUG.
DIR19 - This is a program for displaying the files on a disk that takes advantage of Heath/Zenith terminal features to list as many files as possible on the screen in an easy-to-read format. In addition to file names, the size in sectors and the flags for each file are shown. DIR19 displays up to 80 files on the screen, and if there are more than 80 to show, it prompts the user to hit RETURN to show another "page" of files, and will continue this process for up to 255 files. Files can be listed alphabetically or in their actual directory order. DIR19 can take "wild card" arguments to allow the user to show specific groups of files or individual files.
DIR19 divides the screen into 6 sections using graphic lines. At the top of the screen, a one-line section holds the drive name (SYO:, etc.), the volume number, and the disk label. In the middle of the screen are four vertical blocks that hold up to 20 files each. DIR19 fills each block from top to bottom in turn until all files requested are displayed or the screen fills up. At the bottom of the screen, a one-line section displays the count of files shown, the total size of

HIC NEW JPRODUCTS

the files, and the free space on the disk. The user can include switches in the command line to show system files, show allocated disk usage, and/or to suppress alphabetizing.
PDIR and PDIR25 - This program works like DIR19, but its output goes to a printer. PDIR25 uses H/Z-25 graphics, while PDIR is for any printer.
SEE - This program is a replacement for the TYPE command normally used to examine text files that uses Heath/Zenith terminal features. It was inspired by a similar program called "SC" by John Stetson, but was developed independently. With SEE, the user can press function keys to scroll forward or backward in a text file by lines or 24-line pages, jump immediately to the top or bottom of a file, search for words or phrases in the file, or print individual screens on a printer. It also provides horizontal scrolling so that lines longer than 80 characters can be viewed. Files that are too large to fit in available memory can be viewed in segments. SEE counts the lines in a file and displays the number of the line that is currently at the top of the screen on the 25th line, along with key prompts and the name of the file. The line numbers are maintained sequentially when you view large files that take up more than one memory segment.
SEE automatically determines what kind of computer or terminal it is being used on and optimizes its operation for that particular computer or terminal. It also makes sure that the key prompts displayed on the 25 th line match the computer or terminal's function keys. On H/Z-29 terminals and H/Z-100 computers, the prompts are labeled since the relationship between the keyboard and screen may not be fixed.

Note: SEE was written for use with both HDOS and CP/M. It will eventually be released on a HUG CP/M disk, but you can use the HDOS version on CP/M by copying the file SEE.ASM to a CP/M disk with a utility such as HTOC (885-1207) and re-assembling it with the CP/M assembler.

PPRT - The Push-Pop RAM Test is a special memory test designed to help you find speed sensitive memory failures. It uses the processor's PUSH and POP instructions for reading and writing memory, which are more taxing on slow components than other instructions. This test may be useful if you performed one of the speed modifications detailed in REMark Issues 34 and 38.
Note: Like SEE, PPRT was written for use with both HDOS and CP/ M. You can copy PPRT.ASM to a CP/M disk and re-assemble it for use with CP/M.

ALLRAM - This program allows an H/Z-89 or Z90 user with 64 k of RAM and ORG-0 capability to access all of his computer's memory as RAM under HDOS. It frees up a small area that can be used for such things as USR space for MBASIC, etc. It also helps in trouble shooting speed modification problems.

885-1230 [-37] KEYMAP

Function Key Mapper
\$20.00

[^5]computer's function keys and keypad keys. Once defined, the keys will send the sequence of characters the same as if the characters were typed from the keyboard. Versions are included for using KEYMAP with BASIC and Wordstar.

Requirements: KEYMAP requires the CP/M operating system and runs on any Heath or Zenith desk top computer that can run standard CP/M, including the $\mathrm{H} / \mathrm{Z}-89,90$ and $\mathrm{H} / \mathrm{Z}-100$. An H/Z-19 or H/Z-29 terminal is required for use with an $\mathrm{H} 8 / \mathrm{H} 17$ computer.

Instructions are included for implementing KEYMAP with your computer system.
The following files are included on the HUG P/N 885-1230 [-37] KEYMAP disk.

README	.DOC	KEYWS	.COM
KEYMAP	.COM	KEYWS	. DOC
KEYMAP	.ASM	KEYWS	.89
KEYMAP	.DOC	KEYWS	.100
STATLIN	.COM	KEYWS	.29
STATLIN	.ASM	KEYSYS	. COM
KEYBAS	.COM	KEYSYS	.$D O C$
KEYBAS	.DOC	KEYSYS	.89
KEYBAS	.89	KEYSYS	.100
KEYBAS	.100	KEYSYS	.29
KEYBAS	.29		

Author: All programs are by P. Swayne, HUG.
Program Content: KEYMAP is a program that lets you define the characters that are produced by your computer's function and keypad keys. Up to ten characters can be produced by each mappable key, including control characters. The keys that can be mapped are the ERASE (or F0) key, the F1 through F8 keys (H19 color keys), the keypad 1 through 8 keys, and also the separate arrow and HOME keys if you have an H/Z-100 or H/Z-29. You can define any one of these keys as a "function shift" key, which allows every other mapped key to produce two responses each. If you wish, KEYMAP can place a message on the status line (25 th line) of your screen indicating the responses of the function keys. KEYMAP becomes part of "the system" when it is loaded so that you can run any program with it to take advantage of the mapped keys. Provision is made to temporarily disable mapping and even to run more than one KEYMAP at a time to provide special responses for different programs.
KEYMAP has a special set up mode that makes it easy to define your own responses for each mapped key. Pre-configured versions are included for use with BASIC and WordStar, along with a version for general CP/M use.
KEYMAP.COM - The KEYMAP program in unconfigured form (key responses are not altered).

KEYMAP.ASM - The source code for KEYMAP.COM
KEYMAP.DOC - Instructions for configuring and using KEYMAP.
STATLIN.COM - A program to generate status line (25 th line) messages that can be used by KEYMAP.
STATLIN.ASM - The source for STATLIN.COM.
KEYBAS.COM - A pre-configured version of KEYMAP that produces BASIC keywords (PRINT, GOTO, etc.) when function and keypad keys are pressed. 37 different keywords are instantly available to simplify entry of BASIC programs.

KEYBAS.DOC - Instructions for using KEYBAS.
KEYBAS.89, KEYBAS.100, KEYBAS. 29 - Status line messages for use with KEYBAS.COM. KEYBAS.DOC explains which one to use for your system.

KEYWS.COM - A pre-configured version of KEYMAP that produces WordStar control characters to allow cursor movement with the arrow keys and easy use of many WordStar features. Indenting, centering, paragraph reform, and file scrolling are only a few of the functions mapped to function and keypad keys.

KEYWS.DOC - Instructions for using KEYWS.
KEYWS.89, KEYWS.100, KEYWS. 29 - Status line messages for use with KEYWS.COM.

KEYSYS.COM - A pre-configured version of KEYMAP that produces CP/M system commands (DIR A:, PIP, etc.) when function keys are pressed. The RETURN code is included in each response so that the functions are acted upon immediately when you press the appropriate key.

KEYSYS.DOC - Instructions for using KEYSYS.
KEYSYS.89, KEYSYS.100, KEYSYS. 29 - Status line messages for use with KEYSYS.COM.

Comments: The pre-configured KEYMAP programs are only a sample of what you can do with KEYMAP. It brings the power of programmable function keys to every Heath/Zenith CP/M user.

885-8015
HDOS TEXTSET Formatter
\$30.00

Introduction: TEXTSET is an interactive formatter that will take a text file and format it to the users specifications. It has a number of features which are explained below. TEXTSET is used with a Diablo Printer to produce high quality printing for any size file. The special features of the Diablo printer are controlled by the program. No hardware modification needs to be done.

Requirements: TEXTSET requires the HDOS operating system version 2.0 (but should run on 1.6) on an $\mathrm{H} 8 / \mathrm{H} 17 / \mathrm{H} 19$ or $\mathrm{H} / \mathrm{Z} 89$ with 56 K of memory. Only one disk drive is required, however, two drives are recommended.

Note: A Diablo printer 1640 ksr, 1630, or RO 630 (Heath \# WH-54) is required for use with TEXTSET.
The user will also need a text editor (e.g. HUG P/N 885-1022) or a word processing system that runs under HDOS. If you are not familiar with or do not have a favorite editor, the HDOS EDIT program comes with the HDOS operating system and has instructions in the HDOS manual.

The following files are contained on the HUG P/N 885-8015 HDOS TEXTSET Formatter disk:

TEXTSET ABS
TEXTSET .PSU
PICA .PSU
ELITE .PSU
PLASTIC .PSU
METAL .PSU
DEMO1 .DOC
DEMO2 .DOC
TEXTSET .REF

Author: Terry W. Wilk
Program Content: TEXTSET will format a text file created from an editor and print it to a Diablo printer. It will do microspace justification, proportional spacing of the characters, automatic formatting of the text within a selectable width, double striking, bold striking, underlining, centering, and right justification of lines. No special print wheels are necessary. However, the selectable proportional spacing can be used effectively with special print wheels.

TEXTSET requires interaction with the user to produce a final text format. It is designed this way to give the user flexibility in working with formatting text. The program pauses for each question and allows the user to make any of a number of selectable options. TEXTSET allows the user to select:

1) the PSU (Proportional Spacing Unit) Table
2) the WIDTH of formatted text
3) the OFFSET (amount of space between characters)
4) the SPACE (PSU for the space character)
5) the BLANK MAX (the maximum space between words, before adding tiny spaces between characters)
6) the LINES (total lines per block to be processed)
7) the FORCE $B R$ (set a force break after each line)
8) SET VMI (change the line feed value of the Diablo)
9) SET LEFT MARGIN
10) LINE FEED (send any number of line feeds to the printer)
11) SEND LINE (type and send a line, e.g. a header or page no.)
12) EXIT, RESTART, PROCESS, OUTPUT, SKIP, and CHANGE

TEXTSET will not automatically do page numbering or auto headers/ footers. These features are possible, however, through the SEND LINE command of TEXTSET.
There are other features of TEXTSET which make this package useful. TEXTSET checks for user input errors and errors in the input text file. Predefined PSU (Proportional Spacing Unit) files are included on the disk. The user can customize or create PSU Tables to any spacing unit.

Most importantly, the documentation is very user friendly and contains step by step instructions on the use of TEXTSET. Two example files and one reference file (DEMO1.DOC, DEMO2.DOC, and TEXTSET.REF, respectively) are explained and processed through the instructions. The documentation also explains how to implement TEXTSET with one or two disk drives.

Comments: TEXTSET is a must for any user who needs a formatter that will use the special features of the Diablo printer to produce a professional formatted text file. The documentation is one of the best instructions manual that the reviewer has seen.

885-8016 HDOS MORSE CODE

Transceiver Ver 2.0 \$20.00

Introduction: This is an all new major upgrade of the previously released Version 1.1 under part number 885-1016. Many new user friendly improvements and extensive features have been added. The program allows the user to change custom data (e.g. the station call sign) at any time from the keyboard. Some of the other new features are listed below.

MORSE CODE Transceiver version 2.0 is an 8080 assembly language program which provides the operator with the ability to send or receive morse code. The program is intended to be used by Amateur Radio Operators to facilitate communication by morse
code over a wide range of code speeds, dot/dash ratios, interference, and noise conditions. In addition, the precision speed feature is intended to be used whenever extreme transmit code speed accuracy is required.

The precision morse code speed algorithms used in this program were originally developed as part of a set of custom H89 programs for the American Radio Relay League's Maxim Memorial Station 'W1AW' at A.R.R.L. Headquarters in Newington, CT.

Requirements: This program requires the HDOS operating system version 2.0 on an $\mathrm{H} 19 / \mathrm{H} 8 / \mathrm{H} 17$ or H 89 with 48 K of memory. Only one drive is required, however, two are recommended.
All I/O is at RS232C levels via the DTE port. External equipment is required to interface the RS232C level I/O signals to the amateur station equipment. Design details were published in REMark Issue 33, October 1982, page 17.
Note: The algorithms used for morse code decoding depend on timing from the internal clock. Therefore, this program will perform properly only on a standard machine running at 2.048 MHz .
The following files are included on the HUG P/N 885-8016 MORSE CODE Transceiver disk:

README	.DOC	TXLOP	.ACM
CW	.DOC	TXSPEED	.ACM
CW	.ASM	RXINT	.ACM
CW	.ABS	RXLOP	.ACM
CWDATA	.DAT	DISPLAY	.ACM
SAVMSG	.DAT	STATDPY	ACM
KBIN	.ACM	CODETBL	ACM
SPKEY	.ACM	VARTBL	.ACM

Some additional HDOS 2.0 XTEXT files are required for assembling CW.ASM.

Author: Robert R. Anderson K2BJG

Program Content: MORSE CODE Transceiver can receive and transmit standard morse characters as well as special morse characters such as (AR), (SK), (BK), (KN), (BT), AND (AS). Both upper and lower case key input and screen display is allowable.

The CWDATA.DAT disk file contains eleven multi-character groups which can at any time be read to the currently selected buffer and display screen. This file contains commonly used abbreviations and space for the station call sign and station location.
Two transmit buffers selected by the 'f2' key will transmit up to 254 characters. Ten message buffers can be loaded or cleared under control of the 'f1' key. Any selected message buffer can be transferred to the transmit buffer. These 10 buffers are saved in the SAVMSG.DAT.

Disks can be changed and ASCII disk files can be loaded without leaving the program. The memory buffer extends from the end of the program to the top of available memory.

The receive program operates in three modes: LOCK, TRACK, and HOLD. The transmit program operates in two modes: NORMAL and DISK FILE. The modes can be manually switched to any of the modes.

The available precision fixed Tx speeds are: 5SP, 05, 7.5, 10, 13, 15, 18 WPM, and 20 through 70 WPM in 5 WPM steps. The morse code speed standard used in fixed speed mode is in accordance with amateur practice of one word being defined as consisting of 50 elements.

The screen display is split into three areas for viewing the receive
or transmit data, the selected transmit pre-type data, and the selected message buffer data. The screen is also used as the command screen and for display of error messages. The program will not allow for improper keyboard commands to take place.

The documentation is contained on the disk. A listing of the instructions will be recommended for learning the MORSE CODE Transceiver program.
Comments: No comments.

885-8017
 HDOS Programmers Helper

Introduction: The H89 Programmers Helper (PH.DVD) is an interrupt device driver that may be called from the command or program mode of Benton Harbor BASIC, EDIT, DBUG, or most any other host program by typing the BREAK key. PH.DVD will perform any of its functions and then return control to the host program. The functions are listed below.

Requirements: This program requires the HDOS operating system version 2.0 with an $\mathrm{H} 19 / \mathrm{H} 8 / \mathrm{H} 17$ or H 89 with a minimum amount of memory. Only one drive is required.
Note: The H/Z-19 terminal is required to run PH.
The following programs are included on the HUG P/N 885-8017 HDOS Programmers Helper disk:

README	.DOC
PH	.DVD
PH	.ASM

Author: Richard H. Livingston

Program Content: PH.DVD will perform a number of functions to aid the programmer. It is invoked by entering the BREAK key or a CTRL-@. The functions that it will perform are as follows:

1) Number Base conversions: convert between Binary, Octal, SplitOctal, Decimal, Hexidecimal, and ASCII
2) ASCII conversion: echo the value for the key depressed
3) Flag conversion: convert the numerical value of the Flag register to the logical state of each Flag
4) DCA conversion: line and column numbers are converted to the proper ASCII escape sequence for direct cursor addressing
5) 16 bit positive integer arithmetic: addition, subtraction, multiplication, and division
6) Logic functions: 1's Cmp, 2's Cmp, AND, OR, XOR
7) Graphic mode: displays the graphic character set and associated key characters on the 24 and 23 lines, respectively

A second BREAK key or CTRL-@ will return control the host program. PH.DVD must be loaded before it can be used. The instructions are included on the disk.

Comments: This device driver provides the programmer with an excellent tool for doing number base conversion and other functions at the press of the BREAK key.

The following five HDOS products are available in soft-sectored format beginning this month:
885-1078 [-37] HDOS Z80 Assembler 885-1107 [-37] HDOS Data Base System H8/H89
885-1038 [-37] Wise on Disk H8/H89

885-1042 [-37] PILOT on Disk H8/H89
885-1064 [-37] Disk IX H8/H89 Disk

HUG Price List

The following HUG Price List contains a list of all products not included in the HUG Software Catalog. For a detailed abstract of these products refer to the issue of REMark specified.

Part Number	Description of Product	Selling Price	REMark Issue

HDOS

885-1029[-37]	Disk II Games 1 H8/H89	\$ 18.00	40
885-1060 [-37]	Disk VII H8/H89	\$ 18.00	40
885-1062 [-37]	Disk VIII H8/H89 (2 Disks)	\$ 25.00	40
885-1067 [-37]	Disk XI H8/H89 Games	\$ 18.00	40
885-1071 [-37]	MBASIC SmBusPk H8/H19/H89	\$ 75.00	41
885-1086[-37]	Tiny HDOS Pascal H8/H89	\$ 20.00	40
885-1089[-37]	Disk XVIII Misc H8/H89	\$ 20.00	41
885-1090[-37]	Disk XIX Utilities H8/H89	\$ 20.00	41
885-1097[-37]	MBASIC Quiz Disk H8/H89	\$ 20.00	41
885-1108 [-37]	HDOS MBASIC Data Base System	\$ 30.00	41
885-1121	Hard Sectored Support Package	\$ 30.00	37
885-1122	MicroNET Connection	\$ 16.00	37
885-1123	XMET Robot/Cross Assembier	\$ 20.00	40
885-1124	HUGMAN \& Movie Animation Pkg	\$ 20.00	41
885-1125	MAZEMADNESS	\$ 20.00	
885-8016	Morse Code Transceiver Ver 2.0	\$ 20.00	

CP/M

885-1211[-37] Sea Battle \$ $20.00 \quad 36$
885-1222 [-37] Adventure \$ 10.00 36
885-1223 [-37] HRUN HDOS Emulator $\ldots \ldots \ldots \ldots . .$.
885-1224 [-37] MicroNET Connection \$16.00 37
885-1225[-37] Disk Dump and Edit Utility (DDEU) ... \$ 30.00
885-1226 [-37] CP/M Utilities by PS: $\$ 20.00 \quad 38$
885-1227 [-37] CP/M Cassino Graphic Games \$20.00 38
885-1228 [-37] CP/M Fast Action Games \$20.00 39
885-1229
885-1229[-37]
ZTERM Modem Package \$ 20.00 . 36
885-8012 [-37] Modem Appl. Effector (MAPLE) \$ 35.00
ZDOS
885-3004-37 ZBASIC Graphic Games Disk \$20.00 37
885-3005-37 ZDOS ETCHDUMP \$ 20.00 39

MISCELLANEOUS

885-0004 HUG 3-Ring Binder \$ 5.75
885-4001 REMark VOLUME 1, Issues 1-13 \$ 20.00
885-4002 REMark VOLUME 2, Issues 14-23 \ldots. $\$ 20.00$
885-4003 REMark VOLUME 3, Issues 24-35 \ldots. $\$ 20.00$
885-4600 Watzman/HUG ROM \$ 45.00 41
NOTE: The [-37] means the product is available in hard-sectored or soft-sectored. Remember, when ordering the soft-sectored format, you must include the "-37" after the part number; e.g. 885-1223-37.

Jumbo Letters and Numbers

Programming Graphic Shapes

erate that particular symbol. I explained all that in my prior article "Screen Control", so you may want to refer to that to fully understand what's going on. If you don't have it, you can get by without it, but an order to HUG for the back issue is the best advice I can give. Every issue of REMark l've ever read gave me at least some valuable information, and I've got them all.
Let's lay out the letter A. Look at Figure 1. It's a grid four characters high and four characters wide. In it l've sketched the individual graphic symbols we'll need to make our big A. We can see that we'll have to print four separate lines, but first we must find each symbol in our manuals. And wouldn't you know it, the first one doesn't exist. There's no graphic symbol for it. However, a lower case " r " is just the opposite of what we want. If we could print the blank part, and leave blank the printed part, that would be perfect. Well, that's just what REVERSE VIDEO does. To make that first symbol on the first line of ourbigA, we must:

Figure 1

ENTER REVERSE VIDEO PRINT A LOWER CASE "r"

This is where our control program "CONTROL.BAS" from last month's column comes in. For now, let's assume that the terminal is already in its GRAPHICS MODE. Using the sub-program CONTROL.BAS, we enter REVERSE VIDEO with the program line:

PRINT E98
We then print our symbol with:
PRINT "r"

With that done, we look for the next symbol. It's produced by the letter " p ", but this time not in REVERSE VIDEO. To exit this mode, we again use last months program and add the line:

PRINT E10
Then make the symbol with:
PRINT "p"

The final symbol of the first line is the opposite of the symbol generated by an underscore, which is also ASCII Character Number 95. So, again enter REVERSE VIDEO with:

PRINT E9

Then print the symbol.
PRINT CHR\$(95)

Finally, get back out of REVERSE VIDEO with:

PRINT E103

Now, let's put that all together on one program line.

5000 PRINT E98; "r";E10\$;"p";E9\$;CHR\$(95);E105

You've just built the top line of a big A. You've made a character with graphic symbols. While it seemed slow and cumbersome, that was just because we took time to explain each step. It goes much faster after you've done it a few times. Also, there are excellent graphic layout sheets produced by several vendors. These make it fast and easy to lay out the shapes you want, and to pick the character which makes those shapes.
The last three lines needed to complete our letter A are as follows. I leave it up to you to look up the reason we use the symbols we do. Each of these lines works like the first one. Only the shapes and the characters that generate them are different. Here are the lines.
5001 PRINT "i";E9 ; "p";E10 ; "i"
5002 PRINT "ipi"
5003 PRINT "i i"
Now we'll experiment with these four lines and improve them. Load CONTROL.BAS from the last month's column and add the four lines above. Then add these three lines.

```
500 PRINT E7% 'ENTER GRAPHICS MODE
6000 FRINT E8s 'EXIT GRAPHICS MODE
6 0 1 0 ~ E N D
```

With that done, type RUN and watch a big " A " appear.
So far, so good. We have written a program which produces a large shape in graphics. It works fine as long as we want that shape on the left of the screen. To put the character anywhere we want it, we'll have to use Direct Cursor Addressing. As you recall from the "Screen Control" article, that sends the cursor anywhere on the screen. By sending the terminal the right instruction with information about the line number and the space number we want, we can print anywhere. Each number must be increased by 31 . Refer to your manual, Chapter 12, Direct Cursor Addressing, and to my previous article if you have any doubt about how this works.
We've provided for the Direct Cursor Addressing function in CONTROL.BAS, so let's expand our four program lines to use it. We'll use the variables Y to be our line number plus 31 , and X to be the space number plus 31 . Our letter A now becomes:
5000 PRINT E1 ; CHR (Y); CHR $\$(X)$;E9\$;
"r";E10t;"p";E98;CHR\$(95);E10t

5001 PRINT E1s;CHR $(Y+1)$;CHR $\$(X) ; " 1 " ; E 9 \$; " p " ; E 108 ; " i "$
5062 PRINT E1s;CHR\$ $(Y+2)$;CHR\$ $(x) ; " 1 p i "$
5003 PRINT E1s; CHR $3(Y+3)$; CHRb $(X) ; " i \quad i "$
All we have to do is specify the upper left-hand corner of the letter and it will fall into place. Each row of graphic symbols prints one line lower because we have added to the value of Y. The value of X stays the same and aligns each row directly below the previous one. To see how this works, fire up your computer and RUN MBASIC. Then LOAD "CONTROL.BAS", add the four lines above, and the following six lines.
500 PRINT E7
510 PRINT E2
$520 \quad Y=41$
$530 \mathrm{X}=68$
6000 PRINT ES $\$$
6010 END

'ENTER GRAPHICS MADE
 ' CLEAR THE DISPLAY
 'VERTICAL POSITION TO LINE 10
 'HORIZONTAL POSITION TO COLUMN 37
 'EXIT GRAPHICS MODE

Type RUN and watch what happens. Now try different values for X and Y. You can do that by retyping just lines 520 and 530. To pick
the value you want, just add 31 to the line number for Y and to the column number for X . You've come a long way and have earned a chance to play and take a break. Who said learning can't be fun?
So far, we've seen how to build a character using Heath graphic symbols, and how to print that character anywhere on the screen. Now we'll add two lines of programming to make our work really useful. The first line will move the cursor to the right of our letter so it's in the correct place for the next letter to begin, and will provide a control character " C " which tells our program how wide the letter is. We'll find this useful for things like backspacing later on. This feature will be used in the game called WORDS that we'll develop next month. The line we add is:

$5004 \quad x=x+4: C=4$

Finally, one word on line 5005 makes this a truly independent subroutine.

5005 RETURN

Now run this final test.

LOAD "CONTROL.BAS"

Add lines 5000 thru 5005 above.
Add the following lines.

You should have three rows of A^{\prime} s. One row was produced by separate lines of programming, and the other by combining instructions on a single line. This brings us to the end of this month's column. Let's review what we've learned.

1) How to build a shape or character from Heath Graphic Symbols.
2) How to control the location of this character on the screen.
3) How to build an independent sub-routine which may be called by your program, be executed, and return to the program.
4) One way to call a sub-program we saved before, and use it.

Before I quit, I'm going to leave you with two new programs for your library. We'll use one of them next month as we begin our game program. We'll also be sneaking in some CAI (Computer Aided Instruction) in a game that's fun for the whole family. Type these programs at your leisure. Because they can be used by any BASIC program by way of GOSUB commands, you should save them in the ASCII format. This is necessary so we can add them to our other programs with the MERGE command. This is the only time you'll ever have to type them. To save in ASCII, use the command line:

SAVE "LETTERS", A

Here are the two programs. See you next month.

```
10 ####******** LETTERS. BAS ***********
20*********** COPYRIGHT 1982 **********
30 ******** APPLIED COMPUTING *********
5000 PRINT E1%;CHR$(Y);CHR$(X);E9$;
                            "r";E108;"p";E9%;CHR$(95);E10% 'A
5001 PRINT E1$;CHR$(Y+1);CHR;(X);"i";E7$;"q";E10$;"i"
S002 PRINT E1%;CHR$(Y+2);CHR$(X);"i\rhoi"
5003 PRINT E1$;CHR$(Y+3);CHR$(X);"i i"
5004 X=X+4:C=4
5 0 0 5 ~ R E T U R N
```

5201	
5202	PRINT E1s; $\mathrm{CHF}(\mathrm{Y}+2)$; $\mathrm{CHR}(\mathrm{X})$; "i i"
5293	
$5204 \mathrm{x}=\mathrm{x}+4$: $\mathrm{C}=4$	
5265	RETURN
5210	PRINT E1s;CHRs(Y);CHRs(x);"i i" l
5211	PRINT E1s;CHR $(\mathrm{y}+1)$; CHRs (x); "i i"
	PRINT E1s;CHRs(Y+2);CHRs(x);CHRs(95);E9\$;CHRs(95);"r";E108;"r"
$5214 x=x+5: C=5$	
5220	PRINT E1t; CHRs(Y);CHR3(X);"i i"
5222	PRINT E18;CHR\$(Y+2);CHR\$(X);"1"; E98;"r";E108;"1";E98;CHR\$(95);
E103; "1"	
$5224 \mathrm{x}=\mathrm{x}+6$: $\mathrm{C}=6$	
5225 RETURN	
5239	PRINT E15;CHR (Y);CHRz(X);"i i"
5231	
5232	
5233	
$5234 \mathrm{x}=\mathrm{x}+4$: $\mathrm{C}=4$	
5235 RETURN	
5244	PRINT E1s;CHR(Y$)$; CHRs(X);"i i" - ${ }^{\text {a }}$
5241	
5242	PRINT E1s; CHRs $(Y+2)$; CHRs $(x) ; " i^{\prime \prime}$
5243	
$5244 \mathrm{X}=\mathrm{x}+4$: $\mathrm{C}=4$	
5245	RETURN
5256	
5251	
5252	
5253	PRINT E1s; CHRs $(\mathrm{Y}+3)$; CHR (X$)$; "iiii"
5254	$x=x+4: C=4$
5255 RETURN	
10 ********** NUMEERS. ${ }^{\text {EAS }}$ **********	
20 ********* COPYRIGHT 1982 ********	
$36 * * * * * * *$ APPLIED COMPUTING ********	
6000	
6002 PRINT E1 $;$ CHRs $(Y+2)$; CHRs $(x) ; " \mathrm{i}$ "	
6003 PRINT E18; CHRs $(\mathrm{Y}+3)$; CHRs (x); "i1i"	
$6004 x=x+4: C=4$	
6065 RETURN	
6010	
6011 PRINT E1t; CHRs $(Y+1)$; CHRs (x); " ${ }^{\text {a }}$	
6013 PRINT E14; CHRs(Y+3);CHRs (X);E9*; "r";E108; "ii"	
$6014 x=x+4: C=4$	
6015	RETURN
6020	
6021	

RETURN

PRINT E1 $;$ CHR $\$(Y+3) ; \operatorname{CHR}(X) ; " i \quad i "$ \cdots RETURN
RRINT E
PRINT E
PRINT E
PRINT E
$X=X+4: C$
RETURN
RINT EI
 RETURN

[^6]
PRIMERS FOR THE BEGINNER

GETTING STARTED WITH CP/M AND MBASIC

WITH PARTICULAR REFERENCE TO RANDOM FILES

Featuring a complete "menu driven" ready-to-run disk mail list program, program explanations, and complete tutorials, this package forms the perfect introduction to MBASIC programming under $C P / M$, and includes useful information for those new to the CP/M operating system (ZBASIC also supported). Included is a 56 page manual and a disk containing sample programs. Specify Heath/Zenith Computer model number, disk size and format - hard- or soft-sectored, singleor double-density, $51 / 4^{\prime \prime}$ or $8^{\prime \prime}$, and CP/M or ZDOS.
$\$ 25.00$

GETTING STARTED WITH HDOS \& ASSEMBLY LANGUAGE PROGRAMMING

 A 36 page tutorial covering aspects of Assembly Language programming under HDOS. Provides significant information for HDOS which other manuals lack. $\$ 15.00$PLEASE SEND CHECK OR MONEY ORDER TO:
WILLIAM N. CAMPBELL, M.D.
855 Smithbridge Road
Glen Mills, PA 19342
(215) 459-3218

JUST WHEN YOU THOUGHT IT WAS SAFE TO GO BACK TO HUGCON

It's unfortunate that many of you ignored our warnings about GRAVITRON. You bought the game anyway, and soon found yourselves ensnared in battle with the lethal planetary defenses of the evil Cephans. Now you're thinking of visiting the HUG conference to see all the new software to make your computer more productive. Well, we're warning you again.

The Cephans are back. This time it's not just missile-launching towers they've built to stop you. Tanks, fighters, fuel-stealing hoveroraft, plasma field launchers, disruptor bearns, anti-gravity, force fields, and other awesome weapons stand between you and your goal of freeing the Almach star systern from Cephan domination.

So if you're coming to the conference, beware: GRAVITRON II will be there.
GRAVITRON II requires H/Z99, Z90, H8, or Z100 with HDOS, CP/M, or CP/M-85. $\$ 19.95+\$ 1.50$ shipping, available August 15. Free catalog of games and utilities.

APDGEE SOFTWARE

P.0. Box 15124 Savannah, Ga. 31416 [912] 925-3765

REDUCDIR Patch (HUG 885-1120)

HUG member Theodore May experienced some difficulty with the program REDUCDIR on HUG disk 885-1120, and sent in a patch to correct the problem. Although I have not encountered his problem with the program, I found that his patch allowed the program to work under HDOS version 1.6 as well as 2.0 , if the version check in the program is removed. The following patch installs Mr. May's modification and removes the version check.

```
PPATCH
PATCH Issue $50.06.00
File Name? REDUCDIR
Address? 42204
042204 = 312/303
042205 = 245/^D (Contro1-D)
Address? 43332
043332 = 072/0
043333 = 054/0
043334 = 044/52
043335=052/50
043336 = 050/44
043337=044/21
043340 = 021/111
043341 = 010/0
043342 = 000/31
043343=031/66
043344=176/0
043345 = 021/^D
Address? ^D
PATCH Issue #50.06.00
File Name? ^D
```

If you would like to make the modification to the source code of the file, first remove the first 7 lines of code starting with the label START. Change the label GOODVER to START. Locate the label NOTSAME and remove the line:

LDA GROUP GET LAST GROUP READ
This line is a few lines below NOTSAME. Two lines further down, change IOC. CGN to IOC.CSI, and two lines below this, change:

MOV M,A MAKE IT CURRENT GROUP
to
MVI $\quad M, 0$
MAKE IT CURRENT GROUP
This completes the changes. Re-assemble the program to get the new version of REDUCDIR.

HDOS ASM Patch

HUG Member R. D. Baertschiger found a "bug" in the HDOS Assembler that causes it to abort an assembly with an "Illegal Channel Number" error under certain circumstances when you are generating a cross reference listing. He sent the following patch to correct the problem.

DPATCH

PATCH Issue 50.06 .00

```
File Name? ABM
Patch ID? IFOIIC
Prerequisite Code? IFBEIADPQEFFCF
Address? 64210 (61165 for HDOS 1.6)
064210=022/21
064211 = 032/~D
Address? ^D
Patch Check Code? EDKIOHLO (DEDINHONJ for HDOS 1.6)
    - - -
Address? ^D
```

This patch alters a routine that moves file names from one area to another so that 17 characters are moved instead of 18 . The most characters a file name can have is $17: 4$ for the drive designation (such as SYO:), 8 for the file name, 4 for the period and extension, and one delimiter character at the end.
Epson Graphics in Benton Harbor BASIC
In the "Questions and Answers" column in the October, 1982 Issue 33 of REMark, it was stated that by POKEing location 12121 with 255 , you could print characters with a value greater than 127 (8-bit characters) in PRINT CHR\$(statements in Benton Harbor BASIC. However, this only works if you print only one character per PRINT statement. If you try to print two or more, as in

10 PRINT CHR1(178);CHRs(180)

the results are unpredictable. Also, you still cannot print a zero (CHR\$(0)). This ability is necessary if you want to write a binary file in Benton Harbor BASIC. (In other words, to simulate CIN(in reverse. See "Using Binary Files in Benton Harbor BASIC" in REMark, Issue 41.) The following patch will let you include characters greater than CHR\$(127) and CHR\$(0) in PRINT statements in Benton Harbor BASIC.

>PATCH

PATCH Issue 50.06 .00
File Name? BASIC
Patch ID? 1FOUIC
Prerequisite Code? IFBEIADPGEFFCF

```
Address? 57131
057131 = 177/377
057132=1671
057133 = 300/311
057134=062/^D
Address? 74326
074326 = 346/207
074327 = 100/362
074330=312/340
074331 = 341/74
074332=074/52
074333 = 052/157
074334=157/112
074335 = 112/303
074336 = 303/343
074337=344/74
074340=074/52
074341=052/152
074342 = 152/112
074343 = 112/172
074344 = 172/247
074345 = 247/362
074346 = 362/374
```

(hit RETURN)
(Control-D)

1
(for HDOS 1.6, enter 115)
(for HDOS 1.6, enter 110)

```
074347 = 374/74
074350=074/276
074351 = 276/43
074352=043/302
074353 = 302/363
074354 = 363/74
074355=074/173
074356 = 173/276
074357 = 276/312
074360=312/374
074361 = 374/74
074362=074/43
074363 = 043/^D
Address? ^D
Patch Check Code? DUBNIIBG (for 1.6, enter DIHLIPFK)
```

If your computer uses a Z 80 processor（H／Z－89， 90 or upgraded H 8 ）， you can use the following shorter patch instead of the above patch． DO NOT ENTER BOTH PATCHES．Use the above ID and Pre－re－ quisite codes．

```
Address? 57131
057131 = 177/377
057132=1671
657133 = 300/311
057134 = 062/^D
Address? 74364
074364 = 176/43
074365 = 247/176
074366 = 362/247
074367=363/362
074370=074/364
074371=303/074
074372=344/030
074373=074/350
074374 = 043/^D
Address? ^D
Patch Check Code? CWWPPFAC
```

Remember，the above patch is for Z 80 processors only，and so it will not work on an H／Z100 computer．
After the patch，you can print characters with the 8 th bit set（more than 127），but you still cannot use them in concatenation．For exam－ ple，
$\mathrm{B} \$=\operatorname{CHR} \$(12)+\mathrm{CHR}(45)+\mathrm{CHR} \$(0)+\mathrm{CHR} \$(56)+\mathrm{CHR} \(137) ：
PRINT \＃1，B
must be restated as：
PRINT \＃1，CHR\＆（12）；CHR\＄（45）；CHRs（0）；CHR\＄（56）；CHR\＆（137）
After the patch is made，you cannot use null strings in input state－ ments，as in：

10 LINE INPUT＂＂；C\＄

You can，however，type a non printing character（such as Control－ E）between the two quote marks to make such input statements work．Because of this problem，you may want to keep an unpatched copy of Benton Harbor BASIC around for programs that do not use 8 －bit graphics or do not write binary files．

191 Dakridge Drive Lower Burra11，PA． 1506 日 （412） $335-5639$

T．B．C．－－Tiny BASIC COmpiler．Produces HDOS compatible assambly code．Programs execute much faster than those run under an interpreter．Grent for 219 graphics．$\quad 20.00+12.00 \mathrm{PkH}$

Bowling－ 219 bowling．Written in T．B．C．With source included． Die to three players．Bame spead is adjuatable so that swali children may play a competitive game． $8.00+1.0 \mathrm{Pk}$ ＊＊Hardware esz
Litepen－ 219 iite pen．Plugs into the DCE or LP port on the 289 or H月 with the four port serial board．Allows scanning of up to 126 user supplied points on the 219 screen．Includes two differ－ ent device drivers for easy interfacing to BASIC，FORTRAN，otc．． Simpla BABIC keyword operation such as OPEN，CLDSE，PRINT \＃，
LINE INPUT（Requires 9V Battery）．
$\$ 42.50+\$ 2.50$ Pah
CATCH ALL－A multi－purpose peripheral that plugs into the DCE or LP port．Wili control up to aight plugin boards as listed below． Mainframe includes built in audio amplifier／speaker．Ali boards Varicupplime with an hbors code is included for CPH users．
＊\＃CATCH ALL plug－in boards．\＃\＃t
Sound－－Music and sound effects（TI 76489）．$\$ 55.00+\$ 2.50 \mathrm{PkH}$ Sperch－Unilmited vocabulary（Votrox BC－O1） Sperch－Uniimited vocabulary（Votrox 8C－01）． DigDut－ 24 Bit digital outputs． $95.00+32 \mathrm{PkH}$
$\$ 65.00+2.50 \mathrm{PRH}$
$\$ 65.00+2.50 \mathrm{P} \mathrm{\& H}$ Litepen－As above without nemd of battery．$\quad 42.50+12.50 \mathrm{Pg} \mathrm{H}$ Joystick－Two channel ATARI typ joysticks．$\quad 50.00+* 2.50$ PKH

```
            *## In the CATCH ALL hardware queuv. ###
```

Chronograph－Battery backup included．
Slot Translator－Allows use on any R8232 port without handwhaking． ADC－日 channel $日$ bit 0 to +5.1 volt inputs． D／A－ 2 channel E bit 0 to +5.1 volt outputs． More to be announced at later dates．

Z100，Z89，or H8

Communications made easy with

Whether you use information utilities（i．e．，the Source， Compuserve．or computerized bulletin boards）or you are linking to another computer（any RS－232 compatible system）you＇ll find ACCESS communication program unmatched for versatility． convenience，and simplicity．
ACCESS＇clear documentation and easy，menu－driven program control make sending，receiving，storing and printing a breeze．Auto－ signon and operation to above 1200 baud make ACCESS the ideal mate to any modem．Specify model and soft or hard－sectored $51_{4} /^{\prime \prime}$ disk．CP／M \＆ 48 K req＇d．

ACCESS $\$ 39.95$

Dealer inquiries welcomed
Hilgraeve Inc． P．O．Box 941
Monroe，MI 48161
（313）243．0576

```
DRAW.BAS
```

DRAW.BAS
10 WIDTH 255:REN SET TERMINRL WIDTH TO 255 CHPRACTERS
10 WIDTH 255:REN SET TERMINRL WIDTH TO 255 CHPRACTERS
20 ES=CIF(27):REN ESCAPE
20 ES=CIF(27):REN ESCAPE
30 CL\EE$+"E":REA CLEAR SCREEN
 30 CL\EE$+"E":REA CLEAR SCREEN
40 OS=ES+"F":REM GRAPHICS MODE
40 OS=ES+"F":REM GRAPHICS MODE
50 XOt=E$+"G":REM EXIT CRAPHICS MODE
 50 XOt=E$+"G":REM EXIT CRAPHICS MODE
60 Cs(2)={\&+'B':REN CURSOR DOWN
60 Cs(2)={\&+'B':REN CURSOR DOWN
70 CS(4)=E{+"D":REM CURSOR LEFT
70 CS(4)=E{+"D":REM CURSOR LEFT
80 Cs(6)=ES+"C":REM CORSOR RIGHT
80 Cs(6)=ES+"C":REM CORSOR RIGHT
90 Cr(8)=E{+* A A
90 Cr(8)=E{+* A A
100 C{(1)=C3(2)+Cs(4):RET CURSOR DOWN ANO LEFT
100 C{(1)=C3(2)+Cs(4):RET CURSOR DOWN ANO LEFT
110 Cs(3)=Cs(2)+CY(6):REM CURSOR DON ANO RIGHT
110 Cs(3)=Cs(2)+CY(6):REM CURSOR DON ANO RIGHT
120 Cs(7)=CY(8)+Cs(4):REN CURSOR UP AND LEFI
120 Cs(7)=CY(8)+Cs(4):REN CURSOR UP AND LEFI
130 C\(9)=C3(8)+CY(6):REN CURSSR LP AND RIGHT
130 C\(9)=C3(8)+CY(6):REN CURSSR LP AND RIGHT
135 REM GET FILE WHE TO STOPE DATA
135 REM GET FILE WHE TO STOPE DATA
140 INPOT "WWE OF FILE (USE EXTENSION) ";Fs
140 INPOT "WWE OF FILE (USE EXTENSION) ";Fs
150 OPEN *0* 1,Fs:REA OPEN FILE FOR OUTPUT
150 OPEN *0* 1,Fs:REA OPEN FILE FOR OUTPUT
150 PRINT Cl ;GS:REM C.EAR SCREEN ANU ENTER GPAPHICS MCOE
150 PRINT Cl ;GS:REM C.EAR SCREEN ANU ENTER GPAPHICS MCOE
170 }x=2;y=1:\mathrm{ REN CURSOR POSIIION AT BEGINING
170 }x=2;y=1:\mathrm{ REN CURSOR POSIIION AT BEGINING
175 REN GET INPIT ANO PROCESS IT
175 REN GET INPIT ANO PROCESS IT
18015=1NUT(1)
18015=1NUT(1)
190 IF 15=*." THEN 33*:REN CO CET ANO STORE GPOPHICS CHAR AND POSITION
190 IF 15=*." THEN 33*:REN CO CET ANO STORE GPOPHICS CHAR AND POSITION
200 IF IG="," THEN SO0, REH ALL DONE?
200 IF IG="," THEN SO0, REH ALL DONE?
210 N=VAL(IS)
210 N=VAL(IS)
220 IF N (1ORN > 9 THEN 180
220 IF N (1ORN > 9 THEN 180
225 REN PRINT CURSOR MONE \& SET X,Y COOPOINATES TO MEW POSIHION
225 REN PRINT CURSOR MONE \& SET X,Y COOPOINATES TO MEW POSIHION
230 ON N GOTO 240,250, 260, 27e,289,290,300,310,320
230 ON N GOTO 240,250, 260, 27e,289,290,300,310,320
240 PRINT CS(N); ; X=X+1:Y=Y-1:0070 180
240 PRINT CS(N); ; X=X+1:Y=Y-1:0070 180
250 PRINT CS(N);: x x x+1:C0T0 188
250 PRINT CS(N);: x x x+1:C0T0 188
260 PRINT CS(N); \X=x+1:Y y Y +1,0070 180
260 PRINT CS(N); \X=x+1:Y y Y +1,0070 180
270 PRINT CS(N); ; Y = -1:COTO 180
270 PRINT CS(N); ; Y = -1:COTO 180
289 COTO 18%:EEM 5 ISN'T A CURSOR POSIIION. CO CET OUE
289 COTO 18%:EEM 5 ISN'T A CURSOR POSIIION. CO CET OUE
290 PRINT CS(N);:Y=Y+1:COTO 180
290 PRINT CS(N);:Y=Y+1:COTO 180
300 PRINT CS(N); ; x=x-1:Y=Y-1:6070 180
300 PRINT CS(N); ; x=x-1:Y=Y-1:6070 180
310 PRINT CS(N);:x=x-1;GOTO 180
310 PRINT CS(N);:x=x-1;GOTO 180
328 PRINT CR(N); : x x x-1:Y=Y+1;C0T0 180
328 PRINT CR(N); : x x x-1:Y=Y+1;C0T0 180
325 REM GET PRINTING CHARACTER \& STORE II \& ITS COORDIMATES IN FILE
325 REM GET PRINTING CHARACTER \& STORE II \& ITS COORDIMATES IN FILE
336 CRS=1NPUTS(1)
336 CRS=1NPUTS(1)
340 PRINT ORS;
340 PRINT ORS;
350 PRINT 11, 仿;GRS
350 PRINT 11, 仿;GRS
360 PRINT CY(4);:REM SET CURSOR BACK TO SAFE POSITION
360 PRINT CY(4);:REM SET CURSOR BACK TO SAFE POSITION
370 0070 189
370 0070 189
388 CLOSE:PRINT XOR:EN

```
    388 CLOSE:PRINT XOR:EN
```

another input from the user.
Line 190. If you have the cursor in a position where you want to print a graphics character (or any other character), press the period key. Line 190 will send the program to line 330 , where it will wait for a printing character to be typed.
Line 340 prints that character on the screen.
Line 350 stores the cursor position of that character plus that character itself in the data file that was opened earlier.

Line $\mathbf{3 6 0}$ moves the cursor back 1 position to compensate for its normal movement to the right after printing the character in line 340 .
Line 370 sends the program back to 180 to start the process all over.
Line 200. When you are finished with your "picture", press the

Line $\mathbf{1 8 0}$ gets the input from the user as to which direction to move the cursor. No carriage return is needed with this input.
The cursor movement keys are the keypad keys $1,2,3,4,6,7,8,9$. They move the cursor according to their position in the square they form in the keypad configuration. The regular number keys could be used as well, but the keypad keys are handier.

Lines 190 and 200 will be covered later.
Lines 210 and 220 change your input to a numerical value and check to see if it's a value from 1 to 9 . If it isn't, the program goes back to get another input.
Line $\mathbf{2 3 0}$ sends the program to the appropriate line, according to the key you pressed, and these lines (240-320) move the cursor to that position and update the cursor position being stored in the X and Y variables. At the end of these lines the program is returned to get
comma key, and line 200 will send the program to line 380 , where the file will be closed (a must for sending the last few characters from the buffer to the file) and the graphics mode exited.

As you can see, the only cursor positions saved will be those where characters are printed.

RETRIEVE.BAS

This program will read the file created by DRAW.BAS, and reproduce the "picture" you drew just as you drew it.
Lines 10-60 define the variables used in the program.
Line $\mathbf{8 0}$ gets the filename from the user.
Line $\mathbf{9 0}$ clears the screen and enters the graphics mode.
Line $\mathbf{1 0 0}$ opens the file named in line 80 for input.
Line $\mathbf{1 2 0}$ checks for the end of the file. When all the data is read, it sends the program to line 160 which closes the file, exits the graphics mode, and ends the program.

Line 130 gets the input from the file. This consists of a pair of X and Y coordinates and a character to be printed at those coordinates.
Line $\mathbf{1 4 0}$ prints the character in the position designated by the X and Y coordinates using direct cursor addressing. This position will be the same place it was when you "drew" it.
Line 150 sends the program back for more data from the file.
This program could be put into another program to print out previously created graphics.

All of the escape sequences are found in either the H/Z-89 manual or the MBASIC manual.

Good "Drawing"

RETRIEVE.BAS

```
10 E\=CARs(27):REN ESCAPE
20 Cl=Es+*E*, REL COEAR SCREPN
30 Gr=E1+"F':PEN GPAPHICS NOOE
40 XOt=E + "G":RES EXIT GRAPHICS MODE
```



```
60 DEF FN CS(X,Y)=Y&+CHR\ (X+31)+CHRS(Y+31):REA CURSOR POSIHION
70 REI GET NAFE OF FILE HITH STORED DATA
80 INPUT 'WME OF FILE (USE EXTENSION) ';F%
90 PRINT Q&;Gt:REN ENTER GPNFHICS NOIE AID CLEAR SCPEEN
100 OPON 'I',41,Fs:REN OPEN FILE FOR INPUT
110 KEN GET DATA
120 IF EOF(1) THEN 160
130 INPUT I1,X,Y,CRS
140 PRINT FNC\(X,Y);CRS
150 0070 120
160 COSE:PRINT XOI:END
```


About the Author:

Ron White has been in education for the past 22 years. The last 12 as an elementary principal. Ron's hobby interests center on electronics and reading, more specifically, ham radio, computing with the $\mathrm{H} / \mathrm{Z}-89$, hi fi, and reading good science fiction books. He states, "All the electronic 'stuff' is HEATHKiT".

- VErSION 5.5
[LATEST VERSION]
- uses standard hdos DEVICE DRIVERS
- iso standard pascal
- EMITS NATIVE 8080 OR Z 80 CODE
- all hDOS SYSTEM CALLS CAN BE MADE FROM PASCAL
- automatic channel allocations
- modular compilation
- chaining from one PROGRAM TO ANOTHER SUPPORTED
- UP TO 225 OVERLAYS SUPPORTED FOR HDOS
- selectable bcd reals [FOR BUSINESS APPLICATIONS] OR FLOATING POINT REALS [FOR SCIENTIFIC APPLICATIONS]
- floating point reals MAY BE EITHER SOFTWARE OR HARDWARE [AMD 9511 / INTEL 8231]
- SUPPORTS PACKED RANDOM FILES
- relocating loader
- Symbolic debugger [INCLUDES BREAKPOINTS]
- librarian
- disassembler
- interrupt level PROCEDURES

Introduction To Z-BASIC Part VIII

This is the eighth article in a series of articles dealing with the new commands of the H/Z-100's Z-BASIC over BASIC-80. This month will take a look at the CSRLIN, the DATE $\$$ and TIME\$.

The CSRLIN command returns the line (vertical) position of the cursor on the screen to assist in returning to that location at a later time. An example of the use of the CSRLIN is the command shown below.

```
10 CLS;' CSRLIN.BAS Version 05.25.83 GK:
20 LOCATE 5,10:PRINT"What is the location where of the cursor"
30 LOCATE 6,10:PRINT"when finished printing this message. ";
40 X=CSRLIN: }Y=POS(I
50 LOCATE 10,10:PRINT"Line"X"and column"Y
GO LOCATE X,Y:LINE INPUT A$
70 ENI
```

The above program will print the two lines of information and then print the values for X and Y . It then returns to the location of X and Y and waits for an input from the key-board.
The value of X will be from 1 to 25 and using the POS(I) command, as shown, will return a value for Y of 1 to 80 . In this example the value for X is 6 and Y is 47 .

The CSRLIN is most useful when information is printed on the screen and you don't know how much information was printed, but you need present location of the cursor.

The DATE\$ and TIME\$ commands are more like variables than commands. When using either DATE $\$$ or TIME $\$$ they may be printed using the PRINT command or used within an expression.

Below is a sample program using the DATE\$ and TIME\$ commands with the PRINT command and as an expression where the DATE\$ and TIME\$ are be changed.

```
10' CLOCK.BAS Version 05.25.83 GK:
20 CLS:W&="What is the new ":ON ERROR GOTO 110
30 LOCATE 6,20:PRINT"The Date Is: "DATE$
40 LOCATE 8,20:PRINT"The Time Is: "TIMEs
50 A 
60 LOCATE 12,20:FRINT W$"date? <"DATE&"> ";
70 LINE INPUT A$:IF A$<>"nTHEN DATE 
80 LOCATE 14,20:PRINT W$"time? <"TIMEs"> ";
90 LINE INPUT A$:IF A&<>""THEN TIME $=A $
100 CLS:GOTO 30
110 IF ERR=5 THEN PRINT CHR$(7);:RESUME 100
```

The DATE $\$$ and TIME\$ may also be used to create other variables such as to find the year.

```
YR3=RIGHT$(DATE$,4):' Year
```

The variable YR\$ will equal the year, using this year, it is 1983. Also the month, day, hour, minutes, and seconds may be obtained.

	Month
	Day
HR $3=L E F T$ (T IMEt, 2):'	Hour
	Minutes
	Seconids

Being able to obtain the time and break it apart can be very useful in the timing of a program, such as games or applications that require that elapse time.

That concludes the introduction to Z-BASIC articles, even though not all new commands have been explained. There are several other new commands such as BLOAD, BSAVE, DEF SEG and new options to the OPEN command. However, they are not likely to be used by the beginning programmer.
To help you get started on a project, may I suggest that you try entering the sample program listed below. After you have all the DRAW commands entered correctly, try making other patterns of this type. There are only 49 more to go and I have done one of the hardest.

```
10 CLS:' MI.BAS Version 05.27.83 GK:
20 C1=1:C2=2:C3=3:C4=4:C5-5:C6=6:ON ERROR GOTO 290
30 LN=8:FOR I=0 TO LN:CL=4:IF I/2=I\2 THEN CL=5
40 LINE(I*50,1)-(I*50,LN*25),CL
50 LINE(0, I*25)-(LN*50, I*25),CL:NEXT I
:
60 PSET(105,25),C2:DRAW"H125, 27D5L10M90, 45H364f4"
70 DRAW"M96,48R2D2M103,49D2N128,55M152,62"
80 DRAW"M174,56M180,58M214, 49M220,51D7M245,53"
90 DRAW"N250,56D6H220,70M257,73M240,72M238,75"
100 DRAN"L4M208,70M194,71M192,74L12M170,76"
110 DRAW"M167,80M163,82M160,85M155,84M160,76"
120 DRAW"M155,75M148,82H144,81H120,94D2M110,97"
130 DRAN"N97,72L3MM22,67M10,53M40,45"
140 DRAW"R1M75,371477,32H80,33M105,25"
150 PSET (233,79),C2:DRAW"M250,82D1r 1U1M275,91*
160 DRAW"M280, 97M277, 100H281, 109D19M273, 129M268, 130"
170 IRAW"M266,135M272,137M283, 132M285, 128m297,124"
180 DRAWMM305, 125M308, 128H326, 152H323, 156M322, 162"
190 DRAN"M305, 164D5N 1300, 175L.8N290, 177H293, 179"
200 DRAW"M288,188L60U1L72M159,180N165,175M168,168"
210 DRAW"M167, 160N165, 150M160, 138M164, 133M163, 128"
220 IRAW"#169, 112M175, 108M180, 106M185, 102M198,95"
230 DRAW"R2M199, 105FSU11M215, 86M220,85R2M226,84"
240 DRAW"H224,82L2u1M223,80M229,78M233,79"
250 PAINT(230,90),C2:PAINT(102,38),C2
:
260 LOCATE 5,60:PRINT"Michigan":LOCATE 24,20
270 PRINT"Press any key to continue! ";
280 As=INPUT$(1):LOCATE 24,1:LIST
:
290 PRINT"Error #"ERR" in line #"ERL:END
```

Have fun using Z-BASIC, creating games and other application programs. Remember, the Heath Users' Group is made up of individuals such as yourself. HUG could use your help in supporting the H/Z-100 computer. Don't keep all those GREAT programs to yourself. Share them with your fellow HUGgies and HUGgers. Also, you may wish to check out the Z-BASIC games (HUG P/N 885-3004-37) for some ideas on how to convert your MBASIC games to Z-BASIC games. Most of the commands discussed in this introduction to Z-BASIC commands were used in one or more of the games.

the one that has it all

THE DOUBLE DENSITY NEWSLETTER

INFO: H-SCOOP is an independent newsletter rated \#1 in several surveys. We support only the H/Z H8, H89 and Z series computers. Large variety of topics and info in every issue.
Rates: One year subscription (12 issues) - \$20 for U.S. and Canada sent First Class mail; \$27 Overseas, Airmail. Back issues available. Master Charge and Visa accepted. Write or call us at the address below to order or receive more information.

team up WITH THE

2618 PENN CIRCLE * SHEBOYGAN, WI 53081
(414) 452-4172

We offer full service and support, along with fast turnaround. Not enough space here to publish all prices and items - Call or write for complete catalog or individual item pricing. Check and compare our prices and support and you'll stick with the WINNERS! We only carry the best, at the best prices, and with the best support and delivery time!
*Spellbinder; \$265 *The Word Plus; \$120
*dBase II (Includes Quikmail); \$465
*dBPlus; \$95
*Tandon Disk Drives:
*100-1; \$195 *100-2; \$245
*101-4; \$325 *848-2; \$465
*UltiMeth \& LLL Products
$* 400 \mathrm{~K}$ and other Drivers-HDOS \& CP/M
*ROM's *Software \& Mods
*Misc Small Business Software
*Elektrokonsult CP/M Utilities; \$29.95 each
*Single $5^{\prime \prime}$ drive cabinet; \$75
*Dual 5" cabinet; $\$ 195$ *Dual 8" cabinet; $\$ 190$
*Cables-many varieties *Diskettes
*NOGDS H89 Color/Sound Board; \$399
*Magnolia H89 DD Setup; \$495 *
*Books *H S-XXX Low Cost Software
*Disk format conversion service
*Spike Suppressors; \$38 *Rotron Fans; \$22
*Vortax speech \& music synthesizers
*Electronic print spoolers
*Encon H8/H89 hardware line *Parallal boards for H8 and H89
*BSR Controller \& software

Bill Simpson
5600 Glenford Street Los Angeles, CA 90008

While a CP/M BDOS error caused by the failure to reboot a changed disk is generally fatal, resurrection is usually possible. It is certain that your work can be saved should you incur that fatal error while writing or editing an MBASIC program and the same techniques can be applied to many other apparently hopeless situations.
CP/M will not tolerate a disk change unless it is advised of the change by means of a warm boot. Certain information about the files on a disk is placed in memory at the time a disk is booted (warm or cold) and should an attempt be made to write to a different disk, a BDOS error will occur and your system will lock up until a reboot is performed. And, of course, that rebooting drops you out of whatever program you were in and returns you to the operating system with the attendant loss of your entire program (if it was a new one) or all the revisions, updates and corrections (if an old one was being modified).

Fortunately, rebooting does not wipe clean the entire Transient Program Area (TPA) that portion of memory set aside by CP/M for your use - and under normal circumstances, your program, with all the changes, will still be there somewhere. Your task will be to find it, clean it up a little, move it to a fixed location and then write it to the disk. It's really quite easy using DDT.
The detailed recovery process to be described is known to be accurate only for an H/Z-89 with 64 k of memory using CP/M Version 2.2.03 but it seems probable that it will apply to any other system configuration using Heath modified CP/M.
Let us assume that you have finished running one MBASIC program and decide to work on debugging another that resides on a different disk. Since you already have MBASIC in memory, you simply insert the new disk, LOAD the program, RUN it and then proceed to make the necessary modifications. When you're satisfied or otherwise find it time to quit, you triumphantly enter SAVE "MYPROG" only to be presented with Bdos Err On A:. Instantly you realize that you should have RESET when you plug-
ged in the new disk but it's too late now. However, instead of despairing as you once would have, you now know, or will know shortly, how to save the program and all your effort. There is no recourse except to go ahead and tap any key. This will cause a warm boot and produce the CP/M prompt, A>. (Sometimes, for reasons I can't explain, the keyboard will be lockedout and a system reset and cold boot will be necessary. That is quite all right as far as the current problem is concerned and you may fearlessly perform the SHIFTRESET keypress.)

At this point, there are three important strictures to keep in mind:

1. DO NOT POWER DOWN THE SYSTEM 2. DO NOT RUN ANOTHER PROGRAM 3. DO NOT PROCEED IF YOU ARE TIRED OR YOUR WITS ARE ELSEWHERE (a foulup here can be permanent). Please wait until you can handle it.

When you are ready, insert a disk containing CP/M's DDT (Dynamic Debugging Tool) and load it (simply enter DDT and a carriage return-do not include a filename on this command line). The DDT sign-on message will appear followed by the DDT prompt. Enter the command: D6200. If all
is well (and it should be) and if there are any identifiable ASCII strings, remarks or variables in the first few lines of your old program, you should see them displayed, along with lots of other strange things, in the column to the right of the main hexadecimal display. If there is nothing recognizable to you, then you will simply have to have faith that your program is there beginning at memory location 6207 H . The reason it appears so unrecognizable is that it is written in MBASIC's condensed code. The only reassurance that can be offered at this point is that there should be a " b ", $(62 \mathrm{H})$, at location 6208h. (Compare Figure 1, a sample BASIC program with its stored version, Figure 2.)

The next step is the only one that is not rigorous or is the least bit tricky: you must locate the end of your program. If you have been fortunate enough to end your program with an error handling routine, there will probably be recognizable ASCII strings to signal the end. Otherwise, unless you are very lucky, you will simply have to distinguish the end by the combinations of variables that appear - remember variables are all written out as ASCII strings. The lucky circumstance is that this program ends in
100 REM Demo for BDOS.ERR prog
100 REM Demo for BDOS.ERR prog
110 FOR J = 0 TO 9
110 FOR J = 0 TO 9
120 FOR I = 0 TO }
120 FOR I = 0 TO }
130 PRINT USING "\#\# ";I+J*10;
130 PRINT USING "\#\# ";I+J*10;
140 NEXT I
140 NEXT I
150 PRINT
150 PRINT
160 NEXT J
160 NEXT J
170 END
170 END
virgin territory, a section of memory that does not contain remnants of another longer program that was run earlier. Should you be in this fortunate position, the end of your program will be followed by a repeating pattern of hex bytes-probably rows of 00's and FF's which will be represented in the ASCII column as periods. Another clue to seek should the last line of your program have been END, is the number 81 in the hex display portion (81 is the condensed code for END). (Figure 2)

The actual process of searching for the end is to enter repeatedly the DDT command D while watching the ASCII presentation (the right hand column) for some indication of the end of your program. If your program is a long one, you might prefer to use the $\mathrm{D}, \mathrm{xxxx}$ command where xxxx is the last location (in hex) to be displayed; but be prepared to hit CTRL-S as the data scrolls past or you may miss the end.
Once the end (or the presumed end) has been found, note the hex location of the byte just beyond the last character of your program. We will designate this location as eeee. In our sample program, the last commmand was END and therefore the symbol 81 is the last recognizable entry. However, the three 00 entries following the 81 are also important and should not be lost. (Actually eeee can be any location greater than the end-the important thing is to be sure that the actual end is included.)

To make the presumed end more obvious (an important consideration for a subsequent operation), clean up the locations following the end by using DDT's (F)ill command, e.g. Feeee, pppp, 0 . This will insert 00 in all memory locations following the end of your program at eeee, up to and including location pppp. This ending point is arbitrary but should be reasonably small to avoid going beyond the end of the TPA. For convenience, I usually go to the end of the current page or to the end of the next page, i.e., to 62 FF or 63 FF using the current example (Figure 3). Thus, the actual command wouid be $\mathrm{F} 6283,62 \mathrm{FF}, 0$. Of course, should your program have ended in a previously unused part of memory, there is no need to perform this clean-up operation-the end will be obvious.
Now enter the following DDT command: M6206,pppp,100. This is the command to move a copy of the contents of a block of memory extending from hex location 6206 through hex location pppp to a hex location beginning at 100 . After this command has been executed, a copy of your program will have been placed in memory starting at the first address of the TPA. In truth, it begins at

Figure 3

-D6200, 62FF																		
6200	61	74	20	61	62	6F	00	24	62	64	D®	8F	20	44	65	6D		-
6210	6F	20	66	6F	72	20	42	44	4 F	53	2E	45	52	52	20	70	\bigcirc	or BDOS. ERR
6220	72	6F	67	00	34	62	6E	00	B2	20	4A	20	$F D$	20	11	20	rod	g. 4 bn . . J
6230	CE	20	1 A	Q0	46	62	78	80	20	20	82	20	49	20	FO	20	-	F
6240	11	20	CE	20	1 A	00	61	62	82	00	20	20	20	20	91	20	.	
6250	D9	20	22	23	23	20	20	22	3B	49	F2	4A	F4	OF	0 O	3B		
6260	00	6B	62	8C	00	20	20	83	20	49	00	73	62	96	00	20		
6270	20	91	08	7B	62	AO	00	83	2ด	4A	$0 \square$	B1	62	AA	90	B1		
6280	08	00	D0	00	00	00	00	00	00	08	00	80	00	00	00	00		
6290	00	80	00	80	00	00	80	00	80	88	80	®0	00	00	D0	00		
62A0	00	00	00	00	00	00	00	00	$0 \cdot 1$	00	00	08	00	00	00	00		
62 Ba	00	08	00	00	00	00	00	00	00	00	00	00	00	00	00	00		
62 Ca	00	00	00	00	00	00	-0	00	00	00	00	08	00	00	00	80		
62D	00	00	00	00	00	00	00	00	00	08	$0 \cdot$	00	Q0	00	00	00		
62E0	00	90	00	88	Q日	00	08	00	00	D0	00	08	00	00	00	00		
6EF0	00	80	00	80	00	80	80	00	00	00	08	00	08	00	00	00		

the second address. You may have noticed that while your program was stored beginning at hex location 6207, we moved a block beginning at 6206 h . (See Figure 4)
That extra cell at the beginning was needed so that the value $F F h$ could be inserted ahead of the program. This necessary flag is inserted by first entering the DDT command: S100. This will produce the display 100 xx , where $x x$ is whatever happens to be in location 100 . Change the contents to FF by simply entering FF and a carriage return. DDT will present the address of the next location, 101, but, since we're through, we terminate the process by entering a period, ".", followed by a carriage return. (Figure 5)
At this point, there should be an FFh in location 100 h followed by your program beginning at location 101 h (Figure 5). The memory locations beyond your program should be filled with 0's up to the beginning of the next page (more about pages later), i.e., up to the next location ending in $00 \mathrm{~h}-6300 \mathrm{~h}$, 7A00h, AEOOh, etc.

It is now necessary to determine how many pages of memory are needed to contain your program. (In a preceding paragraph, it was mentioned that the clean-up process was done for convenience; this is where that convenience is of benefit.) Again use the DDT command D to locate the end of your program in this new location. This is an easy process this time since everything following your program is 00 's and you already have a fair idea of the length. Note the line number (leftmost column) of the line containing the end of your program. Round this up to the next hex number ending in 00 , i.e., to the next hex multiple of decimal 256 (one page of memory contains 256 locations). Our sample program ended in line 180h; therefore, the number we want is 200 h . Other examples would be from 2743 to 2800 or $19 B 4$ to 1 A00.
Now subtract 100, the starting location, from the number that you just rounded up-
ward and drop the two rightmost 0's. (Remember, these are hex numbers.) The result will be the number of pages, in hexidecimal, occupied by your program. If, for example, you determined that the next page following your program began at location 2000 h , your program requires 1Fh pages of memory-(2000h-100h)/100h.
You are now through with DDT and can exit with a CTRL-C.

The only thing left to do is to get your program out of memory and on to a disk, the CP/M utility SAVE will do just that. To call up and execute this program requires only a single command line: SAVE nn filename. The first item after SAVE, nn , is the number of pages calculated previously BUT IN DECIMAL. In our previous example, requiring 1Fh pages, we would enter 31 for nn. The filename portion of the SAVE command line includes the drive name, the name you want to use for this saved program and the extension (don't forget the period). Thus your command might be SAVE 31 B:MYPROG.BAS. CP/M will proceed to write out the first 31 pages of memory in the TPA to the disk in drive B and will place MYPROG.BAS in the directory as the name of the saved program. There you will find your newly written program or your old program complete with all the revisions. You will also note, I am certain, that your day has been saved along with your program.

There are, of course, limitations to this process but unless you write very long programs (that will be overwritten by DDT) or improperly identify the end of your program, you should recover your program in its entirety. Whatever you recover, you are certainly ahead of the game. But one word of caution; if you have been modifying an old program and are not sure that you will be able to preserve all of your work or have any doubts about your ability to perform this procedure, save this recovered material under a different name or on a different
disk. There is no point in losing more than your latest effort.
As mentioned, this process is applicable to programs other than MBASIC but the specific location of the stored material may be different and you will have to search for it using DDT. To give a little help, we have found that PIE, the Software Toolworks' text editor, saves things at about location 3480 (there's another copy at B8C0). ED, the CP/ M utility editor, puts its material in several locations. In a recent check, edited copy was found at 3 different locations, the first being at 1D4E with the unedited backup at C986. Finally, DDT begins at about location D100 allowing room for a BASIC program approaching 28 K in length. Naturally, if your memory is smaller than 64 K , the available program space will be reduced accordingly.
Once you understand the above detailed description, all you need to remember, cutout, or copy are the following 5 steps:

1. Feeee, pppp, $0<C R>$
(clean up final page)
2. Mbbbb,eeee, $100<C R>$
(move program to location 100)
3. $S 100<C R>F F<C R>$. $<C R>$
(change first byte to FF)
4. $\langle\mathrm{CR}\rangle$
(exit DDT)
5. SAVE $n n<$ filename> (save it)
bbbb $=$ start of program (6206 for MBASIC),
eeee $=$ end of program and 3 terminal 00^{\prime} s, pppp $=$ end of page,
$n n=$ number of pages
One final suggestion: I have saved myself a great amount of time and anxiety in having to execute the above outlined process by adding a few lines of program at the beginning of each of my BASIC programs as they are being developed. These are:
6. RESET
7. $\mathrm{F} \$=$ "myprog"
8. INPUT ZQQ\$:IF ZQQ\$<>"" THEN PRINT F\$:END
Of course, only the first line serves the avowed purpose but the next line lets me SAVE F\$ (without the necessity of quotes) and the INPUT line makes me think about what I'm doing in case I want to protect the program or save it as ASCII. If you are concerned about wearing out your disk with repeated RESETs, it is simple enough to use RUN 100 (or whatever) but that little extra operation is sufficient to remind you to RUN or RESET when the time comes to SAVE your program.

Figure 4

-D100
Q100 24 62 64 Q0 BF 204465 6D 6F 2066 6F 7220 . \$bd. Demo for

 0130780020 20 82 20 4920 FQ 2011 20 CE 20 1A 00

Figure 5

-D100
0100 FF 24 62 6400 8F 204465 6D 6F 2066 6F 7220 . \$bd. Demo for 011042444 F 53 2E 45 SE 52 Se 7072 6F 67003462 BDOS. ERR prog. 4 b

 $0160208320490073629600202091007 B 62$ A0. I.sb.. ... 20.

 \qquad
\square
 1983 NATIONAL HUG CONFERENCE

O'Hare Hyatt Regency Hotel

Chicago, Illinois August 19, 20 and 21

In the first article of this series, I gave you a planning outline and discussed the first section of that outline, Analysis of your project. In the second article, discussion was centered on sections 2 and 3 of the outline, Design Task, and Choosing a Language. In this the final article on "Computer Aided Instruction", I will cover the last two sections of the outline, Keeping a Clean House and Fine Tuning.

To help in keeping a clean house, one should set up a few basic rules at the very beginning, not internal language rules that is, but, personal rules. These rules should be something along the lines of the following list;

1. Always start the program with a Clear Screen command.
2. Start each new frame with a Clear Screen command.
3. Start writing each frame at the same location.
4. Present only questions to be answered in all CAPS or reverse video.
5. Limit graphics to one area of the screen.
6. Etc.

If you make such a list before you start writing your programs, then any time you have a question about screen handling for instance, you could refer to your list.
The handling of user input should always be done in the same manner from one frame to the next. If you chose to use an automatic type function, e.g., $Z \$=$ INPUT $\$(1)$, keep it consistent. If you should use this automatic function in most all input situations and then find that you have a question that requires a carriage return, prompt for it. Example....Name the capital of New Jersey: $<C R>$:. If the student is used to having each answer handled automatically, they might become confused when nothing happens on input. Make your input prompts friendly, not hard to use or cumbersome.
Error trapping can become a very important part of a CAI program. If it is implemented properly, and consistently, it will make the program friendlier, easier to use, and generally receive wider acceptance. There are two types of error trapping that are best used. The first is input error trapping and the second is syntax error trapping.
With input error trapping, if the answer that you are looking for, say, falls between 1 and 50, the input variable can be checked, such as,..IF $Z<1$ or $Z>50$ GOTO 20 ELSE 100. In the case of a string input, a subroutine could check for various matches, or a DATA statement could be used to compare two variables. Thus in a case where St. Louis, Saint Louis, ST. LOUIS, or SAINT LOUIS, all could be possible answers only a single input need be checked.
"If a question will be asked a second time, usually due to an incorrect response the first time, clear off the old answer before accepting the new one.", says the Minnesota Educational Computing Consortium. And they add, "Allow for null input. A program should allow for null inputs and not let the system print the sometimes confusing system (syntax error) messages. In general, a null input should simply cause the question to be repeated. Sometimes an additional message or hint can be given suggesting the desired response, such as, 'ENTER A NUMBER PLEASE'".

Error checking, or trapping, for such things as improper file names, nonexistent files, etc., are a must. Nothing can be worse than to
have a generally well written program bomb because no checking is done to see if a needed data file is present on the disk. Syntax error checking is sometimes hard to implement. But, when done properly, it can make a good program a great one.
Always keep in mind that a lot of people use only one disk drive with their computer system. If your program requires two or three drives to store data files it could limit sales. Don't try to store everything. Some information is best kept as DATA statements within the program while other types of data are best stored on disk. Too much disk access can slow a program down and discourage the student. The student's reaction time will generally set the pace (speed) of program execution. So don't be overly concerned with optimizing the speed of your program, but don't cause it to be slower than need be.
The means of output of test results is another area that must be considered. You can include the option for printer output. This should be only an option though, as not all students will have printers. It's best to store final test results on disk for later evaluation or comparison. By storing the results on disk and allowing for the fact the student might want to take the test later, an on-screen comparison could be made. If a teacher is administrating the tests, he or she might want to be able to compare the results of a number of students. Thus an added feature of your project could be a program to combine and compare various test results.
Now, to quote the MECC, "When authoring and programming are completed, the work has just begun." You should now set about Fine Tuning your programs.
First test run your programs, use your check list to see that each frame is consistent with the rules. Second, check for unexpected or erroneous input. This is where good error checking will pay off. If you have written your programs in modular fashion, and documented them well, it should be easy to go back and make corrections.
Third, a two part test. The first is the Critical User Test. Find someone who knows about your subject and let them have a go at it. Then find someone who knows nothing of your subject and let them try and bomb it. They will! At this point it's time to go back to the beginning of fine tuning and start through again.
With a fair passage through the fine tuning tests, you should run your project materials through one more final check list.

Final Check List (from the MECC):

,....Programmers questions:

Press the RETURN key. The question should be repeated or help given.

Answer the question with an extremely long string of characters. It should process satisfactorily.

Answer the question and then erase (delete or back space) past the beginning of the question. No disruptions should occur.

Answer the question and then press the RETURN key twice, quickly. The next question or frame should not flip past.
\square Does the program accept ridiculous answers (e.g., claiming to have 4000 sisters)?Enter an alpha response where a numeric is expected. It should be processed without a confusing REENTER? message.When a question must be repeated or a message printed, is the frame held stable? It should not scroll.

,....Author's questions:

Is the instruction presented in a logical sequence?Is the text blocked and spaced for maximum readability?Does any information disappear before the user has satisfactory time to read it?Is the type of answer expected by the computer clear to the user?Is the use of graphics and/or sound appropriate or is the user distracted by it?Should graphics and/or sound be added to the program to better enhance the presentation?Is the material being presented at an appropriate reading level?Does the program contain errors in spelling, grammar, punctuation? Does it use jargon or slang?This concludes our discussion on Computer Aided Instruction. I would again like to thank the Minnesota Educational Computing Consortium for allowing me to use their booklet, "A Guide To Developing Instructional Software For The APPLE II Microcomputer", as a reference source in the preparation of these articles.

13915 Midland Dr. Shawnee, KS 66216 (913) 631-1333

```
APPLIED STATISTICS * chz*
COLOR GAMES -
CONTROL.
DISKSORT - h
DUALPORT . ch
EASY. chz
FIREMAN - video action ch
GENERAL LEDGER - ch
HDOS\times2 multiuser h
MAGIC MENU . h
MAILMATE . ch
MATH - color education
MATH-color education \(z^{*}\)
```

unflower oftware

METEORS - video action chz SEARCH \& PRINT - ch S-BASIC-translator chz SPELGUD/SUPERFOG chz THERMALSYSTEM - ch
USER - h
U.S. STATES - education ch

UTILITIES - (nine) h WORDPRO 2 . h
ZDUMP.
ZMAP .

WHAT'S NEW?

A new improved 'EASY' for ZDOS. METEORS is a video arcade game. S-BASIC translator in ZDOS GENERAL LEDGER verson 2.0 MATH education in color.

Legend: $\mathbf{c}=\mathrm{CP} / \mathrm{M} \quad \mathbf{h}=\operatorname{HDOS} \quad \mathbf{z}=\mathrm{ZDOS}{ }^{*}=$ Requries Basic

MPI 150-A1 \& 99-G PRINTERS/Accessonies (No charge for cable or shipping) QAUDRAM Printer Buffers CALL

4164 I/C's (Memory/Video) . CALL
$\$ 7.50$ each

CALL OR WRITE FOR FREE CATALOG

H/Z89 PERIPHERALS from SECURED COMPUTER SYSTEMS

PORT SERIAL

 CARD PORT PARALLEL" . . . not your typical vanilla-flavored serial and parallel interface . . ."

Features:

Chip independent design • Reduces computer data buss loading from 3 to 1 - Choice of Centronics or Epson parallel drivers for HDOS or CP/M - Complete documentation and installation instruction.

- 2 Serial Ports
- Supports: Ring Input,

External Clock, Auto Dialer

- 3 Port Parallel with 2 Level Interrupt Control
- Fully compatible with
all models of $\mathrm{H} / \mathrm{Z} 88,89$,
90 using CP/M or HDOS.
- Fully tested, 90 day warranty, two serial cables and a parallel cable (internal to computer) and software driver.

16K RAM EXPANSION CARD

Expands your H/Z89 RAM Memory capacity to a FULL 64K!

Fully compatible with:
H/Z 89 • H/Z 88 • Magnolia Microsystems CP/M and disk drive I/O interface cards

NOW INCLUDING SUPPORT MOUNTING BRACKET

 Featuring:Complete installation instruction - 90 day Warranty Field reliability record now entering its 21st month Now Only $\mathbf{\$ 6 5 . 0 0}$

PRICE \$199.00
Shipping \& Handling $\$ 10.00$

Shipping \mathcal{E} Handling $\$ 5.00$

Terms and specifications subject to change without notice.

Newline Software

P.O. Box 402 - Littleton, MA 01460 617-486-8535 (evenings and weekends)

Software For Heath/Zenith Computers

HDOS 2.0 upgrade for the $\mathbf{Z} \cdot 100$ now shipping !

2.100 HDDS 2.0 upgrade for the $\mathbf{2} .100$ computer

Installation requires:
Standard HOOS distribution diskettes
H8 or H89 computer system, $2 \cdot 100$ with $200 S$.
Disk drive compatible with Z-100 (48 TPI SSOD. DSDO)
Disk drive compatible with your standard HOOS disks.
Please order same format as your standard HDOS disks.
2.100 HOOS 2.0 OPTIONAL SOFTWARE (indicate $2 \cdot 100$ on order)

- Super Sysmod 2
- Uo.DVO Universal Printer Devics ... $\$ 29.95$
: MX.DVV MX. 80 Device Driver $\$ 29.95$
- H25.DVD Device Driver.
$\$ 29.95$
- UD.DVOISPDOLER (with built in spoolef) $\$ 39.95$
- MX-80/SPDOLER (with built in spooler)
$\$ 39.95$
- H25.DVD/SPOOLER (with built in spooler) $\$ 39.95$
- Text Processor 4.1

HERO-1 ROBOT SOFTWARE
HERO- 1 CROSS ASSEMBLER
.for H8/H89 computars
$\$ 59.95$
Supports Motorola 6800 Assembly Language and Special HERO-1 OP Codes. List control and assembly directives.

HERO.I KEYPAD UTILITIES IN HERO CASSETTE FORMAT
.$\$ 24.95$

1. SPEECH UTILITY for creatingimanipulating phonemes.
2. MANUAL ENTRY UTILITY eases manual program entry.
3. VDICE OUMP UTILITY same functions as MANUAL ENTRY UTILITY plus robot speech used for reading memory.

- Also available in formats for the H8 and H 89 computers.
- Copyright 1983 by SoftShop, Produced by Newline Software
fREE CATALOGUE - Send for yours today!

SJULSTAD

 ENGINEERINGBRAND NEW 256 K RAM - $\$ 699.00$ (Software Included)

Expand your computer memory beyond its present 64 K RAM limit. Inexpensive, easily installed, and completely compatible with Heath/ Zenith 88,89 , and 90 Microcomputers. Nothing on your present system is wasted or thrown away as with other 256 K RAM's Write for more infornation on these products:

$$
256 \mathrm{~K} \text { RAM }
$$

$\$ 699.00$
128 K RAM
$\$ 469.00$
Both Memory Expansions complete with Instructions and Software. REMOTE VIDEO OUTPUT - \$59.95
Provides NTSC Industry standard composite video to any monitor equipment including:

- Color or Black White Television Monitors
- Large Screen Monitors - Beta/VIS Recording Equipment Especially suited for Educational and Business Applications!

$$
16 \text { K ADD-ON RAM }-\$ 59.95
$$

Increase your present 48 K sustem to its full capacity of 64 K Required in order to run D-base II. DISCOUNTS AVAILABLE FOR LARGER ORDERS For more information wnte or phone SJULSTAD ENGINEERING
503 East Fremont • Northfield, MN 55057 (507) 663-3422

All boards are completely assembled and tested and are guaranteed for ninety days to be free from all defects.
VISA
SA
We repair and service
most microcomputers

Technical Micro Systems, Inc.
(313) 994-0784

Visa/MasterCard
P.O. Box 7227, Dept. H 366 Cloverdale, Ann Arbor, MI 48107

Give HERO Something To Do With His TIME

Pat Swayne Software Engineer

```
Listing 1
; RCLOCK - ET-18 VOICE CLOCK PROGRAM
; THIS PROGRAM HAS A SUBROUTINE THAT ANNOUNCES THE TIME
; EVERY 15 MINUTES ON THE QUARTER HOUR. IT IS DESIGNED
    TO BE PLACED IN A CONTINUALLY EXECUTING LOOP WITH
    OTHER TASK'S. IT CAN BE ASSEMBLED INTO TWO VERSIONS,
    "SLEEP", AND "AWAKE". IN THE SLEEP VERSION, THE
    SUBROUTINE PUTS THE ROBOT TO SLEEP FOR 10 SECONDI
    INTEFVALS AND RETURNS CONTROL TO THE LOOP EETWEEN
    SLEEP PERIONS. IN THE AWAKE VERSION, THE SUBRDUTINE
    RETURNS CONTROL TO THE LOOP IMMEDIATELY AFTER DOING
    ITS JOB. IN THIS MODE, IT DISFLAYS THE TIME ON THE
    ROBOT'S LED DISPLAY CONSTANTLY AS WELL AS ANNOUNCING
    THE TIME EVERY 15 MINUTES.
    BY KURT TESCHENDORF, HEATH CO.
    MONIFIED, AND WAKE MODE ADDED BY P. SWAYNE, HUG 18-MAR-83
SLEEP EQU 1 ;ASSMEBLE SLEEF VERSION
AWAKE EQU O ;ASSMEBLE AWAKE VERSION
; SET ONLY ONE CIF SLEEP OR AWAKE TRUE AND THE OTHER FALSE
; SET ONLY ONE CIF SLEEP OR AWAKE TRUE AND THE OTHER FALSE
```


If your HERO 1 Robot sits around all day with nothing to do with his time, here is a program that will make him announce the time (with the voice accessory) every fifteen minutes. This program is designed so that a task can be called from it as a subroutine so that HERO could not only tell time, but do other jobs such as intruder detection. Just place a JSR to your routine in place of the three NOP's below the comment "PUT OTHER TASKS HERE", or at 10EH in the assembled program, and place your routine after this program. The program can be assembled in two versions, one where the robot sleeps (10 second sleep intervals) while it is not telling you the time, and one where it displays the time on its LED readout.
Listing 1 is the source code for the program, in HUG XMET format. (The XMET cross assembler is available on HUG disks 885 1123 (HDOS) or 885-1229[-37] (CP/M).) If you are using the AVOCET cross assembler, you will have to remove the space before the accumulator designations in instructions that have them. For example, ASL A should be changed to ASLA. Also, you will need to remove the lines containing RROM and RRAM from the listing and add the follow definitions.

OUTCH	EQU	OF7CBH
OUTHEX	EQU	OF7B5H
CLRTIS	EQU	$0 F 65 E H$
FEDIS	EQU	$9 F 64 E H$
MODE	EQU	$0 E E 1 H$
CLKDAT	EQU	$0 C S O O H$
CLKOMI	EOU	$0 C 2 C O H$

$\begin{aligned} & \text { SPNO10 } \\ & \text { SPNO11 } \\ & \text { SPNO12 }\end{aligned}$
気召录
吕䓢
负吕
思品
总釆
吕莒
品岩白
思思
䓢畧
品罟
䓢
䓢畧
兑品吕吕
亮
皆

$$
\begin{aligned}
& \begin{array}{ll}
\text { 怠 } \\
\text { 品 } \\
\text { 品 }
\end{array}
\end{aligned}
$$

；return to main pgm and do tasks Multiply $A C C A$ by 10
ENTRY：$A C C A=$ number to be multiplied ENTRY：\quad ACCA $=$ number to be multiplied
EXIT：$A C C A=$ number times 10 USES：ACCA－ACCB $; * 2$

$;$ SAVE RESULT

$; * 4$

$; * 8$

$;$ PLUS $* 2)=* 10$
；say the hour
；say O＇CLOCk
；say＇Fifteen＇
；say＇Thirty＇
；say＇Fourty－five＇
；check for AM or PM

ब ब

采 $\stackrel{n}{x}$ | $\stackrel{5}{5}$ | Σ |
| :--- | :--- |
| $\stackrel{5}{6}$ | |
| E | |

$\stackrel{\Sigma}{\stackrel{\Sigma}{6}}$
ETIBTN

	DB	[01EH, $097,01 \mathrm{FH}]$		$\begin{aligned} & \text { is } \\ & \text {; New } \end{aligned}$
	DB	[00H, $015 \mathrm{H}, 023 \mathrm{H}, 037 \mathrm{H}]$		
	DE	[03FH, ©FFH]		
SPAM	DB	$[06 \mathrm{H}, 021 \mathrm{H}, 029 \mathrm{H}, 03 \mathrm{FH}, 02 \mathrm{H}, 00 \mathrm{H}, 0 \mathrm{CH}]$; AM
	DE	[03FH		
SPPM	DB	$\begin{aligned} & {[025 \mathrm{H}, 03 \mathrm{CH}, 021 \mathrm{H}, 03 \mathrm{FH}, 02 \mathrm{H}, 00 \mathrm{H}, 9 \mathrm{CH}]} \\ & {[03 \mathrm{FH}, \emptyset \mathrm{FH}]} \end{aligned}$; PM
	DB			
timmin	DB	01 H	; minutes	
TIMHOR	DB	00 H	;hours	
AMPM	D8	00 H	; $0=A M \quad 1=P M$	
OLISEC	DB	0	; OLD SECOND VALUE	
	END	RCLK		

Below are the hex codes for both versions, which you can enter in manually if you do not have a cross assembler.

```
Robot Clack (Sleep Version)
0100 B6 0E E1 81 FF 26 01 83
    BD F6 5B BD 0: 13 01 0:
0110 01 20 F3 C6 03 BD 01 AA
    BD 01 A4 36 Cb 02 BI 01
0120 AA 33 1B 8100 27 12 81
    OF 27 OE 81 IE 27 OA 81
0130 2D 27 06 3F 8700 01 83
```



```
0140 7C 3F 72 02 57 83 C6 05
    8D 60 36 84 03 80 55 36
0150 Cb 04 3D 56 33 1B B7 02
    7D BD 01 B6 3F B6 02 7C
0160}8106026057202502
    1981 0F 26 05 72 02 3F
0170}201081 IE 26 05 7202
    49 20 07 81 2D 26 03 72
0180 01 FE 83 32 84 04 26 08
        86 00 B7 02 7E 3F 72 02
0190 6A 20 09 86 01 B7 02 7E
    3F 72 02 73 SF 00 20 87
O1A0 00 01 83 39 48 16 43 43
    1B 39 86 A0 B7 C3 00 F7
01EO C2 C0 B6 C3 00 39 36 48
    B7 01 EF CE 01 Cb EE 00
01CG 3F 62 00 83 32 39 01 Eg
    01 E6 01 EC 01 F2 01 F8
01000204020B 02 1302 1B
    02 2102 28 02 2E 02 37
01E0 12 2C 3A 26 3F FF 2D 32
    310D 3F FF 2A 36 37 37
01FG 3F FF 39 2B 3C 29 3F FF
    1D 35 34 2B 3F FF 1D 34
0290
    OF 3F FF IF OB O9 19 03
0210 1F 3F FF IF 0200 GF OA
    0D 3F FF 05 05 29 2A 3F
```

Fobot Clock (Display Version) 0100 B6 OE E1 81 FF 260183 BD F6 5B BD 01 130101 01100120 F 35 FBO 01 EO B 1
 0120 BD Fb $4 E C 605 \mathrm{BD} 01 \mathrm{EO}$ 8403 BD F7 B5 C6 04 BD

0130 01 E0 BD 01 EC C6 03 BD $01 \mathrm{EO} \mathrm{BD} F 7 \mathrm{BS} \mathrm{Cb} 02 \mathrm{BD}$ 014901 EO BD 01 ECCO 01 BD 01 E 0 BD F7 B5 5F BD 01 0150 EG BD F7 B5 C6 03 BD 01 E0 BD 01 DA 36 Cb 02 BD
$0160 \quad 01$ E0 33 IB $8100270 D$ 81 OF $27 \quad 0781$ 1E 2705
$0170 \quad 81 \quad 2027 \quad 01 \quad 39 \mathrm{BL} 02 \mathrm{CB}$ 27 FA $17 \quad 02 \quad \mathrm{CB}$ 3F $72 \quad 02$

0180 A5 83 C6 $05805 A 3684$ 03 SD 4F 36 C6 048050
$0170 \quad 3318 \quad 8702 \mathrm{CF} \mathrm{BD} 0202$ $\begin{array}{lllllll}3 F & \text { B6 } & 02 & \text { CB } & 81 & 00 & 26\end{array} 05$

O1AO $72 \quad 02 \quad 76201981$ OF 26 $05720288 \quad 20 \quad 1081$ 1E
$\begin{array}{llllllll}0186 & 26 & 05 & 72 & 02 & 95 & 20 & 97 \\ 81\end{array}$ $\begin{array}{lllllllllll}20 & 26 & 03 & 72 & 02 & 4 A & 83 & 32\end{array}$

O1C0 84 CA 3 F $7202 \mathrm{B6} 200986$

01D0 01 B7 02 CA $3 F 7202 \mathrm{BF}$ $\begin{array}{llllllllll}83 & 37 & 43 & 16 & 48 & 48 & 1 B & 39\end{array}$

O1EG 86 AO B7 C3 OO F7 C2 CO B6 C3 00 39 E7 O1 F3 CE

01 FO 01 F8 A6 90 BD F7 C8 39 FE B0 ED F9 B3 DB DF FO

0200 FF FB $3648 \quad \mathrm{~B} 7 \quad 02$ OB CE 0212 EE $063 F 629083$
$\begin{array}{llllllll}0210 & 32 & 39 & 02 & 2 C & 02 & 32 & 02\end{array} 38$ 02 3E $0244 \quad 0250 \quad 0257$

|

$\begin{array}{llllllll} & 220 & F F & 0 D & 15 & 00 & 29 & 0 D\end{array} \quad 3 F F F$
$023002000 F 0 A 003 F$ FF $2 A$ 2D 020018 0F 3F FF 1D
$0240 \quad 0 \mathrm{~B} 991 \mathrm{D} 2 \mathrm{~A} 3 \mathrm{C} 29003 \mathrm{~F}$ FF 37 3A 2B 2 A 29 FF FF
$0250 \quad 17 \quad 3 E \quad 19 \quad 1815 \quad 2317 \quad 3 F$

0260 OC 1B 09 IF OD $15 \quad 23 \quad 37$ 3F FF 062129 3F 0200

9270 0C 3F FF 25 3C 21 3F 02 00 OC 3F FF 01000000

[^7]$\begin{array}{lllllllll}0220 & 02 & 5 F & 62 & 67 & 02 & 6 D & 02 & 74 \\ 02 & 7 A & 92 & 33 & 12 & 2 C & 3 A & 26\end{array}$
6230 3F FF $213231003 F F F$ $2 A \quad 3637 \quad 37 \quad 3 F$ FF 392 F
$\begin{array}{llllllll}6240 & 3 C & 29 & 3 F & F F & 10 & 35 & 34\end{array}$
0250 1D $1500290 F 3 F$ FF IF 0B 071903 IF $3 F$ FF IF

02600200 OF 0 O OD $3 F F F 05$ 0529 2A 3F FF 0 D 1506

02702900 3F FF $2 A 02000 D$ 3F FF $021302060 F 0 A$

0250 OD 3F FF $2 A 20020018$ GF 3F FF 10 OB 09 1D $2 A$
$0290 \quad 3 \mathrm{C} 29$ on 3 F FF 393 A 2 B 2A 29 3F FF 17 3E 1918
$02 \mathrm{AD} \quad 152319 \mathrm{3F} \mathrm{FF} 383223$ 2A 150027 OC 1809 1F

0280 0D $1523 \quad 373$ F FF 06 21 29 3F 020000 OF FF 25
$02 C 0 \quad 3 C 213 F 02$ On OC $3 F \mathrm{FF}$ 01000000

*

Tutorial 83 Part 2

I_{n} the first part of this series, we discussed the basics of what an external RS-232 type modem does, and the fundamentals of the Bell 103 and 212A protocols. With that as a start, we are now ready to get up and running, with a modem and a suitable program to support it. This instaliment will cover the more detailed considerations in choosing and configuring a modem hardware package for your Heath or Zenith computer.

Pickamodem!

The choice of a modem is the first step towards assembling your computer telecommunication setup, then the appropriate software can be selected to go along with it. Since the last installment covered the basic differences between the direct and acoustic modem types, you should now know how to make a selection based on those differences alone, with the consideration due your budget.
Providing details of program support and operation takes us more into the specific features of individual modem types. While it is not possible in any article of a reasonable length to describe all possible modem features, those that stand out can be hit upon. Examples are the setup requirements for the more simple "dumb" types, and the basics of programming an intelligent modem. Of course, the simple no-frills modems require nothing in the way of actual software programming, so let's take their usage first.
For many people, the nature of usage for a modem might not necessarily ever involve automatic answer, as is typically used within a bulletin board. If you intend to use your modem primarily to call other systems, or personal computer users, and you are willing to do your own dialing and some switch selection, you will likely want to consider some of the currently available direct connect types. Examples of this type of modem are the Anchor Signalman I and the Muraphone MM-100 units.
Both of these units work with the Bell 103 system standard, and offer direct connection capability, as attached to standard modular phone types. The Signaiman plugs in be-
tween the handset and base, while the Muraphone goes between the wall jack and the phone proper. In use, you simply dial the computer's number on the phone as with any number, and when the answer tone is heard from the modem on the other end, you flip the mode switch to the data position. This will lock the two modems together, and data communications are then ready to begin.
One thing which should be made quite clear at this point is a basic factor, regarding the use of the originate and answer modes. It is almost imperative that you have a modem which is somehow selectable between these modes. Even if you never intend to use it in a bulletin board fashion, sooner or later you will need to use the answer mode. An example would be a link of two personal computers - one needs to be answer, one originate. The Signalman modem automatically switches between originate and answer; with the Muraphone you set it manually. Both units include the phone cables necessary for use, and the Signalman also includes an RS-232C cable (this is purchased separately, with the Muraphone).
For power, the Signalman uses a 9 V battery, so it requires no AC line connection. However, since the drain is fairly high, you may want to use either a heavy duty alkaline battery, or the optional booster pack. The Muraphone is powered from the $A C$ line. With either of these units, that is all the hardware, that is peculiar to them, necessary to get you going. There remains a modem program package, which is necessary to support whatever modem you happen to choose. We'll get to the choice of that, later on.
Since the price of the type of modem just described is so attractive (below $\$ 100$), an obvious question is "Need I pay more?". Well, the answer to that is dependent upon what you want to do, and how you want to use the modem. If you will only be calling other systems, at 300 baud, then the simple modem can be suitable. For $\$ 100$ to $\$ 200$ more, you can get a much fancier modem, such as the Hayes Smartmodem (trademark, Hayes Microcomputer Products), which is in the

$\$ 200$ to $\$ 300$ range. This modem will do virtually everything but format disks for you, but it does require some programming (below), to take advantage of all of the features, particularly for BBS type use. It even talks to you, as well as automatically answering and originating calls, and has LED status indicators. You do of course pay more for this, so ask yourself if that is what you really want (or need).

Be aware that if you want 1200 baud operation as well as 300 , you will likely have to pay in the $\$ 500$ to $\$ 700$ range, dependent upon features. But, if you are just starting out, it is probably best to stay with one of the more simple units, at least for a while.

In the first part of the series, I used the Smartmodem as an example of a popular modem in the class of those with intelligence. This general group I'll hereafter refer to more in a generic sense, as intelligent modems. The group includes not only the original Smartmodem, but also many of the others patterned after it.

If you do happen to be leaning towards the multi-featured intelligent type modem for Bell 103, 300 baud use, the original Smartmodem is a good choice for applications requiring the features of auto-answer, auto-dial, and software programmability of a number of functions. And, the unit is quite popular with many Heath users. The discussion below covers some of these features, and how they are handled with software. Of course, not everyone will need all of them, and many will be able to get by with less. I'Il leave it to you to decide which one of those discussed is your ideal modem. A variety of modems and their suppliers are listed at the end of this article, so you can easily get more information.

RS-232C Intro

Before connecting any modem, some basic familiarity with the RS- 232C standard as it is used with modem communication is in order. What is covered below is by no means exhaustive, but it should suffice, to get you started. If you need more background, see the references at the end.
RS-232C is a serial communications system, and two keys to understanding it are the names used for the devices doing the communicating. As we often see, these devices are referred to as 'DTE' and 'DCE'. The terms DTE (for Data Terminal Equipment) and DCE (for Data Communication Equipment) apply here to the computer (or terminal), and the modem, respectively. RS-232C is for various serial driven devices, such as modems, but obviously it is also used with other devices as well, such as printers.
Figure 2-1 is a simple schematic, which explains the hookup between the DTE device (your computer), and the DCE device (your modem). The DTE device is the frame of reference for the terms Transmitted data and Received data, which use lines 2 and 3, respectively. Line 7 is a common. Note that for communication to work, the DCE device must be receiving on the same pin that the DTE transmits (2). Similarly, the DCE must transmit on the pin the DTE receives on (3). In more simple terms, the computer must talk on the same pin the modem listens, and vice-versa. This hookup will work for the more simple modem types, and may be all you need, if that is what you are going to use.

A more complete usage of the RS-232C function set is shown in the table below, and includes additional lines used for control.
Typically, a modem may use the following signals from the RS-232C set, with those marked '*' corresponding to the minimum set of Figure 2-1.

Function

Protective ground
Transmitted data
Received data
Clear to send
Data set ready
Received line signal detect
(also called carrier detect)
High speed indicator
(on Smartmodem 1200)
Data terminal ready
Ring indicator
The functions of Transmitted Data and Received Data are obvious enough, as described above. Many of the remaining signals become necessary when control func-
tions such as handshaking are to be used, described briefly as follows. Note that you need not be concerned with these lines unless you intend to use the features they allow.
The Data Terminal Ready (DTR) line is used by the computer to signal the modem when to become active. When this line is on, the modem is allowed to answer calls, and conversely, it can be used by the computer to hang up the modem when it is turned off. This is an important function for BBS use, as are the following. The Ring indicator line alternates on and off when a ring is detected. It can be used by the computer if desired, to detect the rings of incoming calls and command the modem to answer the phone by activating the DTR line. The received line signal detect (carrier detect) can be used to

Eye Street Wash DC 20006), or, see the discussion by Steve Leibson, "The Input/Output Primer, Part 4: The BCD and Serial Interfaces", BYTE, (May 1982, p. 202), as well as "Weicome to the Standards Jungle", by Ian H. Witten, BYTE, (February 1983, p. 136). Also, articles have appeared recently in the $>C H \cup G$ newsletter, by Mick Topping (April 1983, p. 9) and Dr. William C. Parke (February 1983, p. 5), and will be helpful, being more germane to Heath hardware. You may join CHUG by writing Box 2653, Fairfax VA, 22031; the dues are $\$ 12$ per year.

Connect That Modem!

To begin the actual hookup, to use any modem you will need an RS- 232C cable to connect your computer's DTE (Data Terminal Equipment) connector to the modem's

Figure 2-1: Minimum RS-232C cable connections for computer to modem communications. Note direction of signals is referred to the DTE end.
sense a loss of carrier from the caller, and reset the BBS system.
It is easy to see that a relatively slow mechanical device such as a printer needs a means of control (handshaking), to signal the computer to stop sending characters. A set of rules which govern just how such a control sequence is carried off is what is called a protocol. Obviously, for any protocol to work, both ends of the link must recognize the same protocol (play the game by the same rules). An example of a basic and familiar protocol is what is known as XON/ XOFF protocol; all of us are already familiar with it from using our computers. An XOFF signal (Control-S) will stop transmission of characters, and an XON signal (Control-Q) restarts transmission. Virtually all host telecommunication systems support this simple protocol, allowing the Control-S/Control-Q to be entered either directly from the keyboard, or from software. Modem programs also use more involved protocols, and these will be discussed in a later installment.
If you want further background information on the RS-232C standard, you can either order a copy of the standard from EIA (2001

DCE (Data Communication Equipment) connector. At the modem end, which connector this is should be obvious (the one with two rows of pins, or an umbilical cord, or it may be marked "RS-232C"). At the computer end it may be not quite so obvious, but still it is not hard to decipher. For the H/Z-89, it is the vertical connector marked DTE, nearest the center. On the H 8 , it is one of 4 (DTE), for the Z-100 it is J2. The cable itself is terminated at either end, with a male and female DB- 25 connector pair, and need only be 3-5 feet or so in length. The catalog Heath cable (HCA-11) serves nicely, and has all of the wires you'll ever need. Of course, the modem you select may have a cable with it, there is no universal rule here. If you decide to make up your own, make 1/ 1 connections between connector pins 1,2 , $3,4,5,6,7,8,12,20$, and 22 , from the male to female ends. Use the minimum set if you don't need the handshaking lines.
Number 22 standard hookup wire is fine, as is flat cable.
Of course, just having the wires present in the RS-232C cable and a modem at the other end is simply not all that is required to go on
line. Your Heath or Zenith computer sends and receives serial data via an RS232 port, which in turn is driven by a UART (Universal Asynchronous Receiver Transmitter), either an 8250 for the H/Z-89 and H8, or a 2661 (USART), for the H/Z-100. Fortunately for all of us, Heath has set up things so that there is really little else to be done, for standard usage. If you have the proper serial board operating in your computer, this is virtually the only hardware specific requirement for it. You should make sure that the interrupt jumpers are properly set, to the default position of 5 .
Why is it so simple? Well, simply because Heath has seen to it that the operating systems properly set up or initialize all UARTs, for a default standard usage (this includes printer ports, as well, although we are talking here just about modems). In the case of the modem serial interface, this is a baud rate of 300 baud, and the standard port (base) address is at $330 \mathrm{Q}(\mathrm{D} 8 \mathrm{H})$ for the H/Z89 and H 8 , and at ECH, for the $\mathrm{H} / \mathrm{Z}-100$. The default serial data format is initialized to 8 data bits, 1 stop bit, and no parity - a setup which allows all file types, ASCII and binary, to be communicated. The only instance where you need to worry about providing for anything else is, for instance, where you need to use a different baud rate

HDOS, CP/M-80, CP/M-85, and/or ZDOS! Speaking further, the commands for both the original and the newer high speed models are basically the same. Since the general Smartmodem command set is supported by other hardware manufacturers, and by software suppliers as well, here is a nutshell description of it.
The Smartmodem has a local command mode to which it defaults, upon power up. From this command state it can be given a variety of commands, dial a number, etc. To command it to a given function, you must always issue the general command prefix ' AT^{\prime}, followed by the remainder of a command. You should note that at this point, we have assumed a working modem program, communicating through the RS-232C serial port to the modem. Figure 2-2 is a capsule summary of the basic commands. From this, you can see that a command to dial using the pulse method (the unit can be either pulse or tone dial) is simply:

ATDP6612175<RETURN>

Within this command, 6612175 is the (local) number you wish to call. For this example, it will get you the BHEC RCPM, if you happen to be in the Baltimore metro area. Sub your own local numbers of course, for your area. Note that the letters 'AT' are

Command
Function

ATDT5551212	Tone dial the number 5551212.
ATDP5551212	Pulse dial the number 5551212.
ATD	Off hook, originate mode, wait for carrier.
ATA	Off hook, make answer mode carrier.
ATO	Return on-line from command state.
ATH	Hang up.
ATZ	Software reset to defaults.
A/	Repeat last command.
+++	Escape from on-line to local comand state.

Figure 2-2: Hayes Smartmodem command set (partial). All 'AT' command prefixes are in upper case (only). Commands are terminated by RETURN (with exception of ' $\mathrm{A} /{ }^{\prime}$ ').
or port address. However, even these are usually taken care of by the modem program (when necessary), so you need not be concerned with them, for now! If in doubt, run your operating system's configuration utility to verify your setup values.

Talking to Modems With Smarts

The Hayes Smartmodem has established a form of relatively simple programming, by the use of ASCII strings for command sequences and dialing. Well, it is no great surprise that this has become a success, since ASCII is a universal "language", independent of hardware and operating systems. In other words, once you have learned to program a Smartmodem, it is the same for
in upper case, and also the command line is terminated by hitting your return key (indicated by $<$ RETURN $>$). If you wanted to call with tone dial, replace the ' P ' with a ' T '. To call another area code, you just add it to the number, before the local exchange, with a ' 1 ' prefix, as applicable. All AT commands to the Smartmodem must be entered in upper case only.

You can also dial thru a long distance service, such as MCl or Sprint. To do this, you must use the tone dial command, such as:

```
ATDTXXXXXXX,,,YYYYY,,ZZZZZZZZZZ< RETURN>
```

Here, the X 's are filled in with numbers rep-
resenting your system's local access number, the Y 's correspond to your bill code, while the Z's signify the number you are calling with AC. The commas used insert 2 seconds of delay each, which is necessary to wait for the 2nd dial tone. Vary this, as required to suit the timing locally, as the Smartmodem does not listen for this tone (nor does it listen for a conventional dial tone, it is all done with timing delays).
Any Smartmodem command is repeatable by using the general command ' A '. Thus a busy number can be very simply redialed just by entering ' A ''. This command, unlike the others, does not need to be terminated by a return.

Result Codes

Not only does the Smartmodem accept commands in ASCII form via the RS-232C port, but it also returns (talks back) with specific responses, in the form of either coded digits or words. These are called simply 'result codes', or coded responses as the result of a specific command or action (Note: do not confuse this with normal incoming data; it is distinctly different).
For example, if you give a Smartmodem the 'ATSO $=1$ ' command to answer on one ring, it performs the reset and returns the result, which is the worded response 'OK'. This means it has successfully executed the command. A summary of these result codes are shown in Figure 2-3, and as can be noted, the results can be in either words or digits, with word codes as a default. If you obtain a Smartmodem or another modem similarly programmed, you will soon become accustomed to seeing the modem tell you 'CONNECT' when it gets another modem to answer its call, and 'NO CARRIER' when you disconnect (or the line is busy). And, once in a while you'll see 'ERROR', when things don't go quite right! If you chose the Smartmodem 1200, you can also program it to provide the extended result codes, and it will then return 'CONNECT 1200' when you connect at 1200 baud.

Configuration Switches

Behind the snap-off front panel, both Smartmodems have a set of 8 miniature DIP switches, which are used to configure it for different types of use. The functions of these switches are summarized in Figure 2-4.
In this figure, column 1 is the switch, and column 2 is the factory setting, which is useful in the greatest number of applications. The Comment column indicates the function of the switch setting(s), for both states. Note that switches marked with a * are software alterable. The remaining switches (1, 6-8) can only be changed manually.

To use either Smartmodem to originate calls, you would likely want to use the factory settings, just as shown. Should you want to use a Smartmodem in a BBS type of use, you would want to enable DTR software control $(1=U P)$, as well as Carrier Detect $(6=U P)$, and program the software to provide no echo, no results, as well as monitor/control these lines.

In addition to the above programming considerations, there are also no fewer than 17 internal registers which control variables in the Smartmodem, and they can be either set or interrogated. For example, the S0 register controls on which ring the phone will be an-
swered. To program it to automatically answer on the first ring, the command would be simply ATSO $=1$.

Conversely, the command $\operatorname{ATS} 0=0$ will program the Smartmodem to not answer the phone. The registers are described in great detail in the Hayes manual(s) if you need to alter them, but space does not permit their detailed discussion here. Because of the defaults chosen with the Smartmodem, if you have followed along so far, you have all you need to automatically dial a number and get on line.

A final point of programming consideration,

Digit	Word	Comments
0	OK	Command executed.
1	CONNECT	Carrier detected.
2	RING	Ringing signal detected.
3	ERROR	Carrier lost (or not detected).
4	CONNECT 1200	Carrier detected at 1250 baud.

Figure 2-3. Smartmodem result codes, in digit (non- verbose) and word (verbose) form.

Switch	Factory position	Comments
1	DOWN	DOWN forces DTR line always TRUE, with TR light on; UP allows sw control of DTR.
*		
2	UP	UP for worded (verbase) results; DOWN for digit (non-verbose) results.
*		
3	DOWN	DOWN for result codes to be sent; UP for no results (quiet).
* LP		
4	UP	UP to echo command characters; DOWN for no echo.
* ${ }^{\text {* }}$		
5	DOWN	DCOWN to not answer a call; UP to ariswer a call automatically.
6	DOWN	DOWN forces Carrier Detect lead to be TRUE; UP allows computer to detect incoming carrier.
7	UP	UP for single lifie phones; DOWN for multiple line phones.
8	DOWN	DOWN enables Smartmodem 1200 commands. UP disables command recognition (not used on Smartmodem 300)

Figure 2-4. Configuration switch settings for Hayes Smartmodem and Smartmodem 1200. Those marked * are software programmable.

Photo 1
with regard to intelligent modems, is that what has been discussed above is for the two Hayes Smartmodems (see Part I, May 1983). But, you should also be aware that other manufacturers choosing to emulate the command set may or may not do so, in all manner of detail. If you choose to investigate others, be aware of this. An example of another intelligent modem which is similarly programmed is the US Robotics Auto Dial 212A model, shown in Photo 1. The command set of this modem is very close to that of the smart modem, but it does differ somewhat in its manner of configuration (while still being functionally similar).

Summary

So, there you have the hardware basics towards getting up and going with your modem communications setup. I hope that you can see from this that the Smartmodem command set actually allows you to do a great deal, even just from your keyboard. Of course, for the more simple types of use, there are the bare bones units described, which offer you basic performance without all the bells and whistles.
Next time, we will get into the use of BBS systems, and talk about the performance features of various modem software packages. For example, are you familiar with the HDOS and CP/M Heath standbys, CPS? Or Bill Moss's HPLINK, MPLINK, or ZPLINK? If not, you'll learn about them, as well as many others, next time. To whet your appetite, a list of Heath/Zenith BBS systems is provided in Figure 2-5. See you then, and in the meantime, send any questions and comments to the HUG SIG (ID 70001,756), or the BHEC RCPM at (301)-661-2175.

For more information on specific modems, write to the manufacturers below, mentioning this article:
Hayes Microcomputer Products, Inc.
5835 Peachtree Corners East
Norcross, GA 30092

Smartmodem
Smartmodem 1200

US Robotics, Inc. 1123 West Washington Chicago, IL 60607

Anchor Automation 16130 Valerio St. Van Nuys, CA 91406

Mura Corporation Westbury, NY 11590

Auto-Dial 212A

Signalman I

MM-100

registration on page 9 of this issue

Figure 2-5.

List of Heath BBS Systems

Here is a list of all currently known BBS systems, which either run on or otherwise support Heath or Zenith computers, arranged by area code. Please note that systems not clearly designated as " 24 hours" usually operate after hours only. Be considerate of their other uses, and do not call them during the week daytime hours.

Information updating or correcting this list will be appreciated, so
that future lists can be more complete and detailed. System operators, please send details of your systems, in care of the either operators, please send details of your systems, in care of the either
REMark or the HUG SIG on CIS, and attempts will be made to republish this list periodically. Thanks!

Phone \#	Hours	Location
201-775-8705	24	Ocean, NJ
201-791-3015	24	Fairlawn, NJ
203-674-8915		Avon, CT
206-682-5215	24	Seattle, WA
212-255-7240		New York, NY
213-366-1238	24	San Fernando, CA
213-577-9947		Pasadena, CA
213-749-8442	24	Los Angeles, CA
214-742-1380	24	Dallas, TX
215-288-0262	24	Phila, PA
216-292-7553	24	Cleveland, OH
301-661-2175	24	Balto, MD
301-768-1499	24	Glen Burnie, MD
303-394-2082		Denver, CO
303-632-3019		Colorado Springs, CO
303-985-1108		Denver, CO
305-791-7302		Plantation, FL
305-823-2281		Hialeah, FL
312-852-1305		Downer's Grove, IL
314-291-1854		Bridgeton, MO
314-946-1968		St Charles, MO
404-252-4342		Atlanta, GA
405-848-9329		Oklahoma City, OK
412-824-3565		Pittsburgh, PA
415-365-4915		Redwood City, CA
415-376-6474		San Francisco, CA
415-595-0541		San Carlos, CA
416-231-4174		Toronto, Canada
419-537-1888		Toledo, OH
604-430-8233		Vancouver, Canada
612-778-1213		Cottage Grove, MN
616-982-3682		St. Joseph's, MI
617-237-1511		Wellesley, MA
617-531-9332	24	Peabody, MA
703-360-3812	24	Fairfax, VA
714-629-1943	24	Pomona, CA
714-774-7860	24	Anaheim, CA
716-424-2576		Rochester, NY
716-835-3090		Amherst, NY
801-566-4551	24	Midvale, UT
803-279-5392		Augusta, GA
904-725-4995	24	Jacksonville, FL
907-694-3044		Eagle River, AK
913-362-9583	24	Mission, KS
914-679-8734	24	Woodstock, NY

What Does

 SET SY:Bill Tavolga 5151 Windward Ave. Sarasota,FL 33581

The new hard sector support package (\#885-1121) contains an elegant new driver program (HSY.DVD), along with a SETDSK program, that accesses the disk drive constants on track 0 . These constants are passed along to any new disks that are initialized, but they are not necessarily the same as those you set with the normal SET. ABS utility. It occurred to me that it would be useful to get a quick look at the constants as they are actually set on the disk in the SY.DVD file. With a little searching in the source code and object code, I found the appropriate bytes. The program that follows will give you a quick readout of these constants, but only for the brand new HUG driver - any other will likely abort the report.
The source code that follows has been heavily annotated, so even someone with a limited experience in Assembly Language should be able to follow it. With disk drives of different densities, brands, etc., I have found this program to be useful. If you are enterprising, you might want to add a write capability to the program, but on your head be it - especially if you don't have a configured backup of SY.DVD handy when there is a crash.

	J2	\＄891	80 track， 1 side
	CPI	600	
	J2	5862	30 track， 2 sides
	，MF ${ }^{\prime}$	CANT	abort if some other value
	t seek	ime value a	pert it
＊			
558	INX	H	incr．to next byte－seek time in mis／2
	MOW	A，M	move it into A
	RLC		制ltiply by 2
	MVI	B，${ }^{\text {a }}$	put it into BC
	MOV	C，A	
	JMP	Dout	decode and print it
＊	fferent	side \＆track	orts
＊			
\＄401	CALL	STYPTX	
	DB	${ }^{\prime} 40{ }^{\prime}, 9,5 p$	， $9,5 \mathrm{SP}, 5 \mathrm{SP}, 5 \mathrm{C}, 2400$
	JMP	SSS	
\＄402	CALL	ITYPTX	
	DB	＇40＇， $9,98 \mathrm{Sp}$	${ }^{\prime}, 9,5 P, S P, S P, 2400$
	JMP	SSS	
5801	CALL	\＄TYPTX	
	DB	＇30＇，9，SP	， 9, SP，SP，SP，2400
	JMP	SSS	
SS02	CALL	\＄TYPTX	
	DB	＇30＇，9，5p	＇，9，5P，SP，5p，240Q
	JMP	555	
＊			
r	tine to	divide，ge	t and save remainder
＊			
aiv	CALL	T0066	quatient appears in L
	MOV	A，L	
	ADI	48	convert to ASCII
	MON	B，D	remainder in DE，move it into $B C$
	MOV	C，E	for next pracess
	RET		
＊			
	errors	exits	
＊			
CANT	LXI	H，INAELE	can＇t report－prob．wrong $\mathrm{S}^{\text {Y }}$ ver
	SCALL	．PRINT	
	JMP	GUIT	
ABORT	LXI	H，120	unable to open file or read it

 ye stored is $1 / 4$ of value entered by
programi
move data into A
subtract 1
move data into D, E（multiplicand）
multiplier（4）into A
subroutine：$(H L)=(D E) * A$
put into $B C$
 QUIT exit to HIOS
 Qult exit to HDOS

宗
 D， 8
A，4
，
考思号

* routine to convert bytes in BC and save in DIGITS

Update On
 Heath/Zenith
 Related Vendors

(These are in addition to vendors listed in the January 1983 Issue

ATG Systems, Inc.

11 Intervale Road
Wellesley Hills, MA 02181
Contact: Jim Jones
Phone: 617-431-7870
Comments: Hardware and Software. Consultation Available. Products: ZSpool-Plus features a print queue and print spooling to disk. ZSD-89 provides assignable keys for printing the H19 display, a linefeed or a formfeed. Z80 and CP/M required. Also sell Super 19 \& Font 19 ROMS for the H19.

American Computer

PO Box 386
Haddonfield, NJ 08033
Contact: Rick Schaeffer
Phone: 609-939-0802
Comments: Hardware and Software. American Computers discounts products by: Software Toolworks, Sunflower, FBE, TCS, Magnolia, Epson, Okidata, Gemini, Evryware, Hayes, Novation, Zenith Data Systems and many other manufacturers of Zenith Products. American Computers is an Authorized Zenith Data Systems Sales and Service Center. Call or write for a free catalog.

J. E. Brancheau Engineering

Box 67

Trenton, MI 48183
Contact: Jim Brancheau
Phone: 313-675-5585
Comments: No hardware or consultation available. Software Products available: HDOS - some common basic programs (\$23.00), Practical Basic Programs (\$23.00), ELIZA (\$18.00), Stock Trends (\$24.00), Structured FORTRAN Translator (\$24.00), Instant Help (\$39.95). CP/M - Instant Help (\$39.95). HDOS - Hard Sector $5.25 \mathrm{CP} / \mathrm{M}-2.2$ or CP/M 85 any format.

C. D. R. Systems Incorporated

7210 Clairemont Mesa Blvd.
San Diego, CA 92111
Contact: Marc Brooks
Phone: 619-560-1272
Comments: Hardware, Software and consultation available. Products: FDC-880H Double Density $8^{\prime \prime}$ and $5.25^{\prime \prime}$ H/Z89, H/Z90 Floppy Disk Controller (\$495.00). 10 Megabyte Hard Disk System ($\$ 2995.00$). $8^{\prime \prime}$ Slimline Drive Package for Z100 (\$1495.00). See C.D.R. Systems advertisements in this magazine for further information.

CompuMan Services

570 Grace Avenue
POBox 1416
Panama City, FL 32401
Contact: Sandra Garner
Phone: 904-769-1233
Comments: Hardware, Software and consultation available. Prod-
ucts: A variety of software to run on Zenith Systems, leaning to Business Application Programs. Also sell custom designed templates for SpreadSheets. Offers support by installation, training and offers inhouse programmers for software modification.

Computer Systems

101 Oneida Avenue
Moorestown, NJ 08057
Contact: Jerry Rubertone
Phone: 215-563-1244
Comments: Hardware and Software available. No consultation offered. Products: Hardware, Software discounts to all HUG members on all Zenith Data Systems, Altos, Epson, Okidata, Diablo, GeminiStar, Daisy Writer, Centronic, Tally, and Nec Printers. Write or call for free catalog and discount price list.

James Czebiniak
199 Valley Road Ext.
Schenectady, NY 12309
Contact: James Czebiniak
Phone: 518-869-8723
Comments: Software and consultation available. Product: A Parameter Driven MBASIC Code Generator that provides intelligent screen control and writes complete MBASIC file mgt. code for you, including interactive file maintenance. For $48 \mathrm{~K} \mathrm{H8}$ and H 89 : can be modified to suit needs ($\$ 50.00$).

Extended Technology Systems

1121 Briarwood
Bensalem, PA 19020
Contact: Robert H. Todd, Jr.
Phone: 215-752-4604
Comments: Hardware, Software, Firmware and consultation available. Products: Zenith Data Systems dealer, Systems Installed, Hardware and software consultants, Super-19 and Font- 19 Terminal Firmware, Systems software and utilities for HDOS, CP/M and ZDOS. Customization of computers for special user requirements. Z90/Z100 computers, Printers, many other component systems.

FINA Software

16144 Sunset Blvd. \#3
Pacific Palisades, CA 90272
Contact: Larry Fina
Phone: 213-454-6393
Comments: Software and consultation available. Hardware available soon. Products: Offers CMDS v2.1, a High Speed Job Command Utility within an enhanced version of SYSCMD.SYS. And, an HDOS Utilities Disk with 12 programs, source available. Send for free documentation.

Fourway Computer Products, Inc.

52578 US 31 North
South Bend, IN 46637
Contact: Donald H. Petersen
Phone: 219-277-7720
Comments: Hardware, Software, and consultation available. Products: Zenith computers and terminals, Hewiett-Packard computers and calculators, $\mathrm{C}-\mathrm{ITOH}$ and Okidata printers, business and technical software. Also provide systems design services and custom software development.

Generic Software

POBox 790
Marquette, MI 49855
Contact: David J. Powers
Phone: 906-475-7151
(call during these hours - 10 a.m. to 5 p.m. EST M-F)
Comments: Software and consultation available. Products: over 20 software products available for H8 and H/Z-89 systems running HDOS or CP / M and for $\mathrm{H} / \mathrm{Z}-100$ systems running CP/M85. Products include data entry utilities database management programs, financial packages, entertainment/educational programs, and home management. Products are available at most Heathkit Stores and from many other Zenith dealers. Call or write for information and FREE catalog. Dealer inquiries invited.

Hilgraeve, Inc.

POBox 941
Monroe, MI 48161
Contact: Matt Gray
Phone: 313-243-0576
Comments: Software and consultation available. Products: ACCESS - a powerful, yet easy to use communications program, provides a flexible link between Z89's or Z100's and any remote computer system.

Horizon Software

PO Box 33066
Philadelphia, PA 19142
Contact: Robert Schild
Phone: WRITE
Comments: Software available. Seeking authors of software for the Heath/Zenith 89-90-100 computer systems. Programs of any type on any $5.25^{\prime \prime}$ format. High royalties paid. Send programs for immediate evaluation and appraisal. Horizon Software is a retail discounter of high quality software products for Heath/Zenith Computers.

Hoyle and Hoyle Software

716 South Elam Avenue
Greensboro, NC 27403
Contact: Janet C. Hoyle
Phone: 919-378-1050
Comments: Software and consultation available. Products: Query! Database Management System totally revised - user suggestions incorporated: Delete key functions, no longer necessary to specify drive names or extensions, easier to create and add, etc. Still ($\$ 29.95$) Updates ($\$ 15.00$). Three adventure-type games now in CP/ M. A Remarkable Experience ($\$ 16.00$), A Galactic Experience ($\$ 25.00$), A Physical Experience ($\$ 19.95$).

InchSoft 64 Fanchers Street
Pickerington, OH 43147
Contact: Richard E. Lucka
Phone: 614-837-8446 (evenings)
Comments: Software and consultation available. Products: EDT HDOS Full Screen Editor (Requires Z80 CPU in H 8 and HDOS 2.0), SAVE - HDOS Disc to Disc File Auto Backup Utility, CNVRT HDOS Interactive Number System Converter and Caiculator.

Lindley Systems

21 Hancock Street
Bedford, MA 01730
Products: DIAMOND Accounting Package, Ultimate Printer drivers work with any known interface, User Programmable Characters for

H/Z graphics on MX, NEC, C-ITOH, Okidata dot graphics printers, MAILBAG mailing list software, CHECK MASTER checkbook balancing.

MCA

8 Newfield Lane
Newtown, CT 06470
Contact: John Moran
Phone: 203-426-3302
Comments: Software and consultation available. FigForth for H 89 under HDOS. Includes a video editor and the Fig-editor, 8080 assembler, two games, and several screens of useful Forth words. $\$ 25.00$ including documentation. Supports read/write of HDOS files.

MRD Microcomputer Service

10172 Mardel Drive
Cypress, CA 90630
Contact: Wayne Martin
Phone: 714-527-4622
Comments: Specialize in Floppy Disk Repair. Hardware Consultation Available. Also sell Floppy Disk Drive and Printers at discount prices.

Magnolia Microsystems, Inc.

2264 Fifteenth Avenue West
Seattle, WA 98119
Contact: Customer Service Dept.
Phone 206-285-7266

800-426-2841

Comments: Hardware, Software and consultation available. Products: Floppy, Winchester disk interfaces, subsystems; memory expansions; high performance coprocessor (63 K TPA); Local Area Networking; Operating systems; much more, with still more to come. Available thru many Zenith dealers and Heathkit Electronic Centers, nationally and internationally.

MicroArt Corporation

200 Market Bidg./Suite 961
Portland, OR 97201
Contact: Kim Davenport
Phone: 1-800-MICROART
Comments: Software available. No consultation offered. Products: IMAGE word/graphics processor offers advanced word processing capability integrated with graphics for the $H / Z 67,89,90$ computers. Printers supported include Epson, Diablo, NEC, C-ITOH, and $H / Z 25$. IMAGE is the only software program for H / Z computers rated all "excellents" by InfoWorid.

Northwest Digital Systems, Inc.

PO Box 15288
Seattle, WA 98115
Contact: Mark Champion
Phone: 206-362-6937
Comments: Manufacturers of high resolution (512 H by 250 V) graphics retrofit for all Heath/Zenith H 19 and Z19 video terminals (H89/Z89 not supported). Text features include: Off Screen Memory, Set-up Menu, 80 or 132 columns, 25 or 50 lines, programmable Function Keys, DEC VT-100 Compatible and more. (\$849.00)

Jerry A. Phelps

6013 Innes Trace Road
Louisville, KY 40222
Contact: Jerry Phelps
Phone: 502-425-4765 (evenings)

Comments: Arcade quality game, LADDERS: Improved version: runs faster, more graphics, cartoons, hazards. Available for CP/M 2.2 (40K) or HDOS 1.6 and up (32K). Requires H/Z89 or H/Z19, H 17 and H 8 with H8-4 board. See Buss \#52 and \#65 or H-SCOOP \#29 and \#36. Supplied on a 5.25 hard, sssd disk. (\$21.50) or return old HDOS version plus $(\$ 2.55)$.

Alison C. Phillips, PE

4012 Thoroughgood Drive
Virginia Beach, VA 23455
Contact: Alison C. Phillips
Phone: 804-464-4156
Comments: Software and consultation available. CP/M operation and MBASIC-80 programming. Have prepared 250 BASIC tutorials which are available on hard-sectored or soft-sectored 5.25 disks. Tutorials cover the complete range of BASIC-80. a diskette of 12 tutorials is prices at ($\$ 12.00$). Consultation limited to above areas. Written reply to specific questions ($\$ 5.00$) each.

Powerline Systems

PO Box 97

Lincroft, NJ 07738
Contact: John W. Preusse
Phone: 201-842-5751
Comments: Software and consultation available. Products: New for H/Z89, CP/M: JUPITER - Maintains personal data and financial transaction records for over 25,000 individuals. Many special features including built-in full-screen editor for highly convenient data entry, fast operation, storage economy, predefined report, mailing label, and mergeable file output formats. Please see our ad in this issue.

Quick and Dirty Software

4221 Warwick Drive
Anchorage, AK 99504
Contact: William H. DuBay
Phone: 907-563-6333
Comments: Software and consultation available. HDOS and MBASIC required: DMS-II data mamagement system, with label maker and data-merge. ($\$ 15.00$). DOUBLE Entry Ledger system with trial balance, profit and loss (\$10.00) DMS-II For records up to 256 characters. With re-formatter, multiple sorts, default data entry, macros.

Ross Custom Electronics

1307 Darlene Way, Suite A12
Boulder City, NV 89005
Contact: J.D. Ross
Phone: 702-293-7426
Comments: Hardware, Software and consultation available. Products: EPROM Programmers (DumBurner) and software to load file to EPROM or EPROM to file. Programmers with software from ($\$ 149.00$). Documentation, Software and PC Board from ($\$ 25.00$). H 89 or H 8 with $\mathrm{H}-8-5$; CP/M or HDOS. TRS80 MODIII Software available April' 83.

Secured Computer Systems

8575 Knott Avenue

Buena Park, CA 90620
Contact: Ken or Lowell Halbasch
Phone: 714-952-3930 or 714-952-3884

Comments: Hardware, Software and consultation available. Products: 16 K memory expansion, $2 / 3$ rds card, 2 ports serial and 3 ports parallel, Real Time Clock, IEEE 488, Chassis expansion.

Sjulstad Engineering

503 East Fremont
Northfield, MN 55057
Contact: Dr. Michael Leming or
Phone: 507-663-3422
Mr. Michael Sjulstad 507-334-2783
Comments: Hardware, Software and consultation available. Products: 16 K add-on RAM $(\$ 59.95)$, 256 K RAM $(\$ 699.00)$, 128 K RAM ($\$ 469.00$) Remote Video Output ($\$ 59.95$), Alternate Character Generator. We service and repair most microcomputers.

Studio Computers

999 South Adams
Birmingham, MI 48011
Contact: Ray Massa
Phone: 313-645-5365
Comments: Hardware, Software and consultation available. Products: A Complete line of Zenith Hardware and Software, as well as over 20 of our own software packages. Fast Service at Discount Prices, In Business since 1978.

Systems Design Network, Inc.

PO Box 31232
Independence, OH 44131
Contact: G. L. Zychowski
Phone: 216-447-1319
Comments: Software and consultation available. Products: FORTRAN compatible forms management system, application generator utilizing CRT forms, and a library of software development tools for FORTRAN systems. Customized software development available.

Technical Micro Systems, Inc.

Dept. H
POBox 7227
Ann Arbor, MI 48107
Contact: Tom Snoblen
Phone: 313-994-0784
Comments: Hardware, Software and consultation available. Products: H-1000, an 8086 upgrade board for the H/Z89. Includes: MSDOS or CP/M $86,8 \mathrm{MHz} 8086,2$ or $4 \mathrm{MHz} Z 80$ (Software selectable), CP/M 80 and HDOS RAM Disk. H-1000 runs all H/Z89 Software. H19 upgradable. IBM-PC and Z-100 compatible. VISA, MasterCharge accepted.

Todd Enterprises

1121 Briarwood
Bensalem, PA 19020
Contact: Robert H. Todd, Jr.
Phone: 215-752-4604
Comments: Software and consultation available. Products: National Distributor for Public Domain Software in Heath Disk Formats. Libraries carried currently include $\mathrm{SIG} / \mathrm{M}$, CPMUG, IBM PC/blue, NYACC public domain catalogs also available. Disk formats: $8^{\prime \prime}$, 5" - 40 track, HSSS, SSSS, SSDS, $5^{\prime \prime}$ - 80 track, HSDS, SSSS, SSDS.

Weitzman Associates

580 N. W. 99th Way
Pembroke Pines, FL 33024
Contact: George F. Weitzman
Phone: 305-431-4043
Comments: Hardware available. Software and consultation not offered. Products: Heat sink assemblies for $\mathrm{H}-8$ boards, Wired, tested joy sticks and joystick kits for the HA-8-3 and HA-89-3 color graphics boards. All Joystick connectors use 30 microinch gold flash contacts.

Wideman Computer Consulting

1320 Pepper Villa Drive
El Cajon, CA 92021

Contact: Graham Wideman

Comments: Software available. Hardware and consultation not offered. Products: IBEm utility which allows running many IBM- PC configured programs on a Z100, by emulating PC's text-video calls (interruption) under ZDOS. (\$49.95) plus $\$ 3.00$ shipping and handling. CA residents add tax.

Zeducomp

POBox 68
Stirling, NJ 07980
Contact: Stephen E. Hesterman
Phone: 201-755-2262
Comments: Software and consultation available. Products: ZED, ZED-85: fast full screen text editors for Z89, Z90, H8/Z19 (CP/M) and for Z-100 (CP/M 85), (\$35.00) ZSS: Student Scheduler for universities, high schools, $(\$ 350.00)$. Available from many Heath/Zenith dealers or directly from Zeducomp. Visa, MasterCard, Check.

Current Local HUG Clubs

(NOTE: This listing is of July 1, 1983. If your club is not listed or you are forming a new club and you would like to have it included in out list, please send the proper information to: Heath Users' Group, Attn: Nancy Strunk, Hilltop Road, St. Joseph, M1 49085)

HEATH USERS' GROUP

AK, Eagle River

Alaska HUG
P.O. Box 951

Eagle River, AK 99577
907-694-9908 Group Size 20
Contact Person: Ben Sevier

AK, Ft. Greely

COLDHUG
co Stan Lockhart PO Box 229
APO Seattle, WA 98733 907-895-3284 Group Size 3 Contact Person: Stan Lockhart BB, Newsletter in planning stages

AL,Birmingham

BEARHUG (Birmingham HUG)
clo Jack Goertz PO Box 2625
Birmingham, AL 35202
205-991-5519 Group Size 20
Contact Person: Jack Goertz 1st Wed of each month 7:00pm At U of A Rm 217 Cudworth Hall

AL, Huntsville

Huntsville AL HUG
Rt 1 , Box 427
Lacey's Spring, AL 35754
205-498-2199
Contact Person: Jeff Hamilton Meet 2nd Thurs at intercon Research Corp leff's work no. 205-453-2576

AZ, Phoenix

PHUG (Phoenix Heath Users' GP)
c/o Will Summers PO Box 37783
Phoenix, AZ 85069
Group Size 75
Contact Person: Will Summers, President 2nd Tues at 7:00 p.m. at Phoenix HEC Membership $\$ 5$ initiation $\$ 12 /$ year

AZ, Tucson

SUNHUG (Tucson HUG)
7109 E Broadway
Tucson, AZ 85710
602-885-6773 Group Size 15
Contact Person: Steven Kutoroff, President
Meet even months first Sunday 2:00 pm Tucson HEC
Meet odd months first Thurs 7:30 pm

CA, Anaheim

ANAHUG (Anaheim HUG)
330E. Ball Road
Anaheim, CA 92805
213-330-8118 Group Size 103
Contact Person: Bob Chamberlain, Sec.
3rd Thursday 7:30 PM at HEC
BB 714-774-7860

CA, Campbell

San Jose HUG
2350 S Bascom Avenue Campbell, CA 95008 408-377-8472 Group Size 70 Contact Person: Gerlene York, Sec. Meet lst and 3rd Wed 7:00 p.m HEC Campbell

CA, El Cerrito

ECHUG (EI Cerrito HUG)
6000 Potrero Avenue
El Cerrito, CA 94530
415-236-8870
Contact Person: Alan Biocca
4th Wednesday at HEC

CA, El Monte

ETUG (ET/ETA 3400 Users Group)
11231 Oak Street
El Monte, CA 91731
Group Size 100
Contact Person: Charles Van Dyke
Newsletter 4 times a year

CA, Fresno

FresHUG (Fresno HUG)
4833 East Santa Ana
Fresno, CA 93726
209-291-6258 Group Size 4
Contact Person: Harlen Collins

CA, Glendora

Southern CA H11 Users Group
430 W . Highland Avenue
Redlands, CA 92373
714-886-4766 Group Size 40
Contact Person: Dr. M.J. Di Girolamo
Meets at 625 E. Palm, Glendora, CA

CA, Los Angeles

Los Angeles HUG
P.O. Box 5334

Pasadena, CA 91107

213-792-4763 Group Size 20
Contact Person: Ray Livingston 1st Thursday 7:00 PM at HEC

CA, Los Angeles

LAETUC (Los Angeles ET3400 CP)
2309 S Flower
Los Angeles, CA 90007
213-749-0261
Contact Person: Gilbert Murillo
Other contact Charlie at 213-443-2237
Contact for meeting time and place

CA, Monterey

Naval Pstgrd Sch Hobby Com Clb
Rec. Services Offices
Monterey, CA 93940
408-646-2466 Group Size 65
Contact Person: Tex Moore, President

CA, Pomona

Pomona HUG
1555 N Orange
Pomona, CA 91767
714-985-5303 Group Size 90
Contact Person: Herb Friedman, President
Meet 4th Thursday each month
at 7:30p.m. at HEC
BB 714-629-1943

CA, Redding

Redding Heath Users' Group
Don Talkington 1018 Freda Lane
Redding, CA 96003
916-244-4563
Contact Person: Don Talkington
Meet 2 nd Mon at 7:30 pm at Memorial Hosp.
Meet in Biomedical Engineering Office

CA, Redwood City
BAHUG Bay Area HUC
2001 Middlefield Road
Redwood City, CA 94063
415-365-4915 Group Size 219
Contact Person: Bob Bance, Sec.
2nd Tuesday 7:00 PM at HEC

CA, Riverside

Tri-HUC
5705 Via Sotelo
Riverside, CA 92506
714-683-2929 Group Size 20
Contact Person: Kenny Adcock

CA, Sacramento

SHUG (Sacramento HUG)
1860 Fulton Avenue
Sacramento, CA 95825
916-662-7220 Group Size 35
Contact Person: Gloria Stewart, Sec.
Meet 2nd Wed 7:30pm at Sacramento HEC

CA, San Diego

San Diego HUG
12202 Kingford Court
El Cajon, CA 92021
714-561-2540 Group Size 170
Contact Person: Richard Cobb
1st Wednesday 7:00 PM
at Parkway Jr HS La Mesa

CA,Santa Maria
4168 Glenview Drive
Santa Maria, CA 93455
805-937-6938 Group Size 18
Contact Person: Raymond S. Isenson
Meet 1st Mon 7:00 pm at
Vandenburg Air Force Base

CA, Visalia

Visalia HUG
29924 Road 168
Visalia, CA 93291
209-747-3235 Group Size 3
Contact Person: Peter Shkabara
Meeting time and place
not established yet

CA, Woodland Hills
LUVAHUG
22504 Ventura Blvd.
Woodland Hills, CA 91364
213-883-0531 Group Size 40
Contact Person: Paul S. Townsend
2nd Thursday 7:00 PM at HEC

CANADA, Vancouver, BC
Vancouver Island HUG

2022 Douglas St

Victoria, BC CANADA V8T 4L1
604-384-4711
Contact Person: Greg Greene, President
Meet each month at Excalibur Systems LTD
For further info call above number

CO, Colorado Springs
CSHUG (Colorado Springs HUG)
Colorado Springs, CO 80906
303-632-3019 Group Size 25
Contact Person: Richard Evers
Meet last Thurs each month 7:00 pm
Have 24hr BB 303-634-1158

CO, Denver
DENHUG (Denver HUG)
P.O. Box 20422

Denver, CO 80220
303-394-2082 Group Size 120
Contact Person: Alfred K. Carr, Sec./Treas.
BB 303-423-3224 (24 hrs)
2nd Monday 7:00 PM at HEC

CO, Ft. Collins

FT. HUG (Fort HUG)
822 E. County Road 30
Ft. Collins, CO 80525
303-669-4116
Contact Person: Ted Benglen, II
Meet once a month at present

CT, Avon

CONNHUG (Connecticut HUG)
395 W Main Street
Avon, CT 06001
203-589-3824 Group Size 35
Contact Person: Bob Conlon, President 1st Wednesday at 7:00 pm at HEC
BB 203-674-8915

CT, Mystic
MYSTIC ZDS/HUG
14 Holmes Street
Mystic, CT 06355
203-536-6953
Contact Person: Matthew H.Trask
Last Wednesday at 7:00 pmat
14 Holmes, Mystic, CT

FL, Cocoa Beach

Brevard Heath Users' Group
680 Java Road
Cocoa Beach, FL 32931
305-783-6352 Group Size 12
Contact Person: Gene E. Stillman
Meet last Sun of ea. mo. at 7:00 pm
Meet at Patrick AFB, Comet Rec. Ctr.

FL, Fort Myers

SWFHUG (Southwest Florida HUG)
P.O. Box 05-37

Tice, FL 33905
Contact Person: Robert Sloat
Meet 2nd Tues each month 7:30 p.m.

FL, Fort Walton

NWFHUG (NorthWest Florida HUG)
812 Cherokee Road
Eglin AFB, FL 32542
904-651-2108 Group Size 30
Contact Person: George A Repasy, President
Meetings 2nd Wed at DATATEC Inc. 7:00 pm

FL, Jacksonville

JUC (Jacksonville Users Group)
8262 Arlington Expressway
Jacksonville, FL 32211
904-725-4554 Group Size 40
Contact Person: Jerry Leon
Meet lst Wed each month at HEC Jacksonville
BB 904-725-4995 24 hrs

FL, Miami

Miami Amateur Computer Club
4705 W. 16th Avenue
Hialeah, FL 33012
305-823-2280 Group Size 35
Contact Person: Emileo Crespo
Meet 2nd Thurs each month 7:00 pm at HEC
BB 305-823-2281

FL, Orlando

HUG of Central FL Computer Sc.
121 Talmeda Trail
Maitland, FL 32751
805-644-6848 Group Size 11
Contact Person: Joseph Walker, President
4th Wednesday at various locations

FL, Pensacola

221 E. Government
Pensacola, FL 32501
Contact Person: John Causey
Meet 2nd Tue each month 7:00 pm
at above address
Meet at Professional Business Sys.

FL, Tallhassee

Tally HUG
c/o TACS PO Box 6716
Tallahassee, FL 32314
904-562-1412 Group Size 14
Contact Person: Bill Hill
Meet 1st Tues each month 7:30
Meet at Alternative Microcomputing

FL, Tampa

Al Lynch HUG
PO BOX 22906
Tampa, FL 33622
Group Size 40
Contact Person: H. Glenn Tanner, Secretary
Meet Ist and 3rd Wed 7:30 pm at Tampa HEC
Dues $\$ 10$ per year

GA, Atlanta

ATHUG (Atlanta HUG)
5285 Roswell Road
Atlanta, GA 30342
404-436-3677 Group Size 50
Contact Person: Leon Trulove
Meet 1st \& 3rd Thurs 7:00-9:00 pm
BB 404-252-4342 6:00 pm to 8:00 am

Ga, Augusta

CSRA Computer Club
PO Box 284
Augusta, GA 30903
404-860-2934
Contact Person: Paul Pennington
Meet 4th Monday at 7:30 pm at
Campus Computer Sys
3830 Washington Rd Martinez, GA 30907

GA, Warner Robins

MGHUG

107 Cherokee Forest Trail
Warner Robins, GA 31093
912-923-6962 Group Size 6
Contact Person: Gerald D. Dalldorf
Meet 4th Wed ea. month at various places
2nd contact: John King 912-923-1977

HI, Hilo

BIHUG (Big Island HUG)
P.O. Box 4271

Hilo, HI 96720
808-959-8985 Group Size 10
Contact Person: R.A. Curtis
Meetings at HELCO Conference Room, Hilo
Meet 1st Thurs each month 7:00 pm

HI, Honolulu

HUGH (HUG Hawaii)
1255 Nuuanu Avenue \#1405
Honolulu, H1 96817
808-531-8843 Group Size 45
Contact Person: Jim Branchaud, President
3rd Saturday at Mililani,
1st Wednesday at Kalihi

HONG KONG

Compudragon
273 Prince Edward Road
11/C Kowloon, HONG KONG
3-711-8904
Contact Person: K. T. Lee
Clubjust organizing

IA, Des Moines

DMA HUG (Des Moines Area HUG)
10275 NE 23rd Ave.
Mitchellville, IA 50169
515-266-2382 Group Size 21
Contact Person: Harold Dykens
Meet 3rd Mon ea. month 7:00 pm

IL, Champaign

CCCC (Champaign Cty Comp Club)

412 Dorchester

Mahomet, IL 61835
312-586-5100 Group Size 12
Contact Person: Roger Fraumann

IL, Davis

NI-HUG Northern IL HUG
427 Lockwood Rt 1
Davis, IL 61019
815-248-2241 Group Size
Contact Person: Jim Isenhart lust starting

IL, Downers Grove

I-HUG (Illinois HUG)

6116Lane

Downers Grove, IL 60516
312-971-1660 Group Size 25
Contact Person: Len Bateman
3rd Wednesday at various locations
IL, Downers Grove
HUG Metro (Local Chicago)
15 W. 780 Fillmore
Elmhurst, IL 60126
312-985-2381 Group Size 30
Contact Person: Larry Shipinski, President
Meet 2nd Monday of each Month 7:30 pm at HEC

IL, Peoria

CIHUG (Central Illinois HUG)
408 Bess Street
Washington, IL 61571
309-745-8313 Group Size 17
Contact Person: Ronald Morgan, President
3rd Sunday at 3 pm(Jan, Mar, May, Jul, etc.)
IL, Roclford
Blackhawk Bit Burners
325 Beacon Drive
Belvidere, IL 61008
815-544-5206 Group Size 35
Contact Person: Frank D. Dougherty

IL, Springfield

217-753-5795
Contact Person: Bobby Wright
Club just forming

IN, Indianapolis

Indianapolis HUG (IHUG)
1189 Cumberland Avenue
West Lafayette, IN 47906
317-257-4321 Group Size 60
Contact Person: Robert Wild, President
2nd Wednesday 7:15 PM at HEC
KS, Mission
MUG (Mission Users' Group)
6908 West 98 th Street
Overland Park, KS 66212

913-649-0879 Group Size 100
Contact Person: Charles L. Bennett
Meet last Sun of month 2:00 pm

at Mission HEC

BB 913-362-9583 and Newsletter

KS, Wichita

Wichita HUG
1909 Siefkin
Wichita, KS 67208
316-681-3456 Group Size 18
Contact Person: David Horwitz
2nd Sunday of ODD months
2:00 PM at E. Pike Bldg.
Corner of Webb and Kellog in Wichita

LA, New Orleans
 NOHUG

1900 Veterans Blvd.
Kenner, LA 70062
504-467-6321 Group Size 60
Contact Person: Nathan Gifford
1 st Wednesday at 7:30 PM at HEC

MA, Northampton

Hampshire Computer Club
37 Drewson Drive
Northampton, MA 01060
617-584-6227 Group Size 80
Contact Person: George Scheurer 2nd Tuesday 7 PM
at McConnel Hall Smith College
Beginners Group 1st Tuesday

MA, Peabody

HUG North Shore
6 Susan Drive
Saugus, MA 01906
617-233-2941 Group Size 60
Contact Person: Hal Messinger, President
BB 617-531-9332 24 hours
2nd Wednesday Hilltech Bldg Danvers

MA, Pittsfield

BERCHUG (Berkshire County HUG)
73 Waverly Street
Pittsfield, MA 01201
Contact Person: Paul E. Ouellette, Pres.

MA, Wellesley

HUG'EM
165 Worcester Ave
Wellesley, MA 02181
617-237-1510 Group Size 100
Contact Person: Malcolm Partridge, Dir.
3rdWed 7:00 p.m. at HEC
MD, Baltimore
Baltimore HUG
6106 Marlora Road
Baltimore, MD 21239
301-323-6093 Group Size 70
Contact Person: William Frey
3rd Thursday 7:00 PM at HEC

MI, Ann Arbor

A-SQR-HUG
895 Starwick Drive
Ann ARbor, MI 48105
313-662-0750 Group Size 9-10
Contact Person: L. E. Geisler, Sec.

Meet last Thurs of each month Mailing sent on time \& place ea. mo.

MI, Detroit

Metro Detroit Area HUG
7716 Winona
Allen Park, MI 48101
313-928-7423 Group Size 50
Contact Person: Chuck Dattolo

MI, Kalamazoo

SMHUG (Southwest Michigan HUG)
623 Wildwood Place
Kalamazoo, MI 49008
616-349-35 35 Group Size 50
Contact Person: Al Jacobs, Sec./Treas.
4th Saturday 1:00 pm
at Western Michigan University
Moore Hall, Rm 1034, News Letter

MI, Saint Joseph

BLHUG (Blossomland HUG)
P.O. Box 414

Saint Joseph, MI 49085
Group Size 33
Contact Person: Vance Fisher, Chair Person
1st Tuesday 7:00 pm at various locations
Check HEC for place of meeting

MN,St. Paul-Minneapolis

SMUGH
889572nd Street
Cottage Grove, MN 55016
612-459-4382 Group Size 100 +
Contact Person: Steve Howard, President
Last Monday at 7:00 pm
(Alt. St Paul \& Mpls)
MO, St. Louis
SLHUG (St. Louis HUG)
3794 McKelvey Road
Bridgeton, MO 63044
618-259-8113 Group Size 120
Contact Person: Brad Pulaski, Treas.
Meet 2 nd Wed 7:30 pm at HEC

NC, Charlotte

HUG Charlotte
2721 Picardy Place
Charlotte, NC 28209
704-374-6997
Contact Person: Jim Simpson

NC, Fayetteville

Cape Fear Computer \& HUG
2454 Vandemere Avenue
Fayetteville, NC 28304
919-485-4586 Group Size 11
Contact Person: Jerry Mills, President
Bi-Weekly 2:00pm on Sundays at homes
NC, Hillsborough
HUG-RTP
Rt 3, Box 39A
Hillsborough, NC 27278
919-73-6678
Contact Person: Joe Williams
Meeting place and time unknown

NE, Omaha

OMAHUG (Omaha HUG)
9207 Maple Street

Omaha, NE 68134
402-391-2071 Group Size 200
Contact Person: Chuck Juvenal, Chairman
3rd Sunday 6:30pm at HEC

NETHERLANDS

Dutch Heath Users' Group
NIEUWE KERKHOF 16
9700 PV Groningen, NETHERLANDS
050-180203 Group Size 90
Contact Person: Evert Jan Stokking

NI, Fairlawn

HUGNJ (HUG of New Jersey)
3507 Broadway
Fairlawn, NJ 07410
201-791-6935 Group Size 85
Contact Person: Mel Beiman
BB 201-791-6936 24 hours
3rdMonday 8:00 pm at HEC

NJ, Ocean

SHUG (South Jersery HUG)
1013 State Hwy 35
Ocean, NJ 07712
201-775-1231 Group Size 71
Contact Person: James J Jones Jr., Sec.
Meet 1st Wed 7:30 pm at Ocean HEC
BB 201-775-8705 24 hours
NM, Albuquerque
Albuquerque HUG
7205 Minuteman NE
Albuquerque, NM 87109
505-821-7393 Group Size 15+
Contact Person: Jim Pomerleau
Meet 1st \& 3rd Sun 7:00 pm at members homes

NY, APO New York

BWHUG (Bentwaters HUG)
PSC Box 3703 RAF Bentwaters
APO New York, NY 09755
Contact Person: Sgt. Rodney Jones
NY, Buffalo
BUG (Buffalo Users Group)
223 Clark Road
Kenmore, NY 14223
Group Size 75
Contact Person: Bob Allen
Meet 3rd Sun 1:30 pm at Amherst HEC
NY, Long Island
leri-HUG (Jericho HUG)
PO Box 78
lericho, NY 11753
516-676-5616 Group Size 65
Contact Person: Alan Scott Dodge, Sec./Treas.
Meet 2nd Thurs 8:00 pm Jericho Pub. Library
Monthly newsletter, software library

NY, North White Plains

North White Plains HUG
ElliottSer Co 720 White PIns Rd
Scarsdale, NY 10583
Group Size 50
Contact Person: Peter Abramson
Meet 2 nd Tues ea. mo. 7:30 pm at HEC
NY, Rochester
RHUG (Rochester HUG)
937 Jefferson Road

Rochester, NY 14623
716-773-0193
Contact Person: Joanne Lang, Chairperson
Last Tuesday at 7:00 pm at HEC

NY, Schenectady

Schenectady HUG
c/o T. Budge 715 Sanders St.
Scotia, NY 12302
518-385-5660 Group Size 12
Contact Person: Walter Whipple
Meet 3rd Wed 7:30 pm at above address

OH, Cincinnati

Cincinnati HUG
10133 Springfield Pike
Woodlawn, OH 45215
513-771-8850 Group Size 50
Contact Person: Roger Svoboda
2nd Tuesday 6:30 PM at HEC, $\$ 10.00$ dues/year
Newsletter I/O Port

OH , Cleveland

NOHUG (Northeastern Ohio HUG)
4705 Tanglewood Place
Lorain, OH44053
Group Size 40
Contact Person: Art Petkosek
2nd \& 4th Thursday 7:00 PM
at Maple Hts. Library

OH , Cleveland

Cleveland HUG
28100 Chagrin Blvd
Cleveland, OH 44122
216-291-1612 Group Size 10
Contact Person: Gerry Ciganko
1st Thurs 7:00 pm at HEC
BB 216-292-7553 24 hours

OH, Columbus

Columbus HUG
2500 Morse Road
Columbus, OH 43229
614-475-7200 Group Size 50
AtHEC

OH, Dayton

Wright-Patterson HUG
4110 Spruce Pine Court
Dayton, OH 45424
513-236-4915 Group Size 36
Contact Person: Jim Moore, President
1st Thursday 4 pm at Wright-Patterson AFB

OH , Toledo

THUG (Toledo HUG)
4804 Mt. Airy Road
Sylvania, OH 43560
419-882-3626 Group Size 30
Contact Person: John F. Priebe, President
LastSunday 8 pm
OK, Oklahoma City
OKCTUGS
c/o Bill Cadwallader PO Box 1171
Lawton, OK 73502
405-848-7593 Group Size 40
Contact Person: Bob Perry
2nd Sunday at 1:00 pm at HEC
BBS 405-848-9329 24 hours

OKINAWA
OKIHUG (Okinawa Users Group)
Box 376 , USAFSO
APOSan Francisco, CA 96331
Group Size 13
Contact Person: Carl H. Eaton
Meet on Fridays monthly at 7:30 pm
Meeting place varies

PA, Frazer

FUG (Frazer Users Group)
1641 Princess Anne Drive
Lancaster, PA 17601
717-397-3146 Group Size 60 Contact Person: Dave Hendrie, President
1st Saturday 4:00 pm at Frazer HEC

PA, Philadelphia

Philadelphia Heath Users' Group
6318 Roosevelt Blvd
Philadelphia, PA 19149
215-288-0180 Group Size 135
Contact Person: Henry F. Beechhold, Pres.
Meet 2nd Wed. each month 7:00 pm at HEC 8

PA, Pittsburgh

PittsburgHUG
3482 William Penn Highway
Pittsburgh, PA 15235
412-824-3564 Group Size 35
Contact Person: John C. Schultz, President
3rd Thursday 7:00 pm at HEC

RI, Warwick

HUG-'RI' (HUG of Rhode Island)
558 Greenwich Avenue
Warwick, RI 02886
401-738-5150 Group Size 150
Contact Person: Leo Therrin/Dave Haskell 2nd Wednesday 8 pm at HEC

TN, Knoxville

East Tennessee HUG
110 Northshore Dr.
Knoxville, TN 37919
615-588-0281 Group Size 14
Contact Person: Bruce Cliff
Meet 3rd Thursday 7:00 pm
Meet at Productive Programming Inc.

TN, Memphis

Memphis HUG
6874 Kirby Brooks Drive
Memphis, TN 38115
901-362-8860 Group Size 4 Contact Person: Morris Proctor
Meets at National Cotton Council

TN, Nashville

Mi Te HUG (Middle Tenn HUG)
c/o Radio Ser Ctr 116 17th Ave S
Nashville, TN 37203
615-242-0556
Contact Person: Charlie Wolf
Meet 2nd Monday 6:30 pm
at Radio Service Center

TX, Austin

AHUG Austin Heath Users Group
4206 Tamarack Trail
Austin, TX 78759

512-255-0376
Contact Person: George Koehler
Meet once mo. 8:00-10:00 pm
Applied Research Labs
Univ of Tx 10,000 Burnet Rd Austin
TX, Dallas
DFW HUG (Dallas-Fort Worth)
2715 Ross Avenue
Dallas, TX 75201
214-826-4053 Group Size 70
Contact Person: Henry Gardiner, President
1 st Thurs. and 15 days later (Wed.)
at 7:30 pm At HEC BB 214-742-1380

TX, Ft. Worth

FWHUG
6825A Green Oakes Road
Ft. Worth, TX 76116
817-737-8823 Group Size 26
Contact Person: Don Murray
Meets 4th Thursday 7:30 ea, month
TX, Houston
HUG-H
7798 Braniff
Houston, TX 77061
713-644-5689 Group Size 75
Contact Person: Tom McCormick, President

TX, San Antonio

SAHUG (San Antonio HUG)
7111 Blanco Road
San Antonio, TX 78216
512-341-8876 Group Size 65
Contact Person: Tom Schneider
First Tuesday at HEC, 7:30 pm

TX, Wichita Falls
NORTEX HUG (N. Texas S. Okla)
2413 Kemp Blvd in Office Worid
Wichita Falls, TX 76309
817-322-1007 Group Size 24
Contact Person: Alan D. Martin
Meet third Sat 9:00 am at above address

UT, Castle Dale

Castle Mesa Computer Group
670 N. 90 E. Box 123
Castle Dale, UT 84513
801-381-5173 Group Size 10
Contact Person: Doug Sorensen
Meet 3rd Thurs 5:30 p.m above address

UT, Midvale
UHUG (Utah HUG)
58 E. 7200 South
Midvale, UT 84047
801-566-4628 Group Size 75
Contact Person: Don Greene, President
2nd Wednesday 7:00 pm at HEC

VA, Christiansburg
New River Valley HUG
Christiansburg, VA 24073
703-382-4234 Group Size 35
Contact Person: Ted Fieshman
Meet 1st Thurs 7:30 pm
Christiansburg High School

VA, Fairfax

CHUG (Capital HUG)
P.O. Box 2653

Fairfax, VA 22031
703-759-6176 Group Size 600+
Contact Person: Mike Cogswell, President
3rd Monday 7:30 pm at Fairfax High School
Large Software Library ($150+$ disks)

VA, Richmond

RHUG (Richmond HUG)
4302 Smithdeal Avenue
Richmond, VA 23225
804-231-6759 Group Size 15
Contact Person: Carlos Chafin
Meet 3rd Monday 7:30 pm
at 2049 W. Broad Street

VA, Virginia Beach

THUG (Tidewater HUG)
1055 Independence Blvd.
Virginia Beach, VA 23455
804-460-0997 Group Size 90
Contact Person: John E. Smith, President
1 st \& 3rd Tuesday at 7:00 pm at HEC

W. GERMANY, Pirmasens

Pirmasens HUG
Box 1131,270 Signal Co.
APO New York, NY 09189
Group Size 7
Contact Person: Cpt. James L. Ross, Jr.

WA, Bellevue

Pacific Northwest HUG
c/o Jan Johnson PO BOX 993
Bellevue, WA 98009
206-363-3927 Group Size 150
Contact Person: Nathan Hall
Meet 2nd Thurs odd months 6:00 Tukwila HEC
Meet 2nd Mon even months Seattle HEC

WA, Spokane

SPOHUG (Spokane HUG)
S. 3810 Havana

Spokane, WA 99204
509-448-9727 Group Size 18
Contact Person: Charles Ballinger
Newsletter

WA, Vancouver

Portland-Vancouver HUC
516 SEChkalov Drive
Vancouver, WA 98663
206-254-4441 Group Size 25
Contact Person: Dan Heims
1 st Thursday at $7: 30 \mathrm{pm}$ at HEC
Portland OR and Vancouver Area
WI, Milwaukee
MHUG Milwaukee Heath Users Gp
5215 W. Fond Du Lac Ave.
Milwaukee, WI 53216
414-352-3346 Group Size 40
Contact Person: Marvin Olson, Treas.
Meet 3rd Saturday 2:00 pm at HEC
WI, Mosinee
CWHUG (Central Wisconsin HUG)
2294 CTH PB
Mosinee, WI 54455

715-693-3429
Contact Person: Edward Ignace Porwit
Club just started
Call or write for information

CANADA, Calgary, Alberta
HUG (Heath Users of Canada)
1015809 Macleod Trail South
Calgary, Alberta T2H 0J9 CANADA
403-252-2688
Contact Person: Gary Selman
CANADA, Ottawa, Ontario
HUG 'O' (HUG Ottawa)
866 Merivale Road
Ottawa, ONTARIOK1Z 5Z6CANADA
613-728-3731 Group Size 30
Contact Person: Brian Fultz, President
2nd Wednesday 8:00 pm at HEC
CANADA, Toronto, Ontario
THUG (Toronto HUG)
1480 Dundas Street E .
Mississauga, ONT. CANADA L4X 2R7
416-273-3797 Group Size 25
Contact Person: Bill Smith
CANADA, Vancouver BC
VANHUG (Vancouver HUG)

3058 Kingsway

Vancouver BC, CANADA V5R 517
604-576-9842 Group Size 35
Contact Person: Eric Worthy
Last Monday 7:30 pm at HEC
BB 604-430-8233

HOLLAND, Apeldorn

Dutch HUG
Hofstraat 30
7311 KW Apeldorn HOLLAND
Group Size 70
Contact Person: Evert Jan Stokking

PANAMACANAL

Canal HUG
P.O. Box 1112

APO Miami, FL 34001
84-4094 Group Size 6
Contact Person: Michael Gulick, President 1st Tuesday 7:30 pm Howard AFB

PUERTO RICO, Rosario

PRHUG (Puerto Rico HUG)
Calle La Paz \#706, Miramar
Santurce, PR 00907
809-725-1612 Group Size 21
Contact Person: Joseph Gonzalez
Meet 2nd Sunday of odd numbered months

W. GERMANY, Frankfurt

Frankfurt HUG
American Consulate General FRDCO
APO NY, NY 09757
566187 Group Size 3
Contact Person: Carl Lovett

W. GERMANY, Sprendlingen

HUG-Deutschland
Robert-Bosch-Strasse 32-38
D-6072 Dreieich W. GERMANY
06103/3808 Group Size 200
Contact Person: Egon Becker/Lydia Luguet

QUESTIIONS \& ANSWERS

(EDITOR'S NOTE: If you need answers to specific questions on software or hardware problems that would be beneficial to other users, please drop us a note to, Question \& Answers, Heath Users' Group, Hilltop Road, St. Joseph, MI 49085. Please keep your questions brief and to the point. We will do our best to answer your question in a future issue. Some of the Questions \& Answers are contribute by Zenith Data Systems Software Consultation.)

Q.
Can I send my printer escape sequences or control characters from Multiplan?

A

- Yes. Use the setup field of the Print Options command. To enter a control code, type \uparrow (shift 6) followed by the character. For instance $\uparrow L$ is a form feed. Because an escape is a control [, enter it as a \uparrow [.

Q.

- Can a program made or developed with HRUN be placed back on an HDOS disk through HRUN or CP/M's PIP for further use and/or development, or must HUG's program CTOH be used?
A. HRUN is a program that runs under the CP/M operating system. Any disk file created by HRUN is actually a CP/Mdisk file and if it is to be used under HDOS, it must be transferred through a CP/M-to-HDOS utility (such as CTOH). This simply allows HDOS to recognize the newly transferred file as an HDOS file. If the disk file was created while running HRUN, it may have practical use under HDOS provided it uses only routines common to HDOS.

- How can I transfer CP/M files from one computer to another using a modem or direct connection?

A. Standard CP/M PIP can only transfer small ASCII files. Small is 16 k to 32 k depending on the memory size of your computer. Any other transfers would require special software packages. Using PIP on small ASCII files would require the following steps.
The CONFIGUR utility would need to be set up on both computers so that the RDR: and PUN: devices were assigned to the correct port and matching baud rates. The baud rate must be no greater than that supported by the modem or the speed of the computer. Usuaily 1200 baud is a safe maximum except with 300 baud modems. Experience will show whether your computer can transfer faster than that. If the file is too big or the speed is too fast, there will be characters missing out of the file.
On the computer that is going to receive the file, you would enter the command:
PIP $?=$ RDR: $[B]$
where '?' is the name of the receiving file. The previous contents of the file, if any, will be lost. After this is done, on the computer that is going to send the file you would enter:
PIPPUN:=?
where '?' is the name of the sending file.
O- In a number of assembly language programs, I have noticed the instruction " CODE PIC "'. About all I know about this instruction is that it stands for 'Position Independent Code'. No mention of this is made in the HDOS manuals, so any explanation would be helpful. When is it used and why?
A . Some HDOS programs are designed such that they must be relocated in memory, e.g. device drivers. The exact location (or new addresses) may vary from system to system. PIC codes provide a means for HDOS to move relocated programs and keep track of the new addresses.

For an explanation of CODE PIC, see "The HDOS Device Drivers Programmer's Guide" by AI Dallas in REMark issue \#20 (September 1981), page 8. (Issue \#20 is available in REMark Volume 2, P/N 885-4002.) For an illustration of the use of CODE PIC in a program that is not a device driver, see "A Faster Benton Harbor BASIC" by Dahl Metters in issue \#39 (April 1983), page 11. Also, refer to "Guide to Setting Up Utilities as Device Drivers" by Charles Horn in Issue \#41, page 45.

- How can I power-up my H-89 in hexadecimal radix instead of split-octal? Chang-
ing the radix to hex after resetting or power-up is a nuisance.
A. The existing H89 MTR-90 ROM will not allow power-up in hexadecimal radix. The ROM is programmed for split-octal. The source code can be modified and a new ROM burned, but this requires special knowledge and equipment.
- I get inconsistent sector errors when doing a media test on my Z-37 and Tandon 100-4 drive. What is wrong? Also, I understand that there is a new ROM for the Z-37. What does it correct/improve and does it have any effect on my problem?

A.The higher density drives allow for such narrow tolerance that soft errors will occur. If the errors become consistent, then it is likely that you are having drive problems.

Some Z-37s have a problem booting properly. The new ROM for the Z-37 moves the head a few tracks and then back to the first track to assure a proper boot. If your drives do not have a boot problem the new ROM, is not necessary.

0

- How can I convert my H-19-A terminal (now that Heath Company has quit making the conversion kit) to an $\mathrm{H}-88-\mathrm{A}$?
A. - You have two possibilities: 1) order the H-88-A Conversion manual, P/N 595-2709, (P/N 595-2803 for H19 to H88) from Heath Parts Department, and from the manual order each part separately. 2) Check into the DG Super- 89 board. Contact DG Electronic Developments Co., 700 South Armstrong, Denison, TX 75020.

:114

Introducing Heathkit Online Catalog
Dear HUG,
Heath Company is pleased to announce the introduction of the New Heathkit Online Catalog, which is now available on the CompuServe Information Service.

Heathkit, the world's largest manufacturer of electronic products in easy-to-build kit form, offers it's complete line of over 400 major products on this new electronic shop-at-home catalog.
CompuServe is one to the largest public access timeshare databases that may be accessed from anywhere around the country, usually with just a local phone call. All that is needed is a terminal or personal computer, a modem to connect the phone lines, and a Compuserve subscription which is available at any of the nationwide Heathkit Electronic Centers, most computer stores, or through the Heath Users' Group. Besides the Heathkit Online Catalog, CompuServe offers many areas of service, information, news, and electronic communications, along with the Heath Users' Group Bulletin Board where members can exchange ideas, comments, and programs.

The Heathkit Online Catalog, with an easy-to-use menu driven system and 17 major product categories, is ideal for browsing. If you or your family are involved in cars, boats, amateur radio, alternative energy, woodworking, or weather, you'll find your kit in the online cataiog. If your interests lean towards the leading edge of technology, you'll enjoy building TV and stereo equipment among the finest in the world, and the latest in robotics and microcomputer technology.
Also available are bargains and feature products. A convenient search routine allows you to locate the Heathkit Electronic Center nearest you. And to make the shop at home service complete, you can place your order online using your Visa, MasterCard, or Heath Revolving Charge.
You'll find the Heathkit Online Catalog under the Personal Computing Service menu, "Shop at Home"; or by typing Go HTH at any ! prompt in the CompuServe information Service.
Alan Bose

A Hardware Modification To Prevent A $4 \mathrm{MHz} \mathrm{I} / \mathrm{O}$ Bound Hard-Sectored Disk Controller

Dear HUG,

This modification will allow you to use your modified $4 \mathrm{MHzH89}$ or H 89 A with your H -88-1 hard-sectored disk controller; correcting the problem, through a hardware modification, of the H-88-1 becoming I/O bound.

My special thanks to Mr. Bill Baldridge of Oakland, CA for testing this modification with me. The Z-89-37 soft-sectored disk controller has full compatibility.
A possible reason for the $\mathrm{H}-88-1$ hard-sectored disk controller becoming I / O bound when operating at 4 MHz is the processor chip on the disk controller will not operate at 4 MHz . This modification is accomplished by allowing the disk controller clock to operate at an unswitched 2 MHz by rerouting the clock on the CPU board at the disk controller port P512. By cutting the trace to the P512 at pin 13 and rerouting pin 13 with wire-wrap wire to $U 502$ pin 8 , your $\mathrm{H}-88-1$ hard- sectored disk controller will acquire an unswitched 2 MHz .
Robert A. La Pierre
Concord, CA

Dear HUG,

Many people may be using Benton Harbor BASIC programs that use the "INT" (Integer) function. One example is the "Dollar and Cent" routine given by Pat Swayne in REMark Issue 29.

ALL USERS BEWARE! The INT function works fine, most of the time. The following example shows an error of $\$ 1.00$ out of $\$ 521.00$. This is certainly not the accuracy one would expect from a computer.

LIST
$00010 \mathrm{G} 1=473$
$00020 \mathrm{M} 1=23$
$00030 \mathrm{~B} 1=19.8$

```
00040 DIMA \((2,2)\)
\(00050 \mathrm{~A}(0,0)=5.2\)
\(00060 \mathrm{~A} 9=\mathrm{G} 1+\mathrm{M} 1+\mathrm{B} 1+\mathrm{A}(0,0)\)
00070 PRINT A9, INT(A9)
00080 END
*
*RUN
521
520
```

WRONG! The Interger value of 521 IS NOT 520.

A quick call to the Heath factory software fellows verified that the problem stems from Binary math being used internally. This results in round off errors that are negligible most of the time (hopefully).

This potential problem is not limited to Benton Harbor BASIC. If ANY program you are running uses binary instead of BCD math then BEWARE. If you are not sure, find out from the vendor, especially if it is an accounting program. If it uses binary math you may still be safe if the programmer has included special routines to protect against incorrect roundoff.
used the "Dollar and Cents" in an accounting program I wrote. I have been using the program for more than EIGHT MONTHS without a single problem. Finally the "magic" numbers came up. I discovered the error because I did not use the "Dollar and Cents" routine (which contains the INT function) in the "print-out" routine and did use it for the screen display. You can imagine my "wonderment" when after eight months of perfect operation, the Total on the hardcopy was $\$ 1.00$ more than that displayed on the screen!

Aren't these electronic marvels a bag of fun??????

Moral of the story??? Just because that box in front of you has the word "COMPUTER" on it, don't assume that it is ALWAYS accurate. Remember, its really just a very dumb box that only does what it is told to do. Computers DO NOT solve problems, PEOPLE do!

Vincent Bush
Route 1, Box 330
Madison Lake, MN 56063

Dear Vincent,

This letter is in answer to your letter about the INT function in Benton Harbor BASIC. Your sample program can be simplified to the following:
$00010 A=473$
$00020 B=23$
$00030 C=19.8$
$00040 D=5.2$
$00050 E=A+B+C+D$

00060 PRINTE,INT(E)

When you run this program, it prints out 521 and 520 , just as your program does. The solution to this problem, since it is a round off error, is to round off the number yourself. This can be done in the sample program by adding the following lines.
$00070 E=I N T(E * 100+.5) / 100$ 00080 PRINTE,INT(E)

Now, when the program is run, it prints
521
520
521
521

As you can see, the INT function returns the proper number in line 80 . Line 70 can be incorporated as a subroutine into any program that must output accurate dollars-and-cents numbers. Use the subroutine to process the result of each addition or subtraction. If you need to round off to something other than two decimal places, you can use the general form of the round off formula:
$\left.X=\operatorname{iNT}\left(X^{*}\left(P^{\wedge} 10\right)+.5\right) / P^{\wedge} 10\right)$
Here, X is the number to be rounded off, and P is the number of decimal places required. It may seem strange that the INT function, which caused the problem in the first place, can be used to fix it, but it works!

Patrick Swayne
 HUG Software Engineer

Dear Pat,

Inside back cover of \#31 was appreciated, so I am passing along another goodie for your HUGgies:

CAT PRINT (Ref: Issue 12, p. 19)

Runs on computer $\mathrm{H} 8, \mathrm{H} 14, \mathrm{H} 17, \mathrm{H} 19$ with HDOS.

Would you like a hard copy of CAT on the printer so you know what is on the disk?

1. BOOT up as usual.
2. > PIP REM you type this.
3. :P: LP: $=/ \mathrm{L} / \mathrm{S}$ cr. REM your response to PIP. This also works with/LIST or /LIST/S. At this point, your printer is running and listing the CAT. With a felt pen, put your Vol. No. on top of the page.
4. :P: SY0: /RES replace with any disk, and repeat Step 3. Repeat Steps 4 and 3 for all disks, then

5. CTRL-D

Note: Don't do Step 4 before Step 3 or you get an ERROR! UNKNOWN DEVICE.
Paul A. Bobbin
7305 Pulaski Highway
Baltimore, MD 21237

Dear Walt,

I would like to take this opportunity to express my appreciation for your publication of the article by William G. Bently "The Next Step is C". I strongly support the fundamental thrust of the article that the use of structured languages improves the reliability and maintainability of our programs. That these languages are usually compilers also increases the performance of our systems. Articles such as this, and those by Henry Fale on Pascal, are most useful in helping your readers obtain more effective use of their computers.

I suspect that there will never be a perfect language for all applications. Depending on the application, I have found $\mathrm{C} / 80$ and various implementations of Pascal to be effective tools in getting the job done. After all is said and done, the objective is getting the job done efficiently for the user, the programmer, and lastly the computer - not necessarily which language is used. In this respect the structured languages will prove themselves.

Based on my experience of moving code between various implementations of C and Pascal, I have a difficult time supporting Mr. Bently's contention that C is more portable than Pascal. Portability, however, is but a small factor in the overall situation.

I agree that C tends to be less wordy than Pascal and it supports highly concise statements. I have found these attributes of C tend to make documenting C programs more time consuming than those written in Pascal. More importantly, I have found that people accustomed to thinking in high level terms more rapidly learn Pascal and that people well versed in assembly language tend to gravitate, at least initially, to C. In this respect I strongly agree with Mr. Bently that "the serious student should first become acquainted with assembly language, since many of the basic data types and operations are similiar". The strong type checking of Pascal has been a big help in avoiding those hard to find bugs which I occasionally encountered when working with C and frequently ran into when working with assembly language code.

None of the above should be taken to imply that outstanding programs cannot be written in C or other languages. The programs from the Software Toolworks are excellent examples of this. C and Pascal are both good languages which have high utility in realizing the full potential of our talents and the capabilities of our hardware. COBOL and FORTRAN can also be used to produce outstanding programs however they tend not to
support the structured top-down approach as well as C, PL/1 and Pascal. Naturally, one can also produce pure garbage in any of the available languages.

In looking back over the past few years I find that although some of our club members have used C all of them have converted to Pascal. This movement appears to be due primarily to ease of learning. Pascal was designed to facilitate the learning of the concepts and techniques of computer science and programming. That our area has a considerable military and government component also seems to play a role due to the ease of shifting from Pascal to Ada. I have found it fairly easy, and in some cases trivial, to convert code between Ada and Pascal. This is due to the fact that all four of the software firms which produced Ada language specifications used Pascal as their philosophical foundation.

Although I am clearly biased in favor of Pascal my main recommendation is that each individual look at and evaluate all of the available languages before deciding which one is best suited to his/her environment and applications. In any event, do yourself a favor and don't just look at the first language that comes along.

Fred Pospeschil
3108 Jackson St.
Bellevue, NE 68005

Info Needed for H-10 Paper Tape Punch

Dear HUG,

I am a new member of HUG. I have an $\mathrm{H}-10$ paper tape punch, and cannot find any information on it. I called Heath Technical Assistance, and the person I talked with said he didn't know anything about the $\mathrm{H}-10$. If Heath doesn't know, who does? I am an N. C. Programmer and want to start programming at home. I have an $\mathrm{H}-89$ computer and Okidata 82A printer. In Numerical Control Programming, a punched paper tape is used to load the programs into the lathe, mill, or other such devices or machines, hence the $\mathrm{H}-10$. Maybe you have a better suggestion? I would like a list of the articles that might have to do with the $\mathrm{H}-105$ Xor N. C. Programming, or information or help on where to get such information. A friend of mine said there was a program (disk) on N. C. Lathes, but said there were other items on the disk, that's fine too. I would appreciate any help you could give.
I have the schematics and manual for the H 10 but I am not electronically enclined, maybe one of the HUG members might have wiring instructions on how the pin to pin
wiring should be done? I am acquiring a Freiden Printer/Punch also. Would this be a better choice? The Freiden is called a "FLEXOWRITER", maybe some information on that? I thank you very much.

Bob Johnson

13320 Winfield St.
Panorama City, CA 91402

New HUG Club Forming

Dear HUG,
Please mention my name in the next issue of REMark, as I am trying to get in touch with other HUGgies forming a Danish/Scandinavian User Group. It could be fun as well to get in contact with U.S. HUGgies, - diskette mail, maybe dial-up connection?
K. Munk Kristensen

2730 Herlev
DENMARK
Phone (02) 917090

Dear HUG,

Concerning the HUG SY: driver mods for NAJAY $2+4$ module, there is an error in the reference regarding modification to DKH171.ASM. Specifically, the change at location PBOOT should be deleted, i.e., no change should be made at this location. The modification as originally shown will render disks INITed unBOOTable.
I have noted no other problems. Sorry.
Bruce Terrell
P. O. Box 1922

Pittsfield, MA 01202

Error in HDOS Fig-Forth

Dear HUG,
There is an error in the -CMOVE command supplied with HDOS Fig- Forth:
MOVE on line 3 should be MOV,
$0=$ on line 5 shouid be $0<$, and the two INX on line 6 should be DCXs. Also, <CMOVE is the accepted name for CMOVE. These changes are in the Forth 8080 Assembler Example No. 2.

The book "Starting Forth" by Leo Brodie of Forth Inc. has two advantages over the recommended "Using Forth" by Forth Inc. First, it is ten dollars cheaper. Secondly, it has been written for beginners, while "Using Forth" has been written like a tech manual.
Michael Mackenzie
Purdue University
P.O. Box 592

Cary Quadrangle
West Lafayette, IN 47906

SIGN UP NOW FOR THE SECOND NATIONALHUG CONFERENCE
 registration
 on page 9 of this issue

More Info On the Imaginator Graphics Board

Dear HUG,
The review of the Imaginator graphics board in the March Issue of REMark, Imagination Gone Wild by Jim Buszkiewicz, was greatly appreciated. We have been repeatedly told by REMark readers that the review clearly answered any questions they may have had about the graphics board.
Only one comment in the article has caused any confusion. The article stated that the mathematical function pictured on the front cover took 1-1/2 hours to complete. We would like to point out that this was the time required by the host computer in calculating the coordinate data, not the time required by the graphics board to draw the figure. The graphics board is capable of drawing the figure much faster. In fact, by precalculating the data and sending it to the graphics terminal as a condensed data stream, we have drawn the figure in 7.5 seconds.
It is also possible to reduce the host processing time by streamlining the algorithms, a 10 fold increase in throughput is not difficult to obtain.
Peter O. Botten
Cleveland Codonics, Inc.
P. O. Box 45259

Cleveland, Ohio 44145

A "Thanks" For Assembly Language Articles

Dear HUG,
I wish to express my thanks for the article by Pat Swayne in the April Issue of REMark on "Getting Started With Assembly Language". About a year ago, I tried to learn this language and met with all kinds of obstacles. I purchased a number of books, including Heath's ASM Language Programming (EC1108), Doc Campbell's book, and others, and although I was helped to a small extent, I was hoping for something that could relate to the language most all novices begin with, i.e. BASIC.

I had given up on this until your article appeared and my interest became whetted again. This approach to teaching ASM will bring many HUGgies back who have been frustrated by the other methods.

I sincerely hope you continue this method and hope future articles will be demonstrated using different instructions in BASIC to show how to use assembly language to the fullest.
Alfred M. Fanelli
6504F S. Charter Rd.
Glen Burnie, MD 21061

Library of Public Domain Software Coming to 2nd Nat. HUG Conf.

Dear HUG,

Please let the readers of HUG REMark know that I am planning to bring the library of public domain software to HUGCON '83. Libraries will include SIG/M, CPMUG, and PC/ Blue. The SIG/M and CP/MUG libraries are public domain libraries oriented to CP/M users. There are currently 114 volumes in the SIG/M library and 90 volumes in the CPMUG library. Note: volume 55-77 of CPMUG are duplicates of the SIG/M library. I will be bringing the SIG/M and CPMUG libraries on 8 inch IBM standard format, 80 track, double-sided, hard-sectored LLL BIOS-80 format and Heath 40 track, doublesided, soft-sectored format. I will be able to make 40 track single-sided hard- or soft-sectored disks, but that will take longer.
The PC/Blue library currently consists of 28 volumes (1 just submitted eleven more volumes that are not in yet) and includes software designed to run on IBM PC and PC compatible (Z-100 ZDOS) machines. The PC/Blue library is on 40 track single-sided, double-density MS/DOS (PC/DOS, ZDOS) diskettes (soft-sectored).
I will be happy to make copies for anyone on their PREFORMATTED diskettes at a nominal copying donation. (Last year it was two dollars per volume or a dollar a disk for 3 or more disks per volume.) I will be happy to do the same this year.
Clubs that want to get a large number of volumes of the library should consider bringing a machine for copying and we might be able to work out the same deal we did last year for copying at night. (Last year we went to 4 a.m. Saturday night, I believe.)

I will also be bringing several cases of the New York Amateur Computer Club Catalog of Public Domain Software for those who want them. I heartily recommend that every club get a reference set for all club members to use. Last year there were three volumes. This year volumes four through seven were
published, as well as the first volume of the PC/Blue series. These will cost about ten dollars a volume.
I will have these at a booth, hopefully adjacent to the Extended Technology Systems booth, wherever that may be.
Robert H. Todd, Jr.
1121 Briarwood
Bensalem, PA 19020

A Tip For New BASIC Programmers

Dear HUG,
Here is a problem that new BASIC programmers like myself might encounter.
After writing a simple program to test some of the instructions I had just learned, the RUN produced the error response:
AN ILLEGAL CHARACTER WAS ENCOUN. TERED

The program was a simple READ DATA, and everything seemed in order according to the book.

It took quite a while of head scratching to discover that, although the program looked right on the screen, internally there was an illegal character in the DATA statement. I had hit the ESC key while entering the number 1 . I couldn't see it, but it was there just the same.
Dick Harlow
6 Hayes Rd. \#26
Roslindale, MA

More On 4MHz Mods to the H/Z-89

Dear HUG,
I've been reading REMark magazine for some time now and would like to compliment you on your fine work. I've also noticed an overall improvement in recent months and I'm very pleased. Letters and articles from the readers have been pretty interesting lately, and I would like to comment on a couple of them if I may.
First, I would like to say that I'm in full support of new modifications or enhancements that improve the operation of the $\mathrm{H} / \mathrm{Z}-89$ (and others) computers, however, from an engineering standpoint, I do not approve of those which (1) take an extensive amount of work or rework, (2) take a departure from the original design that prohibits its use with OEM software/hardware (i.e., a hardwired 4 MHz modification that you had to cut foils and add jumpers to). Let me further explain...
Pat Swayne recently put out an article for a 4 MHz modification for the $\mathrm{H} / \mathrm{Z}-89$ that I had mixed emotions about. I must admit that the
circuit design was of good quality and he also provided the necessary patches for modifying your software to support it. My objection to his article concerns the construction and installation of this particular mod. I feel that with just a little more forethought, one could have figured an easier way to do the installation, such as a plug-in modification. Well, one such person did and is marketing it under the name of NAJAY System's $2+4 \mathrm{MHz}$. For $\$ 69.95$, they provide you with a premanufactured board, Z-80A, one other IC, complete documentation and instructions for installation, and software support for both HDOS and CP/M. It is a plug-in mod that works in both the older 89's and the 89A's. It comes with a 2 year warranty and the one thing that I particularly like is "software/hardware portability" or compatibility. In other words, the modified machine can still use unmodified software (as with Pat's) and the modified software can still be used on an unmodified machine. I guess my real complaint with the hardwired version is the fact that it is so much of a pain in the posterior to restore the CPU board to original condition for troubleshooting purposes or for resale.
In another article, this one written by Bob Small, in REMark Issue 37, concerning the cooling problem with the 89^{\prime} s... It is another prime example of the lack of forethought. Do yourself a favor, save time and don't hack up your cabinet. Just remove your fan, install a filter (Heath P/N 266-1010) and remount the fan so that it is drawing cool air into the cabinet (blowing onto the power switch). For those who have the older machines, you'll also require the newer fan mounting bracket (Heath P/N 204-2452). And if you don't already have them installed, the heat sinks are Heath P/N 215637 (3 is all you need). As long as I'm on the subject of power supplies, you may also want to prevent a possible "burn-up" by removing the two yellow wires (9 VAC) from $\mathrm{P}-101$, the two orange wires from $\mathrm{P}-103$ to BR-1 (bridge rectifier) and solder the two yellow wires directly to $B R-1$. This precludes the possible burn-up of connectors and foils of the power supply board.
There are perhaps a few more mods that I could talk about but, I make my living by repairing these machines and I have to keep some integrity over "trade secrets".
Thanks again for a wonderful magazine and the great support that only a HUG could provide.
loseph B. Travis

Correction to CheapCalc

Dear Hug,
CheapCalc by B. L. McFarland (REMark, February 1983) is a valuable contribution to the literature of public domain computer programs.
Readers who have keyed the program into their computers will find that some corrections will be required to make it useable. Following are the changes I made in order to get the program to run.

```
135 CR=0
230 S% = "|
280 FOR I%. TO 20: S$ = S$ + CHR\(32): NEXT 1%.
1230 IF X7. >= XM%. THEN XM% = XM%.
2000 T = T + CW(A): A=A+1:
    IF A <= XM%. THEN 1950
2450 SX% = SX% - 1; IF SX% = 0 THEN X%. = 1:
    SX% = 1: GOTO 2470
2710 As(Y%.,X%) = "&&&&(" + As + =-= + B$ +")"
2890 Y2%, = YH: X2% = XH
3780 PRINT BP4: IF CR< & THEN XH = x%.t
    CR = CR +1: GOTO 2130
3850 N% = VAL(MIDS(AS(YH,XH),I = 1);
    IF N%. < }1\mathrm{ THEN 3880
```

The program would be considerably enhanced and more easily readable if the techniques of structured programming were employed.
James R. Leverett Jr.
39 Westwood Dr.
Tonawanda, NY 14150

Update On Patches For Z-DOS

Dear HUG,
In the June Issue of REMark, Software Consultation published a series of patches for the Z-DOS utilities FORMAT, MAKE, DSKCOPY, and BACKUP. At the time, the patches were valid for all versions of these programs, but that is no longer true. The patches apply only to the versions of these programs with dates before 5/27/ 83 as listed in their directory entry.
Skip Gwyer
Software Consultation Group

Microcomputing and Heath Announce Robot Programming Contest

Dear REMark,

Microcomputing magazine, in association with the Heath Company of Benton Harbor, Michigan, manufacturer of the HERO 1 robot, has announced the first ever Microcomputing/Heath HERO 1 Programming Contest. The HERO 1 is the first personally affordable, educational robot.

The winner in each of two categories (standard HERO 1 and modified HERO 1) will receive a $\$ 500$ gift certificate which they will redeem for merchandise from the latest Heath Company catalog. There will also be second and third prizes in each category. Entries will be judged on originality and technical feasibility.
Microcomputing must receive all entries by September 1, 1983. Winners will be announced in the December ' 83 issue. Complete details will be published in each monthly edition of Microcomputing prior to the entry deadline.
Microcomputing is a publication of Wayne Green Inc., headquar-
tered in Peterborough, New Hampshire. Other Wayne Green Inc. publications include 80 Micro, Desktop Computing, inCider, Hot CoCo, 73 Amateur Radio Journal, books for micro users, and Instant Software (applications, simulations, and games programs).
Contact: James Leonard
Peterborough, NH 03458
(603) 924-9471

Correction to the Article "Base Conversion Routine"
Dear HUG,
In reading my latest issue of REMark, the article written by Louis Berger, "Base Conversion Routine", spoke of an unexplainable error. The error is explainable, and changing a few statements will make a very useful program.
The limitation of decimal numbers up to 511 can be increased to 1^{*} $10 E 6$ by rounding. The error is generated by the floating point computations in BASIC. Six digits of accuracy works out to 5.5 digits. To correct for this problem, the statement $\mathrm{N}=\operatorname{INT}\left(100^{*}(\mathrm{~N}+.5) / 100\right)$ will yield a more correct result.
The line numbers to change are as follows:

```
65060 - was [I=VAL.(Bt)
    is D=VAL (Bt)+.1
65130 - was IF D<512 THEN B=2:Bt="Binary":G0T0 65140
    is B=2:Bq="Binary"
65135 DELETE
65176 - was D=D-(Y* B^X):NEXT X:PRINT B$!" equivalent;
    ":T$:D=DI:RETURN
```

is $\mathrm{D}=1 \mathrm{NT}\left(100 *\left(\mathrm{D}-\left(\mathrm{Y}^{*} \mathrm{~B}^{\wedge} \mathrm{X}\right)+.5 / 100\right):\right.$ NEXT $X:$ PRINT Bt;" equivalent: ";Tt: $\mathrm{D}=\mathrm{D} 1:$ RETURN

Richard B. Johnson
235 Pacific Oaks Rd. \#205
Goleta, CA 93117

A Patch For Benton Harbor BASIC

Dear HUG,
If you would like to LOAD your programs when running Benton Harbor BASIC rather than having to OLD them, here is a quick fix, and it will only cost you the ability to LOCK. You may still OLD if desired. Old habits are sometimes hard to break.

This patch is for Extended Benton Harbor Basic \#110.06.00, and may be accomplished with the patch version of PATCH as presented in REMark magazine.

PATCH Issue 50.06.00.

File Name? SYliBASIC.ABS
Address? 67117
$667117=230 / 232$
$067120=1141 \quad$ Hit CR
$067121=1171$
Hit CR
$067122=103 / 101$
$067123=113 / 184$
$067124=327 /^{\wedge} \mathrm{D}$
Address? ^D
FATCH Issue 50.06.00.

File Name? AD

Daniel A. Schlichtig
18832 Cabral St.
Canyon Country, CA 91351

More on Christmas Graphics Program

Dear Jennifer McGraw,
I received REMark Issue 38 yesterday and was interested to see your comments about your Christmas Graphics program. I run MBASIC with $C P / M$, and had the same problems; terminal beeps and messed up screen when the picture was moved on the screen. I added donothing for loops to get it running smoothly.
However, I do not believe that the problem was caused by MBASIC confusing the codes, but rather by the input FIFO in the H19 terminal overflowing. The terminal is busy moving the picture around, and can't take characters out of the FIFO as fast as they are being sent over from the computer, so there is an overflow.

When FIFO overflows, the terminal beeps to let the operator know that there is a problem. The overflow caused lost data, hence the messed-up screen. This condition should not occur, because the H 19 is supposed to transmit an X OFF shortly before the FIFO buffer sets full, and then an X ON as soon as it can handle more data. Until I read your letter in REMark, I thought the problem was in my equipment or software because I assumed that the program had been checked out by HUG before being published. So it seems that either the terminal is not doing it's job with the X OFF, X ON sequence, or else the system is ignoring them.

I know that the trouble is not due to gremlins in the ICs, because I left lines 10 and 15 in the program, exactly as presented in the article!!

Powerline Systems

Business Records Keeping - For All Types Of Businesses

- Maliing lists •Advertising Records \quad Sales Records
- Client Information - Employee Records - Supplier Information

FOR MORE INFORMATION \& A FREE ILLUSTRATED BROCHURE: SEND NAME ADDRESS AND TELEPHONE NUMBER TO:

Daniel A. Schlichtig
18832 West Cabral St.
Canyon Country, CA 921351

A Problem For the H8 User

Dear HUG,
I happen to be one of those loyal H8 users, using the H 17 disk drive. I am comfortable with the system and it has generally served me well. However, I have been plagued with problems with reliability of data processing. In using MBASIC programs, I frequently get Error \#54, 55, 57, or 65. The system opens and closes files at will, and at rare times, will dismount the disks. CP/M simply tells me that I have a Disk I/O error of a particular type.
The problems are intermittent, but occur at the worst possible times. After much search and analysis, I have finally traced the Disk I/ O problems to the programming plug on the circuit board of the disk drive. The IC socket used to receive the programming plug is not reliable in my view, so I carefully removed it, and soldered jumpers at the appropriate points. I have had no I/O problems since.
BobMcIntosh
1931 Geneva St.
P. O. Box 1113

Souix City, IA 51102

Getting CP/M Console Swap Program to Work With the H/Z-100

Dear HUG,

Its been pointed out that my CP/M console swap program (REMark \#33) won't work on the H/Z-100 as written if you are using a serial printer. The TTY: port is used by our BIOS to drive a serial printer and thus would be unavailable for use by SWAP. Well, a user (whose name I don't know) pointed out a way around this. It seems that the guys who wrote the $\mathrm{CP} / \mathrm{M}-85 \mathrm{BIOS}$ found a useful designation for the last I/O BYTE option for the console (UC1:). They programmed it to drive the modem port (serial B) as an optional console and so we can use it as the alternate device of TTY:. To do so requires a one byte change in my program and the use of CONFIGUR in CP/M-85. The changes are:

1) In the program (in the IOSWAP), change XRI 01 H to XRI 02 H , and then reassemble and load the program.
2) In CONFIGUR, select the modem option and then simply set up the baud rate and other parameters to meet your needs. Please note that on the connector (serial B), you must have pin 6 jumpered to pin 5 to pull this
signal up.
I hope this information is helpful.
Marc O. Aagenas
SoftwareConsultation Group

A Program to WRITE Out a Message

DearHUG,
I have included here a program which simply writes out a message on the screen, not prints mind you but WRITES out the message. This will show how the PRINT @ statement used in the TRS-80 computer is used. Also shown in the program is the conversion functions required to bring this about on the H/Z-89 computer. The TRS-80 screen is divided into 1920 bytes (not including the 25th line) of information. I use cursor positioning to do the same as PRINT @ in TRS-80 language (i.e., PRINT @ 513;"ABC" might be typed PRINT FN $B \$(641) ;{ }^{\prime \prime} A B C^{\prime \prime}$ to get the same result).

The following formulas will give a direct conversion of PRINT @:
Def FN A $(A 1, A 2)=C H R \$(27)+" Y$ "

+ CHR $(31+A 1)+$ CHR $3(31+A 2)$
Def FN D1 (A3 $=$ INT $((A 3 / 64) * 1.5)$
Def FN D(A4) $=$ INT $((A 4-(\operatorname{INT}(A 4 / 64) * 64))$
$+1 * 1.25)$
Def $F N B \$(A 5)=F N$ A $\$(F N$ D1 $(A 5)$,
' $\mathrm{F} \mathrm{N} \operatorname{U}(\mathrm{AO})$)
Using these formulas, you may then type PRINT FN B\$(513);"ABC" if you see PRINT @ 513;"ABC" in a TRS-80 program, instead of having to find where the information is printed on the TRS-80 screen and shrinking your screen to their dimensions. I hope someone will find this program useful.
Kenneth B. Blois
PSC \# 1 Box 2039
APO SF 96366

Dear HUG,

I have always been envious of the APPLE programmers whose programs appear in other magazines. They easily call out their disk catalog to see what filename they want or may be in use.

The problem with Extended Benton Harbor BASIC is:

1. If, in running a program that you intend to manipulate several data files, you forget your input filenames, you are in trouble. You start guessing and get error messages or you exit BASIC and call CAT.
2. If you are out-putting a file that you name interactively and forget names already in use, trouble again. Either exit BASIC losing everything or risk losing data in a write error to a filename already in use.

I don't pretend to understand HDOS or all the information in DIRECT.SYS which it puts on each disk. However, it does have several regular features that are accessible and useable in BASIC:

1. Information is stored as ASCII decimal code.
2. Filenames start the file occupying 11 character positions.
3. Filenames alternate with 12 character blocks I don't understand, yet.
4. Filenames are right justified with extension, .ext, left justified. Positions in between are filled with nulls (DEC 0).
5. Blank filename fields are marked with a DEC 255 and are otherwise filled with nulls.
6. All the optional filenames (which excludes RGT, GRT, and DIRECT.SYS itself) are always at the high end of DIRECT.SYS.
The simple subroutine below will read the directory and print on the console all files
with extension '.DAT', the EBH BASIC default extension for BASIC data files. Obviously, the program can be used to search for anything in the directory you want to look for. The subroutine terminates when it comes to a blank filename field.
Thought this programming hint might be of interest to REMark readers.
loseph R. Bobbitt III
238 Christopher Street
Upper Montclair, NJ 07043

12994 REM	
12995 REH	Subroutine for reading BASIC data file titles.
12996 PGM	
12997 REF	Open the disk directory for reading.
13000 OPEN	DIRECT. SYS" FOR READ AS FILE \#1
13005 RE1	Clear out string.
$13010 \mathrm{Al}=\mathrm{c}$ "	
13015 REI	Read first file name block.
13020 FOR I	TO 11:A=CIN(1): A S $=$ As 1 CHRS (A): NEXT I
13025 REM	Is filename block eapty?
13038 IF LE	(AB) $<=2$ THEN CLOSE \#1:RETURN
13035 REI	If the file name has extension 'DAT', print it.
13040 IF RI	HT\%(A\$, 3) $=$ DAT" THEN PRINT LEETS(As, LEN(AS)-3)
13015 REH	Skip to next file name block.
13050 FOR I	TO 12: $A=C I N(1):$ NEXT
13055 REH	Go around zgain.
13060 coto	

Changing your address? Be sure and let us know since the software catalog and REMark are mailed bulk rate and it is not forwarded or returned.

HUG MEMBERSHIP RENEWAL FORM

When was the last time you renewed?
Check your ID card for your expiration date.
IS THE INFORMATION ON THE REVERSE SIDE CORRECT? IF NOT FILL IN BELOW.

Name
Address
City-State
Zip

REMEMBER - ENCL.OSE CHECK OR MONEY ORDER
CHECK THE APPROPRIATE BOX AND RETURN TO HUG

	NEW MEMBERSHIP			
FEE IS:				
RENEWAL RATES		$\$ 18 \square$		
US DOMESTIC	$\$ 15 \square$	$\$ 20 \square$		
CANADA	\$17 \square US FUNDS	$\$ 28 \square$		

* Membership in England, France, Germany, Belgium, Holland, Sweden and Switzerland is acquired through the local distributor at the prevailing rate.

 Print in:

SPECIAL FONJS
 SPIECIALL FONITS special fonts
Special fonts

Picture this-your logos, graphs and fancy print fonts on paper with a PrintMate. Our exclusive AP-PAK lets you print what you picture. \square See and believe at your Heath and Zenith dealer today.
Micro Peripherals, Inc., 4426 South Century Drive, Salt Lake City, Utah 84107 1-800-821-8848

Volume 4, Issue 7
POSTMASTER: If undeliverable, please do not return.

[^0]: ON THE COVER: Pictured is the National HUG Staff preparing to leave for the Second Na-

[^1]: ** Speakers for the General Meeting will be announced on the final schedule available at the Registration Booth.

[^2]:

[^3]: Add 52.00 Shlpping $\&$ Handling：C．O．D．a accepted；Foreign Orders Add requitred postage．H8，H89，Z90，and Z100 are TM Henth／Zenith；CP／M and CP／M 85 are TM Digital Research．TRS80 Model III is TM Tandy Corp．

[^4]: Mastercard, Visa and COD orders accepted.

[^5]: Introduction: KEYMAP is a program that lets the user define the

[^6]: 0
 E1t；CHR\＆$(Y+1) ;$ CHR\＆(X) ；＂i $1^{\prime \prime}$

 E1t； $\operatorname{CHR}(Y+3) ; \operatorname{CHR}(X) ; \operatorname{CHR}(95) ; E 9 t ; " p " ; E 10 \% ; " 1$ m＂
 $C=5$

 （n）
 亲上
 空它
 ＇R
 $\stackrel{-}{-}$

 $x=x+4: C=4$

 E1s；CHR\＆$(y+1) ; \operatorname{CHR} q(x) ; " 1 "$ RETUFN
 文气上云 PRINT
 $x=x+4$

 玄 PRINT
 PRINT

[^7]:
 ENHANCEMENDED TECHNQLDGY GYETEMG ENHANCEMENTS FOR HEATH/ZENITH COMPUTERE \& TERMINALS

    ```
    EXTENDED
    Super- 19 Terminal ROM
    -For H/Z-19,89,90
    - Baud rates up to 38400
    -Built in Clock/Calendar
    - Built in Clock/Calendar
    -VT-100 editing functions
    -VT-100 editing functions - Support far Light Pen -Allow edit + Retransmit Line - Much More..... \(\$ 49.95\) Font-19 Character ROMs -2 Character sots in 1 RGM -Currently available Fonts
    Dual ROMS - 849.95
    * Vixel Graphics \(160 \times 100\)
    VT-100/VT-100 GraptilCs
    Entended ROM - \(\quad 59.95\)
    * Math/Greek
    * European Languages
    * APL (August)
    -Many More Coming
    ```

 Coming sooni ZCPR-11, H89-96K
 4 Mhz , HE9-256H + more
 We are Zenith Dealors Contact
 un for detailm/Prices.

 Extended Technolagy Systems $1: 21$ Briarwood
 Tel. Bmnsal हm, PA $215 / 752-4604$ ovenings

 - FOR HDOS 2.0 FReplace PIP, SET

 FOr HDOS 2.0 FUPL ACE PIP, SE
 SYSCMD, FLAGS, ONECOPY + More
 -3 Default Drives + printers
 -PIP/SET/STATUS Extensians
 -films TIME stamped/Super 19
 -File Management capability
 -Command Files (auto submit)
 -Alphabetizes + Auto Mounts
 Abreviated Commands

 - Built in HELP Functions
 -Configurable + More $\$ 40.00$

 ETG SYSCMD + HDOSG4K *75.00
 Super-37 HDOS Disk Driver
 -High performance FFaster:
 -Much Improved Reliability
 -229.95 With Source $\$ 54.95$
 xpi Multi Paripheral DUD

 - - printer configurations
 - M250, 6251, 8255, 2661...
 -Many Configurable Options
 -Dynamic Update - Na reboat
 -CP/M Like CTRL-P
 -Print. Screen + Mare
 $-\$ 19.95$ With gource 249.95

