
z-DOS™
Volume II

data
systems

NOTICE

This software is licensed (not sold). It is l icensed to sublicensees, including
end-users, without either express or implied warranties of any kind on an "as is"
basis.

The owner and distributors make no express or implied warranties to sublicensees,
including end-users, with regard to this software, including merchantability, fitness
for any purpose or non-infringement of patents, copyrights or other proprietary rights
of others. Neither of them shall have any liability or responsibility to sublicensees,
including end-users, for damages of any kind, including special, indirect or
consequential damages, arising out of or resulting from any program, services or
materials made available hereunder or the use or modification thereof.

Technical consultation is available for any problems you encounter in verifying the
proper operation of these products. Sorry, but we are not able to evaluate or assist in
the debugging of any programs you may develop. For technical assistance, call:

(616) 982-3884 Application Software/Softstuff Products
(616) 983-3860 Operating System/Language Software/Utilites

Consultation is available from 8:00 AM to 4:30 PM (Eastern Time Zone) on regular
business days.

Zenith Data Systems
Software Consultation
Hilltop Road
St. Joseph, Michigan 49085

Copyright ' by Microsoft, 1982, all rights reserved.
Copyright ' Zenith Data Systems, 1982.
Z-DOS is a trademark of Zenith Data Systems.

HEATH COMPANY
BENTON HARBOR, MICHIGAN 49022

ZENITH DATA SYSTEMS
ST. JOSEPH, MICHIGAN 49085

TABLE OF CONTENTS

PART 4: Appendices and Index

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H
Appendix I
Appendix J
Appendix K
Appendix L
Appendix M
AppendixN
appendix 0

Appendix P

Operating System Error Messages
MACRO-86 Assembler Error Messages
LINK Error Messages
LIB Error Messages
CREF Error Messages
Memory Test Utility .
Instructions for Single Disk Drive Users
Disk Directory Structures and FCB Definition ...
Interrupts, Function Calls and Entry Points
System Structure and Memory Maps
MACRO-86 Table of Directives
8088 (8086) Instructions (Alphabetic)
8088 (8086) Instructions (by Argument)
Character Font Files
ASCII Character and Escape Sequence Codes
Notes on Writing Z-DOS Programs

Appendices
.. B.1
.. C.1
.. D.1
. E.1
.. F.1
. G.1
.. H.1
... I. 1
.. J.1
.. K.1
.. L.1
. M.1
. N.1
. 0.1
. P.1

Index X.1

CI ecV- ~p

Page 10.1

MACRO-86

Introduction to MACRO-86

INTRODUCTION

MACRO-86 produces relocatable, linkable code for maximum efficiency in
memory assignment, library maintenance, and modular program develop
ment.

MACRO-86 fully supports macro assembly, conditional assembly, and an
extensive set of assembler directives.

Source code blocks used repeatedly within a program can be entered once
as a "macro definition". A one line "macro call" causes the assembler to in
sert the code at any desired point in the program. A macro call may occur
within the definition of another macro. Such nesting is limited only by mem
ory size.

Conditional assembly allows portions of source code to be either assembled
or ignored as a result of tests on conditions chosen by the programmer. Con
ditional statements may be nested to a maximum level of 255.

Directives are statements included in the source code to control the func
tions of the assembler. MACRO-86 has the ability to correct some errors
made during source code entry. This feature relies on an evaluation of the
programmer's likely intent while making the error. Such corrections are
flagged as errors to ensure a recheck.

Page 10.2

MACRO-86

Features and Benefits of MACRO-86

Zenith's MACRO-86 Assembler is a powerful assembler for 8088 based
computers. Macro assembly, conditional assembly, and a variety of assem
bler directives provide all the tools necessary to derive full use and full power
from an 8088 or 8086 microprocesser.

MACRO-86 produces relocatable object code. Each instruction and direc
tive statement is given a relative offset from its segment base. The assem
bled code can then be linked using Zenith's LINK utility to produce relocata
ble, executable object code. Relocatable code can be loaded anywhere in
memory. Thus, the program can execute where it is most efficient, not only
in some fixed range of memory addresses.

In addition, relocatable code means that programs can be created in mod
ules, each of which can be assembled, tested, and perfected individually.
This saves recoding time because testing and assembly is performed on
smaller pieces of program code. Also, all modules can be error free before
being linked together into larger modules or into the whole program. The
program is not a huge monolith of code.

page 10.3

MOD I MOD 2 MOD 3

Individual modules
can be edited and
assembled until they
work correctly

MACRO-86

does
Module

assemble
correctly

no

yes
When the indiv idual
modules are ready
they can be l inked
singly or into one
or more larger
modules

LINK

full or part
program file

Module Assembly

Page 10.4

MACRO-86

MACRO-86 supports Zenith Data System's complete 8080 macro facility,
which is the Intel 8080 standard. The macro facility permits writing blocks
of code for a set of instructions used frequently. The need for recoding these
instructions each time they are needed is eliminated.

This block of code is given a name: macro. The instructions are the macro
definition. Each time the set of instructions is needed, instead of recoding
it, a simple "call" to the macro is placed in the source file. MACRO-86 ex
pands the macro call by assembling the block of instructions into the pro
gram automatically. The macro call also passes parameters to the assem
bler for use during macro expansion. The use of macros reduces the size
of a source module because the macro definitions are given only once, then,
other occurrences are one line calls.

Macros can be "nested," that is, a macro can be called from inside another
macro. Nesting of macros is limited only by memory.

The macro facility includes "repeat", "indefinite repeat", and "indefinite re
peat character" directives for programming repeat block operations. The
MACRO directive can also be used to alter the action of any instruction or
directive by using its name as the macro name. When any instruction or di
rective statement is placed in the program, MACRO-86 checks first the sym
bol table it created to see if the instruction or directive is a macro name. If
it is, MACRO-86 "expands" the macro call statement by replacing it with the
body of instructions in the macro's definition. If the name is not defined as
a macro, MACRO-86 tries to match the name with an instruction or directive.
The MACRO directive also supports local symbols and conditional exiting
from the block if further expansion is unnecessary.

page 10.5

statement
statement
statement
macro call
statement When the assembler

encounters a macro
call, i t f i nds the
MACRO block and
replaces the call
with the block of
statements that
define the macro

name MACRO

ENDM

Macro Call

name MACRO

name Nested MACRO call;
name defined else
where as a macro,
is "expanded"
during assembly,
as shown aboveENDM

Macro Assembly

MACRO-86 supports an expanded set of conditional directives. Directives
for evaluating a variety of assembly conditions can test assembly results
and branch where required. Unneeded or unwanted portions of code will be
left unassembled. MACRO-86 can test for blank or nonblank arguments, for
defined or not-defined symbols, for equivalence, for first assembly pass or
second. MACRO-86 can compare strings for identity or difference. The con
ditional directives simplify the evaluation of assembly results, and make
programming the testing code for conditions easier as well as more power
ful.

MACRO-86's conditional assembly facility also supports conditionals inside
conditionals (nesting). Conditional assembly blocks can be nested up to 255
levels.

page 10.6

I f the condit ion
in the expression
l shown by (exp
t rue) l i s t r u e ,
the IF block is
assembled up to
ELSE, then skips
t o END IF, I f t h e r e
is no ELSE, then i t
simply assembles the
whole condi t ional
b I oc k.

ELSE

statement
statement
statement
IF (exp true) I f the condit ion

in the expression
is false, MACRO-86
skips to ELSE, then
resumes assembly at
the next statement.
I f ELSE is not
used, skips to
END IF and resumes
assembly with next
statement.

END IF
statement
statement

Conditional Assembly

IF

IF
Nestinq of condit ionals
up to 255 levels is
al owed.END IF

ELSE

END IF

END IF

Nesting Conditionals for Assembly

Page 10.7

MACRO-86

MACRO-86 supports all the major 8080 directives found in Zenith Data Sys
tem/Heath's MACRO-80 Macro Assembler. This means that any condi
tional, macro, or repeat blocks programmed under MACRO-80 can be used
under MACRO-86. Processor instructions and some directives (e.g.,
PHASE, CSEG, DSEG) within the blocks, if any, will need to be converted
to the 8086 (8088) instruction set. AII the major MACRO-80 directives and
pseudo-ops, that are supported under MACRO-86 will assemble as is, as
long as the expressions to the directives are correct for the processor and
the program. The syntax of directives is unchanged. MACRO-86 is upward
compatible, with MACRO-80 and with Intel's ASM86, except Intel code mac
ros.

MACRO-86 provides some relaxed typing. Some 8086 (8088) instructions
take only one operand. If a typeless operand is entered for an instruction
that accepts only one type of operand (e.g., in the instruction PUSH [BX].
[BX] has no size, but PUSH only takes a word), it seems wasteful to return
an error for a lapse of memory or a typographical error. When the wrong type
choice is given, MACRO-86 returns an error message but generates the
"correct" code. That is, it always puts out instructions, not just NOP's. For
example, if you enter:

MOV AL,WORDLBL

you may have
meant one of
three instructions:

MOV AL,BYTE PTR WORDLBL

(3)
MOV AL,<other)

MOV AX,WORDLBL

Error Correction During Assembly

MACRO-86 generates instruction two, because it assumes that when you
specify a register, you mean that register and that size; therefore, the other
operand is the "wrong size." MACRO-86 accordingly modifies the "wrong"
operand to fit the register size (in this case) or the size of whatever is the
most likely "correct" operand in an expression. This eliminates some de
bugging chores. An error message is still returned, however, because you
may have misstated an operand that MACRO-86 assumes is "correct."

page 10.8

Overview of MACRO-86 Operation

Brief

The Assembly Process:

1. Cr e ate source code file. MACRO-86 expects a default .ASM
filename extension.

2. Ru n MACRO-86 through passes one and two. Error messages
are displayed on the terminal. Modify source code as neces
sary to produce an error-free run. The object filename contains
a default.OBJ extension.

3. Us e L INK to add the object module to your main program, or
LIB to add it to a library.

Options:

1. Y o u may suppress the .OBJ file to speed processing of an
error-check run.

2. You may create a listing file containing relative addresses,
source and object code, and a symbol table. It has a .LST de
fault extension.

3. Yo u may create a limited cross reference file with a .CRF de
fault extension. CREF can expand the.CRF file to an .REF file
containing an indexed, alphabetical table of all labels, symbols,
and variables.

Page 10.9

MACRO-86

Details

The first task is to create a source file. Use EDLIN (the resident editor in Z
DOS), or other 8088 editors compatible with your operating system, to
create the source file. MACRO-86 assumes a default filename extension of
.ASM for the source file. Creating the source file involves creating instruction
and directive statements that follow the rules and constraints described in
the first four sections in this Chapter.

When the source file is ready, run MACRO-86, see Assembling a source
File on Page 10.162. Refer to Appendix B, for explanations of any messages
displayed during or immediately after assembly.

Sec 1-4EDL IN

source
.ASM

(messages)
Sec 5MACRO-86

Appendix object
.ASMB

Using This Chapter

MACRO-86 is a two-pass assembler. This means that the source file is read
twice by the assembler. Slightly different actions occur during each pass.
During the first pass, the assembler evaluates the statements and expands
macro call statements. It calculates the amount of code it will generate, and
builds a symbol table where all symbols, variables, labels, and macros are
assigned values.

Page 10.10

MACRO-86

During the second pass, the assembler fills in the symbols, variables, labels,
and expression values from the symbol table, expands macro call state
ments, and sends the relocatable object code into a file with the default
filename extension .OBJ. The .OBJ file is suitable for processing with Ze
nith's LINK utility. The.OBJ file can be stored as part of your library of object

programs, which later can be linked with one or more .OBJ modules by
LINK. The .OBJ modules can also be processed with Zenith's LIB Library
Manager (refer to the LIB Library Manager Chapter, Page 12.1, for further
explanation and instructions).

The source file can also be assembled without creating an .OBJ file. All the
other assembly steps are performed. The object code is not sent to disk.
Only erroneous source statements are displayed on the terminal screen.
This practice is useful for checking the source code for errors. It is faster than
creating an .OBJ file because no file creating or writing is performed. Mod
ules can be test-assembled quickly and errors corrected before the object
code is put on disk. Modules that assemble with errors do not clutter the disk.

source
.ASM

statement
statement
macro call

MACRO-86 statement

sy m bol - def
symbol - def
variable - def
variable - def
label - def
macro name

exact amount
of code to
be generated

pass One or the Assembly

page 10.11

MACRO-86

symbol
ta b lesource

.ASM

MACRO-86

object
.OBJ

Pass Two of the Assembly

MACRO-86 will create on command, a listing file and a cross-reference file.
The listing file contains the beginning relative addresses (offsets from seg
ment base) assigned to each instruction, the machine code translation of
each statement (in hexadecimal values), and the statement itself. The listing
contains a symbol table which shows the values of all symbols, labels, and
variables, plus the names of all macros. The listing file receives the default
.LST filename extension.

The cross reference file contains a compact representation of variables,
labels, and symbols. The cross reference file receives the default .CRF
filename extension. When this cross reference file is processed by CREF,
the file is converted into an expanded symbol table that lists all the variables,
labels, and symbols in alphabetical order. It is followed by the line number
in the source program where each is defined, followed by the line numbers
where each is used in the program. The final cross reference listing receives
the . REF filename extension. (Refer to the CREF Cross Reference Facility
Chapter, Page 13.1, for further explanation and instructions.)

Page 10.12

MACRO-86

source
.ASM

l isting
.LST

MACRO-86

l isting
.CRF

object
. OBJ

l isting
. REF

CREF

Listing and Cross Referencing

Application

Being aware of the features built into your MACRO- 86 assembler promotes
efficiency and accuracy in the development of assembly language pro
grams. Every feature might not be needed in every program. The ability to
recognize the usefulness of a feature in a given situation will reduce applica
tion development costs by reducing the time required for coding and debug
ging.

The relocatable code produced by MACRO-86 makes it possible to design
large software systems without the need to assign absolute addresses or
create a complex memory map. You can develop each program module in
dependently and test it with dummy arguments at any convenient address.
When it runs satisfactorily, store it in a system library. At link time, program
modules will be selected and structured in whatever way best accommo
dates the hardware and operating system requirements.

Page 10.13

MACRO-86

The use of conditional directives provides a great deal of portability and flexi
bility in source code modules. For example, you might be testing several al
gorithms in separate modules that are called from the same driver. The
driver requires some changes to accommodate the particular module it is
assembled with. Place the variable source statements for each module
under an IFDEF module name condition line in the driver source code. The
driver can now be assembled as is with any of the modules.

Programmers frequently encounter situations where identical, or nearly
identical, blocks of code must be repeated within a program. A subroutine
structure is inappropriate. The source code for such a block should be en
tered as a macro definition. You can then include the object code it produces
anywhere in the program by invoking the macro's user defined name. Flexi
bility is increased by passing immediate arguments into each expansion of
the macro, by nesting macros, and by including macros within conditionals
or conditionals within macros.

Take time to understand the assembler command line structure. Use the
various options to speed assembly by not producing unwanted or error-filled
files.

Page 10.14

MACRO-86
Creating a MACRO-86 Source File

GENERAL FACTS ABOUT SOURCE FILES

Brief

.ASM is the preferred source filename extension. MACRO-86 accepts other
extensions, provided they are entered with the filename. Problems may
arise if.OBJ,.LST,.CRF,.REF, or.EXE are used.

All numeric values must begin with a numeral, i.e., OFFFFh. The default
input radix is decimal. For output the default is decimal for line numbers and
hexadecimal for object code. The /0 command provides octal code listings.
Change the input radix with the .RADIX directive followed by 2, 8, 10, or 16.
The radix of a single value may be changed by appending B for binary, Q
or 0 for octal, D for decimal, or H for hexadecimal.

Legal characters in symbol names are:

A — Z 0 — 9 ? ® $

The characters 0 — 9 may not begin a symbol.

Special character operators and delimiters:

(colon) segment override operator.

(period) record or structure field name operator. Permitted in
filename as first character only.

(square brackets) around a register name define its contents
as a pointer.

(parentheses) DUP expression operator, also used to set
operand evaluation precedence.

(angle brackets) delimit initialization values for records or
structure, parameters in IRP macro blocks, and literals.

Page 10.15

MACRO-86

Details

To create a source file for MACRO-86, you need to use an editor program,
such as EDLIN in Z-DOS. You simply create a program file as you would
for any other assembly or high-level programming language. Use the gen
eral facts and specific descriptions in this and the following sections when
creating the file.

In this portion of text, you will find discussions of the statement format and
introductory descriptions of its components. Later, you will find full descrip
tions of names — variables, labels, and symbols. You will also find full de
scriptions of expressions and their components, operands and operators.
Additionally, you will find full descriptions of the assembler directives.

Naming Your Source File

When you create a source file, you will need to name it. A filename may be
any name that is legal for your operating system. MACRO-86 expects a spe
cific three character filename extension, .ASM, whenever you run MACRO
86 to assemble your source file. MACRO-86 assumes that your source
filename has the filename extension .ASM. This is not required. You may
name your source file with any extension you like. However, when you re
name a MACRO-86 source file, you must remember to specify the exten
sion. If you use.ASM you will not need to specify the extension.

Because of this default action by MACRO-86, it is impossible to omit the
filename extension. When you assemble a source file without a filename ex
tension, MACRO-86 will assume that the source has a .ASM extension be
cause you would not be specifying an extension. When MACRO-86
searches the disk for the file, it will not find the correct file and will either as
semble the wrong file or will return an error message stating that the file can
not be found.

MACRO-86 gives the object file it outputs the default extension .OBJ. To
avoid confusion or the destruction of your source file, you will want to avoid
giving a source file an extension of .OBJ. For similar reasons, you will also
want to avoid the. EXE, .LST, .CRF, and. REF extensions.

Page 10.16

MACRO-86

Legal Characters

The legal characters for your symbol names are:

A-Z 0-9 '? ® $

Only numerals 0-9 cannot appear as the first character of a name. A numeral
must appear as the first character of a numeric value.

Additional special characters act as operators or delimiters:

(colon) segment override operator.

(period) operator for fieldname of Record or structure; may
be used in a filename only if it is first character.

(square brackets) around register names to indicate value in
address in register not value (data) in register.

(parentheses) operator in DUP expressions and operator to
change precedence of operator evaluation.

(angle brackets) operators used around initialization values
for records or structure, around parameters in IRP macro
blocks, and to indicate literals.

The square brackets and angle brackets are also used for syntax notation
inthe discussions of the assembler directives, Page 10.88, as well as earlier
in the manual. When these characters are operators and not syntax nota
tion, you are told explicitly; for example, angle brackets must be coded as shown.

Page 10. l7

Numeric Notation

The default input radix for all numeric values is decimal. The output radix
for all listings is hexadecimal for code and decimal for line numbers. The out
put radix can only be changed to octal radix by giving the /0 switch when
MACRO-86 is run. The input radix may be changed two ways:

1. The . RADIX directive

2. Spe c ial notation appended to a numeric value:

Radix

Binary

Octal

0-1

QorO
(letter)

(none)
orD

Decimal

0-7

0-9

H

~Ran e Not a t ion ~Exam ie

01110100B

735Q
6210

9384 (default)
8149D
(when. RADIX
directive
changes default
radix to not)
decimal.
OFFH
80H
(first
character must
be numeral in
range 0-9)

Hexadecimal 0-9
A-F

page 10.18

MACRO-86

What's in a Source File?

A source file for MACRO-86 consists of instruction statements and directive
statements. Instruction statements are made of 8088 (8086) instruction
mnemonics and their operands, which command specific processes directly
to the 8088 processor. Directive statements are commands to MACRO-86
to prepare data for use in and by instructions.

Statements are usually placed in blocks of code assigned to a specific seg
ment (code, data, stack, extra). The segments may appear in any order in
the source file. Within the segments, generally speaking, statements may
appear in any order that create a valid program. Some exceptions to random
ordering do exist, which will be discussed under the affected assembler di
rectives.

Every segment must end with an end segment statement ENDS. Every pro
cedure must end with an end procedure statement ENDP. Every structure
must end with an end structure statement ENDS. Likewise, the source file
must end with an END statement that tells MACRO-86 where program
execution should begin.

"Memory Organization" on Page 10.38 describes how segments, groups,
the ASSUME directive, and the SEG operator relate to one another and to
your programming as a whole. This information is important and helpful for
developing your programs. The information is presented as a prelude to the
discussion of operands and operators.

Page 1 0.19

STATEMENT LINE FORMAT

Brief

Format (typical directive statement):
<name> <action><expression>;<comment>

Format (typical instruction statement):
<action> <expression>;<comment>

Details

Statements in source files follow a strict format, which allows some varia
tions.

MACRO-86 directive statements consist of four fields — Name, Action, Ex
pression, and Comment. For example:

Name Ac t ion

DB OD5EH ; createvariableFOO

; containing the value OD5EH

;CommentExpression

MACRO-86 instruction statements usually consist of three fields: Action Ex
pression, and Comment. For example:

MOV CX, F00

Expression

;here'sthecountnumber

;CommentAction

An instruction statement may have a Name f ield under certain cir
cumstances; see the discussion in the next section, on "Names".

Page 10.20

MACRO-86

Names

Brief

There are three categories of Names: Labels (referencing addresses); Vari
ables (referencing data); and Symbols (referencing constants). The name
field, if present, occurs first in a statement line. Name length is not limited.
Only the first 31 characters are significant.

umn one.

Details

The Name field, when present, is the first entry on the statement line. The
name may begin in any column, although normally names are started in col

Names may be any length you choose. However, MACRO-86 considers
only the first 31 characters significant when your source file is assembled.

One other significant use for names is with the MACRO directive. Although,
all the rules covering names, described on Page 10.28 apply the same to
MACRO names. The discussion of macro names is best left to the section
described by the macro facility.

MACRO-86 supports the use of names in a statement line for three pur
poses: to represent code, to represent data, and to represent constants.

To make a name represent code, use:

NAME:

NAME LABEL NEAR

NAME LABEL FAR

EXTRN NAME: NEAR

followed by a directive, instruction, or
nothing at all

(for use inside its own segment only)

(for use outside its own segment)

(for use outside its own module but in
side its own segment only)

(for use outside its own module and
segment)

EXTRN NAME: FAR

Page 10.21

To make a name represent data, use:

NAME LABEL <size> (BYTE, WORD, etc.)
NAME Dx <exp>
EXTRN NAME: <size> (BYTE, WORD, etc.)

To make a name represent a constant, use:

NAME EQU <constant>
NAME = <constant>
NAME SEGMENT <attributes>
NAME GROUP <segment-names>

page 10.22

MACRO-86

Comments

Brief

Comments are always optional. A comment must be the last field in a source
line and must be preceded by a semicolon. The COMMENT directive is pref
erable for multiline comments.

Details

Comments are never required for the successful operation of an assembly
language program, but they are strongly recommended.

If you use comments in your program, every comment on every line must
be preceded by a semicolon. If you want to place a very long comment in
your program, you can use the COMMENT directive. The COMMENT direc
tive releases you from the required semicolon on every line (refer to COM
MENT, Page 10.94).

Comments are used to document the processing that the computer per
forms at a particular point in a program. When comments are used in this
manner, they can be useful for debugging, for altering code, or for updating.
Consider putting comments at the beginning of each segment, procedure,
structure, module, and after each line in the code that begins a step in the
processing.

Comments are ignored by MACRO-86. Comments do not add to the mem
ory required to assemble or to run your program, except in macro blocks
where comments are stored with the code. Comments are not required for
anything but human understanding of the program's logic.

Page 10.23

MACRO-86

Action

Brief

The action field follows the name field, or else occurs first if no name is pres
ent. The action field is not optional and may contain either an assembly lan
guage mnemonic or a directive to the assembler.

Details

The action field contains either an 8088 (8086) instruction mnemonic or a
MACRO-86 assembler directive. Refer to Appendix L for a list of 8088
(8086) instruction mnemonics. The MACRO-86 directives are described in
detail on Page 10.90.

If the name field is blank, the action field will be the first entry in the statement
format. In this case, the action may appear starting in any column, one
through maximum line length (less columns for action and expression).

The entry in the action field either directs the processor to perform a specific
function or directs the assembler to perform one of its functions. Instructions
command the processor's actions. An instruction may have the data and/or
addresses it needs built into it, or data and/or addresses may be found in
the expression part of an instruction. For example:

opcode operand data data

opcode operand addr addr

supplied

supplied or found

supplied = part of the instruction

= assembler inserts data and/or address from the information
provided by expression in instruction statements.

found

Opcode in Action Field

Directives give the assembler directions for I/O, memory organization, con
ditional assembly, listing and cross reference control, and definitions.

Page 10.24

MACRO-86

Expressions

Brief

The expression field follows the action field and may contain from zero to
two operands plus their associated operators. A comma is required to sepa
rate two operands.

Details

The expression field contains entries which are operands and/or combina
tions of operands and operators.

Some instructions take no operands, some take one, and others take two.
For two operand instructions, the expression field consists of a destination
operand and a source operand in that order, separated by a comma. For
example:

Expression Field Operands

For one operand instructions, the operand is a source or a destination
operand, depending on the instruction. If one or both of the operands is omit
ted, the instruction carries that information in its internal coding.

Source operands are immediate operands, register operands, memory
operands, or a t tribute operands. Destination operands are register
operands and memory operands.

For directives, the expression field usually consists of a single operand. For
example:

d irective ope rand

Expression Field Directives

A directive operand is a data operand, a code (addressing) operand, or a
constant, depending on the nature of the directive.

Page 10.25

For many instructions and directives, operands may be connected with
operators to form a longer operand that looks like a mathematical expres
sion. These operands are called "complex". Use of a complex operand per
mits you to specify addresses or data derived from several places. For ex
ample:

MOV F00 [BX], AL

The destination operand is the result of adding the address represented by
the variable FOO and the address found in register BX. The processor is
instructed to move the value in register AL to the destination calculated from
these two operand elements. Another example is:

MOV AX, F00%5 [BX]

In this case, the source operand is the result of adding the value represented
by the symbol FOO plus 5 plus the value found in the BX register.

Page 10.26

MACRO-86 supports the following operands and operators in the expres
sion field (shown in order of precedence):

OPERANDS OPERATORS

Immediate

(incl. symbols)
Register
Memory

label
variables

simple
indexed
structures

Attribute

LENGTH, SIZE, WIDTH, MASK,
FIELD
[j, (),

segment override(:)

PTR, OFFSET, SEG, TYPE, THIS.

HIGH, LOW

4,/. MOD, SHL, SHR

+, -(unary), -(binary)

EQ, NE, LT, LE, GT, GE

override
PTR
:(seg)
SHORT
HIGH
LOW NOT

value returning
OFFSET
SEG
THIS
TYPE
. TYPE
LENGTH
SIZE

AND

OR, XOR

SHORT,. TYPE

record specifying
FIELD
MASK
WIDTH

Precedence of Operands and Operators
In the Expression Field

NOTE: Some operators can be used as operands or as part of an operand
expressions. Refer to Page 10.37 for details on operands and operators.

Page 10.27

Applying the Statement Line Format

Unlike program listings in high-level languages, assembly language listings
provide very few immediate clues about the program function. This makes
it especially important to understand the purpose and location of each field,
as well as the legal entries each field may contain. Without this knowledge,
it will be impossible to analyze a source listing, whether it is your own crea
tion or someone else' s. Assembling a file containing missing or incorrect de
limiters, missing or incorrectly placed fields, or illegal field entries will result
in a flood of syntactical errors that mask your program logic.

Page 10.28

MACRO-86

Names: Labels, Variables and Symbols

Brief

Labe/s are symbolic addresses used as operands of JMP, CALL, and LOOP
instructions. Labels may reference procedures within or outside the seg
ment where they are defined. Labels may also reference procedures in
separately assembled modules. A colon separates a label from its following
field.

Variables are symbolic addresses where data is stored. Unlike labels, vari
able names are separated from their following field by a space. A directive
that defines the format of the data always occupies the second field.

Symbols are names that reference constant values. When an equal sign or
the EQU directive occurs in field two, the expression following it is evaluated
and assigned the chosen name. Symbols may also reference values de
fined in separately assembled modules. A space separates a symbol from
the next field.

Oetails

Names are used in several capacities throughout MACRO-86, wherever
any naming is allowed or required.

Names are symbolic representations of values. The values may be addres
ses, data, or constants.

Names may be any length you choose. However, MACRO-86 will truncate
names longer than 31 characters when your source file is assembled.

Names may be defined and used in a number of ways. This section in
troduces you to the basic ways to define and use names. You will discover
additional uses as you study the sections on Expressions and Action, and
as you use MACRO-86.

MACRO-86 supports three types of names in statement lines: labels, vari
ables, and symbols. This section covers how to define and use these three
types of names.

Page 10.29

LABELS

Labels are names used as targets for JMP, CALL, and LOOP instructions.
MACRO-86 assigns an address to each label as it is defined. When you use
a label as an operand for JMP, CALL, or LOOP, MACRO-86 can substitute
the attributes of the label for the label name, sending processing to the ap
propriate place.

Labels are defined one of four ways:

1. < n a me>:

Use a name followed immediately by a colon. This defines the
name as a NEAR label. <name>: may be prefixed to any in
struction and to all directives that allow a name field. <name>:
may also be placed on a line by itself.

Examples:
CLMLSCREEN: MOV AL, 20H

FOO: DBOFH

SUBROUTINES:

2. < name > LABEL NEAR
< name> LAB EL FAR

Use the LABEL directive. Refer to the discussion of the LABEL
directive in "Memory Directives", Page 10.111.

NEAR and FAR are discussed under the TYPE attribute on
Page 10.31.

Examples:

FOO LABEL NE AR

GOO LABEL FAR

Page 10.30

3. < n a me>
<name>

PROC
PROC

NEAR
FAR

Use the PROC directive. Refer to the discussion of the PROC
directive, "Memory Directives", Page 10.115.

NEAR is optional because it is the default if you enter only
<name> PROC. NEAR and FAR are discussed under the
Type Attribute on Page 10.31.

Examples:

REPEAT PROC NEAR

CHECKING PROC

F IND CHR PRX F A R
; same as CHECKING PROC NEAR

4. EXTR N <name>:NEAR
EXTRN <name>:FAR

Use the EXTRN directive.

NEAR and FAR are discussed under the TYPE attribute on
Page 10.31.

Refer to the discussion of the EXTRN directive "Memory Direc
tives", Page 10.104.

Examples:

EXTRN FOO: NEAR

EXTRN ZOO: FAR

A label has four attributes: segment, offset, type, and the CS ASSUME in
effect when the label is defined. Offset is the distance from the beginning
of the segment to the label's location. Type is either NEAR or FAR.

page 10.31

MACRO-86

Segment

Labels are defined inside segments. The segment must be assigned to the
CS segment register to be addressable. The segment may be assigned to
a group, in which case the group must be addressable through CS. MACRO
86 requires that a label be addressable through the CS register. Therefore,
the segment (or group) attribute of a symbol is the base address of the seg
ment (or group) where it is defined.

Offset

The offset attribute is the number of bytes from the beginning of the label's
segment to where the label is defined. The offset is a 16-bit unsigned
number.

Tme

There are two types of labels: NEAR or FAR. NEAR labels are used for re
ferences from within the segment where the label is defined. NEAR labels
may be referenced from more than one module, as long as the references
are from a segment with the same name and attributes and that has the
same CS ASSUME.

FAR labels are used for references from segments with a different CS
ASSUME or that have more than 64K bytes between their label reference
and their label definition.

NEAR and FAR cause MACRO-86 to generate slightly different code. NEAR
labels supply their offset attribute only (a two-byte pointer). FAR labels sup
ply both their segment and offset attributes (a four-byte pointer).

Page 10.32

VARIABLES

Variables are names used in expressions (as operands to instructions and
directives).

A variable represents addresses where a specified value may be found.

Variables look much like labels and are defined alike in some ways. The dif
ferences are important.

Variables are defined three ways:

1. <n am e> < d e f ine-dir> ;no colon!
<name> <struc-name> <expression>
<name> <rec-name> <expression>

<define-dir> is any of the five define directives: DB, DW, DD,
DQ, DT

Example:

STARTMove D W ?

<struc-name> is a structure name defined by the STRUC
directive.

Examples:

CORRAL STRUC

CORRAL ENDS

HORSE CORRAL < ' SADDLE ')

Note that HORSE will have the same size as the structure
CORRAL.

page 10.33

GARAGE RECORD CAR: 8= 'P '

SMALL GARAGE 10 DUP (< ' Z ' > j

Note that SMALL will have the same size as the record
GARAGE.

See the DEFINE, STRUC, and RECORD directives on Pages10.95, 10.126
and 10.122, respectively, under "Memory Directives".

2. < na me> LABEL <size>

Use the LABEL directive with one of the size specifiers.

<size> is one of the following size specifiers:

BYTE — specifies 1 byte
WORD — specifies 2 bytes
DWORD — specifies 4 bytes
QWORD — specifies 8 bytes
TBYTE — specifies 10 bytes

Example:

CURSOR LABEL WORD

See LABEL directive on Page 10.111.

3. EXT RN <name>:<size>

Use the EXTRN directive with one of the size specifiers de
scribed above. See the EXTRN directive on Page 10.104.

Example:

EXTRN FOO: DWORD

Variables as well as labels have three attributes: segment, offset, and type.

Segment and Offset are the same for variables as they are for labels. The
Type attribute is different.

Page 10.34

Type

The type attribute is the size of the variable's location, as specified when
the variable is defined. The size depends on which Define directive was
used or which size specifier was used to define the variable.

Directive ~T e

BYTE
WORD
DWORD
QWORD
TBYTE

Size

1 byte
2 bytes
4 bytes
8 bytes
10 bytes

DB
DW
DD
DQ
DT

Page 10.35

SYMBOLS

Symbols are names defined without reference to a Define directive or to
code. Like variables, symbols are also used in expressions as operands to
instructions and directives.

Symbols are defined three ways:

1. <nam e> EQU <expression>. See EQU directive, "Memory
Directives", Page 10.100.

<expression> may b e a n other symbol, an i nstruction
mnemonic, a valid expression, or any other entry (such as text
or indexed references).

Examples:

FOO EQU 7H

ZOO EQU F00

2 . < nam e > = <expression>

Use the Equal Sign directive. See "Equal Sign" on Page 10.100.

<expression> may be any valid expression.

Examples:
GOO OFH

$+2
GOOtFOO

Page 10.36

3. EXTR N <n a me>:ABS

Use the EXTRN directive with type ABS. See EXTRN on Page
10.104.

Example:

EXTRN BAZ: ABS

BAZ must be defined by an EQU or = directive to a valid ex
pression.

Application

Names should be defined for labels, variables, and symbols whenever pos
sible. The use of numerals should be limited to transient values, or values
which have no extended meaning beyond their numeric value. This provides
a program listing with a high density of user-defined words, making its logic
easier to follow. It also provides a more effective use of the assembler, which
relies heavily on internal symbol tables for its operation.

Page 10.37

Expressions: Operands and Operators

INTRODUCTION

Every expression consists of at least one operand (a value). An expression
may consist of two or more operands. Multiple operands are joined by
operators. The result is a series of elements that look like a mathematical
expression.

This portion of the chapter describes the types of operands and operators
that MACRO-86 supports. The discussion of memory organization in a
MACRO-86 program acts as a preface to the descriptions of operands and
operators, and as a link to topics discussed earlier.

Page 10.38

MACRO-86

MEMORY ORGANIZATION

Brief

Memory segments of up to 64K bytes are defined by the SEGMENT and
ENDS directives. Segment types are CODE, DATA, STACK, and EXTRA.
They are designated CS, DS, SS, and ES respectively. All address refer
ences are relative until LINK sets an absolute base address for each seg
ment. Four segment registers store the base addresses.

A single segment may contain any number of separate code modules, pro
vided the 64K limit is observed. The address of each module is an offset from
the common segment base.

The GROUP directive permits referencing several segments to a common
base address. The 64K limit then applies to the total size of all the segments
in the group.

The CS register cannot be modified by instructions within the current code
segment. This protection does not apply to DS, SS, or ES.

Because different functions are performed on passes one and two, only cer
tain types of errors can be detected on each pass. When forward references
are processed, special operators may be used to assist the assembler in
producing the correct amount of code.

Details

Most of your assembly language program is written in segments. In the
source file, a segment is a block of code that begins with a SEGMENT direc
tive statement and ends with an ENDS directive. In an assembled and linked
file, a segment is any block of code that is addressed through the same seg
ment register and is not more than 64K bytes long.

You should note that MACRO-86 leaves everything to do with segments to
LINK. LINK resolves all references. For that reason, MACRO-86 does not
check (because it cannot) if your references are entered with the correct dis
tance type. Values such as OFFSET are also left to the LINK for resolution.

Page 10.39

MACRO-86

Although a segment may not be more than 64K bytes long, you may, as long
as you observe the 64K limit, divide a segment among two or more modules.
The SEGMENT statement in each module must be the same in every re
spect.

When the modules are linked together, the several segments become one.
References to labels, variables, and symbols within eachmodule acquire
the offset from the beginning of the whole segment, not just from the begin
ning of their portion of the whole segment. All divisions are removed.

You have the option of grouping several segments into a group, using the
GROUP directive. When you group segments, you tell MACRO-86 that you
want to be able to refer to all of these segments as a single entity. This does
not eliminate segment identity, nor does it make values within a particular
segment less immediately accessible. It does make values relative to a
group base. The usefulness of grouping is that you can refer to data items
without worrying about segment overrides and about changing segment
registers often.

You should note that references within segments or groups are relative to
a segment register. Until linking is completed, the final offset of a reference
is relocatable. For this reason, the OFFSET operator does not return a con
stant. The major purpose of OFFSET is to cause MACRO-86 to generate
an immediate instruction; that is, to use the address of the value instead of
the value itself.

There are two kinds of references in a program:

1. Cod e references — JMP, CALL, LOOPxx — These references
are relative to the address in the CS register. You cannot over
ride this assignment.

2. D a ta references — all other references — These references
are usually relative to the DS register, but this assignment may
be overridden.

When you give a forward reference in a program statement, for
example:

MOVAX, <ref >

page 10.40

MACRO-86

MACRO-86 first looks for the segment of the reference. MACRO-86 scans
the segment registers for the SEGMENT of the reference then the GROUP,
if any, of the reference. However, the use of the OFFSET operator always
returns the offset relative to the segment. If you want the offset relative to
a GROUP, you must override this restriction by using the GROUP name and
the colon operator, for example:

MOV AX,OFFSET <group-name>: <ref>

If you set a segment register to a group with the ASSUME directive, then
you may also override the restriction on OFFSET by using the register
name, for example:

MOV AX OFFSET DS: <ref>

The result of both of these statements is the same.

Code labels have four attributes:

1. Se g ment — what segment the label belongs to

2. Off set — the number of bytes from the beginning of its segment

3. Ty p e — NEAR or FAR

4. CS ASSUME — the CS ASSUME the label was coded under

When you enter a NEAR JMP or NEAR CALL, you are changing the offset
(IP) in CS. MACRO-86 compares the CS ASSUME of the target (where the
label is defined) with the current CS ASSUME. If they are different, MACRO
86 returns an error (you must use a FAR JMP or CALL).

W hen you enter a FAR JMP or FAR CALL, you are changing both the offset

(IP) in CS and the paragraph number. The paragraph number is changed
to the CS ASSUME of the target address.

Page 10.41

Let's take a common case, a segment called CODE; and a group (called

DGROUP) that contains three segments (called DATA, CONST, and
STACK).

The program statements would be:

DGROUP GROUP

ASSUME

MOV

MOV

DATA, CONST, STACK
CS'. CODE, DS: DGROUP, SS: DGROUP, ES: DGROUP

AX, DGROUP;CS initialized by entry'
DS, AX ;you initialize DS, do this

;as soon as possible,
;especially before any DS
;relative references

As a diagram, this arrangement could be represented as follows:

CS

C O D E

DS,ES, SS

D A T A

4K(6 C O N S T

S T A C K

Segment Register Reletlonshlp to Code Address

Given this arrangement, a statement like:

MOV AX, <variable>

causes MACRO-86 to find the best segment register to reach this variable.
The "best" register is the one that requires no segment overrides.

Page 10.42

MACRO-86

MOVAX, OFFSET <var iable>

tells MACRO-86 to return the offset of the variable relative to the beginning
of the variable's segment.

If this variable is in the CONST segment and you want to reference its offset
from the beginning of DGROUP, you need a statement like:

MOVAX, OFFSET DGROUP: <var i able>

MACRO-86 is a two-pass assembler. During pass one, it builds a symbol
table and calculates how much code is generated but does not produce ob
ject code. If undefined items are found (including forward references), as
sumptions are made about the reference so that the correct number of bytes
are generated on pass one. Only certain types of errors are displayed; errors
involving items that must be defined on pass one. No listing is produced un
less you give a/D switch when you run the assembler. The /D switch produc
es a listing for both passes.

On pass two, the assembler uses the values defined in pass one to generate
the object code. Definitions of references during pass two are checked
against the pass one value, which is in the symbol table and also, the
amount of code generated during pass two. If either is different, MACRO-86
returns a phase error.

Because pass one must keep correct track of the relative offset, some refer
ences must be known on pass one. If they are not known, the relative offset
will not be correct.

The following references must be known on pass one.

IF/IFE <expression>

If <expression) is not known on pass one, MACRO-86 does not know to
assemble the conditional block (or which part to assemble if ELSE is used).
On pass two, the assembler would know and would assemble, resulting in
a phase error.

Page 10.43

MACRO-86

For example:

MOV AX,FOO;FOO =forward constant

This statement causes MACRO-86 to generate a move from memory in
struction on pass one. By using the OFFSET operator, we can cause
MACRO-86 to generate an immediate operand instruction.

MOV AX, OFFSET F00 ; OFFSET-says use the address of F00

Because OFFSET tells MACRO-86 to use the address of FOO, the assem
bler knows that the value is immediate. This method saves a byte of code.

Similarly, if you have a CALL statement that calls to a label that may be in
a different CS ASSUME, you can prevent problems by attaching the PTR
operator to the label:

CALL FAR PTR <forward-label>

At the opposite extreme, you may have a JMP forward that is less than 127
bytes. You can save yourself a byte if you use the SHORT operator.

JMP SHORT <forward-label>

However, you must be sure that the target is indeed within 127 bytes or
MACRO-86 will not find it.

The PTR operator can be used another way to save yourself a byte when
using forward references. If you defined FOO as a forward constant, you
might enter the statement:

MOV [BX], F00

You may want to use the variable FOO as an immediate operand. In this
case, you could enter either of the statements (they are equivalent):

MOV BYTE PTR [BX],FOO
MOV [B)g, BYTE PTR FOO

These statements tell MACRO-86 that FOO is a byte immediate. A smaller
instruction is generated.

page 10.44

OPERANDS

Brief

Legal operands:

Immediate class:

• Dat a i tems (e.g., 25, 6000, OFFFH, 412Q, "Hl", 11110000B)

• Symbols (e.g., FOO, IOBYT, TTYOUT)

Immediate operands are source operands only.

Register class:

• Regi s ter names, except flag or segment registers are not
eligible for logical and arithmetic operations.

Memory class:

• Dire c t(e.g., FOO, OFFSET XTABLE, BEGIN)

• Ind exed (e.g., [BX], [BP], [DI], [Sl], [Dl]XTABLE, [BX]FOO)

There are only four index registers. BP defaults to the SS segment, the
others to DS.

• Structure (e.g., ZOO.BEAR, [BX].ZOO, ZOO.KEEPER)

Page 10.45

Details

There are three types of operands: Immediate, Register, or Memory
operands. There are no restrictions on combining the various types of
operands.

The following list shows all the Operand types and the items that comprise
them:

Immediate

Symbols

Registers

Memory operands

Data items

Direct
Labels
Variables
Offset (fieldname)

Indexed
Base register
Index register
[constant]
= displacement

Structure

Page 10.46

Immediate Operands

Immediate operands are constant values that you supply when you enter
a statement line. The value may be entered either as a data item or as a
symbol.

Instructions that take two operands permit an immediate operand as the
source operand only (the second operand in an instruction statement). For
example:

MOV AX,9

Data Items

The default input radix is decimal. Any numeric values entered without
numeric notation appended will be treated as a decimal value. MACRO-86
recognizes values in forms other than decimal when special notation is ap
pended. These other values include ASCII characters as well as numeric
values.

Page 10.47

Data Form

Binary

Octal XXXO
XXXQ

Format

XXXXXXXXB 01110001B

~Exam le

ASCII

16 real

10 real

Decimal

Hexadecimal

a ~ > >

'XX'

XXXXH

XXXXX
XXXXXD

XX.XXfoXX

7350(letter 0)
412Il

65535(default)
1000D(when .RADIX changes
input radix to nondecimal)

OFFFH(first digit must be 0-9)

'OM' (more than two with DB

only;
aOMa bOth fOrmS are SynOnOm

ous)

25. 23E-7(floating point format)

SF76DEA9R(first digit must be 0
9, the total number of digits
must be 8, 16, or 20; or 9, 17,
or 21 if first digit is 0)

X...XR

MASM Recognized Data Item Values

Page 10.48

Symbols

Symbol names equated with some form of constant information may be
used as immediate operands. Using a symbol constant in a statement is the
same as using a numeric constant. Therefore, using a sample statement,
you could enter:

MOV AX,FOO

assuming FOO was defined as a constant symbol. For example:

FOOE(U9

Page 10.49

MACRO-86

Register Operands

The 8088 processor contains fourteen registers. These registers have two
letter indentifiers that the assembler recognizes. These identifiers are re
served and may not be used for user-defined names.

The registers are appropriated to different tasks: general registers, pointer
registers, counter registers, index registers, segment registers, and a flag
register.

The general registers are both 8-bit and 16-bit registers. Actually, the 16-bit
general registers are composed of a pair of 8-bit registers, one for the low
byte (bits 0 — 7) and one for the high byte (bits 8 — 15). Note, however, that
each 8-bit general register can be used independently from its mate. In this
case, each 8-bit register contains bits 0-7.

You initialize segment registers. They contain segment base values. The
segment register names CS, DS, SS, ES can be used with the colon seg
ment-override operator to inform MACRO-86 that an operand is in a different
segment than specified in an ASSUME statement. (See the Segment Over
ride Operator, Page 10.57.)

The flag register is one 16-bit register containing nine one-bit flags (six arith
metic flags and three control flags).

Each of the registers, except segment registers and flags, can be an
operand in arithmetic and logical operations.

MOD =11 Register Mode

16-bit
W =1

8-bit
W=O

AX
CX
DX
BX
SP
BP
SI
Dl

Register/Memory Reld Encoding

AL
CL
DL
BL
AH
CH
DH
BH

000
001
010
011
100
101
110
111

Page 10.50

MACRO-86

EFFECTIVE ADDRESS CALCULATION

000
001
010
011
100
101
110
111

MOD =OO MOD =01

[BX]+ [Sl]+ D8
[BX]+ [DI]+ D8
[BP]+[Sl]+ D8
[BP]+ [Dl]+ D8
[SI]+ D8
[DI]+ D8
[BP]+D8
[BX]+ D8

MOD =10

[BX]+ [Sl]+ D16
[BX]+ [DI]+ D1 6
[BP]+ [Sl]+ D16
[BP]+ [DI]+ D16
[Sl]+D16
[Dl]+D16
[BP]+ D16
[BX]+ D16

[BX]+[Sl]
[BX]+ [DI]
[BP]+[Sl]
[BP]+[Dl]
[Sll
[Dl]
DIRECT ADDRESS
[BX]

Note: D8 = abytevalue; D16 = awordvalue

Other Registers:

Segment: CS
DS
SS
ES

code segment
data segment

stack segment
extra se ment

Effective Address Calculation

Flag

Flags: six one-bit
arithmetic fla s
CF carr y flag
PF pari ty flag

auxiliary flag
zero flag
si nfla

three one-bit control flags

DF direction flag
IF interrupt-enable

TF t rap flagAF
ZF
SF

Flags

NOTE: The BX, BP, Sl and Dl registers are also used as memory operands.
The distinction is: when these registers are enclosed in square brackets
[], they are memory operands; when they are not enclosed in square brack
ets, they are register operands. (See "Memory Operands", Page 10.51.)

Page 10.51

MACRO-86

Memory Operands

A memory operand represents an address in memory. When you use a
memory operand, you direct MACRO-86 to an address to find some data
or instruction.

A memory operand always consists of an offset from a base address.

Memory operands fit into three categories: 1) those that use a base or index
register, indexed memory operands; 2) those that do not use a register, di
rect memory operands; and 3) structure operands.

Direct Memory Operands

Direct memory operands do not use registers and consist of a single offset
value. Direct memory operands are labels, simple variables, and offsets.

Memory operands can be used as destination operands as well as source
operands for instructions that take two operands. For example:

;FOO is the direct memory operand

;in thse two examples, not

;AX or CX.

MOV AX, FOO

MOV FOO, CX

Indexed Memory Operands

Indexed memory operands use base, index registers, constants, displace
ment values, and variables, often in combination. When you combine in
dexed operands, you create an address expression.

Indexed memory operands use square brackets to indicate indexing (by a
register or by registers) or subscripting (for example, FOO[5]). The square
brackets are treated like plus signs (+). Therefore,

FOO [5] is equivalent to FOOt 5
5 [FOO] is equivalent to 5+FOO

The only difference between square brackets and plus signs occurs when
a register name appears inside the square brackets. Then, the operand is
seen as indexing.

Page 10.52

The types of indexed memory operands are:

Base registers: [BX] [BP]

BP has SS as its default segment register,
all others have DS as default.

[Dl] [Sl]

immediate in square brackets [8]. [FOO]

8-bit or 16-bit value. Used only with another
indexed operand.

Index registers:

[constant]:

Displacement:

These elements may be combined in any order. The only restriction is that
neither two base registers nor two indexed registers can be combined:

[BXWBP]; illegal
[SI+ DI]; i l l egal

Some examples of indexed memory operand combinations:

[BPW8]
[SIIBX] [4]
16 [DI+BP 4 3]
8[F00] -8

More examples of equivalent forms:

5 [BX] [SI]
[BX%5] [SI]
[BX t SI+ 5]

[BX] t5[SI]

Page 10.53

Structure Operands

Structure operands take the form (variable), <field>.

The variable is any name you give when coding a statement line that in
itializes a Structure field. The variable may be an anonymous variable, such
as an indexed memory operand.

The field is a name defined by a DEFINE directive within a STRUC block.
Field is a typed constant.

The period (.) must be included.

Page 10.54

Application

ZOO S T RUC
GIRAFFE DB ?

ZOO E N DS

LONGMCK ZOO <16)

MOV AL, LONG HECK. GIRAFFE

MOVAL, . [BX] . GIRAFFE ; anonymous variable

The use of structure operands can be helpful in stack operations. If you set
up the stack segment as a structure, setting BP to the top of the stack (BP
equal to SP), then you can access any value in the stack structure by
fieldname indexed through BP1. For example:

LBP) . FLD6

BP~ ~ SP

FLD1

F LD3 FLD 2

FLD4STRUC

FLD6 FLDS

FLD7

Structure Operands in Stack Operation

This method makes all values on the stack available all the time, not just
the value at the top. Therefore, this method makes the stack a handy place
to pass parameters to subroutines.

Page 10.55

OPERATORS

There are four types of operators: attribute, arithmetic, relational, and logi
cal.

Attribute operators are used with operands to override their attributes, return
the value of the attributes, or to isolate fields of records.

Arithmetic, relational, and logical operators are used to combine or compare
operands.

Attribute Operators

Brief

MACRO-86 Attribute Operators:

• At t r ibute override operators:

PTR : SHO RT THIS HIG H LOW

These operators override the segment, offset, type, or distance of variables
and labels.

• Va l ue returning operators:

SEG OFF SE T TYPE .TYPE LENGTH SIZ E

These operators return the attribute values of variables and labels.

• RE C ORD specific operators:

MASK

These operators isolate fields within a RECORD.

WIDTHshift count

Page I0.56

Details

Attribute operators used as operands perform one of three functions:

• Ov erride an operand's attributes.

• Re turn the values of operand attributes.

• Is o late record fields (record specific operators).

The following list shows all the attribute operators by type:

Override operators

colon (:) (segment override)
SHORT
THIS
HIGH
LOW

PTR

Value returning operators
SEG
OFFSET
TYPE
.TYPE
LENGTH
SIZE

RECORD specific operators
Shift count (field name)
WIDTH
MASK

Page 1 0.57

Override Operators

These operators are used to override the segment, offset, type, or distance
of variables and labels.

Pointer (PTR)

Brief

Format: <a t tribute> PTR <expression)

Pointer (PTR) overrides the type or distance of an operand. The operand
preceding PTR replaces the type or distance of the operand following it. PTR
is most often used to make explicit the type of a variable defined in a forward
reference. For example:

ADD BYTE PTR F00,9

PTR is also used to access data as a type other than the type specified when
the data was defined. For example:

MOV AL, BYTE PTR WHOLEWORD

Page 10.58

MACRO-86

Details

The PTR operator overrides the type (BYTE, WORD, DWORD) or the dis
tance (NEAR, FAR) of an operand.

The attribute is the new attribute; the new type or new distance.

The expression is the operand whose attribute is to be overridden.

The most important and frequent use for PTR is to assure that MACRO-86
understands what attribute the expression is supposed to have. This is
especially true for the type attribute. Whenever you place forward refer
ences in your program, PTR will clear the distance or type of expression.
This way you can avoid phase errors.

The second use of PTR is to access data by type other than the type in the
variable definition. Most often this occurs in structures. If the structure is de
fined as WORD, but, you want to access an item as a byte, PTR is the
operator for this.

However, a much easier method is to enter a second statement that defines
the structure in bytes, too. This eliminates the need to use PTR for every
reference to the structure. Refer to the LABEL directive, "Memory Direc
tives", on Page 10.111.

Application

CALL WORD PTR [BX] [SI]
MOV BYTE PTR ARRAY

ADD BYTE PTR F00,9

Page 10.59

MACRO-86

segment override (:) (colon)

Brief

Format: <segment-register>:<addresswxpression>
<segment-name>:<addressaxpression>
<group-name>:<addressexpression>

The colon (:) overrides the assumed segment of an operand containing a
memory reference. The correct segment precedes the colon; and the ad
dress to be referenced follows it. Describe the segment with either a seg
ment register, a segment name, or a group name. For example:

JMP ES: ERRO~OUTINE

MOV AX, DATASEG: VARIABLE

MOV AX,OFFSET DGROUP: VARIABLE

Details

The segment override operator overrides the assumed segment of an ad
dress expression which may be label, a variable, or other memory operand.

The colon operator helps with forward references by telling the assembler
whether a reference is relative to; a segment, group, or segment register.

MACRO-86 assumes that labels are addressable through the current CS
register. MACRO-86 assumes that variables are addressable through the
current DS register, or possibly the ES register, by default. If the operand
is in another segment and you have not alerted MACRO-86 through the
ASSUME directive, you will need to use a segment override operator. Also,
if you want to use a nondefault relative base, not the default segment regis
ter, you will need to use the segment override operator for forward refer
ences. If MACRO-86 can reach an operand through a nondefault segment
register, it will use it, but the reference cannot be forward in this case.

Page 10.60

<segment-register> is one of the four segment register names: CS, DS,
SS, ES.

<segment-name> is a name definedby the SEGMENT directive.

<group name> is a name definedby the GROUP directive.

Application

MOV AX,ES: [BXtSIj

MOV CSEG: FAKJABEL, AX

MOV AX,OFFSET DGROUP: VARIABLE

page 10.61

MACRO-86

Short

Brief

Format: SHORT <label)

SHORT overrides a NEAR attribute of a label that follows a jump instruction.
Its use shortens the jump instruction by one byte. It is legal only when the
target label is within 127 bytes of the jump instruction. For example:

JMP SHORT NEXTLABEL

Details

SHORT overrides NEAR distance attribute of labels used as targets for the
JMP instruction. SHORT tells MACRO-86 that the distance between the
JMP statement and the <label) specified as its operand is not more than
127 bytes in either direction.

The major advantage of using the SHORT operator is to save a byte. Nor
mally, the <label> carries a two-byte pointer to its offset in its segment. Be
cause a range of 256 bytes can be handled in a single byte, the SHORT
operator eliminates the need for the extra byte (which would carry 00 or FF
anyway). However, you must be sure that the target is within + or — 127
bytes of the JMP instruction before using SHORT.

Application

JMP SHORT REPEAT

Page 10.62

MACRO-86

This

Brief

Format: THIS <distance>
THIS <type>

THIS defines the current address within the current segment as a named
operand. Legal attributes are NEAR, FAR, BYTE, WORD, or DWORD. For
example:

STACKLIMIT = THIS FAR

FIRSTWORD= THIS WORD

Details

The THIS operator creates an operand. The value of the operand depends
on which argument you give THIS.

The argument to THIS may be:

1. A d istance (NEAR or FAR)

2. A type (BYTE, WORD, or DWORD)

THIS <distance> creates an operand with the distance attribute you
specify, an offset equal to the current location counter, and the segment at
tribute (segment base address) of the enclosing segment.

THIS (type>creates an operand with the type attribute you specify, an
offset equal to the current location counter, and the segment attribute (seg
ment base address) of the enclosing segment.

Application
TAG EgU THIS BYTE same as TAG LABEL BYTE

SPOTCHECK= THIS NEAR Same as SPOTCHECK LABELNEAR

Page 10.63

High, Low

Brief

Format: HIGH <expression>
LOW <expression>

HIGH and LOW isolate the upper or lower byte of a 16-bit value. For exam
ple:

MOV AH, HIGH WHOLEWORD

MOV BH, LOW OF003H

Details

HIGH and LOW are provided for 8080 assembly language compatibility.
HIGH and LOW are byte isolation operators.

HIGH isolates the high 8 bits of an absolute 16-bit value or address expres
sion.

LOW isolates the low 8 bits of an absolute 16-bit value or address expres
sion.

Application

MOV AH, HIGH WORD VALUE ; get byte with sign bit

MOV AL, LOW OFFFFH

Page 10.64

VALUE RETURNING OPERATORS

These operators return the attribute values of the operands that follow them
but do not override the attributes.

The value returning operators take labels and variables as their arguments.

Because variables in MACRO-86 have three attributes, you need to use
value returning operators to isolate single attributes, as follows:

isolates the segment base address
isolates the offset value
isolates either type or distance
isolates the memory allocation

SEG
OFFSET
TYPE
.LENGTH and SIZE

Page 10.65

SEG

Brief

Format: SEG (label)
SEG <variable>

SEG followed by a variable or label returns the base address of the segment
where it resides. For example:

MOV AX, SEG TABLE1

Details

SEG returns the segment value (segment base address) of the segment en
closing the label or variable.

Application

MOV AX, SEG VARIABLE NAME

MOV AX, <segmentvariable>: <variable>

Page 10.66

MACRO-86

Offset

Brief

Format: OFFSET <label>
OFFSET <variable>

OFFSET followed by a variable or label returns its distance from the base
address of the segment where it resides. For example:

MOV BX, OFFSET FOO

Details

OFFSET returns the offset value of the variable or label within its segment
(the number of bytes between the segment base address and the address
where the label or variable is defined).

OFFSET is chiefly used to tell the assembler that the operand is an im
mediate.

NOTE: OFFSET does not make the value a constant.

Only LINK can resolve the final value.

NOTE: OFFSET is not required with uses of the DW or DD directives. The
assembler applies an implicit OFFSET to variables in address expressions
following DW and DD.

Example:

If you use an ASSUME to GROUP, OFFSET will not automatically return
the offset of a variable from the base address of the group. OFFSET will re
turn the segment offset, unless you use the segment override operator
(group-name version). If the variable GOB is defined in a segment placed
in DGROUP, and you want the offset of GOB in the group, you need to enter
a statement like:

MOV BX, OFFSET F00

MOV BX, OFFSET DGROUP: GOB

You must be sure that the GROUP directive precedes any reference to a
group name, including its use with OFFSET.

Page 10.67

TYpe

Brief

Format: TYPE (label)
TYPE <variable>

TYPE followed by a variable returns the number of bytes reserved for that
variable. TYPE followed by a label returns its distance attribute (where
OFFFFH = NEAR and OFFFEH= FAR). For example:

MOV AL, TYPE FOO

MOV AX, TYPE ERROILROUTINE

Details

If the operand is a variable, the TYPE operator returns a value equal to the
number of bytes of the variable type, as follows:

BYTE = 1

WORD = 2
DWORD = 4

QWORD = 8
TBYTE = 10
STRUC = the number of bytes declared by STRUC

If the operand is a label, the TYPE operator returns NEAR (FFFFH) or FAR
(FFFEH).

Application

MOV AX, (TYPE FOOMAR) PTR [BX+SI]

Page 10.68

MACRO-86

• Type

Brief

Format: .TYPE <variable>

The .TYPE operator followed by an expression returns a byte which de
scribes the mode and definition status of the evaluated expression. It is used
most often to set up a test for conditional assembly. For example:

2 = . TYPE HORSES

IF 2..

Details

The . TYPE operator returns a byte that describes two characteristics of the
variable: 1) the mode, and 2) whether it is External or not. The argument
to . TYPE may be any expression (string, numeric, logical). If the expression
is invalid, . TYPE returns zero.

The byte that is returned is configured as follows:

The lower two bits are the mode. If the lower two bits are:

0 the mode is Absolute
1 the mode is Program Related
2 the mode is Data Related

The high bit (80H) is the External bit. If the high bit is on, the expression con
tains an External. If the high bit is off, the expression is not External.

The Defined bit is 20H. This bit is on if the expression is locally defined, and
it is off if the expression is undefined or external. If neither bit is on, the ex
pression is invalid.

Page 10.69

.TYPE is usually used inside macros, where an argument type may need
to be tested to make a decision regarding program flow; for example, when
conditional assembly is involved.

Application

MACRO

IF

.TYPE tests the mode and type of X. Depending on the evaluation of X, the
block of code beginning with IF Z... may be assembled or omitted.

page 10.70

Length

Format: LENGTH <variable)

LENGTH followed by a variable returns the number of type units allocated
to the variable in a preceding DUP expression. LENGTH returns one if the
variable is not defined in a DUP expression. For example:

FOO DW 100 DUP(1)
MOV CX, LENGTH FOO

Details

LENGTH accepts only one variable as its argument.

LENGTH returns the number of type units (BYTE, WORD, DWORD,
QWORD, TBYTE) allocated for that variable.

If the variable is defined by a DUP expression, LENGTH returns the number
of type units duplicated; that is, the number that precedes the first DUP in
the expression.

If the variable is not defined by a DUP expression, LENGTH returns one.

Application

F00 DW 100 DUP(1)

MOV CX, LENGTH FOO ;get number of elements

;in array
;LENGTH returns 100

BAZ DW 100 DUP(1, 10 DUP (?))

LENGTH BAZ is still 100. regardless of the expression following DUP.

G00 DD (?)

LENGTH GOO

returns one because only one unit is involved.

Page 10.71

Size

Format: SIZE (variable)

SIZE followed by a variable returns the number of bytes allocated to the vari
able in a preceding DUP expression. For example:

F00 DW 100 DUP (1)

MOV BX, SIZE FOO

Details

SIZE returns the total number of bytes allocated for a variable.

SIZE is the product of the value of LENGTH times the value of TYPE.

Application

FOO DW 100 DUP(1)

MOV BX, SIZE FOO ;get total bytes in array

SIZE = LENGTH x TYPE
SIZE =100 x WORD
SIZE = 100 x 2
SIZE = 200

page 10.72

RECORD SPECIFIC OPERATORS

Record specific operators are used to isolate fields in a record.

Records are defined by the RECORD directive (see "Memory Directives",
Page 10.122). A record may be up to 16 bits long. The record is defined by
fields, which may be from one to 16 bits long. To isolate one of the three
characteristics of a record field, you use one of the record specific operators,
as follows:

WIDTH

Shift count number of bits from low end of record to low end
of field (number of bits to right shift the record to
lowest bits of record)

the number of bits wide the field or record is
(number of bits the field or record contains)

value of record if field contains its maximum value
and all other fields are zero (all bits in field contain
1; all other bits contain 0)

MASK

In the following discussions of the record specific operators, the following
symbols are used:

FOO is a record defined by the RECORD directive

F00 RECORD FIELD1: 3, FIELD2: 6, FIELD3: 7

BAZ is a variable used to allocate FOO

BAZ F00 < >

FIELD1, FIELD2, and FIELD3 are the fields of the record FOO.

Page 10.73

Shift-count — (Record fieldname)

Brief

Format: <r ecord-fieldname>

Shift count is a function derived from the fieldnarne of the field to be isolated
from a RECORD. Use it as follows:

MOV DX, WHOLERECORD

MOVCL, FIELD2

SHRDX, CL

; CL= SHIFT COUNT

; FIELD2@LOWENDOF DX

Details

The shift count is derived from the record fieldname to be isolated.

The shift count is the number of bits the field must be right shifted to place
the lowest bit of the field in the lowest bit of the record byte or word.

Page 10.74

If a16-bit record (FOO) contains three fields (FIELD1, FIELD2,and FIELD3),
the record canbe diagrammed as follows:

FIELD2

FIELD1 has a shift count of 3.
FIELD2 has a shift count of 7.
FIELD3 has a shift count of 0.

Field Distribution Within a Record

When you want to isolate the value in one of these fields, you enter its name
as an operand.

Application

MOV DX,BAZ

MOV CL,FIELD2

SHR DX,CL

FIELD2 is now right shifted, ready for access.

Page 10.75

Mask

Brief

Format: MASK <record-fieldname>

MASK followed by a fieldname returns a bit mask to isolate the selected
field. For example:

MOV DX, WHOLERECORD

AND DX,MASK FIELD2 ;BITS OUTSIDE FIELD2 = 0

Details

MASK returns a bit-mask defined by 1 for bit positions included by the field
and 0 for bit positions not included. The value returned represents the
maximum value for the record when the field is masked.

With the same diagram as was used for Shift-count, MASK would appear
as:

~ MA SK

o o o [» » i isoo o o o o o

The MASK of FIELD2 equals 1FSOH.

Masking a Record to Return Field Value

Application

MOV DX, BAZ
AND DX, MASK FIELD2

FIELD2 is now isolated.

Page 10.76

Width

Brief

Format: WIDTH (record-fieldname)
WIDTH <record>

WIDTH followed by a recordname or fieldname returns its width in bits. For
example:

MOVCL;WIDTHFIELD2

Details

When a record-fieldname is given as the argument, WIDTH returns the
width of a record field as the number of bits in the record field.

Using the diagram under Shift-count again, WIDTH record-fieldname, can
be diagrammed as:

The WIDTH of FIELD1 equals 3.
The WIDTH of FIELD2 equals 6.
The WIDTH of FIELD3 equals 7.

— W I DTH 6

Record Fieldname WIDTH

Application

MOVCL,WIDTHFIELD2

The number of bits in FIELD2 is now in the count register.

page 10.77

When a record is given as the argument, WIDTH returns the width of a re
cord as the number of bits in the record.

WORD

W I DTH = 16

The WIDTH of this (record) equals 16.

Record WIDTH

NOTE: Though the diagram examples that were shown on these last few
pages for the Record Specific operators (Shift-count, MASK and WIDTH)
all used a16-bit record, the record length is not limited to16 bits.

Page 10.78

Arithmetic Operators

Brief

These arithmetic operators are used to combine elements of an expression:

+ + / — (unary)

MOD (returns remainder of division)

SHR, SHL (shift right or left)

Details

Eight arithmetic operators provide the common mathematical functions
(add, subtract, divide, multiply, modulo and negation), plus two shift

operators.

The arithmetic operators are used to combine operands to form an expres
sion that results in a data item or an address.

Except for + and — (binary), operands must be constants.

For plus (+), one operand must be a constant.

For minus (—), the first (left) operand may be a nonconstant, or both
operands may be nonconstants. But, the right may not be a nonconstant if
the left is constant.

Multiply

Divide

Modulo. Divide the left operand by the right operand and
return the value of the remainder (modulo). Both
operands must be absolute.

MOD

Page 10.79

Example:

MOV AX, 100 MOD 17

The value moved into AX will be OFH (decimal 15).

Shift Right. SHR is followed by an integer which
specifies the number of bit positions the value is to be
right shifted.

Example:

SHR

MOV AX, 1100000B SHR 5

The value moved into AX will be11B (03).

Shift Left. SHL is followed by an integer which specifies
the number of bit positions the value is to be left shifted.

Example:

SHL

MOVAX,0110BSHL5

The value moved into AX will be 011000000B (OCOH).

— (Unary Minus) In d icates that the following value is negative, as in a
negative integer.

Add. One operand must be a constant; one may be a
nonconstant.

Subtract the right operand from the left operand. The
first (left) operand may be a nonconstant, or both
operands may be nonconstants. But the right may be a
nonconstant only if the left is also a nonconstant and in
the same segment.

page 10.80

Relational Operators

Brief

These relational operators set up conditional directives:

EQ(=)
NE(<>)
LT(<)
LE(< =)
GT(>)
GE(> =)

Details

Relational operators compare two constant operands.

If the relationship between the two operands matches the operator, FFFFH
is returned.

If the relationship between the two operands does not match the operator,
a zero is returned.

Relational operators are most often used with conditional directives and
conditional instructions to direct program control.

EQ Equal. Returns true if the operands equal each other.

Not Equal. Returns true if the operands are not equal to eachNE
other.

Page 10.81

LT Less Than. Returns true if the left operand is less than the right
operand.

Less than or Equal. Returns true if the left operand is less than
or equal to the right operand.

LE

GT Greate r Than. Returns true if the left operand is greater than the
right operand.

GE Greate r than or Equal. Returns true if the left operand is greater
than or equal to the right operand.

Page 10.82

Logical Operators

Brief

These logical operators may be used in conditional directives or bit-for-bit
evaluations:

NOT AND OR XOR

Details

Logical operators compare two constant operands bitwise.

Logical operators compare the binary values of corresponding bit positions
of each operand to evaluate for the logical relationship defined by the logical
operator.

Logical operators can be used two ways.

1. To combine operands in a logical relationship. In this case, all bits in
the operands will have the same value (either 0000 or FFFFH). In fact,
it is best to use these values for true (FFFFH) and false (0000) for the
symbols you will use as operands because in conditionals anything
nonzero is true.

2. In b i twise operations. In this case, the bits are different, and the logical
operators act the same as the instructions of the same name.

Page 10.83

NOT

OR

AND

Logical NOT. Returns true if left operand is true and right is false
or if right is true and left is false. Returns false if both are true
or both are false.

Logical AND. Returns true if both operands are true. Returns
false if either operand is false or if both are false. Both operands
must be absolute values.

Logical OR. Returns true if either operand is true or if both are
true. Returns false if both operands are false. Both operands
must be absolute values.

Exclusive OR. Returns true if either operand is true and the
other is false. Returns false if both operands are true or if both
operands are false. Both operands must be absolute values.

XOR

Page 10.84

Expression Evaluation: Precedence Of Operators

Brief

Expressions are evaluated left to right for each of eleven levels of operator
precedence. Operators of equal precedence are then performed left to right.
Precedence hierarchy is:

1. LENGTH, SIZE, WIDTH, MASK
Entries inside: (), < ~, [i
Structure variable operand: <var).<field)

2. c o lon
3. P TR, OFFSET, SEG, TYPE, THIS
4. H IGH, LOW
5. 4,/, MOD, SHL, SHR
6 . + , — (unary and binary)
7. EQ, NE, LT, LE, GT, GE
8 . N OT
9 . A N D

10. OR, XOR
11. S HORT, .TYPE

Details

Expressions are evaluated with higher precedence operators first, then left
to right for equal precedence operators.

For example:

MOVAX, 101BSHL2~2=MOVAX, 00101000B

MOVAX,101BSHL (2~21=MOVAX,01010000B

SHL and + are equal precedence. Therefore, their functions are performed
in the order the operators are encountered (left to right).

Page 10.85

All operators in a single item have the same precedence, regardless of the
order listed within the item. Spacing and line breaks are used for visual clar
ity, not to indicate functional relations.

1. LENGTH, SIZE, WIDTH, MASK

Entries inside: parentheses ()
angle brackets < >
square brackets [i

structure variable operand: <variable>. <field>

2. s egment override operator: colon (:)

3. P TR, OFFSET, SEG, TYPE, THIS

4. HIGH, LOW

5. 4,/, MOD, SHL, SHR

6 . + , — (both unary and binary)

7. EQ, NE, LT, LE, GT, GE

8. L ogical NOT

9. L ogical AND

10. Logical OR, XOR

11. S HORT,. TYPE

Page 10.86

Application

The wide range of addressing modes and data types supported by MACRO
86 contribute to the efficiency of the programs developed with it. To make
optimum use of these capabilities, you will need to understand the full set
of operand choices described in this section. In most cases, it is the operand
structure, or the expression structure of combined operands, which deter
mines the functional addressing mode or the data type being accessed or
created. The attribute operators in particular exist to maximize the power of
the 16-bit architecture in your system. By familiarizing yourself with them,
you will be able to structure and access your program data in many powerful
ways not available in an eight-bit system.

Page 10.87

Action: Instructions and Directives

INTRODUCTION

The action field contains either an 8086 (8088) instruction mnemonic or a
MACRO-86 assembler directive.

Following a name field entry (if any), action field entries may begin in any
column. Specific spacing is not required. The only benefit of consistent
spacing is improved readability. If a statement does not have a name field
entry, the action field is the first entry.

The entry in the action field either directs the processor to perform a specific
function or directs the assembler to perform one of its functions.

page 10.88

MACRO-86

INSTRUCTIONS

Brief

The action field may contain either a directive to the assembler or an assem
bly language mnemonic. The action field may be entered in either of the first
two columns. If a label is present, it will be the second field; otherwise it will
be the first. Some mnemonics imply the operand. Others require the specifi
cation of one or two operands. Assembly language mnemonics are not de
tailed in this manual. They are listed in Appendices L and M.

Details

Instructions command the processor's actions. An instruction may have the
data and/or addresses it needs built into it, or data and/or addresses may
be found in the expression part of an instruction. For example:

opcode operand data data

opcode operand addr addr

s upp lied

supplied or found

supplied = part of the instruction

found = assembler inserts data and/or address from the information pro
vided by expression in instruction statements.

(opcode equates to the binary code for the action of an instruction)

Processor Action Control

Page 10.89

This manual does not contain detailed descriptions of the 8086/8088 in
struction mnemonics and their characteristics. For this, you need to consult
other texts:

1. Mor es, Stephen P, The 8086 Primer. Rochell Park, NJ: Hayden
Publishing Co., 1980.

2. Rector, Russel and George Alexv, The 8086 Book. Berkeley,
CA: Osbourne/McGraw-Hill. 1980.

3. The 8086 Family User's Manual. Santa Clara, CA: Intel Corpo
ration. 1980.

Appendices K and L contain an alphabetical listing and a grouped listing of
the instruction mnemonics, respectively. The alphabetical listing shows the
full name of the instruction. Following the alphabetical list is a list that groups
the instruction mnemonics by the number and type of arguments they take.
Within each group, the instruction mnemonics are arranged alphabetically.

page 10.90

MACRO-86

DIRECTIVES

Brief

Assembler directives occur in four functional categories: memory, condi
tional, macro, and listing. Appendix K contains a categorical list.

Details

Directives give the assembler directions for input and output, memory or
ganization, conditional assembly, listing and cross reference control, and
definitions.

The directives have been divided into groups by the function they perform.
Within each group, the directives are described alphabetically.

The groups are:

Memory Directives — Directives in this group are used to organize memory.
Because there is no "miscellaneous" group, the memory directives group
contains some directives that do not, strictly speaking, organize memory,
such as COMMENT.

Conditional Directives — Directives in this group are used to test conditions
of assembly before proceeding with assembly of a block of statements. This
group contains all of the IF (and related) directives.

Macro Directives — Directives in this group are used to create blocks of
code called macros. This group also includes some special operators and
directives that are used only inside macro blocks. The repeat directives are
considered macro directives for descriptive purposes.

Listing Directives — Directives in this group are used to control the format
and, to some extent, the content of listings that the assembler produces.

Page 10.91

Appendix K contains a table of assembler directives, also grouped by func
tion. Here below is an alphabetical list of all the directives that MACRO-86
supports:

ASSUME

COMMENT
.CREF

EVEN
EXITM
EXTERN

IRPC . RADIX
RECORD
REPT

DB
DD
DQ
DT
DW

GROUP

IF
IFB
IFDEF
IFDIF
IFE
IF IDN
IFNB
IFNDEF
IFi
IF2
INCLUDE
IRP

LABEL
. LALL
.LFCOND
.LIST
LOCAL

ELSE
END
END IF
ENDM
ENDP
ENDS
EQU
EQUAL SIGN(= l

NAME

ORG
%OUT

MACRO

.XALL

.XCREF

.XLIST

. TFCOND
TITLE

.SALL
SEGMENT
.SFCOND
STRUC
SUBTTL

PAGE
PROC
PUBLLIC
PURGE

Page 10.92

Memory Directives

ASSUME

Brief

Format: ASSUME<segreg>:<seg-name>[...]

or

ASSUME NOTHING

ASSUME takes two arguments separated by a colon. The first selects a seg
ment register: CS, DS, SS, or ES. The second provides the segment or
group name to be accessed through that register. The argument pair may
be repeated up to four times. If NOTHING is entered for the second argu
ment, a segment register must prefix every location reference. For example:

ASSUME CS: COD~ DS: STORA~ A

ASSUME CS:NOTHING

Details

ASSUME tells the assembler that the symbols in the segment or group can
be accessed using this segment register. When the assembler encounters
a variable, it automatically assembles the variable reference under the prop
er segment register. You may enter from one to four arguments to ASSUME.

Page 10.93

The valid seg-reg entries are:

CS, DS, ES, and SS.

The possible entries for seg-name are:

1. th e name of a segment declared with the SEGMENT directive

2. th e name of a group declared with the GROUP directive

3. an expression: either SEG variable-name or SEG label-name.

4. th e key word NOTHING. ASSUME NOTHING cancels all regis
ter assignments made by a previous ASSUME statement.

If ASSUME is not used or if NOTHING is entered for seg-name, each refer
ence to variables, symbols, labels, and so forth in a particular segment must
be prefixed by a segment register. For example, DS:FOO is used instead
of simply FOO.

Application

ASSUME DS: DATA, SS: DATA, CS: CGROUP, ES: NOTHING

Page 10.94

COMMENT

Brief

Format: COMMENT<delimiter> <text> <delimiter>

COMMENT allows you to enter a comment string of any length. Any delimi
ter other than a space may be used. The second occurrence of the delimiter
terminates the string.

Details

The first symbolic character (i.e., not a space, tab, non-printing character
or letter) encountered after COMMENT is the delimiter. The following
text comprises a comment block which continues until the next occurrence
of delimiter.

COMMENT permits you to enter comments about your program without en
tering a semicolon (;) before each line.

If you use COMMENT inside a macro block, the comment block does not
appear on your listing unless you also place the .CALL directive in your
source file.

Application

Using an asterisk as the delimiter, the format of the comment block would
be:

COMMENT ~

any amount of text entered
here as the comment block

; return to normal mode

Page 10.95

MACRO-86

DEFINE (BYTE, WORD, DOUBLE WORD, QUAD WORD, TEN

BYTES)

Brief

DB
DW
DD
DQ
DT

<exp>[,<exp>, • ..]
<exp>[, <exp>, • ..]
<exp>[,<exp>, • ..]
<exp>[,<exp>,...]
<exp>[,<exp>,...]

Format: <varname>
<varname>
<varname>
<varname>
<varname>

The DEFINE directives are entered in abbreviated form:

DB = BYTE
DW = WORD
DD = DOUBLE WORD
DQ = QUAD WORD
DT = TEN BYTES

A label or variable name may be assigned to the location. The number of
type units allocated equals the number of operands. The initial value of the
location is set to the value of the operand. This value must respect the size
of the defined storage. For example:

VAIL2lAME DB 255
VAK3lAME DW START

DD 'AB', 'CD'

Details

The DEFINE directives are used to define variables or to initialize portions
of memory.

If the optional varname is entered, the DEFINE directives define the name
as a variable. If varname has a colon, it becomes a NEAR label instead of
a variable. (Also see "Labels", Page 10.29 and "Variables" on Page 10.32.)

Page 10.96

MACRO-86

The DEFINE directives allocate memory in units specified by the second let
ter of the directive (each define directive may allocate one or more of its units
at a time):

DB allocates one byte (8 bits)
DW allocates one word (2 bytes)
DD allocates two words (4 bytes)
DQ allocates tour words (8 bytes)
DT allocates ten bytes

<exp> may be one or more of the following:

1. A c o nstant expression.

2. Th e character? for indeterminate initialization. Usually the? is
used to reserve space without placing any particular value into
it. (It is the equivalent of the DS pseudo-op in MACRO-80).

3. A n address expression (for DW and DD only).

4. A n ASCllstring (longer than 2 characters for DB only).

5. < e x p>DUP(?)

When this type of expression is the only argument to a define
directive, the define directive produces an uninitialized data
block. This expression with the? instead of a value results in
a smaller object file because only the segment offset is
changed to reserve space.

6. <e xp> DUP<exp>[...]

This expression, like item five, produces a data block, but it is
initialized with the value of the second <exp>. The first <exp>
must be a constant greater than zero and must not be a for ward
reference.

Page 10.97

Application

Example — Define Byte (DB):

NUIG3ASE

FILLER

DB 16

D B ? ; initial ize with
; indeterminate value

BUFFER
TABLE

ONE CHAR
MULT CHAR

MSG

DB

DB

DB

DB

DB

DB

DB

1

'M'

'NARC MIKE ZIBO PAUL BILL'

'MSGTEST', 13, 10 ; message, carriage return

0 DUP(?) ; indeterminate block
100 DUP (5 DUP (4), 7)

; 100 copies of bytes with values 4, 4, 4, 4, 4, 7

OCH ;form feed character

1, 2, 3, 4, 5, 6, 7

; and linefeed

NEWPAGE

ARRAY

Example — Define Word (DW):

ITEMS

SEGVAL

BSIZE
LOCATION

AREA

CLEARED

SERIES

DW T ABLE, TABLE+10, TABLEt20

DW OFFFOH
D W 4 " 12 8

DW T OTAL +1

DW 1 0 0 DUP(?)

DW 5 0 DUP (0)

DW 2 DUP(2,3 DUP(BSIZE))

;two words with the byte values

; 2, BSIZE, BSIZE, BSIZE, 2, BSIZE, BSIZE, BSIZE
DW S TART TAB — END TAB

; difference of two labels is a constant

DISTANCE

Page 10.98

Example — Define Double word (DD):

DBPTR DD T A BLE

SECPER

; 16-bit OFFSET, then 16-bit

; SEG base value
; arithmetic is performed
;by the assembler

DD 60 ~ 60~24

LIST

HIGH

FLOAT

DD ' XY ', 2 DUP (?)
DD 42 9 4967295

DD 6. 7 35E2
; maximum
;floating point

Example — Define Quad word (DQ)

LONGUE AL

STRING

HIGH

LOW

SPACER

FILLER

3. 141597 ; decimal makes it real
IABI ;no more than 2 characters
18446744073709551615 ;maximum
— 18446744073709551615 ;minimum
2 DUP(?) ; uninitial ized data
1 DUP(?,?) ; initialized with

DQ
DQ
DQ
DQ
DQ
DQ

; indeterminate value

Example — Define Ten bytes (DT):

ACCUMULATOR

STRING
PACKEDJ)ECIMAL

FLOATINGP OINT

DT

DT

DT

DT

'CD' ;no more than 2 characters
1234567890

3.1415926

page 10.99

END

Brief

Format: END [<exp)]

END must be the last line of a source file. It may be followed by an expres
sion which evaluates to the entry address of the program. If separate mod
ules are linked, only the main module's END statement contains an expres
sion.

Details

The END statement specifies the end of the program.

If <exp> is present, it is the start address of the program. If several modules
are to be linked, only the main module may specify the start of the program
with the END <exp> statement.

If <exp> is not present, then no start address is passed to LINK for that pro
gram or module.

Application

END START ; START is a label somewhere in the program.

page i0.100

MACRO-86

EQU

Format: <name> EQU <exp>

EQU permanently assigns the value of the expression following it to the
name which precedes it. EQU is also used to create synonyms for opcodes.
For example:

FOO EQU 256
CBD EQU AAD;REDEFINED OPCODE

Details

EQU assigns the value of the expression to the name. If the expression is
an external symbol, an error is generated. If name already has a value, an
error is generated. If you want to be able to redefine a name in your program,
use the equal sign (=) directive instead.

In many cases, EQU is used as a primitive text substitution, like a macro.

<exp> may be any one of the following:

1. A symbol, name becomes an alias for the symbol in the expres
sion. Shown as an alias in the symbol table.

2. A n instruction name. Shown as an opcode in the symbol table.

3. A va lid expression. Shown as a number or L (label) in the sym
bol table.

4. A n y other entry, including text, index references, segment pre
fix and operands. Shown as text in the symbol table.

page 10.101

Application

F00 EQU BAZ

B EQU [BP 4 8}
PS EQU DS: [BPWS]

; must be def ined in this

;moduleor anerrorresults

;indexreference (Text)
;segmentprefix
; andoperand (Text)
; an instructionnameCBD EQU AAD

(opcode)
t

ALL EQU DEFREC(2, 3, 4) ; DEFREC= recordname

; (2 ,3 ,4) = initialvalues

; for fieldsof record

;constantvalue
;floatingpoint (text)

EMP EQU 6

FPV EQU 6. 3E7

page 10.102

EQUAL SIGN (=)

Brief

Format: <n ame> = <exp>

The equal sign is similar to the EQU statement, except it permits the name
to be redefined any number of times.

Details

<exp> must be a valid expression. It is shown as a Number or L (label) in
the symbol table (same as <exp> type 3) under the EQU directive above.

The equal sign (=) allows you to set and to redefine symbols. The equal sign
is like the EQU directive, except that you can redefine the symbol without
generating an error. Redefinition may take place more than once, and rede
finition may refer to a previous definition.

Application

FOO = 5

FOO EQU 6;

; the same as FOOEgU 5

;error, FOOcannotbe
;redefinedbyEgU
;FOOcanberedefined
; onlybyanother =

;redefinitionmayrefer

;toapreviousdefinition

FOO+3

Page 10.103

EVEN

Brief

Format: EVEN

EVEN adds one NOP, if necessary, to advance the program counter to an
even value. For example:

;PC = ANY ODD VALUE

EVEN;PC = NEXT EVEN VALUE

EVEN; PC UNCHANGED

Details

The EVEN directive causes the program counter to go to an even boundary;
that is, to an address that begins a word. If the program counter is not al
ready at an even boundary, EVEN causes the assembler to add a NOP in
struction so that the counter reaches an even boundary.

An error results if EVEN is used with a byte aligned segment.

Application

Before: The PC points to 0019 hex (25 decimal)

After: The PC points to 1A hex (26 decimal), 0019 hex now contains an
NOP instruction.

page 10.104

MACRO-86

EXTRN

Brief

Format: EXTRN <name>:<type>[,...]

EXTRN cues the assembler that a symbol will be used which is defined in
a separate module. It takes two arguments separated by a colon. The first
is the symbol name; the second is its type. The assembler assumes the sym
bol occurs within the same segment as the EXTRN directive unless an alter
nate segment is specified.

Details

name is a symbol that is defined in another module. Name must have been
declared PUBLIC in the module where name is defined.

Type may be any one of the following, but must be a valid type for name:

1. BYTE, WORD, or DWORD

2. N EAR or FAR for labels or procedures (defined under a PROC
directive)

3. A B S for pure numbers (implicit size is WORD, but includes
BYTE).

Unlike the 8080 assembler, placement of the EXTRN directive is significant.
If the directive is given with a segment, the assembler assumes that the sym
bol is located within that segment. If the segment is not known, place the
directive outside all segments, thenuse either:

ASSUME <seg-req>:SEG <name>

or an explicit segment prefix.

page 10.105

NOTE: If a mistake is made and the symbol is not in the segment, LINK takes
the offset relative to the given segment, if possible. If the real segment is
more than 64K bytes away from the reference, LINK may find the definition.
If the real segment is more than 64K bytes away, LINK will fail to make the
link between the reference and the definition and will not return an error mes
sage.

Application

In Same Segment: In Another Segment:

In Module 1:

CSEG SE GMENT

In Module 1:
CSEGA S EGMENT

PUBLIC TAGFPUBLIC TAGN

TAGF:TAGN:

CSEGA E NDSC SEG END S

In Module 2:In Module 2:

EXTRN TAGF: FARCSEG SE GMENT
CSEGB S EGMENTEXTRN TAGN: NEAR

JMP TAGFJMP TAGN
CSEGB E NDSC SEG END S

Page 10.106

MACRO-86

GROUP

Brief

Format: <name> GROUP <seg-name>[...]

GROUP is preceded by a group name and followed by one or more segment
names. It causes the assembler to reference each of the segments to the
same base address, which has the group name as its label. The entire group
may be accessed through a single segment register. Group size is limited
to 64k.

Details

The GROUP directive collects the segments named after GROUP (<seg
name>) under one name. The GROUP is used by LINK so it knows which
segments should be loaded together. The order in which the segments are
named here does not influence the order in which the segments are loaded;
that is, handled by the CLASS designation of the SEGMENT directive, or
by the order you name object modules in response to the LINK Object mod
ule prompt.

All segments in a GROUP must fit into 64K bytes of memory. The assembler
does not check this at all, but leaves the checking to LINK.

<seg-name> may be one of the following:

1. A s egment name, assigned by a SEGMENT directive. The
name may be a forward reference.

2. A n expression: either SEG <var> or SEG <label)

Both of these entries resolve themselves to a segment name.

Page 10.107

Once you have defined a group name, you canuse the name:

1. As an immediate value:

MOV AX, DGROUP

MOV DS,AX

DGROUP is the paragraph address of the base of DGROUP.

2. In ASSUME statements:

ASSUME DS: DGROUP

The DS register cannot be used to reach any symbol in any seg
ment of the group.

3. A s an operand prefix (for segment override):

MOV BX, OFFSET DGROUP: FOO

DW DGROUP: FOO

DD DGROUP: FOO

DGROUP: forces the offset to be relative to DGROUP, instead
of to the segment in which FOO is defined.

Page 10.108

Application

Example (using GROUP to combine segments):

In Module A:

C GROUP GR OUP

XXX SEGMENT

ASSUME CS: CGROUP

ENDS

SEGMENT

ENDS

END

In Module B:

zzzG ROUP GROUP

zzz SEGMENT

ASSUME CS: CGROUP

zzz

page 10.109

MACRO-86

INCLUDE

Brief

Format: INCLUDE <filename>

INCLUDE followed by a filename causes the assembler to read in and as
semble the entire contents of a secondary source file at the current location.
The letter C flags each line of the secondary file in the listing. Assembly
aborts if the file is nonexistent or defective. Nesting of INCLUDE statements
is permitted but discouraged.

Detail

The INCLUDE directive inserts source code from an alternate assembly lan
guage source file into the current source file during assembly. Use of the
INCLUDE directive eliminates the need to repeat an often-used sequence
of statements in the current source file.

The filename is any valid file specification for the operating system. If the
device designation is other than the default, the source filename specifica
tion must include it. The default device designation is the currently logged
drive or device.

The included file is opened and assembled into the current source file im
mediately following the INCLUDE directive statement. When end-of-file is
reached, assembly resumes with the next statement following the INCLUDE
directive.

page 10.110

Nested includes are allowed (the file inserted with an INCLUDE statement
may contain an INCLUDE directive). However, this is not a recommended
practice with small systems because of the amount of memory required.

The file specified must exist. If the file is not found, an error is returned,and
the assembly aborts.

On a MACRO-86 listing, the letter "C" is printed between the assembled
code and the source line on each line assembled from an included file. See
"Formats of Listings and Symbol Tables", Page 10.73, for a description of
listing file formats.

Application

INCLUDE ENTRY
INCLUDE B: RECORD. TST

Page 10. l11

LABEL

Brief:

Format: < n ame> LABEL <type>

LABEL is functionally identical to the THIS directive. It is normally used to
define a label or data area with more than one type. This permits access
as an alternate type without the use of the PTR directive.

Details:

By using LABEL to define a <name>, you cause the assembler to associate
the current segment offset with <name>.

The item is assigned a length of one.

<type> varies depending on the use of name.
<name> may be used for code or for data.

1. Fo r code: (for example, as a JMP or CALL operand)

type may be either NEAR or FAR. Name cannot be used in data
manipulation instructions without using a type override.

If you want, you can define a NEAR label using the name form
(the LABEL directive is not used in this case). If you are defining
a BYTE or WORD NEAR label, you can place the name in front
of a Define directive.

Page 10.112

When using a LABEL for code (NEAR or FAR), the segment
must be addressable through the CS register.

Example — for code:

SUBRTF L A BEL FAR

SUBRT: (first instruction); colon = NEAR label

2. Fo r data:

Type may be BYTE, WORD, DWORD, (structure-name), or
<record-name>. When STRUC or RECORD name is used,
the name is assigned the size of the structure or record.

Example — For Data:

BARRAY LABEL BY TE
ARRAY D W 100 DUP (0)

ADD AL,BARRAY[99];ADD 100th byte to AL

ADD AX, ARRAY [98];ADD 50th word to AX

By defining the array two ways, you can access entries either by byte or by
word. Also, you can use this method for STRUC. It allows you to place your
data in memory as a table, and to access it without the offset of the STRUC.

Defining the array two ways also permits you to avoid using the PRT
operator. The double defining method is especially effective if you access
the data different ways. It is easier to give the array a second name than
to remember to use PTR.

page 10.113

NAME

Brief

Format: NAME < modu l e-name>

NAME followed by a module name gives the module a name which is used
as a reference by LINK. Only the first six characters are significant. If the
NAME directive is absent, a name is formed from the TITLE statement.

Details

Module-name must not be a reserved word. The module name may be any
length, but MACRO-86 uses only the first six characters and truncates the
rest.

The module name is passed to LINK, but otherwise has no significance for
the assembler. MACRO-86 does check if more than one module name has
been declared.

Every module has a name. MACRO-86 derives the module name from:

1. A v a l id NAME directive statement

2. If the module does not contain a NAME statement, MACRO-86
uses the first six characters of a TITLE directive statement. The
first six characters must be legal as a name.

Application

NAME CURSOR

Page 10.1 l4

ORG

Brief

Format: ORG (exp)

ORG followed by an expression sets the location counter to the value of the
expression within the current segment. An expression is invalid if it cannot
be evaluated on pass one. For example:

= START OF SEGMENT

;SKIP 20 BYTES

; FOLLOWED BY...
;WRAPS TO ORG 0

ORG 0

ORG $ +20
ORG 1

ORG $ +OFFFFH

Details

The location counter is set to the value of the expression, and the assembler
assigns generated code starting with that value.

All names used in the expression must be known on pass one. The value
of the expression must either evaluate to an absolute or must be in the same
segment as the location counter.

Application

ORG 120H ; 2-byte absolute value

; maximum OFFFFH

; skip twobytesORG $+2

Page 10.115

Example: -ORG to a boundary (conditional):

CSEG SEGMENT PAGE

BEGIN

IF (6-BEGIN) MOD 256 ; if notalreadyon

; 256byteboundary
ORG ($-BEGIN)+256-(($-BEGIN) MOD 256)

ENDIF

CSEG ENDS

ENDIF

See "Conditional Directives", Page 10.135, for an explanation of conditional
assembly.

page 10.116

PROC

Brief

PROC [NEAR]Format: < p rocname>
or FAR

RET
ENDP<procname>

PROC takes a preceding procedure name and an optional following NEAR
or FAR attribute. NEAR is the default. Its use enhances structured coding
by naming modules and groups of modules. A module may be entered in
sequence or from a CALL or JUMP. Sequential procedures may be nested.
The NEAR or FAR attribute simplifies coding by specifying the addressing
mode required to locate a CALL or JUMP entered procedure. When de
clared in a PUBLIC directive, a procedure may be referenced externally.

Details

The default, if no operand is specified, is NEAR. Use FAR if:

The procedure name is an operating system entry point.

The procedure is called from code which has another ASSUME CS
value.

Each PROC block should contain a RET statement.

The PROC directive serves as a structuring device to make your programs
more understandable.

page 10.117

MACRO-86

The PROC directive, through the NEAR/FAR option, informs CALLs to the
procedure to generate a NEAR or a FAR CALL and RETs to generate a
NEAR or a FAR RET. PROC is used for coding simplification so that you
do not have to worry about NEAR or FAR for CALLs and RETs.

A NEAR CALL or RETURN changes the IP but not the CS register. A FAR
CALL or RETURN changes both the IP and the CS registers.

Procedures are executed either in-line, from a JMP, or from a CALL.

PROCs may be nested, which means that they are put in line.

Combining the PUBLIC directive with a PROC statement (both NEAR and
FAR), permits you to make external CALLs to the procedure or to make
other external references to the procedure.

Application

PUBLIC FA RNAME

PROC FAR

CALL NE A RENAME
RET

ENDP

PUBLIC N E AILNAME

P ROC NEA R

RET

ENDP

The second subroutine above can be called directly from a NEAR segment
(that is, a segment addressable through the same CS and within 64K):

A FAR segment (that is, any other segment that is not a NEAR segment)
must call to the first subroutine, which then calls the second; an indirect call:

CALL FARNAME

Page 10.118

PUBLIC

Brief

Format: PUBLIC <s y mbol) [...]

PUBLIC followed by one or more names declares those names to be avail
able to external modules. If the name is a symbol, it must evaluate to an in
teger no larger than two bytes. PUBLIC must be used within the module
where its operands are defined.

Details

Place a PUBLIC directive statement in any module that contains symbols
you want to use in other modules without defining the symbol again. PUBLIC
makes the listed symbol(s), which are defined in the module where the
PUBLIC statement appears, available for use by other modules to be linked
with the module that defines the symbol(s). This information is passed to
LINK.

The symbol may be a number, a variable, or a label (including PROC labels).

The symbol may not be a register name or a symbol defined (with EQU) by
floating point numbers or by integers larger than two bytes (non integers or
values that are greater than OFFFFH).

page 1 0. 1 1 9

Application

GETINFO
PUBLIC
PROC

PUSH

MOV

GETINFO
FAR

BP

BP, SP

BP

;save caller's register

; get address parameters
;body of subroutine
;restore caller's reg
;return to caller

POP

RET

ENDPGETINFO

Example: — illegal PUBLIC:

PUBLIC PIEBALD, HIGH VALUE

PIEBALD EQ U 3. 1416

HIGILVALUE EQU 999 999999

Page 10.120

.RADIX

Brief

Format: .RADIX (exp>

The .RADIX directive, followed by an expression which evaluates to two,
eight, ten, or sixteen, sets the input radix to that base. The default radix is
ten. Values following a DEFINE statement are not affected by the .RADIX
directive. Unless they are decimal, their radix must be individually specified.

Details

The default input base (or radix) for all constants is decimal. The .RADIX
directive permits you to change the input radix to any base in the range two
to 16.

The expression is always in decimal radix, regardless of the current input
radix.

Example:

MOV BX,OFFH
. RADIX 1 6

MOV BX, O FF

The two MOVs in this example are identical.

Page 10.121

The . RADIX directive does not affect the generated code values placed in
the.OBJ.LST, or.CRF output files.

The .RADIX directive does not affect the DD, DQ, or DT directives. Numeric
values entered in the expression of these directives are always evaluated
as decimal unless a data type suffix is appended to the value.

Application

. RADIX 16

NUMHAND DT

H OUND D i l
COOLHAND DD

773 ;773 = decimal

773g ;773 = octal here only

773H ;now 773 = hexadecimal

page 10.122

MACRO-86

RECORD

Brief

Format:
<recordname> RECORD <fieldname>:<width>[=,exp>],[. • .]

RECORD defines a data type in which one or two bytes contain up to sixteen
named fields. The WIDTH, MASK, and shift count functions isolate specific
fields. RECORD takes a preceding recordname and three succeeding
operands: the fieldname, which names a field, the width, which defines its
size in bits. An optional expression initializes the value. The operands are
repeated for each field. Forward references are not allowed. The first field
defined occupies the highest order position in the RECORD. During assem
bly the entire RECORD is right-shifted, if necessary, to make the lowest
order bit significant. For example:

ZOODATA RECORD COW : 3 = 21 , LI ON : 2

COW is the higher order field. It is initialized to 21. Bits five to seven are un
used. Allocate memory for a RECORD with the expression:

ANIMALS ZOODATA <,3);LION = 3

The expression in the angle brackets is optional but the brackets must be
entered. Consecutive commas skip over fields to be ignored. Access a spe
cific field this way:

MOV DL, ANIMALS

AND DL, MASK COWS
MOV CL,COWS

SHR DL,CL
MOV CL, WIDTH COWS

;WHOLE RECORD IN DL

;BITS OUTSIDE COWS= 0

; SHIFT COUNT IN CL

;COWS IN LO ORDER BITS

; ACTUAL 4 OF BITS

Page 10.123

MACRO-86

Details

The fieldname is the name of the field. Width specifies the number of bits
in the field defined by the fieldname. The expression contains the initial (or
default) value for the field. Forward references are not allowed in a
RECORD statement.

The fieldname becomes a value that can be used in expressions. When you
use a fieldname in an expression, its value is the shift count to move the field
to the far right. Using the MASK operator with the fieldname returns a bit
mask for that field.

The width is a constant in the range one to 16 that specifies the number of
bits contained in the field defined by the fieldname. The WIDTH operator re
turns this value. If the total width of all declared fields is larger than eight-bits,
then the assembler uses two-bytes. Otherwise, only one-byte is used.

The first field you declare goes into the most significant bits of the record.
Successively declared fields are placed in the succeeding bits to the right.
If the fields you declare do not total exactly 8-bits or exactly 16 bits, the entire
record is right shifted so that the last bit of the last field is the lowest bit of
the record. Unused bits are in the high end of the record.

Application

FOO HECORD HIGH: 4, MID: 3, LOW: 3

Initially, the bit map would be:

~ H I GH ~ M I 0 LOW

Page 10.124

MACRO-86

Total bits >8 means use a word; but total bits <16 means right shift, place
undeclared bits at high end of word. Thus:

0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 ~ M A S K

HIGH

W IDTH

MID LOW M

shift count
not

declared

The expression contains the initial value for the field. If the field is at least
7 bits wide, you can use an ASCllcharacter as the expression.

For example:

HIGH' 7

To initialize records, use the same method used for DB. The format is:

[<name>] <recordname> <[exp][...]>

OI'

[<name>] <recordname> [<exp> DUP(<[exp][...]>)

The name is optional. When given, name is a label for the first byte or word
of the record storage area.

The recordname is the name used as a label for the RECORD directive.

The exp (both forms) contains the values you want placed into the fields of
the record. In the latter case, the parentheses and angle brackets are re
quired only around the second exp (following DUP). If [exp] is left blank,
either the default value applies (the value given in the original record defini
tion), or the value is indeterminate (when not initialized in the original record
definition). For fields that are already initialized to values you want, place
consecutive commas to skip over (use the default values of) those fields.

Page 10.125

For example:

FOO<,, 7>

From the previous example, the seven would be placed into the LOW field
of the record FOO. The fields HIGH and MID would be left as declared (in
this case, uninitialized).

Records may be used in expressions (as an operand) in the form:

recordname< [value [....]] >

The value entry is optional. The angle brackets must be coded as shown,
even if the optional values are not given. A value entry is the value to be
placed into a field of the record. For fields that are already initialized to
values you want, place consecutive commas to skip over (use the default
values of) those fields, as shown above.

FOO RECORD H I GH: 5, MID: 3, LOW: 3

BAX FOO

JANE F00

< > ;leave indeterminate here

10DUP(<16.7>l ;HIGH=16,MID=7,

;LOW=?

MOV DX,OFFSET JANE[2]

; get beginning record address
DX, MASK MID

CL, MID

DX, CL

CL, WIDTH MID

AND

MOV

SHR

MOV

Page 10.126

MACRO-86

SEGMENT

Brief

Format:
<segname> SEGMENT [<align>] [<combine>] [< 'class'>]

<seg name> ENDS

SEGMENT and ENDS define the beginning and end of a program segment.
Each is preceded by the same segment name. SEGMENT takes up to three
optional operands which select memory map parameters. Code segments
may be nested. They may not partially overlap. The assembler treats the
nested segment as if it followed the macro segment.

Details

At runtime, all instructions that generate code and data are in separate seg
ments. Your program may be a segment, part of a segment, several seg
ments, parts of several segments, or a combination of these. If a program
has no SEGMENT statement, a LINK error (invalid object) results at link
time.

The segname must be a unique, legal name, and it must not be a reserved
wor'd.

Align may be PARA (paragraph-default), BYTE, WORD, or PAGE.

Combine may be PUBLIC, COMMON, AT <exp>, STACK, MEMORY, or
no entry (which defaults to not combinable, called Private in the LINK chap
ter).

The class name is used to group segments at link time.

All three operands are passed to LINK.

Page 10.127

MACRO-86

The alignment tells the linker on what kind of boundary you want the seg
ment to begin. The first address of the segment for each alignment type is:

PAGE — address is xxxOOH (low byte is 0)
P ARA — address is x xxxOH (low n ibble i s 0) b i t ma p

WORD — address is xxxxeH (e= even number;low bit is 0)
BYTE — address is xxxxxH (place anywhere)

XXXXOOOO

The combine t~, pe tells LINK how to arrange the segments of a particular
class name. The segments are mapped as follows for each combine type:

None (not combinable or Private)

QA H
A Private segments are loaded sepa

rately and remain separate. They may
be physically continuous but not logi
cally, even if the segments have the
same name. Each private segment
has its own base address.

H

Public and Stack

Public segments of the same name
and class name are loaded continu
ously. Offset is from beginning of first
segment loaded through last segment
loaded. There is only one base ad
dress for all public segments of the
same name and class name. (Com
bine type stack is treated the same as
public. However, the stack pointer is
set to the first address of the first stack
segment. LINK requires at least one
stack segment.)

H
H

page I 0.1 28

MACRO-86

Common

Common segments of the same
name and class name are loaded
overlapping one another. There is
only one base address for all common
segments of the same name. The
length of the common area is the
length of the longest segment.

H
H

Ostensibly, the memory combine type causes the segment(s) to be placed
as the highest segments in memory. The first memory combinable segment
encounter is placed as the highest segment in memory. Subsequent seg
ments are treated the same as common segments.

NOTE: This feature is not supported by LINK. LINK treats Memory seg
ments the same as public segments.

AT (exp)

The segment is placed at the PARAGRAPH address specified in the expres
sion. The AT type may not be used to force loading at fixed addresses.
Rather, the AT combine type permits labels and variables to be defined at
fixed offsets within fixed areas of storage, such as ROM or the vector space
in low memory.

NOTE: This restriction is imposed by LINK and Z-DOS.

C/ass names must be enclosed in quotation marks. Class names may be
any legal name.

Segment definitions may be nested. When segments are nested, the as
sembler acts as if they are not and handles them sequentially by appending
the second part of the split segment to the first. At ENDS for the split seg
ment, the assembler takes up the nested segment as the next segment,
completes it, and goes on to subsequent segments. Overlapping segments
are not permitted.

page 10.129

Application

A SEGMENTA SEGMENT

A ENDS

B SEGMENT
B SEGMENT

B ENDS
B ENDS
A SEGMENT

A ENDS

A ENDS

The following arrangement is not allowed:

A SEGMENT

B SEGMENT

A ENDS ; This is illegal!

B ENDS

Page 10.130

Example:

In Module A:

SEGA SEGMENT PUBLIC 'CODE'

ASSUME CS: SEGA

SEGA ENDS

END

In Module B:

SEGA SEGMENT

ASSUME

PUBLIC 'CODE'

CS: SEGA

; LINK adds this segment to same

; named segment inmodule A land
; others) if class name is the same.

SEGA ENDS

END

page 10.131

STRUC

Brief

Format:

STRUC<structurename>

ENDS<structurename>

STRUC and ENDS define the beginning and end of a structure data type.
Each directive is preceded by the same structurename. Within the structure
block, any number of DEFINE statements describe the separate fields.
These DEFINE statements plus their associated names, operands and
comments are the only legal entries. An optional preceding name serves as
a fieldname within the structure. The operand(s) initialize its value. A field
with more than one operand cannot be overridden in the allocation state
ment. Create a structure like this:

FLOWERS STRUC

DW ROSE, TULIP, DAISY

DB 0,0,255
DB 16

ENDS

INDEX

INDEX2

FLOWERS

Allocate memory to a structure like this:

GARDEN FLOWERS <,, 32); OPTIONAL OVERRIDE

Only INDEX2 is overrideable. Access a structure like this:

MOV AL, GARDEN. INDEX2

Page 1 0.1 32

MACRO-86

Details

The STRUC directive is much like RECORD, except that STRUC has a mul
tiple-byte capability. The allocation and initialization of a STRUC block is the
same as for RECORDs.

Inside the STRUC/ENDS block, the DEFINE directives (DB, DW, DD, DQ,
DT) may be used to allocate space. The DEFINE directives and comments
set off by semicolons (;) may be used to allocate space. The DEFINE direc
tives and comments set off by semicolons (;) are the only statement entries
allowed inside a STRUC block.

Any label on a DEFINE directive inside a STRUC/ENDS block becomes a
fieldname of the structures. (This is how structure fieldnames are defined.)
Initial values given to fieldnames in the STRUC/ENDS block are default
values for the various fields. These values of the fields are one of two types:
overrideable or not overrideable. A simple field, a field with only one entry
(but not a DUP expression), is overrideable. A multiple field, a field with more
than one entry is not overrideable.

For example:

F OO DB 1, 2 ; is not overrideable

BAZ DB 1 0 DUP(?) ; is not overrideable
ZOO DB 5 ; is overrideable

If the expression following the DEFINE directive contains a string, it may be
overridden by another string. However, if the overriding string is shorter than
the initial string, the assembler pads it with spaces. If the overriding string
is longer, the assembler truncates the extra characters.

Usually, structure fields are used as operands in some expression. The for
mat for a reference to a structure field is:

<variable>. <field>

Page 10.133

variable represents an anonymous variable, usually set up when the struc
ture is allocated. To allocate a structure, use the structure name as a direc
tive with a label (the anonymous variable of a structure reference) and any
override values in angle brackets:

FOO STRUC

FOO ENDS

G00 FOO <, 7,, ' JOE ' >

The .<field) represents a label given to a DEFINE directive inside a
STRUC/ENDS block (the period must be coded as shown). The value of the
field is the offset within the addressed structure.

Page 10.134

Application

To define a structure:

S
FIELD1

FIELD2

FIELD3
FIELD4

S

STRUC
DB

DB

DB

DB
ENDS

;not overrideable
;not overrideable
; overrideable
;overrideable

1,2
10 DUP l? I

5

DOBOSKY '

The DEFINE directives in this example define the fields of the structure and
the order corresponds to the order values are given in the initialization list
when the structure is allocated. Every DEFINE directive statement line in
side a STRUC block defines a field, whether or not the field is named.

To allocate the structure:

DBAREA S (, , 7 , 'ANDY') ;overrides 3rdand5th
;fieldsonly

To refer to a structure:

MOV
MOV

AL, [BX] . FIELD3
AL, DBAREA. F I ELD3

Page 10.135

Conditional Directives

Brief

Format: IF
IFE
IF1
IF2
IFDEF
IFNDEF
IFB
IFNB
IFIDN
IFDIF
ELSE
ENDIF

<exp>
<exp>

<symbol>
<symbol>
<arg>
<arg>
<arg1>,<arg2>
<arg1>,<arg2>

Conditional directives permit a block of code to be assembled only if a test
set up by the programmer returns true. The optional ELSE clause specifies
an alternate block to be assembled if the test returns false. Conditionals may
be nested to 255 levels. All arguments must be known on pass one. All ex
pressions must contain only predefined values. An expression, which must
evaluate to an absolute, is true if it evaluates to non-zero. The structural for
mat is:

IFxxxx

[ELSE

ENDIF

Page 10.136

MACRO-86

Details

Conditional directives allow you to design blocks of code which test for spe
cific conditions then proceed accordingly.

AII conditionals follow the format:

IFxxxx [argument]

[ELSE

]
ENDIF

Each IFxxxx must have a matching ENDIF to terminate the conditional.
Otherwise, an "unterminated conditional" message is generated at the end
of each pass. An ENDIF without a matching IF causes error code 8, "Not
in conditional block".

Each conditional block may include the optional ELSE directive, which al
lows alternate code to be generated when the opposite condition exists.
Only one ELSE is permitted for a given IF. An ELSE is always bound to the
most recent, open IF. A conditional with more than one ELSE or an ELSE
without a conditional causes error code 7, "Already had ELSE clause".

Conditionals may be nested up to 255 levels. Any argument to a conditional
must be known on pass one to avoid Phase errors and incorrect evaluation.
For IF and IFE the expression must involve values which were previously
defined, and the expression must be Absolute. If the name is defined after
an IFDEF or IFNDEF, pass one considers the name to be undefined, but
considers it defined on pass two.

Page 1 0.1 37

MACRO-86

The assembler evaluates the conditional statement to TRUE (which equals
any non-zero value), or to FALSE (which equals OOOOH). If the evaluation
matches the condition defined in the conditional statement, the assembler
either assembles the whole conditional block or, if the conditional block con
tains the optional ELSE directive, assembles from IF to ELSE; the ELSE to
ENDIF portion of the block is ignored. If the evaluation does not match, the
assembler either ignores the conditional block completely or, if the condi
tional block contains the optional ELSE directive, assembles only the ELSE
to ENDIF portion; the IF to ELSE portion is ignored.

IF <exp> If the expression evaluates to nonzero, the statements within the
conditional block are assembled.

IFE <exp> If the expression evaluates to 0, the statements in the condi
tional block are assembled.

IF1 Pass one Conditional. If the assembler is in pass one, the statements
in the conditional block are assembled. IF1 takes no expression.

IF2 Pass two Conditional. If the assembler is in pass two, the statements
in the conditional block are assembled. IF2 takes no expression.

IFDEF <symbol> If the symbol is defined or has been declared External,
the statements in the conditional block are assembled.

IFNDEF <symbol> If the symbol is not defined or not declared External,
the statements in the conditional block are assembled.

Page 10.138

MACRO-86

IFB <arg) The angle brackets around the argument are required.

If the argument is blank (none given) or null (two angle brackets with nothing
in between, < >), the statements in the conditional block are assembled.

IFB (and IFNB) are normally used inside macro blocks. The expression fol
lowing the IFB directive is typically a dummy symbol. When the macro is
called, the dummy is replaced by a parameter passed by the macro call. If
the macro call does not specify a parameter to replace the dummy following
IFB, the expression is blank, and the block is assembled. (IFNB is the oppo
site case.)

IFNB <arg> The angle brackets around the argument are required.

If the argument is not blank, the statements in the conditional block are as
sembled.

IFNB (and IFB) are normally used inside macro blocks. The expression fol
lowing the IFNB directive is typically a dummy symbol. When the macro is
called, the dummy is replaced by a parameter passed by the macro call. If
the macro call specifies a parameter to replace the dummy following IFNB,
the expression is not blank, and the block is assembled. (IFB is the opposite
case.)

IFIDN <arg1>,<arg2) The angle brackets around the arguments are re
quired.

If the string in argument one is identical to the string the argument two, the
statements in the conditional block are assembled.

IFIDN (and IFDIF) are normally used inside macro blocks. The expressions
following the IFIDN directive are typically two dummy symbols. When the
macro is called, the dummies are replaced by parameters passed by the
macro call. If the macro call specifies two identical parameters to replace
the dummies, the block is assembled. (IFDIF is the opposite case.)

Page 10. l39

IFDIF <arg1>,<arg2> The angle brackets around the two arguments are
required.

If the string in argument one is different from the string in argument two, the
statements in the conditional block are assembled.

IFDIF (and IFIDN) are normally used inside macro blocks. The expressions
following the IFDIF directive are typically two dummy symbols. When the
macro is called, the dummies are replaced by parameters passed by the
macro call. If the macro call specifies two different parameters to replace
the dummies, the block is assembled. (IFIDN is the opposite case.)

ELSE The ELSE directive allows you to generate alternate code when the
opposite condition exists. May be used with any of the conditional directives.
Only one ELSE is allowed for each IFxxxx conditional directive. ELSE takes
no expression.

ENDIF This directive terminates a conditional block. An ENDIF directive
must be given for every IFxxxx directive used. ENDIF takes no expression.
ENDIF closes the most recent, unterminated IF.

page 10.140

Macro Directives

Brief

Source code blocks used repeatedly within a program can be entered once
as a "macro definition." A one line "macro call" causes the assembler to in
sert the code at any desired point in the program. Nesting of macro calls is
limited only by memory size. These are the macro directives of MACRO-86:

MACRO ENDM EXITM LOCAL PURGE REPT IRP IRPC

These are the special macro operators:

&

Details

The macro directives allow you to write blocks of code which can be re
peated without recoding. The blocks of code begin with either the macro def
inition directive or one of the repetition directives and end with the ENDM
directive. All of the macro directives may be used inside a macro block. In
fact, nesting of macros is limited only by memory.

The macro directives of the MACRO-86 macro assembler include:

macro definition:
MACRO

termination:
ENDM
EXITM

unique symbols within macro blocks:
LOCAL

Page 10. l41

undefine a macro:
PURGE

repetitions:
REPT
IRP
IRPC

(repeat)
(indefinite repeat)
(indefinite repeat character)

The macro directives also include some special macro operators:

&

page 10.142

MACRO-86

Macro Definitions

Brief

Format: <n ame) MACRO [<dummy)...]

ENDM

MACRO is the first line of a macro definition. It is preceded by a macro name
and followed by an optional chain of dummy arguments enclosed in angle
brackets and separated by commas. When the macro is called, the calling
statement will replace all occurrences of dummy arguments inside the
macro with actual values. ENDM is the last line of a macro definition. In pars
ing a source line, the assembler checks the macro definition table first. Any
reserved word can be redefined as a macro. This necessitates caution in
choosing macro names.

Details

The block of statements from the MACRO statement line to the ENDM state
ment line comprises the body of the macro, or the macro's definition.

Name is like a LABEL and conforms to the rules for forming symbols. After
the macro has been defined, name is used to invoke the macro.

A dummy is formed as any other name is formed. A dummy is a place holder
that is replaced by a parameter in a one-for-one text substitution when the
MACRO block is used. You should include all dummies used inside the
macro block on this line. The number of dummies is limited only by the length
of a line. If you specify more than one dummy, they must be separated by
commas. MACRO-86 interprets a series of dummies the same as any list
of symbol names.

Page 10.143

MACRO-86

NOTE: A dummy is always recognized exclusively as a dummy. Even if a
register name (such as AX or BH) is used as a dummy, it is replaced by a
parameter during expansion.

One alternative is to list no dummies:

<name> MACRO

This type of macro block allows you to call the block repeatedly, even if you
do not want or need to pass parameters to the block. In this case, the block
will not contain any dummies.

A macro block is not assembled when it is encountered. Rather, when you
call a macro, the assembler "expands" the macro call statement by bringing
in and assembling the appropriate macro block.

MACRO is an extremely powerful directive. With it, you can change the
value and effect of any instruction mnemonic, directive, label, variable, or
symbol. When MACRO-86 evaluates a statement, it first looks at the macro
table it builds during pass one. If it sees a name there that matches an entry
in a statement, it acts accordingly. (Remember: MACRO-86 evaluates mac
ros, then instruction mnemonics/directives.)

If you want to use the TITLE, SUBTTL, or NAME directives for the portion
of your program where a macro block appears, you should be careful about
the form of the statement. If, for example, you enter SUBTTL MACRO DEFI
NITIONS, MACRO-86 assembles the statement as a macro definition with
SUBTTL as the macro name and DEFINITIONS as the dummy. To avoid
this problem, alter the word MACRO in some way; e.g., -MACRO, MAC
ROS, and so on.

page 10.144

Calling a Macro

Brief

Format: <n ame> [<parameter),...]

Call a macro by entering its name. Pass arguments by enclosing them in
angle brackets and separating them with commas. If you pass more argu
ments than specified in the definition, the extras are ignored. If you pass too
few, the unused dummies become nulls. Multiple values separated by com
mas within angle brackets are passed as a single argument. A plus sign
flags each line of a listing which was generated by a macro call.

Details

To use a macro, enter a macro call statement:

Name is the name of the MACRO block. A parameter replaces a dummy
on a one-for-one basis. The number of parameters is limited only by the
length of a line. If you enter more than one parameter, they must be sepa
rated by commas, spaces, or tabs. If you place angle brackets around pa
rameters separated by commas, the assembler passes all the items inside
the angle brackets as a single parameter. For example:

F001,2,3, 4,5

passes five parameters to the macro, but:

F00<1,2,3,4,5>

passes only one.

Page 10.145

The number of parameters in the macro call statement need not be the same
as the number of dummies in the MACRO definition. If there are more pa
rameters than dummies, the extras are ignored. If there are fewer, the extra
dummies are made null. The assembled code includes the macro block after
each macro call statement.

Application

GEN MACRO

MOV

ADD
MOV

ENDM

XX, YY, ZZ

AX, XX

AX, YY

ZZ, AX

If you then enter a macro call statement:

GENDUCK, DON, FOO

assembly generates the statements:

MOV AX, DUCK

ADD AX, D ON

MOV FOO ,AX

On your program listing, these statements are preceded by a plus sign (+)
to indicate that they came from a macro block.

Page 10.146

End Macro

Brief

Format: ENDM

ENDM is the last line of a macro definition. It also terminates REPT, IRP,
and IRPC blocks.

Details

ENDM tells the assembler that the MACRO or Repeat block is ended.

Every MACRO, REPT, IRP, and IRPC must be terminated with the ENDM
directive. Otherwise, the error message is generated. An unmatched ENDM
also causes an error.

If you wish to be able to exit from a MACRO or repeat block before expansion
is completed, use EXITM.

page 1 0. 1 47

Exit Macro

Brief

Format: EXITM

EXITM terminates a macro expansion from the point where it is encoun
tered. It is normally used after a conditional directive. If ENDM is executed
within a nested macro, assembly continues at the next higher level.

Details

The EXITM directive is used inside a MACRO or Repeat block to terminate
an expansion when some condition makes the remaining expansion un
necessary or undesirable. Usually EXITM is used in conjunction with a con
ditional directive.

When an EXITM is assembled, the expansion is exited immediately. Any re
maining expansion or repetition is not generated. If the block containing the
EXITM is nested within another block, the outer level continues to be ex
panded.

Application

X

FOO MACRO

X

REPT

X

0

X

X+1
X-OFFH ;testX
; if true, exitREPT

IFE

EXITM

ENDIF

DB

ENDM

ENDM

page 10.148

MACRO-86

LOCAL

Brief

Format: LOCAL (dummy>[,(dummy). . .]

LOCAL creates unique names within each expansion of a macro. Without
it, names used within a macro definition (except =) generate a "symbol is
muti-defined" error. LOCAL must be the second line of a macro definition.
It is followed by dummy arguments enclosed in angle brackets and sepa
rated by commas. A unique name of the form?? nnnn replaces each dummy
name used in the definition whenever the macro is called. Avoid using
names of the form?? nnnn, since this function might attempt to "steal" them,
causing an error. For example:

FOO MACRO ;DEFINITION
LOCAL <A>

A: MOVAL, AH

ENDM

FOO ; EXPANSION
t?? 0000: MOVAL, AH

Details

The LOCAL directive is allowed only inside a MACRO definition block. A
LOCAL statement must precede all other types of statements in the macro
definition.

When LOCAL is executed, the assembler creates a unique symbol for each
occurrence of the dummy in the expansion. These unique symbols are usu
ally used to define a label within a macro, thus eliminating multiple-defined
labels on successive expansions of the macro. The symbols created by the
assembler range from ??0000 to ??FFFF. You should avoid the form
??nnnn for use as one of your own symbols.

Page 10.149

Application

0000

0000 07

0001 08

0002 BE

0003 OOBF

0005 OC01

0007 EB F7

A:

B:

C:
D:

E:

t ??0000:

t ??0001:
+ ??0002:
+ ??0003:
t ??0004:

t ??0005:

4 ??0006:
+ ??0007:
4 ??0008:

+ ??0009:

SEGMENT

ASSUME

MACRO

LOCAL

DB

DB

DB

DW

DW

JMP

ENDM

F00
DB

DB

DB

DW

DW

JMP

F00
DB

DB
DB

DW

DW

JMP

ENDS

OCOOH, OBEH

7

8

OBEH
OBEH+1

OCOOHt-1

??0000
03COH, OFFH

7

8

OFFH
OFFH+1

03COHt-1
??0005

CS: FUN, DS: FUN

NUM, Y

A,B,C,D,E

7

8

Y
Ytl

NUM+1
A

0009 07

OOOA 08

OOOB FF

OOOC 0100

OOOE 03C1

0010 EB F7

0012

Notice that MACRO-86 has substituted LABEL names in the form??nnnn
for the instances of the dummy symbols.

Page 10.150

MACRO-86

AOIIQA: NAstPOGtIoos 8Ad DIF8ctmv88

PURGE

Brief

FORMAT: PURGE <macro-name) [...]

PURGE deletes a macro definition. It is followed by the name of one or more
macros enclosed in angle brackets and separated by commas. It is not nec
essary to PURGE a macro before defining a new one with the same name.
The deletion in this case is automatic . A PURGE statement may occur any
where in a program.

Details

PURGE deletes the definition of the macro(s) listed after it.

PURGE provides three benefits:

1. It f rees text space of the macro body.

2. It r e turns any instruction mnemonics or directives that were re
defined by macros to their original function.

It allows you to "edit" macros from a macro library file. You may
find it useful to create a file that contains only macro definitions.
This method allows you to use macros repeatedly with easy ac
cess to their definitions. Typically, you would then place an IN
CLUDE statement in your program file. Following the INCLUDE
statement, you could place a PURGE statement to delete any
macros you do not plan to use in this program.

It is not necessary to PURGE a macro before redefining it. Sim
ply place another MACRO statement in your program, reusing
the macro name.

page 10.151

Application

INCLUDE MACRO. LIB

PURGE MAC1 ;frees spaceusedbyMAC1

Page 10.152

MACRO-86

ACtIGA,)ASt f4Ct IOAS 8AV OI I 'eCCIVeS

REPEAT DIRECTIVES

Brief

REPEAT permits a block of code to be assembled a specific number of
times. Unlike a MACRO, the parameters are built into the block and remain
the same on each pass. REPEAT directives may be used inside or outside
a MACRO. ENDM ends the block.

Details

The directives in this group allow the operations in a block of code to be re
peated for the number of times you specify. The major differences between
the REPEAT directives and MACRO directives are:

1. M A CRO gives the block a name by which to call in the code
wherever and whenever needed; the macro block can be used
in many different programs by simply entering a macro call
statement.

2. MAC RO allows parameters to be passed to the MACRO block
when a MACRO is called; hence, parameters canbe changed.

REPEAT directive parameters must be assigned as a part of the code block.
If the parameters are known in advance and are not going to change, and
if the repetition is to be performed for every program execution, then
REPEAT directives are convenient. With the MACRO directive, you must
call in the MACRO each time it is needed.

Note that each REPEAT directive must be matched with the ENDM directive
to terminate the repeat block.

Page 10.153

MACRO-86

REPT

Brief

Format: <exp)

ENDM

REPT is followed by an expression which evaluates to the number of repeti
tions. The code block follows REPT and ends with ENDM. External symbols
are illegal in the expression. For example:

X = O

REPT 10

X=X+1

DB X

ENDM

;DEFINITION

0000 01 + DB X ;ASSEMBLED CODE

0001 02 + DB X

0002 03 + DB X ;ETC HRU OA

Details

Repeat block of statements between REPT and ENDM (exp> times. The
expression is evaluated as a 16-bit unsigned number. If the expression con
tains an external symbol or undefined operands, an error is generated.

Page 10.154

Application

X = 0
REPT 10

X = X%1

DB X

ENDM
END

Assembles as:

; generates DB 1 — DB10

0000 X = 0

REPT 10 ; generates DB 1 — DB 10
X = X+1

DB X

ENDM

+ DB X
+ DB X

DB X

DB X

DB X

DB X

DB X

DB X

DB X
DB X

END

0000 01

0001 02

0002 03

0003 04

0004 05

0005 06

0006 07

0007 08

0008 09

0009 OA

page 10.155

IRP INDEFINITE REPEAT

Brief

Format:
IRP <dummy>,<parameters (inside angle brackets) >

ENDM

IRP takes two arguments. The second argument is enclosed in angle brack
ets and separated from the first argument by a comma. The first is a dummy
variable. The second is a series of values delimited by commas. A block of
code under the IRP statement is assembled once for each value in the sec
ond argument. Either argument may be passed from a macro call, since the
angle brackets are stripped before it is passed. ENDM ends the block. This
definition produces the same code shown for REPT:

IRP X, <1,2 , 3 , 4 ,5 ,6,7,8,9,10>
DB X

ENDM

Details

Parameters must be enclosed in brackets. Parameters may be any legal
symbol, string, numeric, or other character constant. The block of state
ments is repeated for each parameter. Each repetition substitutes the next
parameter for every occurrence of dummy in the block. If a parameter is null
(i.e.,(>), the block is processed once with a null parameter.

page 10.156

Application

IRP

DB

ENDM

X, <1,2,3,4,5,6,7,8,9, 10>
X

This example generates the same bytes (DB 1 — DB 10) as the REPT ex
ample.

When IRP is used inside a MACRO definition block, angle brackets around
parameters in the macro call statement are removed before the parameters
are passed to the macro block. An example, which generates the same code
as above, illustrates the removal of one level of brackets from the parame
ters:

FOO MA CRO X

I RP Y, <X >
DB Y

ENDM

ENDM

When the macro call statement

F00<1,2,3,4,5,6,7,8,9,10>

is assembled, the macro expansion becomes:

IRP Y, < 1, 2, 3, 4, 5, 6, 7, 8, 9, 10>
DB Y

The angle brackets around the parameters are removed, and all items are
passed as a single parameter.

Page 10.157

IRPC INDEFINITE REPEAT CHARACTER

Brief

Format: IRPC <dummy>, <string)

ENDM

IRPC functions similar to IRP, except the second argument is a string en
closed in angle brackets. The block is assembled once for each character
in the string. The corresponding character replaces the dummy variable on
each pass. For example:

IRPC X, < 0123456789>

DB X+1
ENDM

Details

The statements in the block are repeated once for each character in the
string. Each repetition substitutes the next character in the string for every
occurrence of the dummy in the block.

Application

IRPC X, 01 23456789
DB X+1
ENDM

This example generates the same bytes (DB 1 — DB 10) as the two previous
examples.

Page 10.158

SPECIAL MACRO OPERATORS

Brief

The following special macro operators provide additional capabilities within
macro definitions:

8 () " t '/

Details

Several special operators can be used in a macro block to select additional
assembly functions.

Ampersand concatenates text or symbols. (The & may not be
used in a macro call statement.) A dummy parameter in a quoted
string is not substituted in expansion unless preceded im
mediately by &. To form a symbol from text and a dummy, put &
between them.

For example:

ERRGEN

ERROR&X:
MACRO

PUSH

MOV

JMP
ENDM

BX
BX, '&X'

ERROR

The call ERRGEN A then generates:

PUSH

MOV

JMP

BX

BX, 'A'

ERROR

page 10.159

In MACRO-86, unlike MACRO-80, the ampersand does not appear in the
expansion. One ampersand is removed each time a dummy8 or 8dummy
is found. For complex macros, where nesting is involved, extra ampersands
may be needed. You need to supply as many ampersands as there are
levels of nesting.

For example:

Correct form Incorrect form

F00 MA CRO

IRP
X&&Z DB

ENDM

ENDM

Z, <1,2,3)
Z X&Z

F00 MA CRO

IRP Z, <1,2,3>
DB

ENDM

ENDM

1. MACRO build, find dummies and change to di

When called, for example, by FOO BAZ, the expansion would be: (shown
correctly in the left column, incorrectly in the right)

IRP Z , <1,2,3> IRP Z , <1,2,3>
di&Z DB Z diZ D B Z

ENDM ENDM

2. MACRO expansion, substitute parameter text for di

IRP Z , -1, 2, 3IRP Z , <1,2,3>
BAZZ DB ZB AZ&Z DB Z

ENDM

3. IRP build, find dummies and change to di

BAZ&di D B di B AZZ DB d i

page 10.160

MACRO-86

4. IRP expansion, substitute parameter text for di

BAZ1 DB 1 BAZZ DB 1

BAZ2 DB 2 BAZZ DB 2 ;here i t ' s a n e r r or ,
BAZ3 DB 3 BAZZ DB 3 ; multi-defined symbol

<text> An g le brackets cause MACRO-86 to treat the text between the
angle brackets as a single literal. Placing either the parameters
to a macro call or the list of parameters following the IRP directive
inside angle brackets causes two results:

1. All text within the angle brackets is seen as a single pa
rameter, even if commas are used.

2. Characters that have special functions are taken as lit
eral characters. For example, the semicolon inside angle
brackets <;> becomes a character, not the indicator that
a comment follows. One set of angle brackets is removed
each time the parameter is used in a macro. When using
nested macros, you need to supply as many sets of angle
brackets around parameters as there are levels of nest
ing.

In a macro or repeat block, a comment preceded by two semico
lons is not saved as a part of the expansion.

The default listing condition for macros is .XALL (see "Listing Directives",
Page 10.153). Under the influence of .XALL, comments in macro blocks are
not listed because they do not generate code.

Page 10.161

MACRO-86

If you decide to place the . LALL listing directive in your program, then com
ments inside macro and repeat blocks are saved and listed. This can be the
cause of an out of memory error. To avoid this error, place double semico
lons before comments inside macro and repeat blocks, unless you specifi
cally want a comment to be retained.

An exclamation point may be entered in an argument to indicate
that the next character is to be taken literally. Therefore,!; is equi
valent to (;) .

The percent sign is used only in a macro argument to convert the
expression that follows it (usually a symbol) to a number in the cur
rent radix. During macro expansion, the number derived from con
verting the expression is substituted for the dummy. Using the %
special operator allows a macro call by value. (Usually, a macro
call is a call by reference with the text of the macro argument sub
stituting exactly for the dummy.)

The expression following the % must evaluate to an absolute
(non-relocatable) constant.

Application

PRINTE MACRO

%OUT
ENDM

SYM1 EQU
SYM2 EQU

PRINTE

MSG, N
~MSG,N~

100
200

<SYMI + SYM2= >.,%(SYM1 t SYM2)

Normally, the macro call statement would cause the string (SYM1
+ SYM2) to be substituted for the dummy N. The result would be:

%OUT ~SYM1 + SYM2 = (SYM1 + SYM2)

When the % is placed in front of the parameter, the assembler
generates:

%OUT ~ SYM1 + SYM2 = 300 ~

Page l0.162

Assembling a Source File

Listing Directives

Brief

These directives are used to adjust the parameters of the assembler listing:

TITLE
.XLIST
.XALL
.XCREF

SUBTTL %OUT
.SFCOND .LF C OND
.LALL .SALL

PAGE
.LIST
.TFCOND
.CREF

Details

Listing directives perform two general functions: format control and listing
control. Format control directives allow the programmer to insert page
breaks and direct page headings. Listing control directives turn on and off
the listing of all or part of the assembled file.

Page 10. l63

PAGE

Brief

Format: PAGE [<length>][,<width>]
PAGE [+]

Details

PAGE with no arguments or with the optional [+] argument causes the as
sembler to start a new output page. The assembler puts a form feed charac
ter in the listing file at the end of the page.

The PAGE directive with either the length or width arguments does not start
a new listing page.

The value of the length, if included, becomes the new page length (mea
sured in lines per page) and must be in the range 10 to 255. The default page
length is 50 lines per page.

The value of the width, if included, becomes the new page width (measure
in characters) and must be in the range of 60 to 132. The default page width
is 80 characters.

The plus sign (+) increments the major page number and resets the minor
page number to one. Page numbers are in the form major-minor. The PAGE
directive without the + increments only the minor portion of the page
number.

page 10.164

Application

PAGE + , increment Maj or, set minor to 1

; page length=58 lines,

;width =60 characters
PAGE 58,60

Page 10.165

TITLE

Brief

Format: TITLE <text>

Details

TITLE specifies a title to be listed on the first line of each page. The <text>
may be up to 60 characters long. If more than one TITLE is given, an error
results. The first six characters of the title, if legal, are used as the module
name, unless a NAME directive is used.

Application

TITLE PROG1 — 1st Program

If the NAME directive is not used, the module name is now PROGI-1st Program.
This title text appears at the top of every page of the listing.

Page 10.166

SUBTTL

Brief

Format: SUBTTL <text>

Details

SUBTTL specifies a subtitle to be listed in each page heading on the line
after the title. The text is truncated after 60 characters.

Any number of SUBTTLs may be given in a program. Each time the assem
bler encounters SU BTTL, it replaces the text from the previous SU BTTL with
the text from the most recently encountered SUBTTL. To turn off SUBTTL
for part of the output, enter a SUBTTL with a null string for text.

Application

SUBTTL SPECIAL I/O ROUTINE

SUB TTL

The first SUBTTL causes the subtitle SPECIAL I/O ROUTINE to be printed
at the top of every page. The second SUBTTL turns off subtitle (the subtitle
line on the listing is left blank).

Page 1 0.1 67

'I QUT

Brief

Format: %OUT (text)

Details

The text is listed on the terminal during assembly. %OUT is useful for dis
playing progress through a long assembly or for displaying the value of con
ditional assembly switches.

%OUT outputs on both passes. If only one printout is desired, use the IF1
or IF2 directive, depending on which pass you want displayed. See "Condi
tional Directives," Page 10.135, for descriptions of the IF1 and IF2 direc
tives.

Application

%OUT ~Assembly half done~

The assembler sends the delimited message to the terminal screen when
the line is processed.

IF1

%OUT ~Pass 1 started~

ENDIF

IF2

%OUT ~Pass 2 started~

ENDIF

Page 10.168

.LIST

.X LIST

Brief

Format: .LIST
.XLIST

Details

.LIST lists all lines with their code (the default condition).

.XLIST suppresses all listing.

If you specify a listing file following the Listing prompt, a listing file with all
the source statements included is listed.

When .XLIST is encountered in the source file, source and object code are
not listed. .XLIST remains in effect until a. LIST is encountered.

Page 10.169

Application

; listing suspended here, ". XLIST" is not printed.XLIST

; listing resumes here, ". LIST" is printed

.SFCOND suppresses portions of the listing containing conditional expres
sions that evaluate as false.

.LFCOND assures the listing of conditional expressions that evaluate false.
This is the default condition.

.TFCOND toggles the current setting. .TFCOND operates independently

from .LFCOND and .SFCOND. .TFCOND toggles the default setting, which

is set by the presence or absence of the /X switch when running the assem
bler. When /X is used, . TFCOND causes false conditionals to list. When /X
is not used, . TFCOND suppresses false conditionals.

.XALL is the default.

.XALL lists source code and object code produced by a macro, but source
lines which do not generate code are not listed.

.LALL lists the complete macro text for all expansions, including lines that
do not generate code. Comments preceded by two semicolons (;;) are not
listed.

.SALL suppresses listing of all text and object code produced by macros.

Page 10.170

.CREF

.XCREF

Brief

Format: .CREF
.XCREF [<variable list>]

Details

.CREF is the default condition. .CREF remains in effect until MACRO-86
encounters.XCREF.

.XCREF without arguments turns off the.CREF (default) directive. .XCREF
remains in effect until MACRO-86 encounters .CREF. Use .XCREF to sup
press the creation of cross references in selected portions of the file. Use
.CREF to restart the creation of a cross reference file after using the.XCREF
directive.

If you include one or more variables following .XCREF, these variables are
placed in the listing or cross reference file. All other cross referencing is not
affected by an .XCREF directive with arguments. Separate the variables
with commas.

Neither .CREF nor .XCREF without arguments takes effect unless you
specify a cross reference file when you run the assembler. .XCREF vari
able list suppresses the variables from the symbol table listing regardless
of the creation of a cross reference file.

page 10.171

Example:

. XCREF CURSOR, FOO, GOO, BAZ, ZOO

; these variables will not be

;in the listing or cross reference file

Application

Use assembler directives to specify the actions or assumptions you want
MACRO-86 to make in processing your source code. Their use can greatly
simplify the task of assembly language programming. Macro and conditional
source modules eliminate repetitious code entry. Listing directives produce
a clear and readable printout. Data definition directives allow you to name
and structure storage areas consistent with the way they will be accessed.
All of these features are tools designed to enhance development of your as
sembly language programs.

Page 1 0.1 72

MACRO-86

INTRODUCTION

Brief:

Assembling with MACRO-86 requires two types of commands: a command
to invoke MACRO-86 and answers to command prompts. In addition, three
switches control alternate MACRO-86 features. Usually, you enter all the
commands to MACRO-86 on the terminal keyboard. As an option, answers
to the command prompts and any switches may be contained in a batch file.
Some command characters are provided to assist you while you enter as
sembler commands.

Details

Invoke MACRO-86 by entering MASM on the terminal. The assembler re
sponds with a series of four queries requesting names for the .ASM, .OBJ,

.LST, and.CREF files. You may override the queries by entering responses
to all four, separated by commas, following MASM. There is no default for
the first query. A source filename must be supplied. Unless an extension is
entered, the assembler assumes it to be .ASM. The source filename be
comes the default option for the .OB J file. The default for the last two queries
is not to produce a file. A RETURN selects the default for a query. In the
group method, adjacent commas perform the same function. After the first
query, a semicolon followed by a return may be entered at any time to termi
nate the query process. Defaults are then assigned to all remaining
filenames. Control-C aborts the assembler at any time. The Z-DOS prompt
indicates the end of assembly.

page I0.173

Invoking MACRO-86

MACRO-86 may be invoked two ways. By the first method, you enter the
commands as answers to individual prompts. By the second method, you
enter all commands on the line used to invoke MACRO-86.

Summary of Methods to invoke MACRO-86:

Method 1 MASM

Method 2 MASM <source>, <object>, <listing>, <cross-ref>
[/switch...]

page 10.174

MACRO-86

METHOD ONE: MASM

Enter:

MASM

MACRO-86 loads into memory. Then, MACRO-86 returns a series of four
text prompts that appear one at a time. You answer the prompts as com
mands to MACRO-86 to perform specific tasks.

At the end of each line, you may enter one or more switches, each of which
must be preceded by a slash mark. If a switch is not included, the MACRO
86 default is to not perform the function described for the switches in the
chart below.

The command prompts are summarized here. Following the summary of
prompts is a summary of switches.

PROMPT

Source filename [.ASM]:

Source listing [NUL.LST]:

Object filename [source.OB J]

RESPONSES

List .ASM file to be assembled. (No
default: filename response required)

List filename for relocatable object
code. (Default: source-filename.OBJ)

List filename for listing file (default: no
listing file)

List filename for cross reference file
(used with CREF to create a cross re
ference listing). (default: no cross re
ference file)

Cross reference [NU..CRF]

page 10.175

MACRO-86

/D

/0

SWITCH ACTION

Produce a listing on both assembler passes.

Show generated object code and offsets in octal
radix on listing.

Suppress the listing of false conditionals. Also
used with the. TFCOND directive.

/X

Command Switches Summary

Command Characters

MACRO-86 provides two command characters.

Use a single semicolon (;), followed immediately by a RETURN,
at any time after responding to the first prompt (from Source
filename on) to select default responses to the remaining prompts.
This feature saves time and overrides the need to keep entering
RETURNS.

NOTE: Once the semicolon has been entered, you can no longer
respond to any of the prompts for that assembly. Therefore, do not
use the semicolon to skip over some prompts. For this, use
RETURN.

Example:

Source filename [.ASM]: FUN RETURN

Object fi lename [FUN.OBJ]:; RETURN

The remaining prompts are skipped, and MACRO-86 uses the default
values (including no listing file and no cross reference file).

Page 1 0.1 76

To achieve exactly the same result, you could alternatively enter:

Source f ilename [. ASM]: FUN; RETURN

This response produces the same files as the previous example.

CTRL-C Use CTRL-C at any time to abort the assembly. If you enter an
erroneous response, such as the wrong filename or an incorrectly
spelled filename, you must press CTRL-C to exit MACRO-86 then
reinvoke MACRO-86 and start over. If the error has been typed
and not entered, you may delete the erroneous characters, but for
that line only.

page 10.177

MACRO-86

METHOD TWO: MASM<FILENAMES></x>

Enter:

MASM <source>,<object>,<listing>, <cross-ref > </x...>

MACRO-86 is loaded into memory. Then MACRO-86 immediately begins
assembly. The entries following MASM are responses to the command
prompts. The entry fields for the different prompts must be separated by
commas where <source> is the source filename; where <object> is the
name of the file to receive the relocatable output; where <listing> is the
name of the file to receive the listing; where <crossref> is the name of the
file to receive the cross reference output; and where </x...> are optional
switches, which may be placed following any of the response entries (just
before any of the commas or after the <cross-ref>, as shown.

To select the default for a field, simply enter a second comma without space
in between (see the example below).

Example:

MASM FUN,, FUN/D/X, FUN

This example causes MACRO-86 to be loaded, then causes the source file
FUN.ASM to be assembled. MACRO-86 then outputs the relocatable object
code to a file named FUN.OBJ (default caused by two commas in a row),
creates a listing file named FUN.LST and a cross reference filenamed
FUN.CRF. If names were not listed for listing and cross reference, these files
would not be created. If listing file switches are given but no filename, the
switches are ignored.

page 10.178

MACRO-86

MACRO-86 Command Prompts

MACRO-86 is commanded by entering responses to four text prompts.
When you have entered a response to the current prompt, the next appears.
When the last prompt has been answered, MACRO-86 begins assembly au
tomatically without further command. When assembly is finished, MACRO
86 exits to the operating system.

MACRO-86 prompts you for the names of source, object, listing, and cross
reference files.

All command prompts accept a file specification as a response. You may
enter:

A filename only,
A device designation only,
A filename and an extension,
A device designation and filename,

a device designation, filename, and extension.
or

You may not enter only a filename extension.

Source filename [. ASM]:

Enter the filename of your source program. MACRO-86 assumes by default
that the filename extension is .ASM, as shown in square brackets in the
prompt text. If your source program has any other filename extension, you
must enter it along with the filename. Otherwise, the extension may be omit
ted.

Page 10-179

MACRO-86

Object filename [source.OBJ~.

Enter the filename you want to receive the generated object code. If you sim
ply press the RETURN key when this prompt appears, the object file is given
the same name as the source file, but with the filename extension .OBJ. If
you want to change only the filename but keep the .OBJ extension, enter
the filename only. To change the extension only, you must enter both the
filename and the extension. If you specify a drive other than the default drive
for the source filename prompt, that specified drive name is not carried over
into the default response for this prompt. If you want the object file to be on
the same non-default drive as the source file, you must specify the drive
name here.

Source listing [NUL.LST]:

Enter the name of the file, if any, that you want to receive the source listing.
If you press the RETURN key, MACRO-86 does not produce this listing file.
If you enter a filename only, the listing is created and placed in a file with
the name you enter plus the filename extension .LST. You may also enter
your own extension.

The source listing file contains a list of all the statements in your source pro
gram and shows the code and offsets generated for each statement. The
listing also shows any error messages generated during the session.

Cross reference [NUL. CRF]:

Enter the name of the file, if any, you want to receive the cross reference
file. If you press only the RETURN key, MACRO-86 does not produce a
cross reference file. If you enter a filename only, the cross reference file is
created and placed in a file with the name you enter plus the filename exten
sion.CRF. You may also enter your own extension.

The cross reference file is used as the source file for the CREF Cross Refer
ence Facility. CREF converts this cross reference file into a cross reference
listing, which you can use to aid you during program debugging.

The cross reference file contains a series of control symbols that identify rec
ords in the file. CREF uses these control symbols to create a listing that
shows all occurrences of every symbol in your program. The occurrence that
defines the symbol is also identified.

Page 10.180

MACRO-86

MACRO-86 Command Switches

Brief

/D, /0, and /X switches may be entered at the end of any query line contain
ing a filename. /D produces a listing on both passes. It is useful for locating
phase errors. On pass 1, all forward references generate error messages.
/0 causes octal listings of object code and relative offsets. It has no effect
on the .OBJ file. /X suppresses the listing of false conditionals. .LFCOND
and .SFCOND directives have a higher priority. The . TFCOND directive al
ters the effect of /X.

Details

The three switches control alternate assembler functions. Switches must be
entered at the end of a prompt response, regardless of whichmethodis used
to invoke MACRO-86. Switches may be grouped at the end of any one of
the responses, or may be scattered at the end of several. If more than one
switch is entered at the end of one response, each switch must be preceded
by the slash mark (/). You may not enter only a switch as a response to a
command prompt.

Switch F unction

/D Produce a source listing on both assembler passes. The listing,
when compared, shows where in the program phase errors occur
and, possibly, gives you a clue as to why the errors occur. The /D
switch does not take effect unless you command MACRO-86 to
create a source listing (enter a filename in response to the source
listing command prompt).

Output the listing file in octal radix. The generated code and the
offsets shown on the listing are all given in octal. The actual code
in the object file is the same as if the /0 switch were not given.
The /0 switch affects only the listing file.

/0

page 10.181

MACRO-86

Suppress the listing of false conditionals. If your program contains
conditional blocks, the listing file shows the source statement but
no code if the condition evaluates false. To avoid the clutter of con
ditional blocks that do not generate code, use the /X switch to sup
press the blocks that evaluate false from your listing.

The /X switch does not affect any block of code in your file that
is controlled by either the. SFCOND or. LFCOND directives.

If your source program contains the .TFCOND directive, the /X
switch has the opposite effect. That is, normally the . TFCOND di
rective causes listing or suppressing of blocks of code that it con
trols. The first . TFCOND directive suppresses false conditionals,
the second restores listing of false conditionals, and so on. When
you use the /X switch, false conditionals are already suppressed.
When MACRO-86 encounters the first . TFCOND directive, listing
of false conditionals is restored. When the second .TFCOND is
encountered (and the /X switch is used), false conditionals are
again suppressed from the listing.

Of course, the/X switch has no effect if no listing is created.

Page 10.182

The following chart illustrates the various effects of the conditional listing di
rectives in combination with the /X switch. ON = false condition listed; OFF
= false not listed.

PSEUDO-OP NO/X /X
(nonel OFF ON

.SFCOND OFF OFF

.LFCOND ON ON

, TFCOND ON OFF

. TFCOND OFF ON

. TFCOND ON OFF

.SFCOND OFF ON

. TFCOND ON OFF

NOTE: True conditions are always listed and assembled.

Page 10.183

MACRO-86

Formats of Listings and Symbol Tables

Brief

The assembler listing is divided into two parts. In part one, each line con
tains: 1) a line number, unless .CREF is suppressed; 2) the offset address,
if the line generates code; 3) the object code; 4) a + or a C for a macro or
INCLUDE block; 5) the source code. Part two contains an error message
count plus the name and description of all macros, structures, records, seg
ments, groups, and symbols.

Details

The source listing produced by MACRO-86 (created when you specify a
filename in response to the Source listing prompt) is divided into two parts.

The first part of the listing shows:

The line number for each line of the source file, if a cross reference file is
also being created.
The offset of each source line that generates code.
The code generated by each source line.
A plus sign (+), if the code came from a macro or a letter C, if the code came
from an INCLUDE file.
The source statement line.

The second part of the listing shows:

Macros - name and length in bytes.
Structures and records - name, width and fields.
Segments and groups - name, size, align, combine and class.
Symbols - name, type, value, and attributes.
The number of warning errors and severe errors.

Page 1 0.1 84

PROGRAM LISTING

The program portion of the listing is essentially your source program file with
the line numbers, offsets, generated code, and (where applicable) a plus
sign to indicate that the source statements are part of a macro block or a
letter C to indicate that the source statements are from a file input by the
INCLUDE directive.

If any errors occur during assembly, the error message appears printed di
rectly below the statement where the error occurred.

On the next page is part of a listing file, with notes explaining what the vari
ous entries represent.

The comments have been moved down one line because of format restric
tions. If you print your listing on 132 column paper, the comments shown
here would easily fit on the same line as the rest of the statement.

Page 10.185

Explanatory notes are spliced into the listing at points of special interest.

= linker resolves entry to left of RR

= External

nn:

= segment name, group name, or segment variable used in
MOV AX, <--) , DD <- -) , JMP <- - > , and so on.

= statement has an EQU or= directive

= statement contains a segment override

= REPxx or LOCK prefix instruction. Example:nn/

003C F3/A5 REP MOVSW;move DS:SI to ES:DI until CX=O

= DUP expression;xx is the value in parentheses following the
DUP; for example: DUP(?) places?? where xx is shown here

= line comes from a macro expansion

= line comes from file name in INCLUDE directive

[xx]

Summary of Listing Symbols

Page 10.186

The Microsoft MACRO-86 MACRO Assembler mm-dd-yy PAGEP-P

ENTX PASCAL entry for initializing programs

I

0000 STACK SEGMENT WORD STACK 'STACK'
=0000 HEAPbeg EQU TH I S BYTE
~I nd i cates EQU or= directive~

;Base of heap before init

done
0 000 14 [DB 20 DUP(? j

?7 shows value in parentheses~
1

Indicates DUP expression

= 0014
0014
0000

SKTOP EQU THI S B YTE
STACK ENDS
MAINSTARTUP SEGMENT 'MEMORY'
DGROUP GROUP DATA, STACK, CONST, HEAP, MEMORY

ASSUME CS: MAINSTARTUP, DS: DGROUP,

PUBLIC BEGXQQ ; Main entry
ES: DGROUP, SS: DGROUP

0000
0000

value
0003 SE DS
0005 SC 06 0022 R

generated
code

BS --- R
BEGXQQ PROC F AR

name ac t ion comment

MOV AX, DGROUP

Mnv DS,Ax;a~et Ds se

;get assumed data segment

expression
offset

OOOC 26: SB 1E 0002 MOV BX, ES: 2 ; Highest Paragraph

t — segm ent override

Page 10.187

The Microsoft MACRO-86 MACRO Assembler mm-dd-yy PAGEP-P

ENTX PASCAL entry for initializing programs

0011 2B D8
0013 81 FB 1000
0017 7E 03
0019 BB 1000

SUB
CMP
JLE
MOV

BX, AX ; Get a paras for DS
BX,4096 ;More than 64K?
SMLSTK ;No. Use what we have
BX,4096;Can only address 64K

001C SMLSTK: REPT 4
S HL B X , 1

;Convert para to offset

001C D1 E3

001E D1 E3

0020 D1 E3

ENDM

SHL BX, 1
;Convert para to offset

SHL BX, 1
;Convert para to offset

SHL BX , 1
;Convert para to offset

SHL BX , 1
;Convert para to offset

0022 D1 E3

macro
block

theselines
from macro

number of
repetitions

macro
directives

0024 8B E3 MOV S P . BX
;Set stack to top of memory

FAR PTR STARTmain0069 EA 0000 --- R

aegmentvariabie

inker resolves: indicates segment name, group name,
o r segment variable used in MQV AX,<--> ;
DD <--> ; JMP <- - > .etc. (See other

examples in this listing.)

signal to linker

page 10.188

0006E BEGS ENDP

MAINSTARTUP ENDS
ENTXCM SEGMENT WORD ' CODE '

ASSUME CS: ENTXCM
PUBLIC ENDXQ, DOSXQ

007E
0000

Page 10.189

The Microsoft MACRO-86 MACRO Assembler mm-dd-yy PAGEP-P

ENTX P ASCAL entry for initializing programs

0000

0000 9A 0000 E

STARTmain PROC FAR ;This code remains

;call main program

CALL ENTQg

I

ENDXQ LABEL FAR0005

0005 9A 0000 E

OOOA 9A 0000 E

CALL ZMXXg

CALL ENDYQ

CALL ENDU%

;term>nation entry point

;user system termination

;close all openfiles

;file system termination
OOOF 9A 0000 E

MOV DOSOF.O0014 C7 06 0020 R 0000

offset

External
symbol

linker signal; goes with number to left; shows DOSOFF is in segment

STARTmain ENDP00 2E 0020 R

ENTXCM ENDS0037
END BEGXQQ

Page 1 0.190

MACRO-86

Differences Between Pass One Listing and Pass Two Listing

If you give the /D switch when you run MACRO-86 to assemble your file,
the assembler produces a listing for both passes. The option is especially
helpful for finding the source of phase errors.

The following example was taken from a source file that assembled without
reporting any errors. When the source file was reassembled using the /D
switch, an error was produced on pass one, but not on pass two (which is
when errors are usually reported).

Application

During Pass one a jump with a forward reference produces:

0017 7E 00

E r r o r --
0019 BB 1000

001C

9:Symbol not defined
JLE SMLS TK ; No. Use what we have

MOV BX, 4 096 ; Can only address 64K
SMLSTK: REPT 4

During Pass two this same instruction is fixed up and does not return an
error.

J017 7E 03

0019 BB 1000

001C

JLE SMLS TK ; No, use what we have
MOV BX, 4 096 ; Can only address 64K

SMLSTK: REPT 4

Notice that the JLE instruction's code now contain 03 instead of 00; a jump
ofthree-bytes.

The same amount of code was produced during both passes, so there was
no phase error. The only difference in this case is content, not of size.

Page 10.191

Symbol Table Format

The symbol table portion of a listing separates all "symbols" into their re
spective categories, showing appropriate descriptive data. This data gives
you an idea how your program is using various symbolic values. Use this
information to help you debug.

Also, you can use a cross reference lis~ing, produced by CREF, to help you
locate uses of the various "symbols" in your program.

On the next page is a complete symbol table listing. Following the complete
listing, sections from different symbol tables are shown with explanatory
notes.

For all sections of symbol tables, this rule applies: if there are no symbolic
values in your program for a particular category, the heading for the category
is omitted from the symbol table listing. For example, if you did not use mac
ros in your program, there is no macro section in the symbol table.

page 10.192

The Microsoft MACRO-86 MACRO Assembler Date PAGE Symbols-1
CALLER — SAMPLE ASSEMBLER ROUTINE (EXMPIM. ASM)

Macros:
Name Length

0002
0005
0002
0003
0003
0004

BIOSCALL .
DISPLAY.
DOSCALL.
KEYBOARD .
LOCATE .
SCROLL .

Structures and records:

Name width ¹ fields
S hift Width Mask Ini t i a l
001C 0004
0000
0001
0002
001B

PARMLIST .
BUFSIZE.
NAMESIZE .
NAMETEXT ,
TERMINATOR .

Segments and groups:
Name Size align combine class'

0044 PARA PUBLIC 'CODE'
0200 PARA STACK 'STACK'
0031 PARA PUBLIC 'DATA'

CSEG,
STACK.
W O~ .

Symbols:

Name
N PROC 0036CLS.

MAXCHAR.
MESSG.
P ARMS.
RECEIVR.
START.

Warning Severe
Errors Errors
0 0

Type V a lue

Number 0019
L BYTE 001C
L 001C 0000
L FAR 0000
F PROC 0000

Attr
CSEG Length = OOOE

WO~
WO~

CSEG Length =0036
External

Page 10.193

Macr os:
Name

0002

0005

0002

0003

0003
0004

Length number of 32 byte blocks
macro occupies
in memory

BIOSCALL.

DISPLAY .

DOSCALL .

KEYBOARD.

LOCATE.

SCROLL.

t
names of macros

This section of the symbol table tells you the names of your macros and how
big they are in 32-byte block units. In this listing, the macro DISPLAY is 5
blocks long or (5 x 32 bytes =) 160 bytes long.

Structures and records:

Exam le for Structures

This line applies to structure names
(begin in column 1)

PARMLIST .

BUFSIZE

NAMESIZE .

NAMETEXT .

TERMINATOR .

Name Width 0 fields

s hift W i dth M ask Ini t i a l This line

0 01C 4 0 0 4 for fields
of records
(indented).

Number of fields
in structure

0000

0001

0002

001B

field names of
PARMLIST structure

Offset of field
into structure

The number of
bytes wide of the
structure

page 10.194

MACRO-86

Exam le for Records

Name Width
Shift

~ 0 00 8
0006

0003

0000

OOOB
0003

BAZ.

FLD1 .

FLD2 .
FLD3 .

BAZ1 .

BZ1.

BZ2.

if fields
Width Mask
0003

0002

0003

0003
0002

0008

0003

OOCO

0038

0007

07F8

0007

0040

0000

0003

Initial

initial value

MASK of field
(maximum value)

This line is
for fields
of records.

number of fields in Record.

0400

0002

n umber of Shi f t
bits in Record count

to right

number of
bits in field

This section lists your structures and/or records and their fields. The upper
line of column headings applies to structure names, record names, and to
field names of structures. The lower line of column headings applies to field
names of records.

For structures:

Width (upper line) shows the number of bytes your structure occupies in
memory.

¹ fields shows how many fields comprise your structure.

For records:

Width (upper line) shows the number of bits the record occupies.

¹ fields shows how many fields comprise your record.

For fields of structures:

Shift shows the number of bytes the fields is offset into the structure. The
other columns are not used for fields of structures.

page 10.195

For fields of records:

Shift is the shift count to the right.
10.185

Ilask shows the maximum value of record, expressed in hexadecimal, if
one field is masked and ANDed (field is set to all 1's and all other fields are
set to all 0's).

Using field BZ1 of the record BAZ1 above to illustrate:

0 0 0 0 0 1 1 I 1 1 1 1 1 0 0 0 E — MA SK=OT&8

15 10

shift count = 0003
W I DTH= 0008

Initial shows the value specified as the initial value for the field, if any.

When naming the field, you specified:
fieldname:¹ = value

fieldname is the name of the field, ¹ is the width of the field in bits and
value is the initial value you want this field to hold. The symbol table
shows this value as if it is placed in the field and all other fields are
masked (equal 0). Using the example and diagram from above:

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 ~ In i t ia l=0400

ini t ia l= 80H
80H = 128 decimal

Page 10.196

Segments and groups:

Name combine classS ize al ig n

AAAXQ .

DGROUP .
DATA .

STACK.

CONST.

0000 WORD

GROUP

0024 WORD

0014 WORD

0000 WORD

0000 WORD

0000 WORD

0037 WORD

007E P A RA

MEMORY.

PUBLIC

STACK

PUBLIC

PUBLIC

PUBLIC

NONE

NONE

'DATA'

'STACK'

'CONST'

'MEMORY'

'MEMORY'

'CODE'

'MEMORY'

called Private
inLINKchapter

NONE 'CODE' ~ s e gment

segments
~ o f

DGROUP

groUp

MAINSTARTUP.

length sta tement line entries
of
segment

Page 10.197

MACRO-86

byte boundary

For groups:

the name of the group appears under the Name column, beginning in col
umn 1 with the applicable segment names indented 2 spaces. The word
Group appears under the Size column.

For segments:

the segment names may appear in column 1 (as here) if you do not declare
them part of a group. If you declare a group, the segment names appear
indented under their group name.

For all segments, whether a part of a group or not:

Size is the number of bytes the segment occupies.

Align is the type of boundary where the segment begins:

PAGE = page — address is xxxOOOH (low byte = 0); begins on a 256

PARA = paragraph — address isxxxxOH(low nibble= 0); default
WORD = word — address is xxxxeH (low bit of low byte = 0) bit map

BYTE = byte — address is xxxxxH (anywhere)

Combine describes how LINK utility combines the various segments. (See
LINK Utility Chapter for a full description.)

Class is the class name under which LINK combines segments in memory.
(See LINK Utility Chapter for a full description.)

- TTTTTTBH

10.187

Symbols:

F00.
F001 .
F002 .
F003 .
F004 .

F005 .

Name Type
Number
Text
Number
Alias
Text
Opcode

Value
0005
1. 234
0008
F00
5[BP][DI]

Attr

all formed by

QUor =

directive

Page 1 0.1 98

Symbols:

BEGHQQ .
BEGOQQ .
BEGXQQ .
CESXQQ .
CLNEQQ .
CRCXQQ .
CRDXQQ .
CSXEQQ .
CURHQQ .
DOSOFF .

DOSXQQ .
ENDHQQ .
ENDOQQ .
ENDUQQ .
ENDXQQ .
ENDYQQ .
ENTGQQ .
FREXQQ .
HDRFQQ .
HDRVQQ .
HEAPBEG.
HEAPLOW.

INIUQQ .
PNUXQQ .
RECEQQ .
REFEQQ .
REPEQQ .
RESEQQ .
SKTOP.

SMLSTK .

STARTMAIN.

STKBQQ .

STKHQQ .

Name Type
L WORD

L FAR

F PROC

L WORD

L WORD

L WORD

L WORD

L WORD

L WORD

L WORD

F PROC

L WORD
L FAR

L FAR

L FAR

L FAR

L FAR

F PROC

L WORD

L WORD

BYTE

BYTE

L FAR

L WORD
L WORD

L WORD

L WORD

L WORD

BYTE

L NEAR

F PROC

L WORD

L WORD

Value
0012

0000

0000

0022

0002

001C

001E

0000

0014

0020

001E

0016
0000

0000
0005

0000

0000

006E

0006

0008

0000

0000

0000

0004

0010

OOOC
OOOE

000A

0014

001C

0000

0018

001A

DATA Global of PROC

DATA Global
DATA Global
DATA Global
DATA

ENTXCM Global Length =0019

DATA Global
External
External

ENTXCM Global

External
External

MAIN STARTUP Global Length =0010

DATA G l obal
DATA G l obal
STACK

HEAP

Attr
DATA Global

External
MAIN STARTUP Global Length =006E

DATA Global
DATA Global L — length

EQU statements

showing segment
External

DATA G l obal
DATA G l obal
DATA Gl o b a l

DATA Gl o b a l

DATA Gl o b a l

STACK

MAIN STARTUP

EXTXCM Length =001E

DATA Gl o b a l

DATA Gl o b a l

If MACRO-86 knows this length as one of the
type lengths (BYTE, WORD, DWORD, QWORD,

TBYTE), it shows that type name here.

Page 10.199

This section lists all other symbolic values in your program that do not fit
under the other categories.

Type shows the symbol's type:

L = Label
F = Far
N = Near
PROC = Procedure
Number
Alias
Text
Opcode

These entries may be combined to form the various types shown in the
example.

For all procedures, the length of the procedure is given after its attribute
(segment).

You may also see an entry under "Type" like:

all defined by EQU or= directive

L 0031

This entry results from code such as the following:

BAZ LABEL F00

where FOO is a STRUC that is 31 bytes long.

BAZ is shown in the symbol table with the L 0031 entry. Basically,
Number (and other similar entries) indicates that the symbol was de
finedby an EQU or = directive.

Value (usually) shows the numeric value the symbol represents. (In some
cases, the value column shows some text — when the symbol was defined
by the EQU or= directives.)

page 10.200

MACRO-86

Attr always shows the segment of the symbol, if known. Otherwise, the Attr
column is blank. Following the segment name, the table shows either Exter
nal, Global, or a blank (which means not declared with either the EXTRN
or PUBLIC directive). The last entry applies to PROC types only. This is a
length = entry, which is the length of the procedure.

If type is Number, Opcode, Alias, or Text, the symbols section of the listing
is structured differently. Whenever you see one of these four entries under
type, the symbol was created by an EQU directive or an= directive. All infor
mation that follows one of these entries is considered its "value," even if the
"value" is simple text.

Each of the four types shows a value as follows:

Number shows a constant numeric value

Opcode shows a blank. The symbol is an alias for an instruction mnemonic.

Sample directive statement: F00 EQU ADD

Alias shows a symbol name which the named symbol equals.

Sample directive statement: F00 EQU BAX

Text shows the "text" the symbol represents. "Text" is any other operand to
an EQU directive that does not fit one of the other three categories above.

Sample directive statements:

GOO EQU 'WOW'
BAZ EQU DS:8[BX]

ZOO EQU 1.234

SUMMARY

The ability to rapidly and effectively debug programs is essential to the pro
ductive use of assembly language. The symbol and cross reference tables,
as well as the object listing itself, all exist to speed the debugging task. You
can greatly increase your programming effectiveness by learning to under
stand and rely on the information they contain.

page 11 • 1

Introduction to LINK

FEATURES AND BENEFITS OF LINK

LINK is a relocatable linker designed to link together separately produced
modules of 8086 object code. The object modules must be 8086 files only.

For all the necessary and optional commands, LINK gives prompts. Your
answers to the prompts are the commands for LINK.

The output file from LINK (run file) is not bound to specific memory
addresses and, therefore, can be loaded and executed at any convenient
address by your specification.

LINK uses a dictionary-indexed library search method, which substantially
reduces link time for sessions involving library searches.

LINK is capable of linking files totaling 384K bytes.

Page 11.2

LINK
Overview of LINK Operation

LINK combines several object modules into one relocatable load module
called a run file.

As it combines modules, LINK resolves external references between object
modules and can search multiple library files for definitions for any external
references left unresolved.

LINK also produces a list file that shows external references resolved and
any error messages.

LINK uses available memory as much as possible. When available memory
is exhausted, LINK then creates a d!sk file and becomes a virtual linker.

AssemblerCompiler

.OBJ . OBJ .OBJ .OBJ . OBJ
.OBJ

LINK

l isting
. LST

libraries
. LI B

PUBLIC symbols
cross referenced.

Up to eight l i brar ies
may be searched.

U sed only i f r u n
f ile is larger
than memory.

run-f i l e
.EXEVM. TMP

LINK Operations

page 11.3

LINK

Definitions

Three terms appear frequently in the LINK error messages. These terms de
scribe the underlying functioning of LINK. An understanding of the concepts
that define these terms provides a basic understanding of the way LINK
works.

SEGMENT

A Segment is a continuous area of memory up to 64K bytes in length. A Seg
ment may be located anywhere in 8086 memory on a "paragraph" (16 byte)
boundary. The contents of a Segment are addressed by a Segment-regis
ter/offset pair.

GROUP

A Group is a collection of Segments which fit within 64K bytes of memory.
The Segments are named to the Group by the assembler, by the compiler,
or by you. The Group name is given by you in the assembly language pro
gram. For the high-level languages (BASIC, FORTRAN, COBOL, Pascal),
the naming is carried out by the compiler.

The Group is used for addressing Segments in memory. Each Group is ad
dressed by a single Segment register. The Segments within the Group are
addressed by the Segment register plus an offset. LINK checks to see that
the object modules of a Group meet the 64K byte constraint.

CLASS

A Class is a collection of Segments. The naming of Segments to a Class
controls the order and relative placement of Segments in memory. The
Class name is given by you in the assembly language program. For the high
level languages (BASIC, FORTRAN, COBOL, Pascal), the naming is car
ried out by the compiler.

Page 11.4

LINK

The Segments are named to a Class at compile time or assembly time. The
Segments of a Class are loaded into memory continuously. The Segments
are ordered within a Class in the order LINK encounters the Segments in
the object files. One Class precedes another in memory only if a Segment
for the first Class precedes all Segments for the second Class in the input
to LINK, Classes may be loaded across 64K byte boundaries. The Classes
are divided into Groups for addressing.

How LINK Combines and Arranges Segments

LINK arranges the object module according to the combine types (private,
public, stack, ad common) declared in the segment directives. (The memory
combine type available in Microsoft's MACRO-86 is treated the same as
public. LINK does not automatically place memory combine type as the
highest segments.)

LINK combines segments for these combine types as follows:

PRIVATE

0
A A

Private segments are loaded separately and remain
separate. They may be physically, but not logically,
continuous, even if the segments have the same
name. Each private segment has its own base ad
dress.

A' A'0

page 1 I .5

PUBLIC

A
0 Public segments of the same name and class name

are loaded continuously. Offset is from beginning of
first segment loaded through last segment loaded.
There is only one base address for all public seg
ments of the same name and class name. (Combine
types stack and memory are treated the same as
public. However, the Stack Pointer is set to the first
address of the first stack segment.)

A .A.

COMMON

0 Com mon segments of the same name and class
name are loaded overlapping one another. There is
only one base address for all common segments of
the same name. The length of the common area is
the length of the longest segment.

A

A'

page i 1.6

Place segments in a Group in the assembler provides offset addressing of
items from a single base address for all segments in that Group.

DS:DGROUP —) XXXXOH..........O-relative offset
AAny number of other

segments may inter
vene between seg
ments of a gr o up.
Thus, the offset o f
FOO may be greater
than the size of seg
ments in group com
bined, but no larger
than 64K.

B
FOO

C

An ope r and of
D GROUP:FOO re
turns the offset of FOO
from the beginning of
the first segment of
DGROUP (segment
here)

A

Segments are grouped by declared class names. LINK loads all the seg
ments belonging to the first class name it encounters, then loads all the seg
ments of the next class name it encounters, and so on until all classes have
been loaded.

They load as:If your program contains:

'F00'ASEGMENT 'F00'

B SEGMENT ' BAZ '

C SEGMENT ' BAZ '

D SEGMENT ' Z00'
E SEGMENT ' F00'

'BAZ'

' Z00'

page 11.7

LINK

If you are writing assembly language programs, you can exercise control
over the ordering of classes in memory by writing a dummy module and list
ing it first after the LINK Object Modules prompt. The dummy module de
clares segments into classes in the order you want the classes loaded.

NOTE: Do not use this method with BASIC, COBOL, FORTRAN, or Pascal
programs. Allow the compiler and the linker to perform their own class order
ing without dummy modules.

For example:

A SEGMENT
A ENDS

B SEGMENT

B ENDS
C SEGMENT
C ENDS
D SEGMENT

D ENDS

E SEGMENT

E ENDS

'DATA'

'CODE'

'CONST'

STACK 'STACK'

'MEMORY'

You should be careful to declare all classes to be used in your program in
this module. If you do not, you lose absolute control over the ordering of
classes.

If you want the memory combine type to be loaded as the last segment of
your program, you can use this method. Simply add MEMORY between
SEGMENT and 'MEMORY' in the E segment line above. Note, however,
that these segments are loaded last only because you imposed this control
on them, not because of any inherent capability in the linker or assembler
operations.

Page 14.8

Files That LlMK Uses

LINK works with one or more input files, produces two output files, may
create a virtual memory file, and may be directed to search one to eight li
brary files. For each type of file, you may give a three-part file specification.
The format for LINK file specifications is:

d:filename.ext

where d: is the drive designation. Permissible drive designations for LINK
are A through D. The colon is always required as part of the drive designa
tion; where filename is any legal filename of one to eight characters; and
where.ext is a one- to three-character extension to the filename. The period
is always required as part of the extension.

INPUT FILES

If no extensions are given in the input (object) file specifications, LINK recog
nizes by default:

File

Object
Library

Default Extension

.OBJ

.LIB

OUTPUT FILES

LINK appends to the output (run and list) files the following default exten
sions:

File Default Extension

.EXE (may not be overridden)

.MAP (may be overridden)
Run
List

Page 11.9

VM. TMP FILE

LINK uses available memory for the link session. If the files to be linked
create an output file that exceeds available memory, LINK creates a tempo
rary file and names it VM. TMP. If LINK needs to create VM. TMP, it displays
the message:

VM.TMP has been created,

Do not change diskette in drive. <d: >

Once this message is displayed, you must not remove the disk from the de
fault drive until the link session ends. If the disk is removed, the operation
of LINK is unpredictable, and LINK might return the error message:

Unexpected end of file on VM. TMP

LINK uses VM. TMP as a virtual memory. The contents of VM. TMP are sub
sequently written to the file named following the run file: prompt. VM.TMP
is a working file only and is deleted at the end of the linking session.

NOTE: Do not use VM.TMP as a file name for any file. If you have a file
named VM.TMP on the default drive and LINK requires the VM.TMP file,
LINK deletes the old VM. TMP. Thus, the contents of the previous VM. TMP
file are lost.

page 11.10

LINK

Running LINK

LINK requires two types of commands: a command to invoke LINK and an
swers to command prompts. In addition, six switches control alternate LINK
features. Usually you enter all the commands to LINK on the terminal
keyboard. As an option, answers to the command prompts and any switches
may be contained in a response file. Some Command Characters are pro
vided to assist you while you are entering linker commands.

Invoking LINK

There are three ways you may invoke LINK. With the first method, you enter
the commands as answers to individual prompts. With the second method,
you enter all commands on the line used to invoke LINK. With the third
method, you create a response file that contains all the necessary com
mands.

Summary of Methods to invoke LINK

Method 1 LINK

Method 2 LINK <filenames>I'</x>]

Method 3 L INK®<filespec>

METHOD 1: LINK

Enter:

A: LINK

LINK loads into memory. Then it returns a series of four text prompts that
appear one at a time. Answer the prompts as commands to LINK to perform
specific tasks.

page 11 • 11

At the end of each line, you may enter one or more switches, each of which
must be preceded by a slash mark. If a switch is not included, LINK defaults
to not performing the function described for the switches in the chart below.

The command prompts are summarized here and described in more detail
under "Command Prompts", Page 11.16. Following thesummary of prompts
is a summary of switches, which are described in more detail under
"Switches", Page 11.18.

Summary of Prompts

PROMPT RESPONSES

The .OBJ files to be linked, sepa
rated by blank spaces or plus signs
(+). If a plus sign is the last charac
ter you enter, a prompt will reap
pear. (No default: response re
quired.)

Object Modules [. OBJ]:

List File [NUL.MAP]:

Run File [Object-fi le. EXE]: The filename for the executable ob
ject code. (Default: f irst-object
filename. EXE.)

The filename for the listing. (De
fault: NUL filename.)

The filenames to be searched,
separated by blank spaces or plus
signs (+). If a plus sign is the last
character you enter, a prompt reap
pears. (Default: no search.)

Libraries [. LIB]:

Page 11.12

LINK

Rovvivg LINK

Summary of Switches

SWITCH ACTION

Load data at the high end of the Data Segment.
This is required for Pascal and FORTRAN pro

/DSALLOCATE

/MAP

/HIGH

/LINENUM BERS

grams.

Place the run file as high as possible in memory.
Do not use this with Pascal or FORTRAN Pro
grams.

Include line numbers in the fist file.

List all global symbols with definitions.

Halt the linker session and wait for the RETURN
key.

/PAUSE

/STACK:<number) Set a f ixed stack size in the run file.

Command Characters

LINK provides three command characters.

Use the plus sign (+) to separate entries and to extend the cur
rent physical line following the Object Modules and Libraries
prompts. (A blank space may be used to separate object
modules.) To enter a large number of responses (each
which may a lso b e v e r y l o ng), e nter a pl u s s i gn/
RETURN at the end of the physical line (to extend the logical
line). If the plus sign/ RETURN is the last entry following these
two prompts, LINK prompts you for more module names. When
the Object Modules or Libraries prompt appears again, con
tinue to enter responses. When all the modules to be linked
have been listed, be sure the response line ends with a module
name and a RETURN and not a plus sign/ RETURN.

Page 11.13

LINK

Example:

Object Modules [.OBJ]: FUN TEXT TABLE CARE+ R E T URN
Object Modules [. OBJ]: FOO+ FLIPFLOP+ JUNQUE+ R E TURN
Object Modules [.OBJ]: CORSAIR RETURN

Use a single semicolon (;) followed immediately by a RETURN
at any time after the first prompt (from run file on) to select de
fault responses to the remaining prompts. This feature saves
time and overrides the need to enter a series of RETURNS.

NOTE: Once the semicolon has been entered, you can no
longer respond to any of the prompts for that link session.
Therefore, do not use the semicolon to skip over some prompts.
For this, use a RETURN.

Example:

Object Modules [.OBJ]: FUN TEXT TABLE CARE RETURN
RUN Module [FUN. EXE]:; R ET U R N

The remaining prompts do not appear, and LINK uses the de
fault values (including NUL. MAP for the list file).

Use CTRL-C at any time to abort the link session. If you enter
an erroneous response, such as the wrong filename or an in
correctly spelled filename, you must press CTRL-C to exit
LINK. Then reinvoke LINK and start over. If the error has been
typed but not entered, you may delete the erroneous charac
ters, but for that line only.

CTRL-C

page 11.14

LINK

RVAAIAQ L)RK

METHOD 2: LINK <filenames>[</x>]

Enter:

LINK <object-list>,<runfile>,<listfile>,<lib-list>[</x>...]

The entries following LINK are responses to the command prompts. The
entry fields for the different prompts must be separated by commas.

Where: <object-list> is a list of object modules, separated by plus signs;
<runfile> is the name of the file to receive the executable output; <listfile>
is the name of the file to receive the listing; <lib-list> is a list of library mod
ules to be searched; and </x> are optional switches, which may be placed
following any of the response entries (just before any of the commas or after
the <lib-list>, as shown).

To select the default for a field, simply enter a second comma without
spaces in between (see the example below).

Example:

LINK FUN+ TEXT+ TABLE+ CARE/P/M,, FUNLI ST, COBLIB. LIB

This example causes LINK to be loaded, and then causes the object mod
ules FUN.OBJ, TEXT.OBJ, TABLE.QBJ, and CARE.QBJ to be loaded. LINK
then pauses (caused by the /P switch). When you press any key, LINK links
the object modules, produces a global symbol map (the /M switch), defaults
to FUN.EXE run file, creates a list file named FUNLIST.MAP, and searches
the library file COBLIB.LIB.

Page 11.15

LINK

RUn@IVQ UHK

METHOD 3: LINK® (filespec)

Enter:

LINK ® (filespec)

Where: (filespec) is the name of a response file. A response file contains
answers to the LINK prompts (shown under Method 1 for invoking), and may
also contain any of the switches. Method 3 permits you to conduct the LINK
session without interactive (direct) user responses to the LINK prompts.

NOTE: Before using Method 3 to invoke LINK, you must first create the re
sponse file.

A response file has text lines, one for each prompt. Responses must appear
in the same order as the command prompts appear.

Switches and Command Characters in the response file are used the same
way as they are used for responses entered on the terminal keyboard.

When the LINK session begins, each prompt displays, in turn with the re
sponses from the response file. If the response file does not contain answers
for all the prompts, either in the form of filenames or the semicolon Com
mand Character or RETURNS, LINK will, after displaying the prompt which
does not have a response, wait for you to enter a legal response. When a
legal response has been entered, LINK continues the link session.

Example:

FUN TEXT TABLE CARE

/PAUSE/MAP
FUNLIST

COBLIB. LIB

page 11.16

LINK

This response file causes LINK to load the four Object modules. LINK
pauses before creating and producing a public symbol map to permit you
to swap disks (see this discussion under /PAUSE in the section on
"Switches", Page 11.19 before using this feature). When you press
RETURN the output files are named FUN.EXE and FUNLST, and MAP.
LINK searches the library file COBLIB. LIB. LINK uses the default settings
for the flags.

Command Prompts

You can command LINK by entering responses to four text prompts. When
you have entered a response to the current prompt, the next appears. When
the last prompt has been answered, LINK begins linking automatically with
out further command. When the link session is finished, LINK exits to the
operating system. When the operating system prompt is displayed, LINK
has finished successfully. If the link session is unsuccessful, LINK returns
the appropriate error message.

LINK prompts you for the names of object, run, list files and libraries. The
prompts are listed in their order of appearance. For prompts which can de
fault to preset responses, the default response is shown in square brackets

([]) following the prompt. The Object Modules: prompt is followed by only
a filename extension default response because it has no preset filename re
sponse and requires a filename from you.

Obj ect Modules [. OBJ]: Enter a list of the object modules to be linked. LINK as
sumes by default that the filename extension is .OBJ. If an object module
has any other filename extension, the extension must be given here. Other
wise, the extension may be omitted.

Modules must be separated by plus signs (+).

Remember that LINK loads Segments into Classes in the order encountered
(see "Definitions" on Page 11.3). Use this information for setting the order
in which the object modules are entered.

Page 11.17

LINK

Run File [First-Object-f ilename. EXE]: The filename entered is created to store
the run (executable) file that results from the link session. All run files receive
the filename extension .EXE, even if you specify an extension (your
specified extension is ignored).

If no response is entered to the run file prompt, LINK uses the first filename
entered in response to the Object Modules prompt as the RUN filename.

Example:

Run File [FUN.EXE]: B:PAYROLL/P

This response directs LINK to create the run file PAYROLL.EXE on drive
B:. Also, LINK pauses, which allows you to insert a new disk to receive the
run file.

List File [NUL. MAP]: The list file contains an entry for each segment in the input
(object) modules. Each entry also shows the offset (addressing) in the run
file.

The default response is the no list filename with the default filename exten
sion.MAP.

Libraries [.LIB]: The valid responses are one to eight library filenames or
simply a RETURN. (A RETURN only means no library search.) Library files
must have been created by a library utility. LINK assumes by default that
the filename extension is. LIB for library files.

Library filenames must be separated by blank spaces or plus signs (+).

LINK searches the library files in the order listed to resolve external refer
ences. When it finds the module that defines the external symbol, LINK pro
cesses the module as another object module.

page 11.18

LINK
RUIrIIAIAg LINK

If LINK cannot find a library file on the disks in the disk drives, it returns the
message:

Cannot f ind library (library-name)

Enter new drive letter:

Simply press the letter for the drive designation (for example 8).

LINK does not search within each library file sequentially. LINK uses a
method called dictionary indexed library search. This means that LINK finds
definitions for external references by index access rather than by searching
from the beginning of the file to the end, for each reference. This indexed
search reduces the link time for any sessions involving substantial library
searches.

Switches

The six switches control alternate linker functions. Switches must be en
tered at the end of a prompt response regardless of which method is used
to invoke LINK. Switches may be grouped at the end of any one of the re
sponses, or may be scattered at the end of several. If more than one switch
is entered at the end of one response, each switch must be preceded by
the slash mark (/).

All sw!tches may be abbreviated, from a single letter through the whole
switch name. The only restriction is that an abbreviation must be a sequen
tial sub-string from the first letter through the last entered; no gaps or trans
positions are allowed. For example:

Leceal

/D /DSL
/DS /DAL
/DSA /DLC
/DSALLOCA /DSALLOCT

Illeqal

Page 11.19

LINK

Ruvvfog uHK

/OSALLOCATE Use of the /DSALLOCATE switch directs LINK to load all
data (DGroup) at the high end of the Data Segment. Otherwise, LINK loads
all data at the low end of the Data Segment. At runtime, the DS pointer is
set to the lowest possible address and allows the entire DS segment to be
used. Use of the /DSALLOCATE switch in combination with the default load
low (that is, the /HIGH switch is not used), permits your application to allo
cate dynamically any available memory below the area specifically allocated
within DGroup, yet to remain addressable by the same DS pointer. This dy
namic allocation is needed for Pascal and FORTRAN programs.

NOTE: Your application program may dynamically allocate up to 64K bytes
(or the actual amount available) less the amount allocated within DGroup.

/HIGH Use of the/HIGH switch causes LINK to place the run image as high
as possible in memory. Otherwise, LINK places the run file as low as possi
ble.

NOTE: Do not use the /HIGH switch with Pascal or FORTRAN programs.

/LINENUMBERS Use of the /LINENUMBERS switch directs LINK to in
clude in the list file the line numbers and addresses of the source statements
in the input modules. Otherwise, line numbers are not included in the list file.

NOTE: Not all compilers produce object modules that contain line number
information. In these cases, of course, LINK cannot include line numbers.

/MAP /MAP directs LINK to list all public (global) symbols defined in the
input modules. If /MAP is not given, MS/LINK lists only errors (which in
cludes undefined globals).

The symbols are listed alphabetically. For each symbol, LINK lists its value
and its segment:offset location in the run file. The symbols are listed at the
end of the list file.

Page 1 1.20

/PAUSE The /PAUSE switch causes LINK to pause in the link sessions
when the switch is encountered. Normally, LINK performs the linking ses
sion without stop from beginning to end. This allows you to swap the disks;
before the LINK outputs the run (. EXE) file.

When LINK encounters the/PAUSE switch, it displays the message:

About to generate .EXE file
Change disks <hit ENTER>

LINK resumes processing when you press ENTER or RETURN.

NOTE: Do not swap the disk which will receive the list file, or the disk used
for the VM. TMP file, if created.

/STACK:(number) Num ber represents any positive numeric value (in
hexadecimal radix) up to 65536 bytes. If the /STACK switch is not used for
a link session, LINK calculates the necessary stack size automatically.

lf you enter a value from 1 to 511, LINK uses 512.

All compilers and assemblers should provide information in the object mod
ules that allow the linker to compute the required stack size.

At least one object (input) module must contain a stack allocation statement.
If not, LINK returns a WARNING. NOSTACKSTATEMENTerror message.

Page 12.1

LIB

Introduction to LIB

FEATURES AND BENEFITS OF LIB

Brief

LIB creates an indexed master file of up to 500 .OBJ files produced by the
MACRO-86 assembler. Directing LINK to search a library greatly speeds
program development. Once a library is built, you may create a complex pro
gram by writing and assembling a single control module based upon calls
to external routines. Specify the control module as the .OBJ file to be linked
and the library name as the .LIB file to be searched. All required modules
will be extracted and linked to your program.

Details

LIB creates and modifies library files that are used with Microsoft's LINK Util
ity. LIB can add object files to a library, delete modules from a library, and
place the extracted modules into separate object files.

LIB provides a means of creating either general or special libraries for a vari
ety of programs or for specific programs only. With LIB you can create a li
brary for a language compiler, or you can create a library for one program
only, which would permit very fast linking and possibly more efficient execu
tion.

You can modify individual modules within a library by extracting the mod
ules, making changes, then adding the modules to the library again. You can
also replace an existing module with a different module or with a new version
of an existing module.

The command scanner in LIB is the same as the one used in Microsoft's
LINK, MS-PASCAL, MS-FORTRAN, and other 16-bit Microsoft products. If
you have used any of these products, using LIB is familiar to you. Command
syntax is straightforward, and LIB prompts you for any of the commands it
needs that you have not supplied.

Page 12.2

OVERVIEW OF LIB OPERATION

Brief

LIB provides five basic functions:

1.
2.
3.
4.
5.

Create a library (.LIB) file.
Add a module.
Delete a module.
Replace a module with a revised version.
Copy a module to a separate .OB J file.

You may also select an optional cross reference of all PUBLIC symbols.

Details

LIB performs two basic actions: it deletes modules from a library file, and
it changes object files into modules and appends them to a library file. These
two actions underlie five library manager functions:

1. Del ete a module.

2. Ext ract a module and place it in a separate object file.

3. App end an object file as a module of a library.

4. Rep lace a module in the library file with a new module.

5. Cre ate a library file.

page 12.3

LIB

During each library session, LIB first deletes or extracts modules, then ap
pends new ones. In a single operation, LIB reads each module into memory,
checks it for consistency, and writes it back to the file. If you delete a module,
LIB reads in that module but does not write it back to the file. When LIB writes
back the next module to be retained, it places the module at the end of the
last module written. This procedure effectively "closes up" the disk space
to keep the library file from growing larger than necessary. When LIB has
read through the whole library file, it appends any new modules to the end
of the file. Finally, LIB creates the index, which LINK uses to find modules
and symbols in the library file, and outputs a cross reference listing of the
PUBLIC symbols in the library, if you request such a listing. (Building the
library index may take some extra time — up to 20 seconds in some cases.)

For example:

LIB PASCAL HEAP-HEAP;

first deletes the library module HEAP from the library file, then adds the file
HEAP.OBJ as the module in the library. This order of execution prevents
confusion in the library file. Note that the replace function is simply the delete
and append functions in succession. Also, note that you can specify delete,
append, or extract functions in any order; the order is insignificant to the LIB
command scanner.

page 12.4

LIB

IIAivod~vct(OA to L(8

Consistency
check only A B C DLI B

Delete
Module C;
Module D
written to
space of
Module C

A 8 C/ D (DLI B

E .OBJ

Append
Object fi le
E.OBJ as new
Module E
at end of
Library f i le

A B D ELI B

Page 12.5

Extract
Module E;
place in a
separate
Object f i le ;
return to
library

LI B A B D E

E .OBJ

Consistency
check, then
output a
reference
l isting of
PUBLIC
symbols

A B D ELI B

CROSSLST

Page 12.6

LIB

Running LIB

Brief

Invoke LIB by entering LIB after the operating system prompt. LIB responds
with a series of three queries asking the name of the library file to be manipu
lated, the operation(s) to be performed, and the name for an optional listing
file. Syntactic details of the responses are covered in the next brief.

You must enter a library filename. LIB expects it to have an extension of .LIB.
Any other extension must be entered. If the file does not exist, you are given
the option to create it. The default for the operations query is to perform no
operations. The default for the listing query is not to produce a listing file.
Select the default for a query by entering a carriage return. You may enter
a semicolon any time after the filename to select the default for all of the re
maining queries.

If the desired operations do not fit on one line, end the line with an amper
sand. An additional "operations" query will be provided.

You may override the query process by entering all the responses after the
LIB entry. There is no delimiter between the library filename and the opera
tions response. A comma separates the operations response from the listing
filename. Alternately, a batch response file may be created to eliminate user
interaction. Control-C aborts LIB at any time.

Details

Running LIB requires two types of commands: a command to invoke LIB and
answer to command prompts. Usually you enter all the commands to LIB
on the terminal keyboard. As an option, answers to the command prompts
may be contained in a response file. Some Command Characters exist.
Some are used as a required part of LIB commands. Others assist you while
entering LIB commands.

Page 12.7

INVOKING LIB

LIB may be invoked three ways. By the first method, you enter the com
mands as answers to individual prompts. By the second method, you enter
all commands on the line used to invoke LIB. By the third method, you must
first create a response file that contains all the necessary commands.

Method 1

Method 2

LIB

LIB <library><operations>,<list>

LIB @<filespec>Method 3

Summary of Methods to Invoke LIB

page 12 8

LIB

Roaming LIB

Method1: LIB

Enter:

LIB

LIB loads into memory. Then, LIB returns a series of three text prompts that
appear one at a time. You answer the prompts as commands to LIB to per
form specific tasks.

The Command Prompts and Command Characters are summarized here.
The Command Prompts and Command Characters are described fully on
Pages 12.15 and 12.17 respectively.

PROMPT

Libraryfile:

Operations:

RESPONSES

List filename of library to be manipulated (default:
filename extension . LIB).

List command character(s) followed by module
name(s) or object filename(s) (default action: no
changes — default object filename extension:
.OBJ).

List filename for a cross-reference listing file (de
fault: NUL; no file).

List file:

Summary of Command prompts

Page 12.9

ACTIONKEY

+ Appe nd an object file as the last module.

Delete a module from the library.

Extract a module and place in an object file.

Use default responses to remaining prompts.

Extend current physical line; repeat command prompt.

Abort library session.CTRL-C

Summary of Command Characters

page 12.10

LIB

AU@ning LIB

Method 2: LIB <library> <operations>, <list)

Brief

There are three possible responses to the operations query:

Enter a plus (+) followed by the name of an accessible object file to enter
it into the library. A default extension of .OBJ is expected. Any other exten
sion must be specified. You may include a drive specifier. LIB strips both
the driver specifier and the extension, leaving a module name equal to the
basic filename.

Enter a minus (—) followed by the name of a library module to delete it.

Enter an asterisk (+) followed by the name of a library module to copy it to
a new.OBJ file. You may not override the.OBJ extension or specify an alter
nate drive.

Operations responses may be chained without delimiters. A replacement
operation is equal to a deletion plus an entry. Deletions are always per
formed before entries, regardless of their sequence in the command line.
This simplifies replacement operations by allowing use of the same module
name. LIB makes all additions to the end of the library and compacts the
file to fill space left by deletions. Lastly, the module index is generated. The
operating system prompt will appear when all operations are complete.

Details

Enter:

LIB (library) (operations), (list>

The entries following LIB are responses to the command prompts. The li
brary and operations fields and all operations entries must be separated by
one of the command characters, plus, minus, and asterisk (+, —, +). If a
cross-reference listing is wanted, the name of the file must be separated
from the last operations entry by a comma.

page 12.11

LIB

AU@ning LIB

Library is the name of a library file. LIB assumes that the filename extension
is .OBJ, which you may override by specifying a different extension. If the
filename given for the library field does not exist, LIB prompts you:

Library file does not exist. Create?

Enter Yes (or any response beginning with "Y") to create a new library file.
Enter No (or any other response not beginning with Y) to abort the library
session.

Operations is deleting a module, appending an object file as a module, or
extracting a module as an object file from the library file. Use the three com
mand characters, plus (+), minus (—), and asterisk (+) to direct LIB what
to do with each module or object file.

Listing is the name of the file you want to receive the cross reference listing
of PUBLIC symbols in the modules in the library. The list is compiled after
all module manipulation has taken place.

To select the default for remaining field(s), you may enter the semicolon
command character.

If you enter a library filename followed immediately by a semicolon, LIB
reads through the library file and performs a consistency check. No changes
are made to the modules in the library file.

Page 12.12

If you enter a library filename followed immediately by a comma and a List
filename, LIB performs its consistency check of the library file, then pro
duces the cross-reference listing file.

Example:

LIB PASCAL-HEAP+ HEAP;

This example causes LIB to delete the module HEAP from the library file
PASCAL.LIB, then append the object file HEAP.OBJ as the last module of
PASCAL.LIB (the module is then named HEAP).

If you have many operations to perform during a library session, use the am
persand (&) command character to extend the line so that you can enter ad
ditional object filenames and module names. Be sure to always include one
of the command characters for operations (+, —, +) before the name of
each module or object filename.

Example:

LIB PASCAL; RETURN

causes LIB to perform a consistency check of the library file PASCAL.LIB.
No other action is performed.

Example:

LIB PASCAL,PASCROSS.PUB RETURN

causes LIB to perform a consistency check of the library file PASCAL.LIB,
then output a cross-reference listing file named PASCROSS.PUB.

Page 12.13

LIB

RUneleg LN8

Method 3: LIB®<filespec>

Brief

Enter:

LIB®<filespec)

Filespec is the name of a response file. A response file contains answers
to the LIB prompts (summarized under Methods for invoking, and described
fully on Page 12.8. Method 3 permits you to conduct the LIB session without
interactive (direct) user responses to the LIB prompts.

NOTE: Before using Method 3 to invoke LIB, you must first create the re
sponse file.

A response file has text lines, one for each prompt. Responses must appear
in the same order as the command prompts appear.

Use Command Characters in the response file the same way as they are
used for responses entered on the terminal keyboard.

When the library session begins, each prompt displays in turn with the re
sponses from the response file. If the response file does not contain answers
for all the prompts, LIB uses the default responses (no changes to the mod
ules currently in the library file for Operation, and no cross-reference listing
file created).

If you enter a library filename followed immediately by a semicolon, LIB
reads through the library file and performs a consistency check. No changes
are made to the modules in the library file.

If you enter a library filename followed by a carriage return, then a comma
and a list filename, LIB performs its consistency check of the library file, then
produces the cross-reference listing file.

Page 12 14

Example:

PASCAL RETURN
+ CURSOR+ HEAP-HEAPeFOIBLES RETURN
CROSSLST RETURN

This response file causes LIB to delete the module HEAP from the
PASCAL.LIB library file, extract the module FOIBLES and place in an object
file named FOIBLES.OBJ, then append the object files CURSOR.OBJ and
HEAP.OB J as the last two modules in the library. Then, LIB creates a cross
reference file named CROSSLST.

Page 12.15

LIB

RUnvlng LIB

Details

Command Prompts

LIB is commanded by entering responses to three text prompts. When you
have entered your response to the current prompt, the next prompt appears.
When the last prompt has been answered, LIB performs its library manage
ment functions without further command. When the library session is
finished, LIB exits to the operating system. When the operating system
prompt is displayed, LIB has finished the library session successfully. If the
library session is unsuccessful, LIB returns the appropriate error message.

LIB prompts you for the name of the library file, the operation(s) you want
to perform, and the name you want to give to a cross-reference listing file,
if any.

Library file: Enter the name of the library file that you want to manipulate.
LIB assumes that the filename extension is .LIB. You can override this as
sumption by giving a filename extension when you enter the library filename.
Because LIB can manage only one library file at a time, only one filename
is allowed in response to this prompt. Additional responses, except the
semicolon command character, are ignored.

If you enter a library filename and follow it immediately with a semicolon
command character, LIB performs a consistency check only, then returns
to the operating system. Any errors in the file are reported.

If the filename you enter does not exist, LIB returns the prompt:

Library file does not exist. Create?

You must enter either Yes or No, in either upper or lower (or mixed) case.
Actually, LIB checks the response for the letter Y as the first character. If
any other character is entered first, LIB terminates and returns to the operat
ing system.

Page 12.16

LIB

Ro AAIAg QI Q

Operation: Enter one of the three command characters for manipulating
modules (+, —, +), followed immediately (no space) by the module name
or the object filename. Plus sign appends an object file as the last module
in the library file (see further discussion under the description of plus sign
below). Minus sign deletes a module from the library file. Asterisk extracts
a module from the library and places it in a separate object file with the
filename taken from the module name and a filename extension.OBJ.

When you have a large number of modules to manipulate (more than you
can type on one line), enter an ampersand (&) as the last character on the
line. LIB repeats the Operation prompt, which permits you to enter additional
module names and object filenames.

LIB allows you to enter operations on modules and object files in any order
you want.

More information about order of execution and what LIB does with each
module is given in the descriptions of each Command Character.

List file: If you want a cross-reference list of the PUBLIC symbols in the
modules in the library file after your manipulations, enter a filename in which
you want LIB to place the cross-reference listing. If you do not enter a
filename, no cross-reference listing is generated (a NUL file).

The response to the list file prompt is a file specification. Therefore, you can
specify, along with the filename, a drive (or device) designation and a
filename extension. The list file is not given a default filename extension. If
you want the file to have a filename extension, you must specify it when en
tering the filename.

The cross-reference listing file contains two lists. The first list is an alphabeti
cal listing of all PUBLIC symbols. Each symbol name is followed by the
name of its module. The second list is an alphabetical list of the modules
in the library. Under each module name is an alphabetical listing of the
PUBLIC symbols in that module.

Page 12.f7

LIB

RUneilng UB

Command Characters

LIB provides six command characters: three of the command characters are
required in responses to the Operation prompt; the other three command
characters provide you with additional helpful commands to LIB.

The plus sign followed by an object filename appends the ob
ject file as the last module in the library named in response to
the library file prompt. When LIB sees the plus sign, it assumes
that the filename extension is .OBJ. You may override this as
sumption by specifying a different filename extention.

LIB strips the drive designation and the extension from the ob
ject file specification, leaving only the filename. For example,
if the object file to be appended as a module to a library is:

B: CURSOR. OBJ

a response to the Operation prompt of:

+B: CURSOR. OBJ

causes LIB to strip off the B: and the .OBJ, leaving only
CURSOR, which becomes a module named CURSOR in the
library.

NOTE: The distinction between an object file and a module (or
object module) is that the file possesses a drive designation
(even if it is default drive) and a filename extension. Object
modules possess neither of these.

The minus sign followed by a module name deletes that module
from the library file. LIB then "closes up" the file space left empty
by the deletion. This cleanup action keeps the library file from
growing larger than necessary with empty space. Remember
that new modules, even replacement modules, are added to
the end of the file, not stuffed into space vacated by deleting
modules.

Page 12.18

LIB

AUnving LIB

The asterisk followed by a module name extracts that module
from the library file and places it into a separate object file. The
module still exists in the library (extract means, essentially,
"copy the module to a separate object file"). The module name
is used as the filename. LIB adds the default drive designation
and the filename extension .OBJ. For example, if the module
to be extracted is:

CURSOR

and the current default disk drive is A, a response to the Opera
tion prompt of:

~CURSOR

causes LIB to extract the module named CURSOR from the li
brary file and to set it up as an object file with the file specifica
tion of:

A: CURSOR. OBJ

(The drive designation and filename extension cannot be over
ridden. You can, however, rename the file, giving a new
filename extension, and/or copy the file to a new disk drive, giv
ing a new filename and/or filename extension.)

Use a single semicolon (;) followed immediately by the
RETURN key at any time after responding to the first prompt
(from library file on) to select default responses to the remaining
prompts. This feature saves time and overrides the need to an
swer additional prompts.

NOTE: Once the semicolon has been entered, you can no
longer respond to any of the prompts for that library session.
Therefore, do not use the semicolon to skip over some prompts.
For this, hit the RETURN key.

Example:

Library File: FU N RE T URN
Operations: + CURSOR; R ETURN

Page 42.19

LIB

RVAAIAQ LI8

The remaining prompt does not appear, and LIB uses
the default value (no cross-reference file).

Use the ampersand to extend the current physical line.
This command character is needed only for the Opera
tion prompt. LIB can perform many functions during a
single library session. The number of modules you can
append is limited only to disk space. The number of
modules you can replace or extract is also limited only
by disk space.

The number of modules you can delete is limited only
by the number of modules in the library file. However,
the line length for a response to any prompt is limited
to the line length of your system. For a large number of
responses to the Operation prompt, place an amper
sand at the end of a line. LIB displays the Operation
prompt again; then you should enter more responses.
You may use the ampersand character as many times
as you need. For example:

Library File: F U N RETU R N
Operations: + CURSOR-HEAP+ HEAPeFOIBLESA
Operations: elNIT+ ASSUME+ RIDE; RETURN

LIB deletes the module HEAP, extracts the modules
FOIBLES and INIT (creating two files, FOIBLES.OBJ
and INIT.OBJ), then appends the object files CURSOR,
HEAP, ASSUME, and RIDE. Note, however, that LIB al
lows you to enter your Operation responses in any
order.

Use CTRL-C at any time to abort the library session. If
you enter an erroneous response, such as the wrong
filename or module name, or an incorrectly spelled
filename or module name, you must press CTRL-C to
exit LIB, then reinvoke LIB and start over. If you have
typed the error but have not entered it, you may delete
the erroneous characters, but for that line only.

page 12.20

Page 13.1

CREF

Introduction to CREF

FEATURES AND BENEFITS

The CREF Cross-Reference Facility can aid you in debugging your assem-
bly language programs. CREF produces an alphabetical listing of all the
symbols in a special file produced by your assembler. With this listing, you
can quickly locate all occurrences of any symbol in your source program by
line number.

The CREF produced listing is meant to be used with the symbol table pro
duced by your assembler.

The symbol table listing shows the value of each symbol, and its type and
length, and its value. This information is needed to correct erroneous symbol
definitions or uses.

The cross-reference listing produced by CREF provides you with the loca
tions, speeding your search and allowing for faster debugging.

OVERVIEW OF CREF OPERATION

CREF produces a file with cross-references for symbolic names in your pro
gram.

First, you must create a cross-reference file with the assembler. Then,
CREF takes this cross-reference file, which has the filename extension
.CRF, and turns it into an alphabetical listing of the symbols in the file. The
cross-reference listing file is given the default filename extension. REF.

Beside each symbol in the listing, CREF lists the line numbers in the source
program where the symbol occurs in ascending sequence. The line number
where the symbol is defined is indicated by a pound sign (¹).

page 13.2

source
.ASM

Assembler

CREFl isting
.CRF

l isting
. REF

FOO 20 64 1234I 145

GA 0 21 454I 49 120

Page f3.3

CREF

Running CREF

Running CREF requires two types of commands: a command to invoke
CREF, and answers to command prompts. You enter all the commands to
CREF on the terminal keyboard. Some command characters exist to assist
you while entering CREF commands.

Before you can use CREF to create the cross-reference listing, you must
first have created a cross-reference file using your assembler. This step is
reviewed on this page.

CREATING A CROSS-REFERENCE FILE

A cross-reference file is created during an assembly session.

To create a cross-reference file, answer the fourth assembler command
prompt with the name of the file you want to receive the cross-reference file.

The fourth assembler prompt is:

Crossreference [NUL.CRF]:

If you do not enter a filename in response to this prompt, or if you in any
other way use the default response to this prompt, the assembler does not
create a cross-reference file. Therefore, you must enter a filename. You may
also specify which drive or device you want to receive the file and what
filename extension you want the file to have, if different from .CRF. If you
change the filename extension from .CRF to anything else, you must re
member to specify the filename extension when naming the file in response
to the first CREF prompt (see Page 13.4).

When you have given a filename in response to the fourth assembler
prompt, the cross-reference file is generated during the assembly session.

You are now ready to convert the cross-reference file produced by the as
sembler into a cross-reference listing by using CREF.

page 13.4

CREF

INVOKING CREF

CREF may be invoked two ways. By the first method, you enter the com
mands as answers to individual prompts. By the second method, you enter
all commands on the line used to invoke CREF.

Method 1 CREF

Method 2 CREF (c r f file>,<listing>

Summary of Methods to Invoke CREF

Methods CREF

Enter:

CREF

CREF loads into memory. Then, CREF returns a series of two text prompts
that appear one at a time. You answer the prompts to command CREF to
convert a cross-reference file into a cross-reference listing.

Command Prompts

CREF filename [.CRF]: Enter the name of the cross-reference file you want
CREF to convert into a cross-reference listing. The name of the file is the
name you gave your assembler when you directed it to produce the cross
reference file.

CREF assumes that the filename extension is .CRF. If you do not specify
a filename extension when you enter the cross-reference filename, CREF
looks for a file with the name you specify and the filename extension .CRF.
If your cross-reference file has a different extension, specify the extension
when entering the filename.

Page 13.5

CREF

See "Format of CREF Compatible Files", on Page 13.11 for a description
of what CREF expects to see in the cross-reference file. You need this infor
mation only if your cross-reference file was not produced by a Microsoft as
sembler.

List f ilename [crf f i le. REF]: Enter the name you want the cross-reference list
ing file to have. CREF automatically gives the cross-reference listing the
filename extension. REF.

If you want your cross-reference listing to have the same filename as the
cross-reference file but with the filename extension .REF, simply press the
RETURN key when the List filename prompt appears. If you want your
cross-reference listing file to be named anything else and/or to have any
other filename extension, you must enter a response following the List
filename prompt.

If you want the listing file placed on a drive or device other than the default
drive, specify the drive or device when entering your response to the Listing
prompt.

Special Command Characters

Use a single semicolon (;) followed immediately by the
RETURN key at any time after responding to the cross-refer
ence prompt, to select the default response to the Listing
prompt. This feature saves time and overrides the need to an
swer the Listing prompt.

If you use the semicolon, CREF gives the listing file the
filename of the cross-reference file and the default filename ex
tension.REF.

Example:

Cref filename [.CRF]: FUN;

CREF processes the cross-reference file named FUN.CRF and
outputs a listing file named FUN.REF.

Page 13.6

CREF

RUnnleg CREF

CTRL-C Use CTRL-C at any time to abort the CREF session. If you enter
an erroneous response, the wrong filename, or an incorrectly
spelled filename, you must press CTRL-C to exit CREF, then
reinvoke CREF and start over. If the error has been typed but
not entered, you may delete the erroneous characters, but for
that line only.

Method 2: CREF <crffile>,<listing)

Enter:

CREF <crffile>,<listing>

CREF loads into memory, then immediately proceeds to convert your cross
reference file into a cross-reference listing.

The entries following CREF are responses to the command prompts. The
crffile and listing fields must be separated by a comma.

Crffile is the name of a cross-reference file produced by your assembler,
CREF assumes that the filename extension is .CRF, which you may over
ride by specifying a different extension. If the file named for the crffile does
not exist, CREF displays the message:

Fatal I/O Error: 110
in: <crf f i l e>.CRF

Control then returns to your operating system.

Listing is the name of the file you want to receive the cross-reference listing
of symbols in your program.

To select the default filename and extension for the listing file, enter a
semicolon after you enter the crffile name.

Page 13.7

Example:

CREF FUN; RETURN

This example causes CREF to process the cross-reference file FUN.CRF
and to produce a listing file named FUN.REF.

To give the listing file a different name, extension, or destination, simply
specify these differences when entering the command line.

CREF FUN,B:WORK.ARG

This example causes CREF to process the cross-reference file named
FUN.CRF and to produce a listing file named WORK.ARG, which is placed
on the disk in drive B:.

Format of Cross-Reference Listings

The cross-reference listing is an alphabetical list of all the symbols in your
program.

Each page is headed with the title of the program or program module.

Then comes the list of symbols. Following each symbol name is a list of the
line numbers where the symbol occurs in your program. The line number
for the definition has a pound sign (¹) appended to it.

On the next page is a cross-reference listing as an example.

Page 13.8

ENTX PASCAL entry for in i t i a l i z ing programs g n omes f rom T ITLE d i rective

Symbol Cross Reference (¹ is defini t ion) Cref-1

37¹ 38

8 3 84¹ 154 17 6
3 3 1 6 2

1 1 1 26¹ 22 3

BEGHQQ .

BEGOQQ .
BEGXQQ .

CESXQQ .
CLNEQQ .

CODE .
CONST.

CRCXQQ .
CRDXQQ .

CSXEQQ .
CURHQQ .

9 99¹ 129

67 68¹
3 7 1 8 2

1 04 10 4 105 11 0
9 3 94¹ 210 21 5

95 96¹ 216
65 66¹ 149

85 86¹ 155

DATA .
DGROUP .

DOSOFF .
DOSXQQ .

64¹ 64 100 110

1 10¹ 11 1 111 1 1 1 1 2 7 1 5 3 1 7 1 1 7 2
98¹ 19 8 199

1 84 204¹ 21 9

ENDHQQ .
ENDOQQ .

ENDUQQ .
ENDXQQ .

ENDYQQ .
ENTGQQ .

ENTXCM .

87 88¹ 158
33¹ 195
31¹ 197

184 194¹
32¹ 196

30¹ 187
182¹ 183 221

1 69 170¹ 17 8FREXQQ .

page 13.9

HDRFQQ .
HDRVQQ .

71 72¹ 151

73 74¹ 152
42 44 110

54¹ 15 3 172
4 3 1 7 1

HEAPBEG.
HEAP LOW.

3 1 1 6 1INIQQ.

109¹ 1 11 180
42 48¹ 48 49 109 110

MAIN STARTUP
MEMORY .

69 70 150

Cref -2ENTX PASCAL entry for initializing programs

81
77

79
75

82¹
78¹

80¹
76¹ 148

RECEQQ .
REFEQQ
REPEQQ .

RESEQQ .

59¹

135 137¹
53¹ 53 60 110

1 63 186¹ 20 0
89 90¹ 146

91 92¹ 160

SKTOP.

SMLSTK .
STACK.

STARTMAIN.
STKBQQ .

STKHQQ .

Page 13.10

CREF
Format of CREF Compatible Files

CREF processes files other than those generated by Microsoft's assembler
as long as the file conforms to the format that CREF expects.

GENERAL DESCRIPTION OF CREF FILE PROCESSING

In essence, CREF reads a stream of bytes from the cross-reference file (or
source file), sorts them, then emits them as a printable listing file (the .REF
file). The symbols are held in memory as a sorted tree. References to the
symbols are held in a linked list.

CREF keeps track of line numbers in the source file by the number of end-of
line characters it encounters. Therefore, every line in the source file must
contain at least one end-of-line character (see the chart on Page 13.12).

CREF attempts to place a heading at the top of every page of the listing.
The name it uses as a title is the text passed by your assembler from a TITLE
(or similar) directive in your source program. The title must be followed by
a title symbol (see the chart on Page 13.12). If CREF encounters more than
one title symbol in the source file, it uses the last title read for all page head
ings. If CREF does not encounter a title symbol in the file, the title line on
the listing is left blank.

Page 13.11

CREF

FORMAT OF SOURCE FILES

CREF uses the first three bytes of the source file as format specification
data. The rest of the file is processed as a series of records that either begin
or end with a byte that identifies the type of record.

First Three Bytes

(The PAGE directive in your assembler, which takes arguments for page
length and line length, passes this information to the cross-reference file.)

First Byte — The number of lines to be printed per page (page length ranges
from 1 to 255 lines).

Second Byte — The number of characters per line (line length ranges from
1 to 132 characters).

Third Byte — The Page Symbol (07) that tells CREF that the two preceding
bytes define listing page size.

If CREF does not see these first three bytes in the file, it uses default values
for size (page length is 58 lines, line length is 80 characters).

Control Symbols

The two charts on Page 13.12 show the types of records that CREF recog
nizes and the byte values and placement it uses to recognize record types.

Records have a Control Symbol (which identifies the record type) either as
the first byte of the record or as the last byte.

page 13.12

CREF

BYTE VALUE CONTROL SYMBOL

Reference symbol01

02

SUBSEQUENTBYTES

Record is a reference to a symbol
name (1 to 80 characters).

Record is a definition of a symbol
name (1 to 80 characters).

Define symbol

04 End of line (None).

End of file 1AH05

Records That Begin with a Control Symbol

BYTE VALUE CONTROL SYMBOL

06

07

Title defined

PRECEDING BYTES

Record is title text (1 to
80 characters).

One byte for page length followed
by one byte for line length.

Page length/
line length

Records That End with a Control Symbol

For all record types, the byte value represents a control character, as fol
lows:

CTRL-A
CTRL-B
CTRL-C
CTRL-D
CTRL-E
CTRL-F
CTRL-G

01
02
03
04
05
06
07

Page 13.13

CREF

The Control Symbols are defined as follows:

Reference symbol — Record contains the name of a symbol that is refer
enced. The name may be from 1 to 80 ASCII characters long. Additional
characters are truncated.

Define symbol — Record contains the name of a symbol that is defined. The
name may be from 1 to 80 ASCII characters long. Additional characters are
truncated.

End-of-line — Record is an end-of-line symbol character only (04H or Con
trol-D).

End-of-file — Record is the end-of-file character (1AH).

Title defined — ASCII characters of the title to be printed at the top of each
listing page. The title may be from 1 to 80 characters long. Additional charac
ters are truncated. The last title definition record encountered is used for the
title placed at the top of all pages of the listing. If a title definition record is
not encountered, the title line on the listing is left blank.

Page lengthlline length — The first byte of the record contains the number
of lines to be printed per page (range is from 1 to 255 lines). The second
byte contains the number of characters to be printed per line (range is from
1 to 132 characters). The default page length is 58 lines; the default line
length is 80 characters.

Page 13.14

Summary of CREF File Record Contents

B e contents

01 symbol name

02 symbol name

04

05 1A

title text 06

Len th of record

2-81 bytes

2-81 bytes

1 byte

2 bytes

2-81 bytes

3 bytesPL LL07

Appendices and Index

page A.2

Page A.3

APPENDIX A

Operating System Error Messages

CHKDSK ERRORS

If an error is detected, CHKDSK returns one of the following error messages:

Allocation error for file <filename>

The named file had a data block allocated to it that did not exist (that is, a
data block number larger than the largest possible block number). CHKDSK
truncates the file short of the bad block.

Disk not initialized

No directory or file allocation table was found. If files exist on the disk, and
the disk has been physically harmed, it may still be possible to transfer files
from this disk to recover data.

Directory error-file: <filename>

No valid data blocks are allocated to the named file. CHKDSK deletes the
file.

Files cross-linked: <filename> and <filename>

The same data block is allocated to both files. No corrective action is taken.
To correct the problem, first use the COPY command to make copies of both
files; then, delete the originals. Review each file for validity and edit as nec
essary.

File size error for file <filename>

The size of the file in a directory is different from its actual size. The size
in the directory is automatically adjusted to indicate its actual size on the
disk. (The amount of useful data may be less than the size shown because
the last data block may not be used fully.)

XXXXXX bytes of disk space freed

Disk space shown as allocated was not actually allocated and has been
freed.

page A.4

APPENDIX A

COPY ERRORS

File cannot be copied onto itself
0 File(sj copied

During a COPY command if the first filespec (source) references a file that
is on the default drive and the second filespec (destination) is not given, the
COPY will be aborted. (Copying a file to itself is not allowed.)

The Z-DOS prompt will reappear following the error message.

Content of destination lost before copy

It is easy to enter a concatenation COPY command where one of the source
files is the same as the destination, yet this often cannot be detected. For
example, the following command is an error if ALL. LST already exists:

A: COPY +.LST A LL.LST

This is not detected, however, until it is ALL.LST's turn to be appended. At
this point it could already have been destroyed.

COPY handles this problem like this: as each input file is found, its name
is compared with the destination. If they are the same, that one input file is
skipped, and the message "Content of destination lost before copy" is
printed. Further concatenation proceeds normally.

OATE ERROR

If the parameters or separators are not legal, Z-DOS returns the messages:

Invalid date, enter as mm-dd-yy

Enter new date:

and waits for the user to enter a legal date.

Page A.5

APPENDIX A

DEBUG ERRORS

ERROR
CODE DEFI N ITION

BF Bad Flag

The user attempted to alter a flag, but the characters entered
were not one of the acceptable pairs of flag values. See the
REGISTER command for the list of acceptable flag entries.

Bp T o o many Breakpoints

The user specified more than ten breakpoints as parameters to
the G command. Reenter the Go with ten or fewer breakpoints.

BR Ba d Register

The user entered the R command with an invalid register name.
See the REGISTER command for the list of valid register
names.

DF Dou b le Flag

The user entered two values for one flag. The user may specify
a flag value only once per RF command.

If a syntax error occurs in a DEBUG command, DEBUG reprints the com
mand line and indicates the error with an up-arrow and the word error. For
example:

)dcs:100 cs:110
"error (not a valid hex digit)

Any combination of upper and lower case may be used in DEBUG com
mands. Spaces or commas are legal delimiters for parameters. A delimiter
is required only between two consecutive hexadecimal values.

Page A.6

DISK ERRORS

If a disk error occurs at any time during any command or program, Z-DOS
retries the operation three times. If the operation cannot be completed suc
cessfully, Z-DOS returns an error message in the following format:

<type> error <I/O action> drive d

Abort, Retry, Ignore:

In this message, type may be one of the following:

Write protect

Not ready
SEEK

DATA
SECTOR NOT FOUND

WRITE FAULT

DISK

The I/O-action may be either of the following:

reading
writing

The drive d indicates the drive in which the error has occurred.

Z-DOS waits entry of one of the following responses:

A Abort . Terminate the program requesting the disk read or write.

Ignore. Ignore the bad sector and pretend the error did not
occur.

R Retr y . Repeat the operation. This response is particularly use
ful if the operator has corrected the error (such as with NOT
READY or WRITE PROTECT).

Page A.7

Usually, you will want to attempt recovery by entering responses in the
order:

R (to try again)

A (to terminate program and try a new disk)

One other error message might be related to faulty disk read or write:

FILE ALLOCATION TABLE BAD FOR DRIVE d

This message means that the copy in memory of one of the allocation tables
has pointers to nonexistent blocks. Possibly the disk was not formatted be
fore use.

page A.S

Page 8.1

APPENDIX B

MACRO-86 Assembler Error Messages

Most of the messages output by MACRO-86 are error messages. The non
error messages output by MACRO-86 are the banner MACRO-86 displays
when first invoked, the command prompt messages, and the end of (suc
cessful) assembly message. These nonerror messages are classified here
as operating messages, I/O handler messages, and runtime messages.

OPERATING MESSAGES

Banner Message and Command Prompts:

The Microsoft MACRO Assembler Version 1. 05,

Copyright (c) Microsoft, Inc, 1981, S2

Source filename [. ASM]:
Object filename [source. OBJ]:

Source listing [NUL.LST]:
Cross reference [NUL. CRF]:

End of Assembly Message:

Warning Severe
Errors Er r o r s

(n=number of errors)

followed by the Z-DOS system prompt (the currently logged drive).

If the assembler encounters errors, error messages are output, along with
the number of warning and fatal errors, and control is returned to your disk
operating system. The message is output either to your terminal screen or
to the listing file if you command one to be created.

Error messages are divided into three categories: assembler errors, I/O
handler errors, and runtime errors. In each category, messages are listed
in alphabetical order with a short explanation where necessary. At the end
of this appendix, the error messages are listed in a single numerical order
list but without explanations.

page B.2

ASSEMBLER ERRORS

Already defined locally (Code 23)

Tried to define a symbol as EXTERNAL that had already been defined
locally.

Already had ELSE clause (Code 7)

Attempt to define an ELSE clause within an existing ELSE clause (you can
not nest ELSE without nesting IF... ENDIF).

Already have base register (Code 46)

Trying to double base register.

Already have index register (Code 47)

Trying to double index address.

Block nesting error (Code 0)

Nested procedures, segments, structures, macros, IRC, IRP, or REPT are
not properly terminated. An example of this error is the close of an outer level
of nesting with inner level(s) still open.

Byte register is illegal (Code 58)

Use of one of the byte registers in context where it is illegal. For example,
PUSH AL.

Can't override ES segment (Code 67)

Trying to override the ES segment in an instruction where this override is
not legal. For example, store string.

Can't reach with segment reg (Code 68)

There is no assume that makes the variable reachable.

Page B.3

Can't use EVEN on BYTE segment (Code 70)

Segment was declared to be byte segment and attempt to use EVEN was
made.

Circular chain of E(lU aliases (Code 83)

An alias EQU eventually points to itself.

Constant was expected (Code 42)

Expected a constant but received something else.

CS register illegal usage (Code 59)

Attempt made to use the CS register illegally. For example, XCHG CS,AX.

Directive illegal in STRUC (Code 78)

All statements within STRUC blocks must either be comments preceded by
a semicolon (;), or one of the Define directives.

Division by 0 or overflow (Code 29)

An expression is given that results in a divide by 0.

Il legal use of register (Code 49)

Use of a register with an instruction where there is no 8086 instruction possi
ble.

Illegal value for DUP count (Code 72)

DUP counts must be a constant that is not 0 or negative.

Improper operand type (Code 52)

Use of an operand such that the opcode cannot be generated.

Page B.4

Improper use of segment reg (Code 61)

Specification of a segment register where this is illegal. For example, an im
mediate move to a segment register.

Index displ. must be constant (Code 54)

Label can' thave seg. override (Code 65)

Illegal use of segment override.

Left operand must have segment (Code 38)

Used something in right operand that required a segment in the left operand.
(For example, ":.")

More values than defined with (Code 76)

Too many fields given in REC or STRUC allocation.

Must be associated with code (Code 45)

Use of data related item where code item was expected.

Must be associated with data (Code 44)

Use of code related item where data related item was expected. For exam
ple, MOV AX,(code-label>.

Must be AX or AL (Code 60)

Specification of some register other than AX or AL where only these are ac
ceptable. For example, the IN instruction.

Must be index or base register (Code 48)

Instruction requires a base or index register and some other register was
specified in square brackets, [].

Page 8.5

Must be declared in pass 1 (Code 13)

Assembler expecting a constant value but got something else. An example
of this might be a vector size being a forward reference.

Must be in segment block (Code 69)

Attempt to generate code when no + in a segment.

Must be record field name (Code 33)

Expecting a record field name but got something else.

Must be record or field name (Code 34)

Expecting a record name or field name and received something else.

Must be register (Code 18)

Register expected as operand but user furnished symbol — was not a regis
ter.

Must be segment or group (Code 20)

Expecting segment or group and something else was specified.

Must be structure field name (Code 37)

Expecting a structure field name but received something else.

Must be symbol type (Code 22)

Must be WORD, DW, QW, BYTE, or TB but received something else.

Must be var, label or constant (Code 36)

Expecting a variable, label, or constant but received something else.

Page B.6

Must have opcode after prefix (Code 66)

Use of one of the prefix instructions without specifying any opcode after it.

Near JMP/CALL to different CS (Code 64)

Attempt to do a NEAR jump or call to a location in a different CS ASSUME.

No immediate mode (Code 56)

Immediate mode specified or an opcode that cannot accept the immediate.
For example, PUSH.

No or unreachable CS (Code 62)

Trying to jump to a label that is unreachable.

Normal type operand expected (Code 41)

Received STRUC, FIELDS, NAMES, BYTE, WORD, or DW when expecting
a variable label.

Not in conditional block (Code 8)

An ENDIF or ELSE is specified without a previous conditional assembly di
rective active.

Not proper align/combine type (Code 25)

SEGMENT parameters are incorrect.

One operand must be const (Code 39)

This is an illegal use of the addition operator.

Only init ia l ize l is t l egal (Code 77)

Attempt to use STRUC name without angle brackets, < >.

Page B.7

Operand combination illegal (Code 63)

Specification of a two-operand instruction where the combination specified
is illegal.

Operands must be same or 1 abs (Code 40)

Illegal use of subtraction operator.

Operand must have segment (Code 43)

Illegal use of SEG directive.

Operand must have size (Code 35)

Expected operand to have a size, but it did not.

Operand not in IP segment (Code 51)

Access of operand is impossible because it is not in the current IP segment.

Operand types must match (Code 31)

Assembler gets different kinds or sizes of arguments in a case where they
must match. For example, MOV.

Operand was expected (Code 27)

Assembler is expecting an operand but an operator was received.

Operator was expected (Code 28)

Assembler was expecting an operator but an operand was received.

Override is of wrong type (Code 81)

In a STRUC initialization statement, you tried to use the wrong size on over
ride. For example, 'HELLO' for DW field.

Page B.S

APPENDIX B

Override with DUP is il legal (Code 79)

In a STRUC initialization statement, you tried to use DUP in an override.

Phase error between passes (Code 6)

The program has ambiguous instruction directives such that the location of
a label in the program changed in value between pass one and pass two
of the assembler. An example of this is a forward reference coded without
a segment override where one is required. There would be an additional
byte (the code segment override) generated in pass two causing the next
label to change. You can use the /D switch to produce a listing to aid in re
solving phase errors between passes (see "Switches" on page 11.18).

Redefinition of symbol (Code 4)

This error occured on pass two and succeeding definitions of a symbol.

Reference to mult defined (Code 26)

The instruction references something that has been multi-defined.

Register already defined (Code 2)

This occurs only if the assembler has internal logic errors.

Register can't be forward ref (Code 82)

Relative jump out of range (Code 53)

Relative jumps must be within the range — 128 to +127 of the current in
struction, and the specific jump is beyond this range.

Segment parameters are changed (Code 24)

List of arguments to SEGMENT was not identical to the first time this seg
ment was used.

Page 8.9

Shift count is negative (Code 30)

A shift expression is generated that results in a negative shift count.

Should have been group name (Code 12)

Expecting a group name but something other than this was given.

Symbol already different kind (Code 15)

Attempt to define a symbol differently from a previous definition.

Symbol already external (Code 73)

Attempt to define a symbol as local that is already external.

Symbol has no segment (Code 21)

Trying to use a variable with SEG, and the variable has no known segment.

Symbol is multi-defined (Code 5)

This error occurs on a symbol that is later redefined.

Symbol is reserved word (Code 16)

Attempt to use an assembler reserved word illegally. (For example, to de
clare MOV as a variable.)

Symbol not defined (Code 9)

A symbol is used that has no definition.

Symbol type usage illegal (Code 14)

Illegal use of a PUBLIC symbol.

Syntax error (Code 10)

The syntax of the statement does not match any recognizable syntax.

Page B.10

Type illegal in context (Code 11)

The type specified is of an unacceptable size.

Unknown symbol type (Code 3)

Symbol statement has something in the type field that is unrecognizable.

Usage of ? (indeterminate) bad (Code 75)

Improper use of the "?". For example,?+5.

Value is out of range (Code 50)

Value is too large for expected use. For example, MOV AL,5000.

Wrong type of register (Code 19)

Directive or instruction expected one type of register, but another was
specified. For example, INC CS.

I/O HANDLER ERRORS

These error messages are generated by the I/O handlers. These messages
appear in a different format from the Assembler Errors:

MASM Error — error-message-text in: filename

The filename is the name of the file being handled when the error oc
curred.

The error-message-text is the name of the file being handled when the
error occurred.

C~'~~:-- '

Date format (Code 114)

Device full (Code 108)

Page B.11

APPI"NOIX B

Device name (Code 102)

Device offline (Code 105)

File in use (Code 112)

File name (Code 107)

File not found (Code 110)

File not open (Code 113)

File system (Code 104)

Hard data (Code 101)

Line too long (Code 115)

Lost file (Code 106)

Operation (Code 103)

Unknown device (Code 109)

Runtime Errors

These messages may be displayed as your assembled program is being
executed.

Internal Error

Usually caused by an arithmetic check. If it occurs, notify Zenith Software
Consultation.

Out of Memory

This message has no corresponding number. Either the source was too big
or too many labels are in the symbol table.

page B.12

APPENDIX 8

NUMERICAL ORDER LIST OF ERROR MESSAGES

CODE MESSAGE

0 1 2

5 6 7

3
4

8

9 10

Block nesting error
Extra characters on line

Register already defined

Unknown symbol type
Redefinition of symbol

symbol is multi-defined
Phase error between passes
Already had ELSE clause
Not in conditional block
Symbol not defined

Syntax error
Type illegal in context

Should have been group name
Must be declared in pass 1
S'ymbol type usage illegal

Symbol already different kind

Symbol is reserved word
Forward reference is illegal

Must be register

Wrong type of register
Aust be segment or group
Symbol has no segment

Must be symbol type
Already defined locally

Segment parameters are changed
¹t proper align/combine type

Reference to mult defined

Operand was expected
Operator was expected
Division by 0 or overflow

Shift count is negative

Operand types must match

Illegal use of external
Must be record field name

Must be record or field name

11

12
13

14

15

16
17

18

19
20

21
22

23

24
25

26

27
28

29

30
31

32

33

34

page B.f3

APPENDIX B

MESSAGECODE

5

36

Q37

~38
39

40

41

+2
43

44

45

46
47

48

49

50

51

52

53
54

55

56

57

58

59
60

61

62

63
64

65

66

67
68

69

70

71

Operand must have size

Must be var, label or constant
Must be structure field name

Left operand must have segment

One operand must be const

Operands must be same or 1 abs

Normal type operand expected

Constant was expected
Operand must have segment

Must be associated with data

Must be associated with code

Already have base register
Already have index register
Must be index or base register

Illegal use of register

Value is out of range

Operand not in IP segment

Improper operand type
Relative jump out of range
Index displ, must be constant

Illegal register value

No immediate mode

Illegal size for item

Byte register is illegal
CS register illegal usage

Must be AX or AL
Improper use of segment reg.

No or unreachable CS
Operand combination illegal
Near JMP/CALL to different CS

Label can't have seg. override
Must have opcode after prefix
Can't override ES segment

Can't reach with segment req

Must be in segment block
Can't use EVEN on BYTE seg.

Forward needs override

page B.14

CODE MESSAGE

78
74

Il legal viue for DUP count
Symbol a'lready external

DUP is too large for linker

Usage of ? (indeterminate) bad
More values than defined with

Only initialize list legal
Directive illegal in STRUC

Override with DUP is il legal
Field cannot be overridden

Override is of wrong type
Register can't be forward ref

Circular chain of EgU aliases

Hard data
Device name
Operation
File system

Device offline

Lost file

File name
Device full
Unknown device
File not found

Protected file
File in use
File not open
Data format

Line too long

76

77
78

79

80

81
82

83

101

102

103
104

105

106

107
108

109

110
111

112

113

114

115

Page C.1

APPENDIX C

LINK Error Messages

All errors cause the link session to abort. Therefore, after the cause is found
and corrected, LINK must be rerun.

ATTEMPT TO ACCESS DATA OUTSIDE OF SEGMENT BOUNDS,

POSSIBLY BAD OBJECT MODULE

Probably caused by a bad object file.

MD NUMERIC PARAMETER

The numeric value is not in digits.

CANNOT OPEN TEMPORARY FILE

LINK is unable to create the file VM.TMP because the disk directory is full.
Insert a new disk. Do not change the disk that will receive the list. MAP file.

ERROR'. DUP RECORD T00 COMPLZX

The DUP record in assembly language module is too complex. Simplify the
DUP record in the assembly language program.

ERROR: FIXUP OFFSET EXCEEDS FIELD WIDTH

An assembly language instruction refers to an address with a short instruc
tion instead of a long instruction. Edit the assembly language source and
reassemble.

INPUT FILE READ ERROR

Probably caused by a bad object file.

Page C.2

APPElNDIX C

INVALID OBJECT MODULE

Object module(s) are incorrectly formed or incomplete (as when assembly
was stopped in the middle).

SYMBOL DEFINED MORE THAN ONCE

LINK found two or more modules that define a single symbol name.

PROGRAM SIZE OR NUMBER OF SEGMENTS EXCEEDS CAPACITY OF

LINKER

The total size may not exceed 348K bytes and the number of segments may
not exceed 255.

REQUESTED STACK SIZE EXCEEDS 64K

Specify a size less than 64K bytes with the /STACK switch.

SEGMENT SIZE-EXCEEDS 64K

64K bytes is the addressing system limit.

SYMBOL TABLE CAPACITY EXCEEDED

Very many and/or very long names have been entered; exceeding approxi
mately 25K bytes.

T00 MANY EXTERNAL SYMBOLS IN ONE MODULE

The limit is 256 external symbols per module.

T80 MANY GROUPS

The limit is 10 Groups.

Page C.3

APPENDIX C

TOO MANY LIBRARIES SPECIFIED

The limit is 8.

TOO MANY PUBLIC SYMBOLS

The limit is 1024.

T80 MANY SEGMENTS OR CLASSES

The limit is 256 (Segments and Classes taken together).

UNRESOLVED EXTERNALS: <list>

The external symbols listed have no defining module among the modules
or library files specified.

VM READ ERROR

This is createdby a disk problem; not LINK caused.

WARNING: NO STACK SEGMENT

None of the object modules specified contains a statement allocating stack
space, but you entered the /STACK switch.

WRITE ERROR IN TMP FILE

No more disk space remaining to expand VM.TMP file.

WRITE ERROR ON RUN FILE

Usually, not enough disk space for run file.

page C.4

Page D.2

Input file read error

Bad object module or faulty disk.

atal Error: Invalid object module/library

Bad object module and/or library.

Library Disk is full

No more room on disk.

Listing file write error

Out of space on the disk.

Fatal Error: No library file specified

No response to Library File prompt.

Read error on VM. TMP

Disk not ready for read.

Symbol table capacity exceeded

Too many symbols (about 30K characters are allowed for symbols).

Too many object modules

More than 500 object modules.

Too many public symbols

1024 public symbols maximum.

Fatal Error; Write error on library/extract file

Out of space.

Write error on VM. TMP

Out of space.

Page E.1

APPENDIX E

CREF Error Messages

All errors cause CREF to abort. Control is returned to Z-DOS.

All error messages are displayed in the format:

Fatal I/O Error (error number>

in File: <filename>

where filename is the name of the file where the error occurs and error
number is one of the numbers in the following list of errors.

Number Error

Hard data error101

Unrecoverable disk I/O error

Device name error

Illegal device specification (for example, X:FOO.CRF)

Internal error103

Report to Zenith Software Consultation

Internal error104

Report to Zenith Software Consultation

Device offline105

Disk drive door open, no printer attached, and so on.

Page F.f

Memory Test Utility

The MEMTST utility program has been included with your Z-DOS System
to aid you in diagnosing any problems that may arise with the RAM in your
Z-100. MEMTST runs under Z-DOS and may be invoked as a standard com
mand, in the form:

A: MEMTST R ETU R N

This test utility is completely menu-driven; after initially invoking the com
mand, you instruct it to carry out different phases of its testing by selecting
options from menus.

MEMTST consists of a master menu, and two test menus. The master menu
appears on your screen like:

MEMTST version 1. 00

Copyright (Cj 1982, Zenith Data Systems

Functions Available:

S — Test System Memory

V — Test Video Memory

E - Exit Program

Select desired function <E):

Pressing RETURN defaults to E — Exit program.

Page F.2

To test the system memory (memory that is allocated for the operating sys
tem and user programs), press the S key. The System Memory Test menu
appears and will look like:

Unit contains xxxK of memory

System Memory Test

Functions Available:

A - Test all memory, 0-192K

F - Test first bank, 0-64K

S — Test second bank, 64-128K

T — Test third bank, 128-192K

E - Exit system memory test.

Select desired function (A):

Here, if you press RETURN without making a selection, the default is A
Test all available memory. You can also select the first, second, and third
banks of memory.

If you receive an error message from the A option, and that occurs some
where within the first bank of memory, you may want to be able to test the
other banks of memory. Or, if you do not want to wait while MEMTST checks
all of memory, you may want to just check a single bank.

F (first bank) checks the memory configured from 0 to 64K; S (second bank)
checks the memory configured from 64 to 128K; and T (third bank) checks
the memory that is configured from 128 to 192K.

Page F.3

APPENDIX F

Press E to exit the System Memory Test, and the master menu will reappear.

If you select the V — Test Video Memory option from the master menu, the
Video Memory Test menu appears on your screen. This third menu appears
like:

Video Memory Test

Functions available:

<A> - Test all video RAM

 — Test blue video ram

<G> - Test green video ram

<R> — Test red video ram

<E> - Exit video memory test

Select desired function <A>:

The default here, is A — Test all video RAM. If you press RETURN without
entering a selection, MEMTST checks all available video memory. This is
the option you would most likely select if you have a black and white monitor
connected to (or built into) your Z-100.

The other three test options are:

<G> to check the green plane of memory, which starts at address
E00000;

<R) to check the red plane of video memory, which starts at address
DOOOOOH;and

<B) to check the blue plane of video memory, which starts at address
COOOOOH.

Press E to exit the Video Memory Test, and the master menu will reappear.

Page F.4

Once a selection (other than E) has been made from either the System or
Video Memory Test menus, the Test displays a message on your monitor
screen. The test messages are shown below:

System Memory:

Testing n bank system memory.
. . <Passed>/<Failed>

where n is a number showing which bank of memory is currently being
tested; and where either Passed (in regular video) or Failed (in reverse video)
will appear on your screen at the outcome of the tests on the current bank
of memory.

Video Memory:

Testing video memory X plane. . . <passed>/<failed>

where X is a letter showing which video plane of memory is currently being
tested; and where either passed (in regular video) or failed (in reverse video)
will appear on your screen at the outcome of the tests on the current video
plane of memory.

If the test fails on one bank or plane, you will receive an error message telling
you the offset address (from logical 0000H of that bank or plane) in hex of
the failure. MEMTST also states what it expected to find at that address and
what it actually found. The error message appears like:

Location of failure XXXXH

Expected data XXH Actual data XXH

Hit return to continue test, any other key to abort

Page G.1

APPENDIX G

Instructions for Single Disk Drive Users

For single disk drive users the commands are exactly the same syntax as
for two drive users. The difference lies in your perception of the "arrange
ment" of the drives.

You must think of this system as having two disk drives: drive A and drive
B. However, instead of A and B designating physical disk drive mechanisms,
the A and B designate disks. Therefore, when you specify drive 8 while
operating on drive A (the prompt is A:), Z-DOS prompts you to "switch drives"
by swapping disks.

The prompts are:

Place disk A in drive B:.

Hit any key when ready.

Place disk B in drive A:.

Hit any key when ready.

These procedures apply to any Z-DOS COMMAND commands (both sys
tem and file) that can request or direct a different drive as a part of its syntax.
These commands include:

CHKDSK[d:]
COPY [</x>] <filespec> [d:][<fllespec>]
DEL <filespec>
DIR [<filespec>] [</x>]
DSKCOMP [cl:] [cl:]
DSKCOPY [</x>] [d:] [d:]
ERASE <filespec>
FORMAT [d:][</x>. • .]
REN [<filespec>][<filespec>]
RENAME [<filespec>][<filespec>]
TYPE [<filespec>]

Page G.2

Also, if any of these commands are used in a batch file and call for a different
drive, the single disk drive procedures apply. Execution is halted and the ap
propriate prompt is displayed.

Example:

The following example may serve as an illustration for all of the commands
listed above:

A: COPY COMMAND.COM B:
Place disk B in drive A:.
Hit any Key when ready.

1 File(sj copied

RETURN

Page H.f

APPENDIX H

Disk Directory Structures and FCB Definition

5.25 5.25 5.25Disk size

Tracks per inch 48 96 77 7748

Sides

Bytes per sector 512 512 128 1024512

Reserved sectors

FATS

Directory entries

Sectors per unit

Physical sectors

Sectors per track

Tracks per side

64

320 640

40

112

80

144

1280 2002

26

77

104

77

192

1232

40

FAT ID

Dir start sector

FAT 1 start sector

FAT 2 start sector

OFFH

1 (01H)

2 (02H)

3 (03H)

7 (07H)

OFEH

1 (01H)

2 (02H)

3 (03H)

10 (OAH)

OFDH

1 (01H)

2 (02H)

3 (03H)

12 (OCH)

OFEH

4 (04H)

10 (OAH)

16 (10H)

42 (2AH)

OFDH

1 (01H)

3 (03H)

5 (05H)

11 (OBH)Data start sector

FAT FAT Dir ctory DataReserved sectors (loader)

P s~m ~ga~q g mCS<

2-Dos

/CI g

isk Structures
i~~J~ =
2&d = jC4

i%+l' l =
Cka! = lAb

i 'm/
gW= poit

1

Page H.2

APPENDIX H

FAT Structures

FAT ID RES RES b3 b4 b5 b6 b7 b8

The FAT (File Allocation Table) uses a 12-bit entry for each allocation unit
on the disk. These entries are packed, two for every three bytes. The con
tents of entry number N is found by:

1. mu l t l iplying N by 1.5;

2. add ing the result to the base address of the allocation table;

3. fet ching the 16 bit word at this address;

4. if N was odd, shift the word right four bits; and

5. ma s k to 12 bits.

Entry number zero is used as an end-of-file trap in the DOS and as a flag
for disk structure. Entry 1 is reserved for future use. The first available alloca
tion unit is assigned entry number two. Entries greater than OFF8H are end
of-file marks; entries of zero are unallocated. Otherwise, the contents of a
FAT entry is the number of the next allocation unit in the file.

Three Byte Cluster

Reserved Res erved X X Y X Y Y

Page H.3

Loading flips the bytes in the cluster from:

1 2 3 4 5 6
Reserved Res e rved X X Y X Y Y

To:

2 1 4 3
"Y" isthenmasked -~ X X X y

Or from:

1

Reserved X
2

X
3

Y
4

X
5 6

Y YReserved

To:

3
X

64
Y Y

5
Y"X" is then masked->

Page H.4

The following code shows how to compute the contents of the FAT entry in
AX.

; RFATE--Read FAT entry

Call with:
DS: SI -) FAT

BX = entry number

Returns:
DI = contents of FAT entry

Uses: No registers are modified

RF ATE PROC NEAR

LEA DI , [SI+BX)
SHR BX, 1

MOV DI, [DI+BX]
JNC EVENE

; Compute addr of FAT&entry number

; Divide entry number by 2
; Get word containing entry

; Jmp if entry number even

ODDE:

RCL BX, 1

SHR DI , 1

SHR DI , 1
SHR DI , 1

SHR DI , 1
RET

; Restore entry number
; Shift word right by 4

; and return

SHL BX, 1
AND DI , OFFFH

RKT
RF ATE ENDP

; Restore entry number
Isolate lower 12 bits
and return

Page H.5

APPENDIX H

Normal FCB

d r f 1 /// f8 e1 e2 e3 ex1 ex 2 rs1 rs2 fs 1 f s 2 f s 3 f s 4
00 01 . . . 08 09 10 11 12 13 14 1 5 16 17 18 19

d1 d2 t1 t2 s1 /// s8 cr r1 r2 r3 r4
20 21 2 2 23 24 ... 31 32 33 34 35 36

The Z-DOS File Control Block (FCB) is defined as follows:

byte 0
(dr)

bytes 1-8
(f1-f8)

bytes 9-11
(e1-e3)

Drive Code. Zero specifies the default drive, 1 =drive A,

2= drive B, etc.

Filename. If the file is less than eight characters, the name
must be left justified with trailing blanks.

Extension to filename. If less than three characters, must
be left justified with trailing blanks. May also be all blanks.

Current block (extent). This word (low byte first) specifies
the current block of 128 records, relative to the start of the
file, in which sequential disk reads and writes occur. If
zero, then the first block of the file is being accessed; if
one, then the second, etc. Combined with the current re
cord field (byte 32) a particular logical record is identified.

bytes 12-13
(ex1-ex2)

Size of the record the user wishes to work with. This word
may be filled immediately after an OPEN of the file if the
default logical record size (128 bytes) is not desired. The
Open and Create functions set this field to 128; it is also
changed to 128 if a read or write is attempted with the field

bytes 14-15
(rs1-rs2)

set to zero.

File size. This is the current size, in bytes, of the file. It
may be read by user programs but must not be written by

bytes 16-19
(fs1-fs4)

them.

page H.S

Page l.3

The values returned are:

0 writeprotect

2 disknotready
4 dataerror
6 Seekerror
8 Sector not f ound
A Writefault

C General drisk f as lure

The registers will be set up for a BIOS disk call and the returned
code will be in the lower half of the Dl register with the upper
half undefined. The user stack will look as follows from top to
bottom:

IP Regis t ers such that if an IRET is executed the DOS
CS will respond according to (AL) as follows:
FLAGS

(AL)=0 ignore the error
=I retry the operation

(IF THIS OPTION USED STACK DS, BX,

CX AND DX MUST NOT BE MODIFIED!)

=2 abort the program

AX
BX
CX
DX
SI
Dl
BP
DS
ES
IP
CS
FLAGS

Currently, the only error possible when AH bit 7 =1 is a bad
memory image of the file allocation table.

USER REGISTERS AT TIME OF REQUEST

The interrupt from the user to the DOS

Page l.4

APPENDIX I

25 Abso l u te disk read. This transfers control directly to the DOS
BIOS. Upon return, the original flags are still on the stack (put
there by the INT instruction). This is necessary because return
information is passed back in the flags. Be sure to pop the stack
to prevent uncontrolled growth. For this entry point "records"
and "sectors" are the same size. The request is as follows:

(AL) Driv e number (O=A, 1 = B, etc.)
(CX) Number of sectors to read
(DX) Begi nning logical record number
(DS:BX) Transfer address

The number of records specified are transferred between the
given drive and the transfer address. "Logical record numbers"
are obtained by numbering each sector sequentially starting
from zero and continuing across track boundries. For example,
logical record number 0 is track 0 sector 1, whereas logical re
cord number 12 hex is track 2 sector 3.

All registers but the segment registers are destroyed by this
call. If the transfer was successful the carry flag (CF) will be
zero. If the transfer was not successful CF=1 and (AL) will indi
cate the error as follows:

Return ~Deecri ticn

Attempt to write on write protected disk

Disk not ready
Data error
Seek error
Sector not found
General disk fai lure
Write fault

26 Abso l ute disk write. This vector is the counterpart to interrupt
25 above. Except for the fact that this is a write, the description
above applies.

Page I.1

APPENDIX I

Interrupts, Function Calls and Entry Points

INTERRUPTS

Z-DOS reserves interrupt types 20 to 3F hex for its use. This means absolute
locations 80 to FF hex are the transfer address storage locations reserved
by the DOS. The defined interrupts are as follows with all values in hex:

20 Prog r am termination (Normal Exit). This is the normal way to
exit a program. This vector transfers to the logic in the Z-DOS
for restoration of CTRL-C exit addresses to the values they had
on entry to the program. All file buffers are flushed to disk. AII
files that have changed in length should have been closed (see
function call 10 hex) prior to issuing this interrupt. If the changed
file was not closed its length will not be recorded correctly in the
directory. When this interrupt is executed, CS MUST point to
the 100H parameter area.

21 Func t ion request. See "Function Requests" on Page I.5.

22 Term inate address. The address represented by this interrupt
(88-8B hex) is the address to which control will transfer when
the program terminates. This address is copied into low mem
ory of the segment the program is loaded into at the time this
segment is created. If a program wishes to execute a second
program, it must set the terminate address prior to creation of
the segment the program will be loaded into. Otherwise, once
the second program executes, its termination would cause
transfer to its host's termination address.

23 CTRL -C exit address. If the user types CTRL-C during
keyboard input or video output, "C" will be printed on the con

sole and an interrupt type 23 hex will be executed.

page l.2

APPENDIX I

If the CTRL-C routine preserves all registers, it may end with
a return-from-interrupt instruction (IRET) to continue program
execution. If functions 9 or 10 (buffered output and input), were
being executed, then I/O will continue from the start of the line.
When the interrupt occurs, all registers are set to the value they
had when the original call to Z-DOS was made. There are no
restrictions on what the CTRL-C handler is allowed to do, in
cluding Z-DOS function calls, so long as the registers are un
changed if IRET is used.

If the program creates a new segment and loads in a second
program which itself changes the CTRL-C address, the termi
nation of the second program and return to the first will cause
the CTRL-C address to be restored to the value it had before
execution of the second program.

24 Fata l e r ror abort vector. When a fatal error occurs within
Z-DOS, control will be transferred with an INT 24H. On entry
to the error handler, AH will have its bit 7 =0 if the error was a
hard disk error (probably the most common occurrence), bit
7=1 if not. If it is a hard disk error, bits 0 — 2 include the follow
ing:

bit 0 0 if read , 1 i fwrite

bit 2 1
0 0
0 1
1 0
1 1

AFFECTED DISK AREA
Reserved area
File allocation table
Directory
Data area

AL, CX, DX, and DS:BX will be setup to perform a retry of the
transfer with INT 25H or INT 26H (on next page). DI will have
a 16-bit error code returned by the hardware.

Page l.5

APPENDIX I

27 Term inate but stay resident. This vector is used by programs
which are to remain resident when COMMAND regains control.
Such a program is loaded as an executing COM file by COM
MAND. After it has initialized itself, it must set DX to its last ad
dress plus one in the segment it is executing in, then execute
an interrupt 27H. COMMAND will then treat the program as an
extension of Z-DOS, and the program will not be overlaid when
other programs are executed.

Function Requests

The user requests a function by placing a function number in the AH register,
supplying additional information in other registers as necessary for the spe
cific function, then executing an interrupt type 21 hex. When Z-DOS takes
control, it switches to an internal stack. User registers except AX are pre
served unless information is passed back to the requester as indicated in
the specific requests. The user stack needs to be sufficient to accommodate
the interrupt system. It is recommended that it be 80 hex in addition to the
userneeds.

There is an additional mechanism provided for programs that conform to
CP/M calling conventions. The function number is placed in the CL register,
other registers are set as normal according to the function specification, and
an intrasegment call is made to location five in the current code segment.

This method is only available to functions which do not pass a parameter
in AL and whose numbers are equal to or less than 36. Register AX is always
destroyed if this mechanism is used, otherwise it is the same as normal func
tion requests. The functions are as follows with all values in hex:

0 Progr am terminate. The terminate and CTRL-C exit addresses
are restored to the values they had on entry to the terminating
program. All file buffers are flushed, but files which have been
changed in length but not closed will not be recorded properly
in the disk directory. Control transfers to the terminate address.

Page l.6

APPENDIX I

Keyboard input. Waits for a character to be typed at the
keyboard, then echos the character to the video device and re
turns it in AL. The character is checked for a CTRL-C. If this key
is detected an interrupt 23 hex will be executed.

2 Video output. The character in DL is output to the video device.
If a CTRL-C is detected after the output, an interrupt 23 hex will
be executed.

3 Auxi l i a ryinput. Waits for a character from the auxiliary input de
vice, then returns that character in AL.

4 Auxi l i a ry output. The character in DL is output to the auxiliary
device.

5 Pri nt e routput. The character in DL is output to the printer.

6 Direc t console IIO. If DL is FF hex, the AL returns with keyboard
input character if one is ready, otherwise 00. If DL is not FF hex,
then DL is assumed to have a valid character which is output
to the video device.

7 Dire c t console input. Waits for a character to be typed at the
keyboard, then returns the character in AL. As with function 6,
no checks are made on the character.

8 Conso l e input without echo. This function is identical to function
1, except the key is not echoed.

9 Print s tring. On entry, DS:DX must point to a character string
in memory terminated by a "$" (24 hex). Each character in the
string will be output to the video device in the same form as
function 2.

Page l.7

APPENDIX I

A Buffe r ed keyboardinput. On entry, DS:DX points to an input
buffer. The first byte must not be zero and specifies the number
of characters the buffer can hold. Characters are read from the
keyboard and placed in the buffer beginning at the third byte.
Reading the keyboard and filling the buffer continues until RE
TURN is typed. If the buffer fills to one less than the maximum,
then additional keyboard input is ignored until a RETURN is
typed. The second byte of the buffer is set to the number of
characters received excluding the carriage return (OD hex),
which is always the last character. Editing of this buffer is de
scribed in the main Z-DOS document under "template editing".

B Chec k keyboard status. If a character is available from the
keyboard, AL will be FF hex, otherwise AL will be 00.

C Chara c terinput with buffer flush. First the keyboard type-ahead
buffer is emptied. Then if AL is 1, 6, 7, 8, or OA hex, the corres
ponding Z-DOS input function is executed. If AL is not one of
these values, no further operation is done and AL returns 00.

D Disk r e set. Flushes all file buffers. Unclosed files that have
been changed in size will not be properly recorded in the disk
directory until they are closed. This function need not be called
before a disk change if all files which have been written have
been closed.

E Selec t d isk. The drive specified in DL (O=A, 1=B, e tc.) is
selected as the default disk. The number of drives is returned
in AL.

F Open f i le. On entry, DS:DX points to an unopened file control
block (FCB). The disk directory is searched for the named file
and AL returns FF hex if it is not found. If it is found, AL will return
a 00 and the FCB is filled as follows:

Page I.S

APPENDIX I

If the drive code was 0 (default disk), it is changed to actual disk
used (A=1, B=2, etc.). This allows changing the default disk
without interfering with subsequent operations on this file. The
high byte of the current block field is set to zero. The size of the
record to be worked with (FCB bytes E-F hex) is set to the sys
tem default of 80 hex. The size of the file, and the time and date
are set in the FCB from information obtained from the directory.

It is the user's responsibility to set the record size (FCB bytes
E-F) to the preferred size, if the default 80 hex is not appropri
ate. It is also the user's responsibility to set the random record
field and/or current block and record fields.

10 Clos e file. This function must be called after file writes to ensure
that all directory information is updated. On entry, DS:DX points
to an opened FCB. The disk directory is searched and if the file
is found, its position is compared with that kept in the FCB. If
the file is not found in the directory, it is assumed that the disk
has been changed and AL returns FF hex. Otherwise, the direc
tory is updated to reflect the status in the FCB and AL returns
00.

11 Sear ch for the first entry. On entry, DS:DX points to an un
opened FCB. The disk directory is searched for the first match
ing name (name could have "?"'s indicating any letter matched)
and if none are found AL returns FF hex. Otherwise, locations
at the disk transfer address are set as follows:

1. I f the FCB provided for searching was an extended FCB,
then the first byte is set to FF hex, then 5 bytes of zeros,
then the attribute byte from the search FCB, then the drive
number used (A= 1, B =2, etc.), then the 32 bytes of the
directory entry. Thus the disk transfer address contains a
valid unopened extended FCB with the same search attri
butes as the search FCB.

Page 1.9

2. I f the FCB provided for searching was a normal FCB, then
the first byte is set to the drive number used (A = 1, B =2,

etc.) and the next 32 bytes contain the matching directory
entry. Thus the disk transfer address contains a valid un
opened normal FCB.

Directory entries are formatted as follows:

Location ~B e s ~Descri tie n

11 File name and extension

1 Attr i butes. Bits 1 or 2
make file hidden

10 Zero f ield (for expansion)12

2 Time.22
Bits 0-4 = secs *2

5-10 = min
11-15 = hrs

2 Date.24

26

Bits 0-4 = day
5 8 = month
9-15 = year

2 Firs t allocation unit

File size, in bytes.
(30 bits max.)

28

12 Sear ch for the next entry. After function 11 has been called and
found a match, function 12 may be called to find the next match
to an ambiguous request ("?"'s in the search filename). Both in
puts and outputs are the same as function 11. The reserved
area of the FCB keeps information necessary for continuing the
search, so it must not be modified.

Page 1.10

APPENDIX I

15

14

Delete file. On entry, DS:DX points to an unopened FCB. All
matching directory entries are deleted. If no directory entries
match, AL returns FF, otherwise AL returns 00.

Sequential read. On entry, DS:DX points to an opened FCB.
The record addressed by the current block (FCB bytes C-D)
and the current record (FCB byte 1F) is loaded at the disk trans
fer address, then the record address is incremented. If end-of
file is encountered AL returns either 01 or 03. A return of 01 indi
cates no data in the record, 03 indicates a partial record is read
and filled out with zeros. A return of 02 means. there was not
enough room in the disk transfer segment to read one record,
so the transfer was aborted. AL returns 00 if the transfer was
completed successfully.

Sequential write. On entry, DS:DX points to an opened FCB.
The record addressed by the current block and current record
fields is written from the disk transfer address (or, records less
than sector size are buffered for write when a sector's worth of
data is accumulated). The record address is then incremented.
If the disk is full AL returns with a 01. A return of 02 means there
was not enough room in the disk transfer segment to write one
record, so the transfer was aborted. AL returns 00 if the transfer
was completed successfully.

Create file. On entry DS:DX points to an unopened FCB. The
disk directory is searched for an empty entry, and AL returns
FF if none is found. Otherwise, the entry is initialized to a zero
length file, the file is opened (see function F), and AL returns

16

00.

17 Rename file. On entry, DS:DX points to a modified FCB which
has a drive code and file name in the usual position, and a sec
ond filename starting 6 bytes after the first (DS:DX+11 hex) in
what is normally a reserved area. Every matching occurrence
of the first is changed to the second (with the restriction that two
files cannot have the exact same name and extension). If "?"'s
appear in the second name, then the corresponding positions
in the original name will be unchanged. AL returns FF hex if no
match was found, otherwise 00.

Page I.11

APPENDIX I

19

1A

Current disk. AL returns with the code of the current default
drive (O=A, 1 =B, etc.).

Set disk transfer address. The disk transfer address is set to
DS:DX. Z-DOS will not allow disk transfers to wrap around with
in the segment, nor to overflow into the next segment.

Allocation table address. On return, DS:BX points to the alloca
tion table for the current drive, DX has the number of allocation
units, and AL has the number of records per allocation unit, and
CX has the physical size of the sector. At DS:[BX — 1], the byte
before the allocation table, is the dirty byte for the table. If set
to 01, it means the table has been modified and must be written
back to disk. If 00, the table is not modified. Any programs which
get the address and directly modify the table must set this byte
to 01 in order for the changes to be recorded. This byte should
NEVER be set to 00 — instead, a DISK RESET function (¹OD
hex) should be performed to write the table and reset the bit.

Random read. On entry, DS:DX points to an opened FCB. The
current block and current record are set to agree with the ran
dom record field, then the record addressed by these fields is
loaded at the current disk transfer address. If end-of-file is en
countered, AL returns either 01 or 03. If 01 is returned no more
data is available. If 03 is returned, a partial record is available,
filled out with zeros. A return of 02 means there was not enough
room in the disk transfer segment to read one record, so the
transfer was aborted. AL returns 00 if the transfer was com
pleted successfully.

21

Random write. On entry, DS: DX points to an opened FCB. The
current block and current record are set to agree with the ran
dom record field, then the record addressed by these fields is
written (or in the case of records not the same as sector sizes
buffered) from the disk transfer address. If the disk is full AL re
turns 01. A return of 02 means there was not enough room in
the disk transfer segment to write one record, so the transfer
was aborted. AL returns 00 if the transfer was completed suc
cessfully.

22

Page l.12

APPENDIX I

23 File s ize. On entry, DS:DX points to an unopened FCB. The
disk directory is searched for the first matching entry and if none
is found, AL returns FF. Otherwise the random record field is
set with the size of the file (in terms of the record size field
rounded up) and AL returns 00.

24 Set r andom record field. On entry, DS:DX points to an opened
FCB. This function sets the random record field to the same file
address as the current block and record fields.

25 Set v ector. The interrupt type specified in AL is set to the 4-byte
address DS:DX.

26 Crea te a new program segment. On entry, DX has a segment
number at which to set up a new program segment. The entire
100 hex area at location zero in the current program segment
is copied into location zero in the new program segment. The
memory size information at location 6 is updated and the cur
rent termination and CTRL-C exit addresses are saved in the
new program segment starting at OA hex.

27 Ran dom blockread. On entry, DS:DX points to an opened FCB,
and CX contains a record count that must not be zero. The
specified number of records (in terms of the record size field)
are read from the file address specified by the random record
field into the disk transfer address. If end-of-file is reached be
fore all records have been read, AL returns either 01 or 03. A
return of 01 indicates end-of-file and the last record is complete,
a 03 indicates the last record is a partial record. If wrap-around
above address FFFF hex in the disk transfer segment would
occur, as many records as possible are read and AL returns 02.
If all records are read successfully, AL returns 00. In any case
CX returns with the actual number of records read, and the ran
dom record field and the current block/record fields are set to
address the next record.

Page I.13

APPENDIX I

28 Rand om b lock write. Essentially the same as function 27
above, except for writing and a write-protect indication. If there
is insufficient space on the disk, AL returns 01 and no records
are written. If CX is zero upon entry, no records are written, but
the file is set to the length specifiedby the Random Record field,
whether longer or shorter than the current file size (allocation
units are released or allocated as appropriate).

29 Pars e f ile name. On entry DS:Sl points to a command line to
parse, and ES:Dl points to a portion of memory to be filled in
with an unopened FCB. Leading TABs and spaces are ignored
when scanning. If bit 0 of AL is equal to 1 on entry, then at most
one leading filename seperator will be ignored, along with any
trailing TABs and spaces. The four filename separators are:

If bit 0 of AL is equal to 1, then all parsing stops if a separator
is encountered. The command line is parsed for a file name of
the form d:filename.ext, and if found, a corresponding un
opened FCB is created at ES:DI. The entry value of AL bits 1,
2, and 3 determine what to do if the drive, filename, and exten
sion, respectively, are missing. In each case, if the bit is a zero
and the field is not present on the command line, then the FCB
is filled with a fixed value (0, meaning the default drive for the
drive field; all blanks for the filename and extension fields). If
the bit is a 1, and the field is not present on the command line,
then that field in the destination FCB at ES:Dl is left unchanged.
If an asterisk "*" appears in the filename or extension, then all

remaining characters in the name or extension are set to "?".

The following characters are illegal within Z-DOS file specifica
tions:

i [) +

Page I.14

APPENDIX I

2D

2C

2B

2A

Control characters and spaces also may not be given as ele
ments of file specifications. If any of these characters are en
countered while parsing, or the period (.) or colon (:) is found
in an invalid position, then parsing stops at that point.

If either "?" or "*" appears in the file name or extension, then AL
returns 01, otherwise 00. DS:Sl will return pointing to the first
character after the filename.

Get date. Returns date in CX:DX. CX has the year, DH has the
month (1= Jan,2 = Feb, etc.), and DL has the day. If the time-of
day clock rolls over to the next day, the date will be adjusted
accordingly, taking into account the number of days in each
month and leap years.

Set date. On entry CX:DX must have a valid date in the same
format as returned by function 2A above. If the date is indeed
valid and the set operation is successful, then AL returns 00.
If the date is not valid, then AL returns FF.

Get time. Returns with time-of-day in CX:DX. Time is actually
represented as four 8-bit binary quantities, as follows: CH has
the hours (0-23), CL has minutes (0-59), DH has seconds
(0-59), DL has 1/1 00 seconds (0-99). This format is easily con
verted to a printable form yet can also be calculated upon (e.g.,
subtracting two times).

Set time. On entry, CX:DX has time in the same format as re
turned by function 2C above. If any component of the time is
not valid, the set operation is aborted and AL returns FF. If the
time is valid, AL returns 00.

Seb'Reset Verify Flag. On entry, DL must be 0 and AL has the
verify flag: O= no-verify, 1= verify after write. This flag is simply
passed to the I/O system on each write, so its exact meaning
is interpreted there.

2E

Page l.15

ENTRY POINTS

Interrupt Entry Points

File: DEFIPAGE. ASM

I

; Define the interrupt page offsets

0000 I PAGE SEG SEGMENT AT 0

0000 ORG 0
0000 INTM ER O LABEL DWORD

Hardware defined interrupts

0000

0000
0004

0004

0008
0008

OOOC

OOOC
0010

0010

ORG
INDI V

ORG

INT STEP
ORG

INDI

ORG
INTBRK

ORG

INT OVFL

MS-DOS defined interrupts

4~0

LABEL DWORD
4~1

LABEL DWORD
4+2

LABEL DWORD
4~3

LABEL DWORD
4~4

LABEL DWORD

; Divide error

; Single step

; Non-maskable interrupt

; Breakpoint

; Overflow error

0080

0080
0084

0084

0088

0088

008C

008C

ORG
INT TERM

ORG
I NT~ C

ORG

INT TADDR

ORG

INT CADDR

4~DOSI TERM

LABEL DWORD

4~DOSI~C

LABEL DWORD

4+DOSI TADDR

LABEL DWORD
4~DOSI CADDR

LABEL DWORD

; Terminate program function

; Perform function

; Resume addr on program termination

"C handler

page I.16

0090

0090

0094

0094

0098

0098

009C

009C

ORG

I N T E R
ORG

INT~READ

ORG

INT~WRITE

ORG

INT TERMR

4 "DOSI~ DR

LABEL DWORD
4 ~DOS I~READ

LABEL DWORD

4~DOSI~WRITE

LABEL DWORD

4~DOSI TERMR

LABEL DWORD

; Fatal error handler

; Absolute disk read

; Absolute disk write

; Terminate program (but stay resident) function

; Master 8259A interrupt controller defined interrupts

0100

0100
ORG

INTMM8259A

4~ZM8259AI

LABEL DWORD ; Base of Master 8259A interrupts

0100

0100

0104

0104

0108

0108

010C

010C

0110

0110
0114

0114

0118

0118

011C

011C

INDI

ORG

INTMS

ORG

INT TIM

ORG

INTMLV

ORG

INTRA

ORG
INTMB

ORG

ORG 4 ~ (ZM8259AI + Z INTE I)

LABEL DWORD

4~ (ZM8259AI+ ZINTPS)
LABEL DWORD

4~(ZM8259AI t-ZINITIM)

LABEL DWORD

4~ (ZM8259AI+ ZINTSLV)
LABEL DWORD

4~ (ZM8259AI+ ZINTSA)
LABEL DWORD

4~ (ZM8259AI+ ZINTSB)
LABEL DWORD
4~ (ZM8259AI+ ZINTKD)
LABEL DWORD

4~ (ZM8259AI+ ZINTPP)
LABEL DWORD

; Processor swap

; Timer

; Slave 8259A

; Serial port A

; Serial port B

; Keyboard/Display/Light pen

; Parallel port

; Slave 8259A interrupt controller defined interrupts

; Parity or S-100 pin 98

INT~

ORG

INTMP

0120

0120
ORG

INTMS8259A

40ZS8259AI

LABEL DWORD ; Base of Slave 8259A interrupts

0120

0120

0124
0124

ORG
INT SLVO

ORG
INT SLV1

4~ (ZS8259AI+ 0)
LABEL DWORD

4~ (ZS8259AI+ 1)

LABEL DWORD

; Slave line 0

; Slave line 1

page l.17

0128

0128

012C

012C
0130

0130

0134
0134

0138

0138

013C
013C

013C

ORG
INT SLV2

ORG
INT SLV3

ORG
INT SLV4

ORG

INT SLV5

ORG
INT SLV6

ORG

INT SLV7
IPAGE SEG ENDS

4~ (ZS8259AI+2)

LABEL DWORD

4~ (ZS8259AI t 3)
LABEL DWORD

4~ (ZS8259AI + 4)
LABEL DWORD
4 ~ (ZS8259AI 4 5)

LABEL DWORD

4~ (ZS8259AI %6)

LABEL DWORD
4~ (ZS8259AI 47)

LABEL DWORD

; Slave l ine 6

, Slave l ine 4

; Slave l ine 2

; Slave line 3

Slave l ine 5

, Slave l ine 7

Page l.18

The Z-DOS BIOS Entry Points (Function Calls)

The Z-DOS BIOS version 2.19 and above written by Zenith Data Systems
for their Z-100 computer contains all the functions (entry points) as defined
by MicroSoft in MS-DOS version 1.25 plus a few additional ones for control
of peripheral devices. The MicroSoft defined functions include:

• Co nsole input/output/status.

• Pr inter output.

• Au x i l iary device input/output.

• Di sk input/output/mapping.

• Da te-time setting/reading.

The ZDS defined functions provide complete control over:

• Di sk .

• Co nsole.

• Pr inter.

• Au x i l iary devices.

In addition, a defined address is provided for the version of the BIOS and
for configuration information. Assembly language include files have been
written to help in program development.

The first include file (DEFMS.ASM) defines:

• Al l the entry points to the BIOS.

• Th e function codes for "interrupt 21" (perform system call).

Page 1.19

• Th e MS-DOS interrupts.

• Th e program header.

• Th e "User" file control block (FCB).

• Th e directory entries.

• The drive parameter table used by Z-DOS at initialization time.

• De f ines the disk error codes.

File; DEFMS. ASM

; Definitions for MS-DOS

IFDEF BIOS

FBIOS = BIOS

ELSE

= 0000 FBIOS = 0

ENDIF

IF NOT FBIOS

= 0400 LORGADDR 400H ; Loader org address

; BIOS entry points

0000 BIOSMEG SEGMENT AT 40H ; Segment where the BIOS is located

; MicroSoft(MS) defined entry points

0000 ORG 0~3

0000 BIOS INIT LA BEL FAR ; Initialization routine (only exists

at boot time)

page l.20

ORG 1~30003

0003
0006

0006
0009

0009

OOOC
OOOC

OOOF

OOOF
0012

0012

0015
0015

0018

0018
001B

001B

001E
001E

0021
0021

0024

0024
0027

0027
002A

002A

002D
002D

0030

0030
0033

0033

0036

0036
0039

0039
003C

003C

ORG 2~3

ORG 3~3

ORG 4~3

ORG 5~3

ORG 8~3

ORG 7~3

ORG 6~3

ORG 9'3

ORG 11~3

ORG 10~3

ORG 12~3

ORG 14~3

ORG 13~3

ORG 15~3

ORG 17~3

ORG 16~3

ORG 18~3

ORG 19~3

ORG 20'4

BIOSMUXIN LABEL FAR

BIOS CONIN LABEL FAR

BIOS STATUS LABEL FAR

BIOSMRINT LABEL FAR

BIOS CONOUT LABEL FAR

BIOS~AD LAB EL FAR

BIOSMUXOUT LABEL FAR

BIOS WRITE LABEL FAR

BIOSMSKCHG LABEL FAR

BIOS SETTIME LABEL FAR

BIOS SETDATE LABEL FAR

BIOS GETDATE LABEL FAR

BIOS&LUSH L ABEL FAR

BIOS~DEV L ABEL FAR

BIOS~S 9 LAB EL FAR

BIOS~S 8 LAB EL FAR

BIOS~S 7 LAB EL FAR

BIOS~S 6 LAB EL FAR

BIOS~S 5 LAB EL FAR

; Console input status

; Console input

; Console output

; Printer output

; Aux input

Aux output

; Disk input

; Disk output

; Disk change status

; Set current date

; Set current time

; Get current date

; Flush keyboard buffer

; Device mapping

; Reserved for MicroSoft entry points

BIOS~S 4 LAB EL FAR

page l.21

003F
003F

0042
0042

0045

0045
ORG 23~3

ORG 22~4

ORG 2103

BIOS~S 2 LAB EL FAR

BIOS~S 3 LAB EL FAR

BIOS~S 1 LAB EL FAR

; Zenith Data System(ZDS) defined entry points

0048

0048

004B
004B

004E
004E

0051

0051
0054

0054
0057

0057

005A

005A
005D

005D

0060

0060
ORG 32~3

ORG 31~3

ORG 30~3

ORG 29~3

ORG 28~3

ORG 27~3

ORG 26~3

ORG 25~3

ORG 24~3

BIOSMRES1 LABEL FAR

BIOS ZRES2 LABEL FAR

BIOSMRES3 LABEL FAR

BIOSMRES4 L ABEL FAR

BIOS CONFUNC LABEL FAR

BIOSMUXFUNC LABEL FAR

BIOSMRNFUNC LABEL FAR

BIOS~L LABE L BYTE

BIOSMSKFUNC LABEL FAR

; AUX:(modem) function

; Disk function

; PRN:(Printer) function

; CON:(console) function

; Reserved for Zenith entry points

; Bios release number in hex
(ie 012H is release 1.2x)

0061

0061

0063
0063

ORG OFFSET BIOS~L+1

ORG OFFSET BIOS CTADDR%2

BIOS CTADDR LABEL WORD ; Addr of configuration information

BIOS SEG ENDS

; Configuration vector

= 0000 CONFGMSK

= 0002 CONFGMRN

= 0004 CONFLUX

= 0006 CONFG CON

EQU 0 ; Addr of disk vector
EQU CONFGMSK+2 ; Addr of PRN: configuration table

EQU CONFGMRN-t2 ; Addr of AUX: configuration table
EQU CONFLUX-t2 ; Addr of CON: configuration table

page l.22

APPENDIX I

= 0008

= 0000

= 0004

= 0008

= OOOA

= OOOA

= 0000

= 0002

= 0003

= 0004

= 0005

= 000C

= OOOE

= 0010

EQU CONFG CON+2; Addr of Font information

EQU 0 ; Ptr to font table in RAM

EQU FNT~+4 ; Ptr to font table in ROM

EQU FNTMOMt4 ; Size of font table in ROM

EQU FNTMIZE+2 ; Space allocated for font table in RAM

EQU CONF~NT+2 ; Addr of Date and time fields

EQU 0 ; Days since Jan 1, 1980
EQU BIOSMATE%2 ; Hours since midnight

EQU BIOS~S+I; Minutes

EQU BIOSLNINW1; Seconds
EQU BIOSAEC+1; Hundredths of seconds(a word)

EQU CONFG CLOCK+2; Addr of DOS disk tables

EQU CONFG..DOSTB+ 2; Addr of value for map control latch

EQU CONFGJ4CL%2; ; Length of configuration vector

CONF GMNT

FNT~

FNTMOM

FNT SIZE

FNTMSIZE

CONFG CLOCK

BIOS&ATE

BIOS~S
BIOS&IN

BIOS SEC

BIOS&SEC

CONFG~STB

CONFG JUL
CONFG SIZE

ENDIF

= 0001 MS SIZEMEM

= 0010 BIOS CREL

= 0100 BIOS WORKSP

= 03A9 BIOS~LDATE

EQU 10H

EQU 256

EQU 937
for each release)

; Current release of BIOS

; Number if bytes needed for
workspace in BIOS

; Release date 7/26/82 (this changes

; Flag for DOS to size memory at initEQU 1

System functions for "interrupt 21"

(Note: functions followed by "~" are

not CP/M compatable

0000 DOSF TERM
0001 DOSF CONIN

0002 DOSF CONOUT

0003 DOSFMUXIN
0004 DOSFMUXOUT

0005 DOSFMRINTOUT

0006 DOSFMRCIO

0007 DOSFMRCI

0008 DOSFMRCINE

0009 DOSF OUTSTR

; Program terminate

; Console input
; Console output
; Aux input

Aux output
; Printer output

; Direct console I/O
~ Direct console input

~ Console input(no echo)
; Output string

EQU 0
EQU 1
EQU 2
EQU 3
EQU 4
EQU 5
EQU 6
EQU 7
EQU 8

EQU 9

page l.23

APPENDIX I

OOOA

OOOB

OOOC
OOOD

OOOE

OOOF

0010
0011

0012

0013
0014

0015

0016
0017

0018

0019
001A

001B

DOSF INSTR

DOSF STCON

DOSF CONINF
DOSFMSDISK

DOSF SELDISK

DOSF OPFILE

DOSF CLFILE
DOSF SRHFI

DOSF SRHNX

DOSFMEFILE
DOSF SEQREAD

DOSF SEQWRITE

DOSF CRFILZ
DOSF~F ILK

DOSF&4

DOSF GETDISK

DOSF SDIOA
DOSF GFATA

;~ The remaining functions

DOSF GFATA128 EQU 28

DOSF 29 EQU 29
DOSF 30 EQU 30
DOSF 31 EQU 31
DOSF 32 EQU 32
D OSF~ A D EQU 3 3
DOSF~ I TE EQ U 34

DOSF GFSIZE EQU 35

DOSF SFPOS EQ U 36
DOSF SIVEC EQU 37

DOSF CESEG EQ U 38
DOSF~LREAD EQU 39

DOSF~LWRITE EQU 40

DOSFMARSE EQ U 41

DOSF GDATE EQ U 42

DOSFMDATE EQU 43
DOSF GTIME EQU 44

DOSF STIME EQU 45

DOSF CVERF • EQU 46

EQU 10
EQU 11
EQU 12

EQU 13
EQU 14
EQU 15
EQU 16
EQU 17
EQU 18
EQU 19

EQU 20
EQU 21

EQU 22

EQU 23
EQU 24
EQU 25
EQU 26
EQU 27

are not

; Input string
; Status of console
; ~ Flush keyboard buffer and input

; Disk system reset

; Select default disk
; Open file
; Close file

; Search for first

; Search for next
; Delete file
; Sequential read
; Sequential write
; Create file
; Rename file
; ~ not used
; Get default disk
; Set disk I/O address

; ~ Get file allocation table addr

CP/M compatable

Get file allocation table addr
not used
not used
not used
not used
Random read
Random write
Get file size

Set file position

Set interrupt vector
Create segment
Random block read
Random block write

Parse file name

Get date
Set date
Get time
Set time
Set/Reset verify flag

001C

001D

001E
001F

0020
0021

0022

0023
0024

0025

0026
0027

0028
0029

002A
002B

002C

002D
002E

page l.24

; Define the interrupts

DOSI TERM

DOS IMUNC
DOSI TADDR

DOSI CADDR
DOS IMERADDR

DOS I~READ

DOS IWRITE

DOSI TERMR

EQU 20H
EQU 21H

EQU 22H

EQU 23H
EQU 24H

EQU 25H

EQU 26H
EQU 27H

; Program terminate

; Perform a function

; Terminate address
" C Exit address

; Fatal error exit addr

; Absolute disk read
; Absolute disk write
; Program terminate, but stay resident

0020

0021
0022

0023

0024
0025

0026

0027

)

; Define the program header

0005
= 000A

= 000E

0012

= 005B

= 005C

= 006C

=- 0080

= 0100

PHD~UNC

PHDMXADDR
PHD~ADDR

PHDMEADDR

PHD STACK

PHDMCB1
PHDMCB2

PHDMIOA

PHD CODESTART

0000 PHD TERM EQU OOOH

= 0002 PHD~MSIZE EQ U 002H
after end of mern)

; Termination point (has INT 20H)

; Memory size (first seg num

; Alternate function entry point
; Exit handler addr

'C handler addr

; Fatal error handler addr
; End of stack area
; First program argument

; Second program argument
; Default disk transfer area

; Start of code (Size of a PHD)

EQU 005H

EQU OOAH
EQU OOEH

EQU 012H

EQU 05BH

EQU 05CH
EQU 06CH

EQU 080H
EQU 100H

)

; Define the "User" File control block (FCB)

FCBMRIVE

FCBMNAME
FCBMXT

FCB CURBLK

FCB~CSZ
FCBMILSZ

EQU 0 ; Drive number
EQU FCBMRIVEkl ; File name
EQU FCB~AME%8 ; Extension to file name

EQU FCBMXT%3 ; Current block

EQU FCB CURBLKW 2 ; Record size
EQU FCB~CSZ&2; File size

= 0000

= 0001

= 0009

= OOOC

= 000E

= 0010

page l.25

= 0014

= 0016

= 0018

= 0020

0021
= 0025

EQU FCBMILSZt4 ; Date f i l e modif i ed
EQU FCBMATEi2 ; Time file modified

EQU FCB TIMEi2; Reserved

EQU FCB~Si 8 ; Current record(in block)
EQU FCB CURREC-t 1 ; Random record number
EQU FCB~ C- t4 ; Size of a FCB

F CRATE
FCB TIME

FCB~S

FCB CURREC

FCB~ C
FCB SIZE

)

; Define the extended file control block

EQU 0 ; Flag field

EQU XFCBMLAG%1; Reserved

EQU XFCB~S-t5 ; Attribute byte

EQU 02H ; Hidden files
EQU 04H ; System files

EQU XFCBMTTR+ 1 ; Normal FCB

EQU XFCBWCBkFCB SIZE; Size of a XFCB

= 0000 XFCBMLAG
= 0001 XFCB~S

= 0006 XFCBMTTR

= 0002 XF CBA HID

= 0004 XF CBA SYS
= 0007 XFCBMCB

= 002C XFCB SIZE

; Define the directory entries

0000 D~ NAME
0 008 D~ X T

000B DE ATTR
0002 D E ~ I D

0004 D EA SYS

000C D~ S
0016 DE TIME

0018 DE DATE

001A DE START
001C D~ S I ZE

0020 DE SIZE

; File name
; Extension to f i le name
; File attribute

; Hidden file
; System file

; Reserved
; Time the file was modified
; Date the file was modified
; Starting sector of file

; File size
; Size of a DE (should be 32)

EQU 0
EQU D~NAMEt8

EQU D~XT+3
EQU 02H

EQU 04H

EQU DEMTTR+1
EQU D~S+10
EQU DE TIME+2
EQU D~ATE+2
EQU DE START%2

EQU D~SIZE+4

page l.26

; Define the "Drive parameter table" for MS-DOS usage

(Used only by the BIOS at init t ime)

= 0000

= 0002

DPT SECIZ

DPT CLUSIZ
EQU 0 ; Size in bytes of a physical sector

EQU DPT SECSIZ%2 ; Number of sectors in an

allocation unit
= 0003 DPT~SSEC EQU DPT CLUSIZ-tl ; Number of reserved sectors at

= 0005

0006

= 0008

DPTMATCNT

D PT~ N T

DPTMSKSIZ

start of disk

EQU DPT~SSEC%2; Number of FAT's

EQU DPTMATCNTt 1 ; Number of directory entries

EQU DPT~NT-t2 ; Number of physical sectors on

EQU DPTMSKSIZ-t2 ; Size of a DPT

the disk
OOOA DPT SIZE

I

; Define the disk errors

= 0000

= 0002

= 0004

= 0006

= 0008

= OOOA

= OOOC

DSKE WRITEP

DS~ ADY

DS~ATA
DSKE SEEK

DSKE SECT

DSKE WFAULT

DSKE OTHER

EQU 0
EQU 2
EQU 4
EQU 6
EQU 8
EQU 10
EQU 12

; Write protect

; Not ready
; Data error
; Seek
; Sector not found
; Write fault

; Anything else

page l.27

APPENDIX I

Entry Points Defined

BIOS INIT — System initialization

BIOS INIT is the entry point used by the boot loader to pass control to the
BIOS. This entry point may be called only from the boot loader during system
initialization. The following functions are performed by BIOS INIT:

1.
2.

All devices (except for the video) are initialized.
The disk drive tables are fixed up to account for characteristics of the
boot device.
The DOS is read in from the disk.
The DOS initialization routine is called.
The character font table and the keyboard mapping are setup.
The program "COMMAND.COM" is loaded and control is passed to

3.
4.
5.
6.

it.

BIOS STATUS — Console input status

This routine checks to see if a character is ready at the console. If so, that
character is returned. Once a character has been returned with this call, that
same character is returned every time the call is made until a BIOS CONIN
call is made to read the character.

Returns:

"Z" set — no character ready
"Z" clear — AL = first character in input queue

Uses:

No registers are modified.

page l.28

BIOS CONIN — Console input

This routine waits for a character from the console.

Returns:

AL = character from the console

Uses:

No registers are modified.

BIOS CONOUT — Console output

This routine waits for the console to be ready and then outputs a character
to it.

Call with:

AL = character to output

Uses:

No registers are modified.

BIOS PRINT — Printer output

This routine waits for the printer to be ready and then outputs a character
to it.

Call with:

AL = characterto output.

Uses:

No registers are modified.

page l.29

BIOS~UXIN — Aux input

This routine waits for a character to be ready at the auxiliary device and then
reads it.

Returns:

AL = character read.

Uses:

No registers are modified.

BIOS~UXOUT — Aux output

This routine waits for the auxiliary device to be ready and then outputs a
character to it.

Call with:

AL = character to write.

Uses:

No registers are modified.

BIOS READ — Disk input

This routine is used to read sectors from a specified disk device. Up to one
segment of data may be read in one call.

Call with:

AL = Device number
CX = Number of sectors to read
DS = Firstlogicalsectortoread
DS:BX = buffer to place data

page l.30

Returns:

CX = Number of sectors not read
"CY" clear~ peration succeeded
"CY" set — operation failed, AL = error code (see above in file

DEFDSK.ASM)

Uses:

All registers may be modified (other than segment registers)

BIOS WRITE — Disk output

This routine is used to write sectors from a specified disk device. Up to one
segment of data may be written in one call.

Call with:

AL = Device number
AH = Verify flag: O = no verify, 1 = verify after write (not

CX = Number of sectors to write
DX = First logical sector to write
DS:BX = buffer to get data from

currently implemented)

Returns:

CX = Number of sectors not written
"CY" clear~ peration succeeded
"CY" set~ peration failed, AL = error code (see above in file

DEFDSK.ASM

Uses:

All registers may be modified (other than segment registers)

page l.31

BIOS DSKCHG — Disk change status

Check if the specified disk has been changed.

Call with:

AL = drive number

Returns:

CY clear (normal exit)
AH = — 1, if disk has been changed
AH = 0, if it is not known ifdiskchanged
AH = +1, ifdiskcouldnothavechanged
AL = drive number (can change or remain the same)

CY set (error exit)
AL = error code

Uses:

No other registers are modified.

BIOS SETDATE — Set current date

Sets the current date as days since Jan 1, 1980.

Call with:

AX = the number of days since 1/1/80.

Uses:

No registers are modified.

page l.32

BIOS SETTIME — Set current time

Sets the current time of day.

Call with:

CH = hours(0-23)
CL = minutes (0-59)
DH = seconds (0-59)
DL = hundredths of seconds (0-99)

Uses:

No registers are modified.

BIOS GETDATE — Get date and time

Returns the current date and time.

Returns:

AX = count of days since 1/1/80
CH = hours(0-23)
CL = minutes (0-59)
DH = seconds (0-59)
DL = hundredths of seconds (0-99)

Uses:

No other registers are modified.

BIOS FLUSH — Flush keyboard input buffer

The input character queue associated with the console device is flushed.

Uses:

No registers are modified.

Page l.33

BIOS MAPDEV — Mapdisk

Maps a disk driver given the device number and FAT ID.

Call with:

AL = I/O driver number
AH = First byte of FAT (range F8 to FF)

Returns:

AL = I/O driver for given media and drive

Uses:

No other registers are modified.

BIOS DSKFUNC — Disk function

Used to execute an arbitrary disk function.

Call with:

The register pair ES:BX points to a parameter block (for all func
tions except GBIOSVEC and MAPDSK). The Parameter block
has the following fields:

DSKPR DRIVE(byte):
Logical drive number (— 1 to number of drives supported).

DSKPR SECTOR(word):
Logical sector number. (On read/write track, used as side
flag: 0 = side zero, 1 = side one).

DSKPR COUNT(word):
Sector transfer count. (Must fit in segment)

DSKPR BUFF (double word):
Address of I/O buffer. The first word is the offset and the sec
ond word is the segment.

Page l.34

AL = function to perform
AL = DSK RESET — Reset the disk(home head)
AL = DSK STATUS — Getdiskstatus
AL = DSK STEPIN — Step inhead
AL = DSK READ — Read sectors from the disk
AL = DSK WRITE — Writesectorstothedisk
AL = DSK VERIFY — Not implemented
AL = DSK FORMAT — Format track (write track)
AL = DSK READTRK — Read track
AL = DSK GBIOSVEC — Getaddrofdisktablevector
AL = DSK MAPDSK — Maps drive number in AH
AL = DSK SETFDC — Indicates drive has been formatted

Returns:

AX = Statusofoperation
CY clear — operation succeeded
CY failure — operation failed
ForDSK READandDSK WRITE:

DSKPR COUNT = number of sectors nor read/written
DSKPR BUFF = updated to nextaddr

For DSK GBIOSVEC:
ES: BX -> vector of disk table addresses

ForDSK STATUS:
AH = aux status, AL = status

For DSK MAPDSK:
AL = mapped device

Uses:

All registers may be used.

page l.35

APPENDIX I

File: DEFDSK. ASM

j

Define Functions performed by Disk driver routines

= 0000

= 0001

= 0002

= 0003

= 0004

= 0005

= 0006

= 0007

= 0008

= 0009

= OOOA

DS~ SET
DSK STATUS

DS~

DSK WRITE

DSK VERIFY

DOORMAT
DSK STEPIN

D S A R K
DSK GBIOSVEC
D S~ D S K

DSK SETFDC

DS~MAX

; Reset function

; Status function

; Read function
; Write function

; Verify function

; Format(write track) function

; Step in function

; Read track function

; Get BIOS disk vector addr

; Get Logical to physical mapping
; Show that disk has been formatted

; Max function value

EQU 0
EQU DS~SET+1
EQU DS~TATUS+1
E QU DS~+ 1
EQU DSK WRITE+1
EQU DSK VERIFY+ 1
EQU DOORMAT+ 1
EQU DS~TEP IN% 1
EQU DS~TRK+1
EQU DSK GBIOSVEC+

EQU DS~DSK+1
EQU DS~ETFDC+1

Define the disk info block (one is needed for each drive)

= OOOF

= 0002

= 0004

= 0000

= 0100

= 0200

= 0300

= 0400

= 0500

= 0600
= 0002

= 0000

= 0003

= 0004

= 0001

MAXDSK

MAXDSK5
MAXDSK8

DATA
DSKSTMNERR

DSKST ORERR

DSKSTMNERR

DSKSTMTERR

DSKSTMIERR

DSKST~ERR

DSK TYPE

DSK TZ207

DS~TRK
DROPT

DSK OWR

; Maximum number of disks

; Maximum 5 inch drives (0-1)
; Maximum 8 inch drives (2-3)

; Status of last operaton

; Invalid function

; Improper order of function

; Invalid disk number
; Invalid disk type

; Function not implemented

; No disk in drive
; Disk type

; Z-207 type disk
; Last track
; Last operation
; Write was last op

EQU 15
EQU 2
EQU 4
EQU 0

EQU 0100H
EQU 0200H
EQU 0300H
EQU 0400H
EQU 0500H
EQU 0600H

EQU DSILSTA+ 2
EQU 0

EQU DKS TYPE+
EQU DKSMTRK+

EQU 01H

page l.36

APPENDIX I

DSK ORD

DSK ORS

DSK OSI
DSK OFT

DSK ORT

DS(L.OUK

DS)LFLAG

DS~S

DS~S
DS~DP

DS)LFWP

DS~

DSRZSL

DUEL
DS~S

DSK SPHI
DS~MT

DS~
DSK WR

DSK SK

DS~ERR

DS~

D S~ T R Y

DSK SPT

DS(LBPS

DS~PWT

DSKJ3PRT

D SPLAY
DSKJSELAY

DS~ORT
DS~T

DSK IMGFLG

DSKIF ID

DSKIFMV

DSKIF~

DSKIFMN

DSK TDSEL

DSK SIZE

= 0002

= 0004

= 0008
= 0010

= 0020

= 0080

= 0005

= 0001

= 0002

= 0004

= 0008

= 0010

= 0020

= 0006

= 0007

= 0008
= 0009

= OOOA

= OOOB

= OOOC

= 000D

= OOOF

= 0010

= 0011

= 0012

= 0014

= 0016

= 0018

= 001A
= 001C

= 001E

= 001F

= 0080

= 0040

= 0020

= OOOF

= 0020

= 0022

EQU 02H
EQU 04H
EQU OSH
EQU 10H
EQU 20H
EQU SOH

EQU DS)LLOPT t 1

EQU 01H
EQU 02H
EQU 04H
EQU OSH
EQU 10H
EQU 20H

EQU DS~LAG+
EQU DSK SELt

EQU DS~St 1
EQU DSK SPHItl

EQU DS~ t l

EQU DS~tl
EQU DSK WRtl

EQU DS(LSKt 1

EQU DSK SERRt2

E QU DS~t l
EQU DS~TRYt 1;
EQU DSK SPTtl

EQU DS~PSt2
EQU DS~PWTt2
EQU DS~PRTt2

EQU DS~ELAYt 2;

EQU DS~ELAYt2;

EQU DS~ORTt2
EQU DS~Tt 1

EQU 80H
EQU 40H
EQU 20H
EQU OFH

EQU DSK IMGFLGtl

EQU DSK TDSEL+2;

; Read was last op
; Reset was last op
; Step in was last op

; Format was last op

; Read track was last op
; Track is unknown

; Flags
; Disk is double sided
; Drive can be fast stepped

; Disk is 48 tpi and should be double stepped

; Disk is software write protected

; Force Disk has Changed next time

; Skip head load on select

; Command to select drive

; Command to reset drive

Command to step in
Command to format(write) a track

Command to read a sector

Command to write a sector

Command to seek to a track

Number of "soft" errors

Maximum track number of drive

Maximum retry count

Sectors per track
Number of bytes per sector

Number of bytes per write track operation

Number of bytes per read track operation

Counter value for short delay

Counter value for a long delay

Base Port number
Read track command
Imaginary drive flag

(0 - real drive; 1 - imaginary drive)
(0 — disk is not in drive; 1 - disk is in drive)

(0 — can map imag to drive; 1 - can' t)

(Mask for disk in drive)

; Time to wait before deselecting drive(in 100ths of secs)
Size of DSK

page l.37

Define the parameter table passed to the disk drive routines

= 0000

= 0001

= 0003
= 0005

0009

DSKPR JDRI VE

DSKPR SECTOR

DSKPR COUNT

DSKPILBUFF
DSKPILS IZE

EQU 0 ; Logical drive number

EQU DSKPRJDRIVE-tl ; Logical sector number
EQU DSKPR SECTOR-t2 ; Sector transfer count

EQU DSKPR COUNT&2 ; Buffer addr (offset, paragraph)

EQU DSKPILBUFFt4; Size of this thing

page l.38

BIOS PRNFUNC — PRN function
BIOS~UXFUNC — AUX function
BIOS CONFUNC — CON function

These three entry points are used to perform any of five functions on the
device after which they are named. The functions are write a character, read
a character, get status, perform control type operation, and read a character,
but leave it in the input queue (nondestructive read). The file DEFCHR.ASM,
which is included below, has the needed definitions to use these entry
points.

Call with:

AH = function to perform

AH = CHR WRITE — Write character function
AL = charactertowrite

AH = CHR READ — Read character function
AH = CHR STATUS — Status function

AL = Subfunction
AL = CHR SFGS — Getstatus
AL = CHR SFGC — Return configuration info to ES:BX

AH = CHR CONTROL — Control function
AL = subfunction

AL = CHR CFSU — Setup using new

AL = CHR CFCI — Clear input
AL = CHR CFCO — Clear output

configuration info at ES:BX

AH = CHR LOOK — Nondestructive read function

Page l.39

Returns:

CY clear (normal exit)
Write — nothing returned
Read — AL = character read
Status

Get status — AH = status, AL = raw status,

Get config info — Config info copied to ES:BX
Control — nothing returned
Look — AL = first character in input queue

CY set (error exit)
AX ~ error code

BH = inputqueuesize, BL = chars in queue

File: DEFCHR. ASM

I

; DEFCHR - Definitions for the character devices (CON:, AUX:, and PRN:j

Define functions of BIOS CONFUNC, BIOSMRNFUNC, and BIOSMUXFUNC

= 0000

= 0001

= 0002

= 0000

= 0001

= 0002

= 0004

= 0080

= 0040

= 0020

= 0010
= 0008

= 0001

= 0003

= 0000

CHILWRITE

CHILIAD

QHLSTATUS

QBLSFGS

CHRS WA

CHRS WD

CHRS SN

CHRS TXR

CHRS~

CHRS~OF

CHRS~

CHRS TXE

CHILSFGC

CHILCONTROL

CHILCFSU

Write function

Read function
Status function

; Get status subfunction

; <ETX> sent, waiting for <ACK>

; <DC3> seen, waiting for <DCI>

; Sending nulls
; Transmitter ready to send data

; Receiver has data
; Receiver queue overflow
; Other type of reciver error

; Transmitter error

; Get configuration info subfunction

; Control function

; Setup new configuration parms subfunction

EQU 0
EQU CHILWRITE+
EQU CHFLBKAD+

EQU 0
EQU 00000001B

EQU 00000010B

EQU 00000100B

EQU 10000000B
EQU 01000000B

EQU 00100000B

EQU 00010000B

EQU 00001000B

EQU CHILSFGS+ 1
EQU CHILSTATUS t 1

EQU 0

page l.40

CHR CFCI

CHR CFCO

CKLJ OOK
CHIEF MAX

; Configuration information packet

EQU CHR CFSUkl ; Clear input subfunction

EQU CHR CFCI+1 ; Clear output subfunction

EQU CHR CONTROL+ 1; Nondestructive read function

EQU CHILLOOK ; Maximum function number

0001
= 0002

= 0001

= 0000

= 0000

= 0001

= 0002

CHRD CLASS

CHRIKI CRT

CHRDCLBER

CHRIXLPAR

CHRDCL3fAX

CHRDMTTR

CHRD~P I

CHRD~PO

CHRDK3!LI

CHRDkhG 0

EQU 0 ; Device class
EQU 0 ;Internal keyboard/display
EQU CHRDCI CRT+1; 2661 serial port

EQU CHRDCLBERi 1; PIA parallel port

EQU CHRDC~AR; Maximum class value

EQU CHRD CLASS+1; Attributes

EQU 00000001B ; Strip parity on input

EQU 00000010B ; Strip parity on output

EQU 00000100B ; Map lower to upper case on input

EQU 00001000B ; Map lower to upper case on output

= 0001

= 0001
= 0002

= 0004

= 0008

; The remaining fields are used only with the 2661 serial ports

(except CHRDMCHR and CHRDMCNT which can be used by parallel printer)

= 0002
= 0004

= 0000

= 0001

0002
= 0003

= 0004

= 0005
= 0006

= 0007

= 0008

= 0009

= OOOA

= 000B

= OOOC

= OOOD

= 000E

CHRDMORT

CHRDBAUD
BD455

BD050

BD075

BD110

BD134

BD150
BD300

BD600

BD120

BD180

BD200

BD240

BD480

BD960

BD192

; Port number
; Baud rate

45. 5

50

; 75

110

134. 5

150
300

600

1200

1800

2000

2400

4800

9600

19200

EQU CHRDMTTR+ 1

EQU CHRDMORT+ 2
EQU 0
EQU 1

EQU 2
EQU 3
EQU 4
EQU 5
EQU 6
EQU 7
EQU 8

EQU 9
EQU 10

EQU 11
EQU 12

EQU 13
EQU 14

page l.41

= OOOF

= 0005

= 0000

= 0001

= 0002

= 0003

= 0004

= 0005

= 0006

BD384
BDMAX

CHRDMSHK

CHRDILNO
CHRDILEAH

CHRDkLJKH

CHRDKJKDH

CHRDILDCDL

CHRDILDSRH

CHRDKJ)SRL

CHRDK31AX

CHRDMCTL

EQU 15 38400

EQU BD384 ; Maximum valid baud rate

EQU CHRDJ3AUD+ 1 ; Handshaking protocol
EQU 0 ; None
EQU CHRDILNO-t1 ; <EXT>/<ACK>
EQU CHRDH EAHt1; <DC3>/<DC1> (CTRL-S/CTRL-Q)

EQU CHRDK9CH+1; DCD(data carrier detect) high

EQU CHRDILIKDH%1; DCD low

EQU CHRDILDCDLtl; DSR(data set ready) high

EQU CHRDKJ)SRH+1; DSR low
EQU CHRDHJDSRL ; Maximum valid value

EQU CHRD~SHK+ 1 ; Stop bits/parity char length
(2661 Mode register 1)

= 0006

CHRDB SB

CHRDB SB1

CHRDB SB15

CHRDB SB2

CHRDBMT

CHRDBMC

CHRDB CL

CHRDB CL5

CHRDB CL6

CHRDB CL7
CHRDB CLS

EQU 11000000B ; Stop bits
EQU 040H ; 1 stop bit
EQU OSOH ; 1.5 stop bits
EQU OCOH ; 2 stop bits

EQU 00100000B ; Parity type(0= odd, i =even)
EQU 00010000B ; Parity contr(O=disabled, i =enabled)

EQU 00001100B ; Character length

EQU OOH ; 5 bits
EQU 04H ; 6 bits
EQU OSH ; 7 bi t s

EQU OCH ; 8 bits

= OOCO

= 0040

= 0080

= OOCO

= 0020

= 0010

= OOOC

= 0000

= 0004

= 0008

= OOOC

= 0007

= 0009

= OOOA

= 0010

= 0008 CHRDMCNT

CHRDMCNT EQU CHRDMCTL+I; I f <ETX>/<ACK> used, chars to

EQU CHRDMCNT-t 1 ; Number of NULLs to send after

EQU CHRDMCNT-tl ; Character after which to send NULLS

EQU CHRDMCHR& 1 ; Reserved for future use

EQU CHRIS- t 6 ; Size of a CHRD

CHRDMCHR seen

send before <ETX> sent

CHRDMCHR
CHRIS

CHRD SIZE

page l.42

APPENDIX I

that are returned; Error codes

= 0000

= 0001

= 0002

= 0003

= 0004

= 0005

= 0006

= 0007

= 0008

= 0009

= OOOA

CHRE ILGFH

CHRE ILGFL

CHREMWR

CHREMRD

CHREM SUP

CHRE WRB

C~ NR

CHRF~TO

CHRE ILR
CHRE IQE

CHREBJIQ

Internal character device control table (It includes an embedded CHRD)

EQU 0 ; Illegal function code in AH

EQU CHRE ILGFH+1; Illegal function code in AL

EQU CHRE ILGFL+1; No writes allowed to device

EQU CHRFMWR+ I ; No reads allowed to device

EQU C~ R + 1 ; Bad set up parameters
EQU C~SUP+1; Device busy on write

EQU CHRE WRB+1 ; Device not ready on read
EQU C~NR tl; Software handshake time out

E QU C~ O + I ; Illegal response from device
EQU CHRE ILR+ 1 ; Input queue empty
EQU CHRE IQE+ 1 ; Device has no input queue

= 0000

= 0010

CID CHRD

CID CLASS

= 0000

= 0002

= 0004

= 0012

= 0000

= 0001

= 0014

= 0016

= 0018

= 001A

= 001C

= 001D

= 001E

= 001F

= 0020

= 0021
= 0022

= 0023

EQU 0 ; A CHRD

EQU CID CHRD+CHRDMIZE ; Class of character device

EQU CHRDCI CRT~2 ; Internal video/keyboard

EQU CHRDC~ER~2 ; 2661 serial port

EQU CHRDCLPAR~2 ; PIA parallel port
EQU CID CLASS+2; Special types

EQU 0 ; Normal type
EQU CIDTYMORM+1 ; Special CRT

EQU CID TYPE+2; Input port

EQU CID IPORT+2; Output port

EQU CID OPORT+2; Status port

EQU CIDAPORT+2; Control port

EQU CID CPORT+2 ; Status(see CHRDMFGS for values)

EQU CIST+I ; Input ready mask
EQU CID IRM+1 ; Input polarity mask
EQU CID IPM+1 ; Output ready mask

EQU CID ORM%1 ; Output polarity mask

EQU CID OPMkl ; Char counter for sending<ETX>
EQU CIDMCTR+ 1 ; Null down countr
EQU CIDMCTR+ 1 ; Size of the CID

(must be mult of 2)
CIDCI CRT

CIDCLSER

CIDCLPAR

CID TYPE

CIDTYMORM

CIDTY CSP
CID IPORT

CID OPORT
CID SPORT
CID CPORT

CIST
CID IRM
CID IPM

CID ORM

CID OPM

CIDMCTR

CIDMCTR

CIDMIZE

page 1.43

)

; Define input queue for character devices

= 0000

= 0002

= 0004

= 0006

= 0008

= 0009

= OOOB

= OOOD

EQU 0 ; Addr of start of queue

EQU CQ SADDR-t2 ; Addr of end of queue

EQU C~ADDR+2; Size of queue
EQU CQ QSIZE+2; Number of elements currently in queue

EQU C~LMTS-t2 ; Status (as defined under CHILSTATUSj

EQU CQ STATUS-tl ; Addr of first element in queue

EQU C~RONT% 2 ; Addr of last element in queue

EQU C~-t2 ; Size of a CQ

CQ SADDR

CQ EADDR

CQ QSIZE
C~LMTS

CQ STATUS

C~ O NT

C~

C~I ZE

page l.44

File: DEFCONFG. ASM

; Configuration type info

= OOBO

= OOAE

= EOOD

= DOOO

= COOO
= OOD8

= OODC

(see DEF6845 to program the 6845)

Z217A EQU OAEH ; Reserved for future use

Z207A EQU OBOH ; First Z-207 disk controller base port

(See DEFZ207 to program controller)

ZGRNSEG EQU OEOOOH ; Segment of green video plane
ZREDSEG EQU ODOOOH ; Segment of red video plane
ZBLUSEG EQU OCOOOH ; Segment of blue video plane
ZVIDEOG EQU OD8H ; Video 68A21 port
; PAO -> enable red display

; PA1 -> enable green display
; PA2 -> enable blue display

; PA3 -> not f lash screen
; PA4 -> not write multiple red
; PA5 -> not write multiple green

; PA6 -> not write multiple blue

; PA7 -> disable video RAM
PA7-PBO -> LA15-LA8

; CA1 — not used
; CA2 -> clear screen
; CB1 — not used
; CB2 -> value to write (0 or 1) on clear screen

(see DEF6821 to program the 6821
ZCRTC EQU ODCH ; Video 6845 CRT-C port

ZLPEN EQU ODEH ; Light pen latch
ZLPENMIT EQU 0 0 000111B ; Bit hi t by pen
ZLPENMOW EQU 11110000B ; Row hit by pen

ZPIA EQU OEOH ; Parallel printer plus light pen and
video vertical retrace 68A21 port

= OODE

= 0007

= OOFO

= OOEO

PAO -> PDATA1

PA1 -> PDATA2

; PA2 -> not STROBE

; PA3 -> not INIT
PA4 (- VSYNC

page l.45

= OOE4

= 61A8

= OOFB

= 0001

= 0002

= OOE8

= OOEC

= OOF2

= 0000

= 0001

= 0002

= 0003

= 0004

= 0005
= 0006

= 0007

; PA5 -> clear VSYNC flip flop

; PA6 <- l ight pen switch
; PA7 -> clear light pen flip flop

; PBO <- BUSY
; PB1 <- not ERROR
; PB2 -> PDATA3

PB3 -> PDATA4
; PB4 -> PDATA5

; PB5 -> PDATA6
PB6 -> PDATA7

; PB7 -> PDATA8

; CA1 <- light pen hit (from flip flop)

; CA2 <- VSYNC (from flip f lop)
; CB1 <- not ACKNLG

CB2 <- BUSY
(See DEF6821 to program the PIA)

ZTIMER EQU OE4H ; Timer 8253 port

ZTIMEVAL EQU 25000 ; 100ms divide by N value

(See DEF8253 to program the 8253)
ZTIMERS EQU OFBH ; Timer interrupt status port

ZTIMERSO EQU 001H ; Timer 0 interrupt

ZTIMERS2 EQU 002H ; Timer 2 interrupt

ZSERA EQU OE8H ; First 2661-2 serial port

ZSERB EQU OECH ; Second 2661-2 serial port

(See DEFEP2 to program 2661-2)
ZM8259A EQU OF2H ; Master 8259A interrupt controller port

ZINTEI EQU 0 ; Parity error or S-100 pin 98 interrupt

ZINTPS EQU 1 ; Processor swap interrupt
ZINTTIM EQU 2 ; Timer interrupt

ZINTSLV EQU 3 ; Slave 8259A interrupt

ZINTSA EQU 4 ; Serial port A interrupt

ZINTSB EQU 5 ; Serial port B interrupt

ZINTKD EQU 6 ; Keyboard, Display, or Light pen interrupt

ZINTPP EQU 7 ; Parallel port interrupt

(See DEF8259A to program the 8259A)
ZM8259AI EQU 64 ; Base interrupt number for master

ZS8259A EQU OFOH ; Secondary 8259A interrupt controller port

ZS8259AI EQU 72 ; Base interrupt number for slave

= 0040

= OOFO

= 0048

page l.46

APPENDIX I

Inkejw"I vpis, FUnetlen CeIIe end Eat~ Peivts

OOF4

OOF4

OOF5

0000
0001

0002
0003
0004

0005

0006
0007
0008
0009
OOOA
000B

OOOC

OOOD

OOF5

0001

0002

OOFC

0003
0000
0001

0002

0003
OOOC
0000
0004

0008
OOOC
0010

0020

ZMCL

ZMCLMS

ZSMO

ZSM1

ZSM2

ZSM3

ZMCLRM

ZRMO
ZRM1

ZRM2

ZRM3

ZMCLPZ
ZMCLPK

ZKEYBRD

ZKEYBRDD

ZKEYBRDC

ZKEYRES

ZKEYARD

ZKEYARF

ZKEYKCO

ZKEYKCF

ZKEYCF

ZKEYCLK

ZKEYBEP

ZKEYEK

ZKEYDK

ZKEYUDM
ZKEYNSM

ZKEYEI

ZKEYDI

ZKEYBRDS

ZKEYOBF

ZKEYT ~

EQU OF4H
EQU ZKEYBRD+0
EQU ZKEYBRD+1

EQU 0
EQU 1
EQU 2
EQU 3
EQU 4
EQU 5
EQU 6
EQU 7
EQU 8
EQU 9
EQU 10
EQU 11
EQU 12
EQU 13

EQU ZKEYBRD+1
EQU 001H
EQU 002H

; Keyboard port
; Keyboard data port
; Keyboard command port

; Reset command
; Autorepeat on command

; Autorepeat off command

; Key click on command

; Key click off command

; Clear keyboard FIFO command

; Generate a click sound command

; Generate a beep sound command

; Enable keyboard command
; Disable keyboard command

; Enter UP/DOWN mode command

; Enter normal scan mode command

; Enable keyboard interrupts command

; Disable keyboard interrupts command

; Keyboard status port
; Output buffer not empty
; Input buffer full

Memory control latch

; Map select mask

; Map select 0
; Map select 1
; Map select 2
; Map select 3

; Monitor ROM mapping mask

; Power up mode - ROM everywhere on reads
; ROM at top of every 64K page

; ROM at top of 8088's addr space

; Disable ROM
; O=Set Parity to the zero state

; O=Disable parity checking circuity

EQU OFCH
EQU 00000011B

EQU 0
EQU 1
EQU 2
EQU 3

EQU 00001100B
EQU 0~4
EQU 1~4
EQU 2*4
EQU 3~4

EQU 00010000B
EQU 00100000B

page l.47

APPENDIX I

= OOFD

= OOFF

= OOOF

= OOFE

= 0080

= 0000

= 0080

= 0002

= 0001

= OOFF

= 0007

= 0008

= 0070

= 0080

ZHAL

ZHAL85

ZHAL88

ZPSP

ZPSPPS

ZPSPPS5

ZPSPPS8

ZPSPSI

ZPSPI8

ZDIPSW

ZDIPSWBOOT

ZDIPSWAB

ZDIPSWRES

ZDIPSWHZ

Hi-address latch

; 8080 Mask
; 8088 Mask
Processor swap port
; Processor select (0 = 8085, 1 = 8088)

; Select 8085
; Select 8088
; Generate interrupt on swapping

; 8088 processes all interrupts

Configuration dip switches

; Boot device field
1=Auto boot(O=Manual boot)

; Reserved
; 0=60Hz(1 =50HZ)

EQU OFDH

EQU OFFH

EQU OFOH

EQU OFEH

EQU 10000000B

EQU 00000000B

EQU 10000000B

EQU 00000010B

EQU 00000001B

EQU OFFH

EQU 00000111B

EQU 00001000B

EQU 01110000B

EQU 10000000B

page l.48

MONITOR-100 Subroutine Entry Points:

MTR-100 Global Subroutine Vectors (Address Offsets from FEOOOH Base)

Monitor Subroutine Vectors

File: DEFMTR. ASM

)

; Definitions for the Monitor ROM

; Entry points to ROM monitor

Segment addr for Monitor ROM calls

; Reset function
; Reset function

; Monitor call

; Trace/breakpoint handler

; Dumb display output

; Dumb keyboard handler

; Smart display output

; Smart keyboard input

; Vertical retrace interrupt handler

0000 MTR SEG SEGMENT AT OFE01H

0000 ORG O OOH

0000 ~ S LABEL FAR

0005 O RG 005 H

0005 MTI L MON LABEL FAR

OOOA O RG 00 A H

OOOA M T I LSWIM LABEL FAR

000F O RG 00 F H

000A MTEU)CRT LABEL FAR

0014 O RG 014 H

0014 MTI L DKBD LABE L FAR

0019 O RG 019 H

0019 MTELSCRT LABEL FAR

001E O RG 01 EH

001E MTR SKBD LABEL FAR

0023 O RG 023 H

0023 MTR TTY INTR LABEL FAR

0023 MT1LSEG ENDS

page l.49

0000 MTILD SEG SEGMENT AT 0

0000 ORG O OOH
; ROM Monitor data segment(not really located at 0)

; Monitor Parameters

0000

0000

0005
= 0001

0006

MTR WIP LABEL FAR

DB 5 DUP(?)
; Far jump to wild interrupt handler
; the far jump

; BCD version of ROM monitor

; Lowest version BIOS can run on

; Size of the ROM monitor data segment

MTR VER DB ?

MTR CVER EQU 01H

MTILDSMIZE DW ?

page l.50

APPENDIX I

; Boot parameters

0008

0009

OOOA
005A

M TILB INDX D B ?

K 7LBPORT D B ?
MTILBSTRING DB 80 DUP (?)

M1KBUNIT DB ?

; Boot device index
; Boot device base port number

; Boot string
; Boot unit number

; Pointers to All sorts of things

005B
005F

0063

0067
006B

006F
= 07EO

MT')CI DD ?
MTILDFC DD ?

MTILDXMTC DD ?

hfIKSDC DD ?
MTRZMEC DD ?

MTRZONT DD ?

MTILFNTMIZE EQU 9~ (235- ' ')

0073

0077

007B
007F

0083

0087
008B

DD ?

DD ?

DD ?
DD ?

DD ?

DD ?
DD?

MTR MDC

ÃIK3$L

MTILP ROMP T

MOB UK

MTILSXMTC

MTR UIES
~ CA

; I f vers ion = 1, next word is not present, and all references must have

Addr of Display Character Initialization Routine
Addr of Display Font Character Routine

Addr of Dumb Keyboard Transmit Character Routine

Addr of Erase Display Character Routine
Addr of Extended-Mode Escape Character Handler Routine

Addr of Character Font table

; Size of reserved font table(number of bytes copied from rom fon

; Addr of
; Addr of
; Addr of
; Addr of
; Addr of
, Addr of
; Addr of

Move Display Characters Routine

Display Line Routine
Display ROM Monitor Prompt Routine

Read Displayed Character Routine

Smart Keyboard Transmit Character Routine

Unimplemented Escape Sequence Handler Routine
Transmit Character Attributes Routine

-2 added to them for labels beyond this point

008F
0091

0191

0291
0292

0293

MTILFNTSIZ D W ?
MTILKYB DW 2 5 6 DUP

MTR CHR DW 2 5 6 DUP

M TILI(ORP DW ?
M TR VERP DW ?

MTELDMEG ENDS

(?) ; Keyboard map table
(?) ; Display map table

; Size of FONT in bytes (If version > 1)

; Horizontal position of cursor (column)

; Vertical position of cursor (row)

0000 IPAGE SEG SEGMENT AT 0

03FE ORG 0 3 FEH
03F3 MTR-DS LABEL WORD

; The interrupt area page

; Location that contains monitor DS value

03FE I P AGE SEG ENDS

Page J.1

APPENDIX J

System Structure and Memory Maps

System Memory Map

~ See Detail
on Page J.2

ROM INTERFACE & LOOKUP TABLES

GREEN
~ EOOOO

RED
« D 0 0 0 0

BLUE
~ COOOO

OPTIONAL USER MEMORY
ON S-100 BOARDS

~ Top of
Contiguous
RAM

(128-192K)
OVERLAID COMMAND.COM

T R A N S I E N T
P R O G R A M

A R E A

Resident Portion of
COMMAND.COM

Z-DOS.SYS

ROM WORK SPACE (1K)

IO.SYS WORK SPACE (256 bytes)

IO.SYS
~0040

Interrupt Vectors

page J.2

ROM Interface & Lookup Tables

~FFFFF
8088 RESET JUMP VECTOR

~FFFFO

FONT DEFINITIONS

~FFB70

MTR-100 IMPLEMENTATION

~FE050

GLOBAL SUBROUTINE VECTORS

~FE010

8085 INTIAL RESET CODE
~FEOOO

Page J.3

APPENDIX J

Z-100 Memory Map by ROM Option

ROM option: (0) (2) (3)

1 MB
FEOOO>

FOOOOH
GREEN GREEN GREEN GREEN

EOOOOH
RED RED RED RED

DOOOOH
BLUE BLUE BLUE BLUE

COOOOH

192K->

128K->

192K->
184

128K->
120

128K->

192K-> 192K->

128K->

64K-> 64K->
56

64K-> 64K->

OOH OOH OOH OOH

M EMCTL: Bit 3 =0

Bit 2 = 0

(AII ROM)

Bit3 = 0

Bit2 = 1

(8K at Top of
each Page)

Bit 3 = 1

Bit2 = 0
(8K at Top

8088 Address)

Bit3 = 1

Bit 2 = 1

(No ROM)

(0)

Bit1 =0

BitO =0

(Power Up
Contiguous
Addresses)

RAM MEMCTL: Bit O = MAPSELO Bi t 1 = MAPSEL1

Option: (2)

Bit1 = 0 Bit1 = 1

BitO = 1 Bit0 =0

(Replaces (Replaces
0-48K 0-48K

with Seg with Seg
64K-112K) 112K-160K)
(These keep 48K-64K constant)

Page J.4

I/O Port Assignments

Port AddressDevice Name

FF
FE
FD

DIP Switch
Swap Port (PSP)
High Address Latch (HIGHADDR)

Memory Control Latch (MEMCTL)
Timer Status (TIMRSTAT)
reserved

8041A Keyboard
8259A Master
8259ASlave

FC
FB
fa-f6

F5-F4
F3-F2
F1-FO

EF-EC
EB-E8
E7-E4

Serial B
Serial A
8253 Timer

E3-EO
df-de
DD-DC

68A21 Parallel
reserved
6845 C RTC

DB-D8
d7-cO
BF-B8

Video 68A21
reserved
SecondaryZ-207

Primary Z-207
reserved

B7-BO
af-a8

Page J.5

Keyboard Port Addresses and Command Summary

AddressPort

D5
D5
D4

Command Port
Status Port
Data Port

CodeCommand

00
01
02
03
04
05
06
07
08
09
OA
OB

Reset
Autorepeat On
Autorepeat Off
Key Click On
Key Click Off
Clear FIFO
Click
Beep
Enable Keyboard
Disable Keyboard
Key Up/Down Mode
Normal Scan Mode

page J.6

Page K.2

Macro Directives

ENDM
EXITM
IRP <dummy>,<parameters in angle brackets>
IRPC <dummy),string
LOCAL <parameter>[,<parameter>...]

<name> M A CRO <parameter>[,<parameter>...]
PURGE <macro-name>[,...]
REPT <exp>

Special Macro Operators
8 (ampersand) — concatenation
<text> (angle brackets — single literal)
;; (double semicolons) — suppress comment
! (exclamation point) — next character literal
% (percent sign) — convert expression to number

Conditional Directives

ELSE
END IF
IF <exp)
IFB <arg>
IFDEF <symbol>
IFDIF <arg1), <arg2>
IFE <exp>
IFIDN <arg1), <arg2)
IFNB <arg>
IFNDEF <symbol>
IF1
IF2

Page K.3

Listing Directives

.CREF

.LALL

.LFCOND

. LIST
%OUT <text>
PAGE <exp>
.SALL
.SFCOND
SU BTTL <text>
.TFCOND
TITLE <text>
.XALL
.XCREF
.XLIST

Attribute Operators

Override operators

Pointer (PTR)

Segment Override (:) (colon)
<attribute> PTR <expression>

<segment-register>:<address-expression>
<segment-name>:<address-expression>
<group-name>:<address-expression>

SHORT <label>
SHORT

THIS
THIS <distance>
THIS <type>

Page K.4

Value Returning Operators

SEG
SEG <label>
SEG <variable>

OFFSET
OFFSET <label>
OFFSET <variable>

TYPE
TYPE <label>
TYPE <variable>

. TYPE
. TYPE <variable>

LENGTH
LENGTH <variable>

SIZE
SIZE <variable>

Record Specific operators

Shift-count — < record-fieldname>
<record-fieldname>

MASK
MASK <record-fieldname>

WIDTH
WIDTH <record-fieldname>
WIDTH <record>

Page K.5

Precedence of Operators

All operators in a single item have the same precedence, regardless of the
order listed within the item. Spacing and line breaks are used for visual clar
ity, not to indicate functional relations.

1. L ENGTH, SIZE, WIDTH, MASK
Entries inside:
parenthesis ()
angle brackets < >
square brackets []
structure variable operand: <variable>. <field>

2. segment override operator: colon (:)

3. P TR, OFFSET, SEG, TYPE, THIS

4. HIGH, LOW

5. 4, /, MOD, SHL, SHR

6 . + , — (bothunary and binary)

7. EQ, NE, LT, LE, GT, GE

8. L ogical NOT

9. L ogical AND

10. Logical OR, XOR

11. SHORT,.TYPE

page K.6

Page L.1

8088 {8086} Instructions {Alphabetic}

The mnemonics are listed alphabetically with their full names. The 8086 in
structions are also listed in groups based on the type of arguments the in
struction takes, (see Appendix M).

Mnemonic Full Name

ASCII adjust for addition
ASCII adjust for division
ASCII adjust for multiplication
ASCIIadjust for subtraction
Add with carry
Add
AND
CALL
Convert byte to word
Clear carry flag
Clear direction flag
Clear interrupt flag
Complement carry flag
Compare
Compare byte or word (of string)
Compare byte string
Compare word string
Convert word to double word
Decimal adjust for addition
Decimal adjust for subtraction
Decrement
Divide
Escape
Halt
Integer divide
Integer multiply
Input byte or word
Increment
Interrupt
Interrupt on overflow
Interrupt return
Jump on above

AAA
AAD
AAM
AAS
ADC
ADD
AND
CALL
CBW
CLC
CLD
CLI
CMC
CMP
CMPS
CMPSB
CMPSW
CWD
DAA
DAS
DEC
DIV
ESC
HLT
IDIV
IMUL
IN
INC
INT
INTO
IRET
JA

Page L.2

Mnemonic Full Name

Jump on above or equal
Jump on below
Jump on below or equal
Jump on carry
Jump on CX zero
Jump on equal
Jump on greater
Jump on greater or equal
Jump on less than
Jump on less than or equal
Jump
Jump on not above
Jump on not above or equal
Jump on not below
Jump on not below or equal
Jump on no carry
Jump on not equal
Jump on not greater
Jump on not greater or equal
Jump on not less than
Jump on not less than or equal
Jump on not overflow
Jump on not parity
Jump on not sign
Jump on not zero
Jump on overflow
Jump on parity
Jump on parity even
Jump on parity odd
Jump on sign
Jump on zero
Load AH with flags
Load pointer into DS
Load effective address
Load pointer into ES
LOCK bus

JAE
JB
JBE
JC
JCXZ
JE
JG
JGE
JL
JLE
JMP
JNA
JNAE
JNB
JNBE
JNC
JNE
JNG
JNGE
JNL
JNLE
JNO
JNP
JNS
JNZ
JO
JP
JPE
JPO
JS
JZ
LAHF
LDS
LEA
LES
LOCK

Page L.3

Mnemonic Full Name

Load byte or word (of string)
Load byte (string)
Load word (string)
LOOP
LOOP while equal
LOOP while not equal
LOOP while not zero
LOOP while zero
Move
Move byte or word (of string)
Move byte (string)
Move word (string)
Multiply
Negate
No operation
NOT
OR
Output byte or word
POP
POP flags
PUSH
PUSH flags
Rotate through carry left
Rotate through carry right
Repeat
Repeat on equal
Repeat on zero
Repeat on not equal
Repeat on not zero
Return
Rotate left
Rotate right
Store AH into flags
Shift arithmetic left
Shift arithmetic right
Subtract with borrow
Scan byte or word (of string)

LODS
LODSB
LODSW
LOOP
LOOP E
LOOP NE
LOOP NZ
LOOPZ
MOV
MOVS
MOVBS
MOVSW
MUL
NEG
NOP
NOT
OR
OUT
POP
POPF
PUSH
PUSHF
RCL
RCR
REP
REPE
REPZ
REPNE
REPNZ
RET
ROL
ROR
SAHF
SAL
SAR
SBB
SCAS

Page L.4

Mnemonic Full Name

Scan byte (string)
Scan word (string)
Shift left
Shift right

Set carry flag
Set direction flag
Set interrupt flag
Store byte or word (of string)
Store byte (string)
Store word (string)
Subtract
TEST
WAIT
Exchange
Translate
Exclusive OR

SCASB
SCASW
SHL
SHR

STC
STD
STI
STOS
STOSB
STOSW
SUB
TEST
WAIT
XCHG
XLAT
XOR

Page M.1

APPENDIX M

8088 {8086) Instructions {by Argument)

In this appendix, the instructions are grouped according to the type of argu
ment(s) they take. In each group the instructions are listed alphabetically in
the first column. The formats of the instructions with the valid argument
types are shown in the second column. If a format shows OP, that format
is legal for all the instructions shown in that group. If a format is specific to
one mnemonic, the mnemonic is shown in the format instead of OP.

The following abbreviations are used in these lists:

OP =

reg =

OI'

r/m =

accum =

immed =

opcode; instruction mnemonic
byte register (AL,AH,BL,BH,CL,CH,DL,DH)
word register (AX,BX,CX,DX,SI,DI,BP,SP)
register or memory address or indexed and/or based
AX or AL register
immediate
memory operand
segment register (CS,DS,SS,ES)

mern =

segreg =

General Operand Instructions

ADC
ADD
AND
CMP
OR
SBB
SUB
TEST
XOR

OP reg,r/m
OP r/m,reg
OP accum,immed
OP r/m,immed

Page M.2

CALL and JUMP Type Instructions

OP mern (NEAR)(FAR) direction
OP r/m (indirect data — DWORD, WORD)

CALL
JMP

Relative jumps

OP addr (+129 or — 126 of IP at start, or ~ 127 at end of jump
instruction)

Mnemonics

JC JZ JNGE
JNAE JG JLE
JBE JNLE JNG
JNA JGE JNE
JCXZ JNL JNZ
JF JL JNO

JNP
JPO
JNS
JO
JP
JPE
JS

JA
JNBE
JAE
JNB
JNC
JB

Loop instructions

Same as Relative Jumps

Mnemonics

LOOP LOO P E L O OPZ L OOPNE LOOPNZ

Return Instruction

Mnemonic Ar umentT e

[immed] (optional, number of words to POP)RET

Page M.3

No Operand Instructions

Mnemonics

CLD
CLI
CMC
CMPSB
CMPSW
CWD

DAA
DAS
HLT
INTO
IRET
LAHF

LODSB
LODSW
MOVSB
MOVSW
NOP
POPF

PUSHF
SAHF
SCASB
SCASW
STC
STD

STI
STOSB
STOSW
WAIT
XLAT

AAA
AAD
AAM
AAS
CBW
CLC

Load Instructions

LDS
LEA
LES

OP r/m (except that OP reg is illegal)

Move Instructions

MOV OP mern,accum
OP accum,mern
OP segreg, r/m (except CS is illegal)
OP r/m,segreg
OP r/m,reg
OP reg,r/m
OP reg,immed
OP r/m,immed

Page M.4

Push and Pop Instructions

PUSH
POP

OP word-reg
OP segreg (POP CS is illegal)
OP r/m

Shift/Rotate Type Instructions

RCL
RCR
ROL
ROR
SAL
SHL
SAR
SHR

OP r/m,1
OP r/m,CL

Input/Output Instructions

IN IN accum,byte-immed (immed = port 0 — 255)
IN accum, DX
OUT immed,accum
OUT DX,accum

OUT

Increment/Decrement Instructions

INC

DEC

OP word-reg

OP r/m

Page M.5

Arithmetic- Multiply/Division/Negate/Not

DIV
IDIV
MUL
IMUL
NEG
NOT

OP r/m (implies AX OP r/m, except NEG)

(NEG implies AX OP NOP)

Interrupt Instruction

INT INT 3 (value 3 is one byte instruction)
INT byte-immed

Exchange instruction

XCHG XCHG accum,reg
XCHG reg,accum
XCHG reg,r/m
XCHG r/m,reg

Miscellaneous Instructions

XLAT XLAT byte-mern (only checks argument, not
in opcode)
ESC 6-bit-number, r/mESC

Page M.6

String Primitives

These instructions have bits to record only their operand(s), if they are byte
or word, and if a segment override is involved.

CMPS

SCAS

LODS

MOVS

CMPS byte-word, byte-word
(CMPS right operand is ES)
LODS byte/word, byte/word
(LODS one argument = no ES)
MOVS byte/word, byte/word
(MOVS left operand is ES)
SCAS byte/word, byte/word
(SCAS one argument = ES)
STOS byte/word, byte/word
(STOS one argument = ES)

Repeat Prefix to String Instructions

STOS

Mnemonics

LOCK REP REPE REPZ R EPNE REP N Z

Page N.1

APPENDIX N

Character Font Files

To make the Z-100 more useful, seven alternate character fonts have been
provided — Danish, English, French, German, Italian, Spanish, and
Swedish. These are the files on Distribution Disk II that have .CHR exten
sions and a filename of the language (e.g., FRENCH.CHR is the French
Character Font).

To use the alternate font, boot your Z-100 with a Z-DOS system disk. After
the system has booted, rename the correct font file of the language you need
to ALTCHAR.SYS, like:

A: COPY <filename>.CHR =ALTCHAR.SYS RETU R N

The next time that you boot from this disk, the new font and keyboard map
ping will be reconfigured to match the language set that you have chosen.
For instance, for German, you enter:

A; COPY GERMAN.CHR=ALTCHR.SYS RET U RN

The alternate font is implemented by IO.SYS after it has initialized the hard
ware, Z-DOS and the disks. It then looks at the disk to see if there is a file
named ALTCHAR.SYS on the booted disk.

Page N.2

If no ALTCHAR.SYS file is found, IO.SYS continues its regular functions and
loads COMMAND.COM.

If ALTCHAR.SYS is found, IO.SYS read the file and changes the mapping
for both the font and the key codes.

The format of the alternate font file is in two basic parts — keyboard map and
the font index. The keyboard mapper occurs first in the form:

Keyboard Map
(code) (swa p)

FFFF

where code is the value generated by the keyboard processor; swap is the
value that code is to be mapped to; and FFH is the terminator for both code
and swap data.

The font index follows the keyboard map and is a one byte font index fol
lowed by a nine byte description. The font information terminates with FFH
as the font index, or an End-of-file (EOF) terminator.

Page 0.1

ASCII Character and Escape Sequence Codes

Control Characters

Dec He x ASC I I C o ntrol
Char Ch a racter

Z-100 Z-DOS Usage
KEY D e scription

000
001
002
003
004
005
006
007
008

O OH N U L
01H SOH
02H STX
03H ETX
04H EOT
05H ENQ
06H ACK
07H BEL
08H BS

CTRL-@
CTRL-A
CTRL-B
CTRL-C
CTRL-D
CTRL-E
CTRL-F
CTRL-G
CTRL-H

Aborts current command.

BACK Removes last character
SPACE from command line,

and erases character
from video screen.

009 09H HT CTRL-I
010 OAH LF CTRL J

TAB
LINE I nserts physical end-of
FEED l ine, but does not empty

command l ine. U s es
LINE FEED to extend the
c urrent lo g ica l lin e
beyond the physical limi
tation of one te rminal
line.

011 OBH VT CTRL K
012 OCH FF CTRL L
0 13 ODH CR CTRL-M RETUR N
014 OEH SO CTRL-N Cancels echoing of

output to line printer.

Echoes terminal output
to line printer.

015 OFH SI CTRL 0
0 16 10H DLE CTRL- P

0 17 11H DC1 CTRL- Q
0 18 12H DC2 CTRL- R

Page 0.2

APPENDIX

Dec Hex

019 13H

ASCII
Char

DC3

Control
Character

CTRL-S

Z-100 Z-DOS Usage
KEY D e scription

Suspends display of out
put to terminal screen.
(Any other key resumes
display.)

020 14H
021 15H
022 16H
023 17H
024 18H

DC4
NAK
SYN
ETB
CAN

CTRL-T
CTRL-U
CTRL-V
CTRL-W
CTRL-X Cancels the current line,

empties the command
line, and then outputs a
back sl a sh (~),
R ETURN an d LIN E
FEED. The t e mplate
used by special editing
c ommands is no t a f
fected.

19H
1AH
1BH
1CH
1DH
1EH
1FH

025
026
027
028
029
030
031

Printable Characters

EM
SUB
ESC
FS
GS
RS
US

CTRL-Y
CTRL-Z
CTRL-[
CTRL-~
CTRL-]
CTRL- "
CTRL

ESCAPE

Dec Hex CHR

032 20H
033 21H
034 22H
035 23H
036 24H
037 25H
038 26H
039 27H
040 28H
041 29H
042 2AH
043 2BH

I

I
l!

$

&

(
)

SP

Name

Space
Exclamation point
Quotation mark
Number sign
Dollar sign
Percent sign
Ampersand
Acute accent or Apostrophe
Opening parenthesis
Closing parenthesis
Asterisk
Plus sign+

Page 0.3

Dec

044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082

Hex

2CH
2DH
2EH
2FH
30H
31H
32H
33H
34H
35H
36H
37H
38H
39H
3AH
3BH
3CH
3DH
3EH
3FH
40H
41H
42H
43H
44H
45H
46H
47H
48H
49H
4AH
4BH
4CH
4DH
4EH
4FH
50H
51H
52H

/ 0 1

2 3 4 5 6 7 8

1

9

G H I

? @

A B

C D E F

J K L M N

CHR Name

Comma
Hyphen or Minus sign
Period or Decimal point
Slash
Number zero
Number one
Number two
Number three
Number four
Number five
Number six
Number seven
Number eight
Number nine
Colon
Semicolon
Less than or Left angle bracket
Equal sign
Greater than or Right angle bracket
Question mark
At sign
Letter A
Letter B
Letter C
Letter D
Letter E
Letter F
Letter G
Letter H
Letter I
Letter J
Letter K
Letter L
Letter M
Letter N
Letter 0
Letter P
Letter Q
Letter R

0 P

Q R

Page 0.4

Hex CHR NameDec

083
084
085
086

087
088
089
090
091
092
093
094
095
096
097
098
099

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

53H
54H
55H
56H

57H
58H
59H
5AH
5BH
5CH
5DH
5EH
5FH
60H
61H
62H
63H

64H
65H
66H
67H
68H
69H
6AH
6BH
6CH
6DH
6EH
6FH
70H
71H
72H
73H
74H
75H
76H
77H
78H

l

I

S

T U

a
b
c

d e

f

g
h

r

0

P
q

V W X Y Z [

j k I m n

Letter S
Letter T
Letter U
Letter V

Letter W
Letter X
Letter Y
Letter Z
Left bracket
Back slash
Right bracket
Caret
Underscore
Grave Accent
Letter a
Letter b
Letter c

Letter d
Letter e
Letter f
Letter g
Letter h
Letter i
Letter j
Letter k
Letter I
Letter m
Letter n
Letter o
Letter p
Letter q
Letter r
Letter s
Letter t
Letter u
Letter v
Letter w
Letter x

s u

v w x

Page Q.5

Dec Hex CHR Name

Letter y
Letter z
Left brace
Stile
Right brace
Tilde
DELETE

121 79H y
122 7AH z
123 7BH
124 7CH
125 7DH j
126 7EH
127 7FH DEL

Z-1 00 Escape Sequence Functions

~Se uence ~Descri rien

Transmit Current LineESC

ESC Transmit Character at Cursor

Zenith Identify Terminal Type

Z-100 Responses:

ESCi0

ESC i E <banks> <size>

where (banks> is either 1 (1 Bank of VRAM) or 3 (3
banks of VRAM)
where (size) is A (32K VRAM parts) or B (64K VRAM
parts)

Page 0.6

ESC m <fore> <back>
Set Foreground and Background Colors where fore is fore
ground color; where back is background color; and the color
is in the range 0 through 7:

0 = Black
1 = Blue
2 = Red
3 = Magenta
4 = Green
5 = Cyan
6 = Yellow
7 = White

ESCx;

ESC x < Disab le Keyboard Autorepeat

Set Non-Blinking Cursor

ESC x? Enable Key Expansion (Keyboard generates Escape Se
quences)

~Se uence ~Deecri tion

ESCy;

ESCy <

ESC y?

Set Blinking Cursor

Enable Keyboard Autorepeat

Disable Key Expansion (Keyboard generates 8-bit charac
ters)

Page 0.7

F1

FO

F2

F3

F4

F5

F6

F7

F8

F9

F11

F10

Z-100

F12

I/D Char IC/DC

F1

F2

F3

F4

F5

RED

BLUE

GRAY

ERASE

IL/DL

H/Z-19 KEY Normal Shif t ed

E SC J ESC E

E SCS ESC 1 A

E SCT ESC 1 B

E SC U ESC 1 C

E SCV ESC 1 D

E SCW ESC 1 E

E SC P ESC 1 F

E SCQ ESC 1 G

E SC R ESC 1 H

ESC 0 I ESC 1 I

ESCOJ ESC 1 J

ESC OK ES C 1 K

ESCOL ESC 1 L

ESC@/ ESC N

E SC L ESC MI/D Line

Page 0.13

Function
Used By:
H/Z-1 9(h)/Z-1 00(z)Sequence

ESCy1

ESCy2

ESCy3

ESCy4

ESCy5

ESCy6

ESCy7

ESCy8

Set "underline" cursor

Disable 25th line

Enable keyboard click

Exit hold screen mode

Enable cursor

Exit keypad shifted mode

Exit keypad alternate mode

Disable auto linefeed on
carriage return

Disable auto carriage return on
line feed

Set "blinking" cursor

Enable keyboard auto repeat

Disable key expansion

Reset to power-up configuration

Enable keyboard

Break key was pressed

Disable keyboard

HELP key

hz

hz

hz

hz

hz

hz

ESCl

Escj

ESCz

ESC(

ESCy9

ESCy;

ESCy(

ESC y?

hz

hz

hz

hz

hz

hz

ESC'

page 0.14

page P.i

APPENDIX P

Notes on Writing Z-DOS Programs

How to Structure a Program so it Will Run Under Z-DOS
(MS-DOS)

There are two types of executable files in Z-DOS (MS-DOS). These are
.EXE files and .COM files. Below are the advantages and disadvantages of
each:

• COM

Advantages
• It i s at least 512 bytes shorter than. EXE file.
• It t akes a little less time to load than. EXE file.

Disadvantages
• It must be less than 64K bytes long.
• It must be position independent code.
• It cannot be produced by high level compiler.
• It m ust use the 8080 segment model.

• EXE

Advantages

ical memory).
• It can be up to 384K bytes long (you must also have enough phys

• It can use any segment model.
• It c an have position dependent code (which is patched when the

• It can use subroutines produced by high level compilers.
program is loaded).

Disadvantages
• It i s larger by at least 512 bytes (header) than.COM files.
• It c an take longer to load than.COM files.
• It i s harder to use some OS functions.

Page P.2

For both. EXE and .COM files, a program header is contructed when the pro
gram is loaded. The format of the program header is defined in the include
file DEFMS.ASM. The conditions that exist for both .COM and .EXE files at
program startup are as follows:

• The d isk transfer address (DTA) is set to 80H in the progrm header
(the default I/O area).

• The f i le control blocks (FCB's) at 5CH and 6CH in the program
header are formatted (i.e., converted to upper case and blanked
after from the first two parameters entered on the command line).

• The u nformatted parameter area at 81H in the program header
contains all the characters entered after the command name (in
cluding leading and embedded delimiters), with location 80H set
to the number of characters.

• The memory size (first paragraph number after the end of mem
ory) is stored at location 2H in the program header.

• The e x it handler address, the CTRL-C handler address, and the
fatal error handler address are stored in locations OAH, OEH, and
12H respectively in the program header.

Page P.3

APPENDIX P

-OQR PIgogig 8mS

For .COM files, the registers on entry are:

AX, BX, CX, DX, BP, Sl, Dl are undefined
SP = OFFFFH or constrainedby end of memory
CS,DS,ES = Segment address of program header
IP =100H
A word of zeros is pushed on the stack

For . EXE files, the registers on entry are:

AX, BX, CX, DX, BP, Sl, Dl are undefined

If a STACK segment is used then
SS = Segment address of that segment
SP = size of stack segment

ELSE
SS = CS (see below)
SP = OFFFFH or constrained by end of memory

DS, ES = Segment address of program header
CS:IP = Far address of label in "END" statement of the program

The following programs are short examples of source code for both types
of excutable files.

Page 2 of 3
595-2827
591-3931

Page P.4

APPENDIX P
('":;.";<8-;:. L::i",! <~(I).IP,.'< Z-D)QS PI'091'8FAs

TITLE EXAM1 — Example . EXE program

PAGE , 132

. XLIST

INCLUDE DEFASCII. ASM

INCLUDE DEFMS, ASM

.LIST

STKSEG SEGMENT STACK

DB 100 H DUP(?)
STKSEG ENDS

PGMSEG SEGMENT

ASSUME CS: PGMSEG, SS: STKSEG, DS: DATASEG, ES: NOTHING

DB 'EXAM1 - (C) Copyright 1982 by Zenith Data Systems'

START:

MOV A X , DATASEG ; Set up DS
MOV D S , AX

MOV WORD PTR RTADDR+2,ES ; Save program header segment addr

MOV D X, OFFSET MESG; Get message address
MOV AH ,DOSF OUTSTR ; Get print string function code
INT DO S IFUNC ; Print string

JMP RT ADDR ; Terminate program
PGMSEG ENDS

DATASEG SEGMENT

RTADDR DD 0 ; return addr(segment to be filled in)
MESG DB 'EXAM1',CC CR,CCJZ,'$'

DATASEG ENDS

END S T ART

To create and run EXAM1.EXE, first create the above source code with
EDLIN. Then enter the following commands:

A: MASM EXAM1; RETURN
A: LINK EXAM1; R ETU R N
A: EXAM1 R ETU R N

Page P.5

TITLE EXAM2 — Example . COM Program

PAGE , 132

. XLIST

INCLUDE DEFASCII,ASM

INCLUDE DEFMS.ASM

.LIST

PGMSEG SEGMENT

ASSUME CS: PGMSEG, SS: PGMSEG, DS: PGMSEG, ES: NOTHING

O RG 1 0 0 H ; Position after program header

START:
JMP SHORT Sl ; Skip over copyright
DB 'EXAM2 — (Ci Copyright 1982 by Zenith Data Systems'

S1:
MOV D X, OFFSET MESG; Get addr of messge

MOV AH, DOSF OUTSTR ; Get function to output message

INT DO S I F U NC ; Print message

INT DO S I TE RM ; Terminate program

MESG DB 'EXAM2', CC CR, CC LF, ' $'

PGMSEG ENDS
END S T ART

To create and run EXAM2.COM, first create the above source code with
EDLIN. Then enter the following commands:

A: MASM EXAM2; R ETU R N
A: LINK EXAM2; R ETU R N
A: EXE2BIN EXAM2.EXE .COM R ETUR N
A: ERASE EXAM2.EXE R ETU R N
A: EXAM2 R ETU R N

page P.6

page Q.f

APPENDIX Q

A Procedure to Change Disk Parameters

The purpose of this section is to show you how to change floppy disk
parameters. The technique will be illustrated by showing you how to
change the step rate for 8 inch floppy disks.

The location of the disk portion of the operating system is defined by
a table that contains the "configuration vectors" or "pointers" (addresses)
for the various system routines. You may locate this table and the disk
subsystem in the two assembly language source files, DEFDSK.ASM and
DEFZ207.ASM. These files are automatically included during the assem
bly of the Z-DOS BIOS and contain information specific to the Z-207 disk
controller card. You may change the information in the table or disk sub
system temporarily (in memory) or permanently (by modifying the system
disk).

Since the location (offset address of the table in the BIOS) may change
with later releases of different versions of the BIOS, a "pointer" has been
placed at a fixed location (address) as a permanent reference point. This
location contains the offset address of the table, regardless where it may
be located in this or any other release of the Z-DOS BIOS. The location
of the pointer will not be changed in future releases of Z-DOS.

You can find the location of the fixed pointer when you assemble the
file DEFMS.ASM. A portion of the assembled listing follows:

0061 BIOS CTADDR LABEL WORD ; Addr of configuration information

0063 ORG OFFSET BIOS CTADDR+2

0063 BIOSSEG ENDS

The pointer's label is BIOS CTADDR. As you can see, the location of
the pointer (the offset addrsss) is 61 hexadecimal (Hex). By examining
this location in the BIOS, you can find the location (address) of the Config
uration Vector table.

Page 2of10
OS-63-4/595-2835

591-3955

page Q.2

APPENDIX Q

You can also find the Configuration Vector table in the file DEFMS.ASM. A
representative portion of the assembled file follows:

; Configurationvector

= 0000 CO N F')SK EQ U 0 ; Addr of disk vector
=0002 CONFGPRN EQU CONFGJ)KS+2 ; Addr of PRN configuration table

= 0004 CONFGAUX EQU CONFGPRN+2 ; Addr of AUX configuration table

Since you want to change the disk configuration, you will need to look for
CONFG DSK. It contains the address of the disk vector table. As you can
see, the offset address during assembly is OOH. The actual address will be
placed in this location during the "linking" of the various machine language
modules as part of the assembly of the BIOS. However, you do know (from
the information in the file) that the address you are looking for is the first one
found in the table. If you were looking for the address of the PRN configura
tion table, it would be the second. The AUX would be the third, and so on.

You will find that the disk vector table contains the locations of the disk ta
bles. Currently, the tables are arranged as follows:

5.25 inch floppy (drive A)
5.25 inch floppy (drive B)
8 inch floppy (drive C)
8 inch floppy (drive D)

Page 3 of10
OS-63-4/595-2835

591-3955

Page Q.3

APPENDIX Q

The following is a partial listing of the assembled file DEFDSK.ASM. The
portion shown illustrates the format of a disk table. You may modify the fields

- flagged with an asterisk(+).

DSKSTA
DSKST3%KL
DSKST ORERR
DSKSTJ)NEBR
DSKSTJ7ERR
DSKSTSIERR
DSKSTJSERR

DSK TYPE
DSK TZ207

DSIU TRK
DSKLOPT

DSK OWR
DSK ORD
DSK ORS
DSK OSI
DSK OFT
DSK ORT
DSK OUK

DSKFLAG
DSKFDS
DSIUYS
DSKJDP
DSKFWP
DSKFDC
DSKFSL
DSKFRS

DSILSEL
DSIU5
DSILSPHI
DSKFMT
DSIUID
DSK WR

EQU 0
EQU 0100H
EQU 0200H
EQU 0300H
EQU 0400H
EQU 0500H
EQU 0600H

5g DSILSTA+ 2
EQU 0

EQU DSK TYPE+ 1
EQU DSIU 1YIK+1

EQU 01H
EQU 02H
EQU 04H
EQU 08H
EQU 10H
EQU 20H
EQU 80H

EQU DSKMPT+1
EQU 01H
EQU 02H
EQU 04H
EQU 08H
EQU 10H
EQU 20H
EQU 40H

EQU DSKFLAG+ 1
EQU DSKSEL+1
EQU DSIU5+1
EQU DSICSPHI+1
EQU DSKFÃI'+ 1
EQU DSIUID+1

; Status of last operation
; Invalid function

; Improper order of function
; Invalid disk number
; Invalid disk type
; Function not implemented
; No disk in drive

; Disk type
; Z-207 type disk

; Last track
; Last operation
; Write was last op

; Read was last op
; Reset was last op
; Step in was last op

; Format was last op

; Read track was last op
; Track is unknown

; Flags
; Disk is double sided
; Drive can be fast stepped
; Disk is 48 tpi and should be double stepped

; Disk is software write protected

; Force Disk has Changed next time

; Skip head load on select

; Restore fast, then slow

; Command to select drive

; Command to reset drive
; Command to step in

; Command to format (write) a track

; Command to read a sector

; Command to write a sector

= 0000

= 0100

= 0200

= 0300

= 0400

= 0500

= 0600

= 0002

= 0000

= 0003
= 0004

= 0001

= 0002

= 0004

= 0008

= 0010

= 0020

= 0080
~= 0005

= 0001

+ = 0002

= 0004

+ = 0008

= 0010

+ = 0020

+ = 0040

= 0006

>= 0007
~= 0008

= 0009
= OOOA

= OOOB

Page 4 of 10
OS-63-4/595-2835

591-3955

Page Q.4

APPENDIX Q

~= OOOC

= OOOD

= OOOF

~= 0010

= 0011

= 0012
= 0014

= 0016

~= 0018

~= 001A

= 001C

= 001E

= 001F

= 0080

= 0040

= 0020

D SASK
DSKSERR

DSKMAXT

DSKNRETRY

DSILSPT

DSKBPS

DSKBPWT

DSKBPRT
DSKDELAY
DSKLDELAY
DSKPORT
DSKRDT
DSK IMGFLG

DSKIF ID

DSKIFJ)V

DSKIFJO

; Command to seek to a track

; Number of "soft" errors

; Maximum track number of drive

; Maximum retry count

; Sectors per track
; Number of bytes per sector

; Number of bytes per write track operation

; Number of bytes per read track operation
; Counter value for short delay
; Counter value for a long delay

; Base Port number
; Read track command
; Imaginary drive flag

(0 - real drive; 1 — imaginary drive)
(0 — disk is not in drive; 1 - disk is in drive)

(0 — can map imag to drive; 1 - can' t)

EQU DSK WR+1
EQU DSKSK+1
EQU DSKSERR+ 2
EQU DSKMAXT+ 1
EQU DSKNRETRY+ 1
EQU DSKBPT+1
EQU DSKBPS+2
EQU DSKBPWT+ 2
EQU DSKBPRTt2
EQU DSIUJELAY+ 2
EQU DSKLDELAY+ 2
EQU DSKPORT+ 2
EQU DSKBDT+ 1

EQU 80H
EQU 40H
EQU 20H

Page 5of10
OS-63-4/595-2835

591-3955

page Q.5

APPENDIX Q

Changing Step Rates for the 8 Inch Disk Drive

The (step) rates for the step-, restore-, and seek-operations are embedded
in commands sent to the 1797 disk controller chip. These commands are
considered "type 1" commands.

The step rate for 8 inch disk drives is one half of the value given in the file,
DEFZ207.ASM. Also, two other characteristics (established by two flags if
the DSK FLAG field) may need attention when you change the step rates:
DSK FSL and DSK FRS.

DSK FSL either causes a delay which allows the disk head(s) to load (when
set) or selects no head delay (when not set). The head(s) in some disk drives
is (are) loaded whenever the drive door is shut and therefore need no delay
to allow the head to load when that drive is selected.

DSK FRS (when set) affects the rate that the head will be restored to the
position over track zero. If a high step rate is used during the restore opera
tion, the head may easily overshoot when it reaches track zero. To over
come this problem, this flag (when set) will reduce the step rate as the head
approaches track zero. If the drives are set at slower step rates, the problem
does not exist; the flag (when not set) will not affect the restore operation.

The following procedure may be used to permanently change the step rate
of both 8 inch disk drives. The general procedure may be used to change
other factors as well.

Any time you want to change some factor in the BIOS, it is best to start with
a "clean" Z-DOS disk. To do so, you should first format and place the opera
ting system on a "new" disk (the disk may have been previously used for
something else; the format procedure, in effect, creates the "new" disk). The
next step involves the actual "patching" of the BIOS. The third step is up
to you; we suggest that you thoroughly test the newly created BIOS to make
sure that it will perform as you want it to do. The final step is to place the
new BIOS on any other disks. This can be done by using the SYS command
of Z-DOS as explained elsewhere in this manual.

Page 6 of 10
OS-63-4/595-2835

591-3955

Page Q.6

APPENDIX Q

Create a new 5.25 inch system disk by typing:

FORMAT A: /S

and pressing the RETURN key. You will be prompted to place a blank disk
in drive A and to press the RETURN key when ready. Follow the prompts.
When the new disk has been formatted, replace it in drive A with your Z-DOS
disk.

Start DEBUG. Type:

DEBUG

and press the RETURN key. Now that DEBUG is in the system, you may
replace the Z-DOS disk in drive A with your the disk that you will modify.

Now you are ready to start modifying the BIOS. In order to do so, you will
first have to read a portion of the disk into memory where it can be modified.
Then, after you have modified that portion, you will write it back out to the

You can find the location of the starting data sector in the table "Z-DOS Disk
Structures" on Page H.1 of Appendix H. For double-sided, 5.25 inch disks,
the starting data sector is10 (OAH).

Also, since the length of the BIOS can vary from release to release, you will
want to read enough of the disk to make sure that you have all of the BIOS
in memory. 32 (20H) 512-byte sectors should be sufficient (16K).

Load twenty sectors into memory. Type:

disk.

L 1000:0 0 A 20

and press the RETURN key. Here is what the commandmeans:

1000:0 — starting memory location to place the BIOS
0 — hardwaredrivenumber(0 = A, 1 = B,2 = C,3 = D)
A — starting sector number to be read (in hexadecimal)
20 — the number of sectors to be read (in hexadecimal)

Page 7of10
OS-63-4/595-2835

L — Load command (DEBUG)

591-3955

Page Q.7

APPENDIX Q

When you pressed the RETURN key, the LED disk access indicator lit and
the disk was read. You may now examine and change any part of the BIOS.
But first, you must locate the part you want to change.

Examine location 61H to find the address of the configuration pointers.
Type:

D 1000:61 62

and press the RETURNkey. Here is what the commandmeans:

D — Dump command (DEBUG display command)
1000:61 62 — address range to "dump" (display)

The computer will display something like this:

pg
1000:0061 7A 04

The least significant portion of the address is stored in address 61H. The
most significant is found in 62H. The address you want is therefore (in this
example) 047AH.

Now you want the location of the disk vector table. Its location is stored as
an address in the two bytes, starting at the address you just obtained
(047AH,inourexample). P® I+ ~

Type:

D 1000:047A 047B

and press the RETURN key. The computer will display something like this:
CP

1000: 047A DO 22

This is the beginning address of the disk vector table. You want the third ad
dress; drive C is the third entry in the table. Since each address takes two
bytes, you will want to get the fourth and fifth digits.

Page 8 of 10
OS-63-4/595-2835

591-3955

Page Q.S

APPENDIX Q

Type:

D 1000:22D4 22D5

and press the RETURN key. The computer will display something like this:

1000: 22D4 56 23

Now you have the address of the table for the first 8 inch disk drive. To
change the step rate from 3 ms. to 15 ms., you will want to modify the
DSK FRS flag. The flag is offset 5 bytes in the field (235BH). To change the
flag, use the DEBUG E (Enter) command.

Type:

E 1000:235B

and press the RETURN key. The computer will display something like this:

1000: 235B 51.

You will note that the cursor remained in position after the period, rather than
going to the next line and displaying the DEBUG prompt. The computer is
waiting for your entry. But f irst examine the DSKFLAG section of
DEFZ207.ASM. You will see that there are seven flags which are added to
gether to form DSK FLAG. DSK FRS represents 40H when set. To turn off
DSKFRS, you will have to subtract 40H from the value in 235BH. That
leaves you with 11H.

Type:

and press the RETURN key. Next, you will need to modify the restore com
mand (DSK RS — offset 7 bytes: 235DH), the step command (DSKSPHI
offset 8 bytes: 235EH), and the seek command (DSK SK — offset 12 bytes:
2362H).

Page 9 of 10
OS-63-4/595-2835

591-3955

Page Q.9

APPENDIX Q

Use the Enter command and type in the appropriate amounts as fol
lows:

E 1000:235D
1000: 235D 08. B
E 1000:235E
1000: 235E 58. 5B
E 1000:2362
1000:2362 1C.1F

When you have completed all of the previous steps, you will have com
pleted the modification for drive C. The modification for drive D will be
done in a similar manner. That is, locate the disk table address in the
disk vector table (at location 22D6H and 22D7H in our example); and
then modify the restore flag, the restore command, the step command,
and the seek command. Finally, prepare to write the BIOS back to the
disk.

To write the BIOS to the disk, you will simply perform the reverse of the
process that you used to read the BIOS into memory.

Type:

W 1000:0 0 A 20

and press the RETURN key. The only difference between this and the
read command is the W in place of the R; and the W is the DEBUG
command to write.

To use the new BIOS, reset the computer and boot the new disk. Other
portions of the BIOS may be similarly modified. The source files for your
version of BIOS are contained on the Z-DOS Distribution Disk II. The
BIOS used for the examples shown was version 1.00.

Page 10 of 10
OS-63-4/595-2835

591-3955

data
systems

Dear Customer,

Thank you fo r p u r chasing Z-DOS, an extremely f lex ible and powerfu l D i sk
Operating System for the Z-100 Series of Desktop Computers. Since the origi
nal release of Z-DOS, many customers have asked for addi t ional in formation
on modifying the BIOS (Basic Input Output System) module of the operating
system, particularly with regard to adjusting the step rate for 8 inch disk drives.
We are therefore adding Appendix Q, Modifying the Z-DOS BIOS, which you
should add to the back of Vo lume I I o f Z -DOS. You w i l l a lso need to make
a notation to the Table of Contents of both Vo lumes to ref lect the addi t ional
material.

Thank you,

Zenith Data Systems

Page 1 of10
OS-63-4/595-2835

591-3955

HEATH
ggltN

data
systems Memory Checking

Modern personal computers are extremely reliable. Your Z-100 operates at
a speed of 5 million clock cycles per second and will typically operate for
several thousand hours between service calls. However, computers are
machines, and machines do, on occasion, develop problems. Among the
problems which may occur in all computers are memory failures.

Memory failures may be classified as either "hard" or "soft". Soft memory
errors occur randomly at an average frequency of roughly once every
several thousand hours of operation and do not indicate the presence of a
hardware problem. Hard memory failures are due to defective components
within the computer, and will recur frequently until the defective component
is replaced.

Your Z-100 computer has special circuitry and additional memory to
automatically detect any memory failures (hard or soft) which do occur,
through a technique known as "parity checking". When a "parity error"
occurs, a display similar to the one below will appear on the screen:

ERROR — MEMORY OR BUSS

IP =XXXX

BX = XXXX

CS = XXXX

CX =XXXX

DS = XXXX

DX = XXXX

ES = XXXX

DI = XXXX
SS = XXXX

SI =XXXX

SP =XXXX

BP =XXXX
= XXXX

AX = XXXX

SYSTEM HALT

The purpose of providing the parity error message is to let you know that you
may have a problem which may not be readily apparent and which may
require the attention of service personnel. Parity checking is an advanced
feature found in only a few microcomputer systems. In systems without
parity checking, the memory error usually goes unnoticed for a period of
days or weeks until the amount of data destroyed becomes so large that it
can no longer be ignored.

When an error occurs, the system will display the parity error message
described above and halt. The system must then be reset and rebooted, with
the consequence that all work in the computer's memory and any unclosed
files on the disk will be permanently lost. It is generally best not to use the
system any further until the memory test (supplied with your Z-DOS
operating system) has been run (preferably from a write-protected disk!). If
the memory test does not turn up problems after several hours of operation,
you should resume normal operation. If subsequent memory failures occur,
you should copy down all of the data presented on the screen by the parity
error routine and retain it for use by service personnel. Also, record which
program and operating system you were using at the time. If multiple errors
occur within 30 days, a serviceman should be called, even if the memory test
does not indicate the presence of problems.

OS-53-2/595-2824
OS-63-4/595-2827

I" 01 QQ N

page X.f

INDEX
Z-DOS Index

& (ampersand), 12.9, 12.19
() (angle brackets), 10.14

assembler definition of, 10.13
+(asterisk), 3.7, 12.9

EDLIN usage, 8.18
[) (brackets, square),

LINK usage, 11.17
register content, 10.14

() (DUP expression), 10.14
— (minus sign), 12.9, 12.17
% (percent sign), 6.14
+ (plus sign), 6.36, 11.12, 12.9, 12.17
¹ (pound sign), EDLIN usage, 8.6
? (question marks), 3.7

EDLIN usage, 8.6
. (record/structure field name), 10.14
: (segement override), 10.14
; (semicolon), 11.13, 12.9, 12.18, 13.5

FILCOM usage, 9.8
.$$$ (temporary file work), 3.4

B

.ASM, 3.4
Asterisk (+), 3.7, 3.8, 6.110, 12.18
Attribute override operators, 10.57
Auto-Boot, 5.2

method of, 5.6
AUTOEXEC. BAT, 4.22, 6.16

definition of, 4.22
description of, 6.16

Automatic execution batch file, 4.22
Autonomous controls, 1.9
AUX:,

configuration of, 6.22
device filenames, 3.5

Auxiliary device, 3.5

/B switch, 6.36, 6.70, 9.9, 9.13
Backup disk, definition of, 5.18
Bad Flag, 6.49
Bad Register, 6.49
.BAK, 3.4
.BAS, 3.4
BASIC, 1.5
.BAT, 3.4, 4.22, 6.14

command files, 4.7
Batch Command, 6.14

DummyParameter, 6.15
Batch Files,

definition of, 4.22
Batch Mode, 4.22
Batch Processing, 6.14
Baud rate, 6.32
BAUXIO.ASM, description of, 6.10

/A switch, 6.36, 6.59, 9.8
Abort, 12.9
Abort batch job, 6.102
Absolute disk addresses, 7.4
Action field, 10.23, 10.87
Add a module, 12.2
= (address), 7.17
Ampersand, 12.9, 12.19
Append, 12.9
Argument, 4.2

command, 4.2

Page X.2

INDEX

Z-DQS Index

BCHRIO.ASM, description of, 6.10
BCLOCK.ASM, description of, 6.10
BCONIO.ASM, description of, 6.10
BDOSTB.ASM, description of, 6.10
BDSKIO.ASM, description of, 6.10, 6.11
BDSKLA.ASM, description of, 6.10, 6.11
BDSKTB.ASM, description of, 6.11
BIN, 3.4, 6.65
Binary Conversion, 6.65
BINIT.ASM, description of, 6.11
BMSDOS.ASM, description of, 6.11
Boot command, 5.4
Boot loader, 2.1, 6.71

operation of, 2.4
Boot up, 2.3
Bootable, 2.3
Bootstrap, 2.2

procedure, 2.2, 4.21
BPRNIO.ASM, description of, 6.11
Breakpoint, 6.49

address, 7.17
Brief, definition of, XIV
Buffer, 1.10
BUS, 5.14

Code label attributes, 10.55

.COM,
commands, 4.7
extension, 3.4

Combine Type, Common, 11.5
Combine Type, Private, 11.4
Combine Type, Public, 11.5
Combine types, 10.126, 11.4
Command entry format, 4.7
Command interpretation, 4.9
Command lines, 4.2

buffer, 4.8
editing, 4.8
input, 4.8

Command processor, 1.7
Command prompts, 11.16
Command types by Extension, 4.7
COMMAND. COM, 2.1-2.3, 4.21

description of, 6.7
overlaid, 2.7

Commands, 4.2
COMMENT, 10.90
Common, 11.5
Communication lines, 6.22
Compare,

Disk, 6.48
File, 9.3
Files, 6.57

Complex operand, 10.25
CON:, 3.5
%CONCISE, 6.90
Conditional assembly, 10.1
Conditional directives, 10.90
CONFIGUR, 6.4, 6.21, 6.23

/C switch, 6.70, 9.8
carriage return, 4.2
Check Point, definition of, XIV
CHKDSK, 6.4, 6.19

description of, 6.7
Class, definition of, 11.3
COBOL, 1.5

Page X.3

INDEX

Configuration,
standard, 6.29

CONF IG UR.COM,
description of, 6.7

Control flags, 10.50
Controller, 5.15

card, 5.14
COPY, 6.4, 6.35
Copy

all characters, 4.15
all remaining characters, 4.15
module, 12.2
one character, 4.15

COP YFILE. DAT, 6.92
<CR>,

EDLIN usage, 8.6
FILCOM usage, 9.7

Create a library, 12.2
CREF, 6.4, 6.39, 10.160
CREF.EXE, description of, 6.7
.CRF, 3.4, 13.1
<crffile>, 13.6
Cross reference listing file, 12.13
CS ASSUME, 10.40
CTRL-C, 12.9
CTRL,

CTRL-<letter>, XIX
Cursor, 4.11
CX Register,

DEBUG Value, 6.44

Daisy-wheel printer, 6.34
DANISH.CHR, description of, 6.7
.DAT, 3.4
Data references,

DS register, 10.39
DATCOPY. DAT, 6.93

description of, 6.11
DATE, 6.42
Date Default, 6.43
DB, 10.91
DC3/DC1, 6.33
DD, 10.91
<dd>, 6.42
DEBUG, 6.4, 6.44, 7.3

Single drive, 7.4
Syntax error, 7.5

DEBUG.COM, description of, 6.8
Declared class names, 11.6
DEF6821.ASM, description of, 6.11
DEF8253.ASM, description of, 6.11
DEF8259A.ASM, description of, 6.11
DEFASCII.ASM, description of, 6.12
Default extension, 3.3
Default boot device, 5.3
Default drive, 3.12

changing the, 3.13
prompt, 3.11

Default extensions, 9.7
Default

input radix, MASM, 10.17
output radix, MASM, 10.17

Default prompt, 4.11
DEFCHR.ASM, 6.12
DEFCONFG.ASM, description of, 6.12
DEFDSK.ASM, description of, 6.12
DEFEP2.ASM, description of, 6.12
DEFFMT.ASM, description of, 6.12

<d:>, XIX
D command, 7.11, 8.20
/D switch, 10.1 75

Page X.4

INDEX

Z-DOS Index

/DSALLOCATE Switch, 11.12, 11 • 18
DSK.ASM, description of, 6.12
DSKCOMP, 6.4, 6.53
DSKCOMP.COM, description of, 6.8
DSKCOPY, 6.5, 6.57
DSKCOPY.COM, description of, 6.8
DT, 10.91
Dummy parameter %0, 6.14
DW, 10.91
DWORD, 10.67

DEFINE BYTE, 10.95
DEFINE DOUBLEWORD, 10.95
DEFINE QUADWORD, 10.95
Define symbol, 13.13
DEFINE TENBYTES, 10.95
DEFINE WORD, 10.95
Defined bit, 10.68
DEFIPAGE.ASM, description of, 6.12
DEFMS.ASM, description of, 6.12
DEFMTR.ASM, description of, 6.12
DEFZ207.ASM, description of, 6.12
DEL *.*, 3.8
DEL, 6.4, 6.50

Delete a module, 12.2
<delimiter), 10.94
Destination operand, 10.24
Details, definition of, XIV
<dev:), XIX
Device Independent I/O, 2.8, 3.5
Dictionary-indexed library search method, 11.1
DIR, 6.4, 6.51
Direction flag, 10.50
Directive statement fields, 10.18
Directives, 10.1
Directory, 1.11, 2.6

content, 6.45
Disk Drive, definition of, 3.11
Disks, Care of, 5.1
.DOC, 3.4
'/DOC 690
DQ, 10.91
<drive), DEBUG usage, 7.7
Drive designation, 2.9, 3.2
Drive Name Mapping, 6.94
Drive names, 2.9, 3.12

supported, 3.12

E command, 7.14, 8.39
%ECHO, 6.90
Edit keys, 4.15
Editing function 4.15
EDLIN, 6.5, 6.61
EDLIN.COM, description of, 6.8
ELSE, 10.135, 10.136
END, 10.18, 10.99
End macro, 10.142
ENDM, 10.142
End-of-file, 13.13
End-of-line, 13.13
End-of-line character, 8.1
ENDS, 10.18
ENGLISH.CHR, description of, 6.8
Enter insert mode, 4.15
EQU, 10.100
Equal Sign (=), 10.102
ERASE, 6.5, 6.50
Error,

Bad Flag, 7.39
Bad Register, 7.39

BF, 6.49

Page X.5

INDEX

BP, 6.49, 7.39
BR, 6.49, 7.39
Cannot edit. BAK, 8.43
DEBUG Syntax, 6.45
DF, 6.49
Directory, 6.19
Disk Full, 8.44
Disk Not Initialized, 6.21
Double Flag, 7.39
Entry Error, 8.44
File Allocation, 6.20
File Size, 6.21
Files Cross-linked, 6.21
Invalid Date, 6.43
Invalid Time, 6.114
Line too long, 8.44
No end-of-file mark, 8.44
No room in directory, 8.43
No Stack Statement, 11.20
Result, Disk Space Freed, 6.21
Too many Breakpoints, 7.39
CHKDSK, 6.19

Error message, 10.7
%ESC [<c>], 6.90
EVEN, 10.103
Exceptions to random ordering, 10.18
.EXE, 3.4, 11.2

commands, 4.8
EXE2BIN, 6.5, 6.65
EXE2BIN.COM, description of, 6.8
Executive, 1.9, 2.5

definition of, 1.10
Exit insert mode, 4.15
Exit Macro, 10.147
EXITM, 10.140
Expression field, 10.24
<.ext>, XIX

ext, 3.2
.<ext>, 3.3
Extend, 12.9
extension, 3.2, 3.4

conventional uses, 3.4
External bit, 10.68
External references, 11.17
External symbol, 11.17
Extract, 12.9
EXTRN, 10.104
EXTRN directive, 10.30

F command, 7.16
FAT, 2.1, 2.7
<field>, 10.53
FILCOM, 6.5, 9.3
FILCOM.COM, description of, 6.8
File

Allocation Table, 2.1, 2.7
compare, 6.67, 9.3
concatenation, 6.65
management, 1.7
manager, 2.1, 2.5
manager, definition of, 1.10

resident commands, 4.1, 4.4, 6.4
specification, 3.2

<filename>, XIX
Filename, 3.2
Files,2.9
Files, definition of, 3.1
<filespec>, XIX, 3.2
@<filespec>, 11.15
Flag

Register, 10.49

page X.6

INDEX

Z-DQS Index

F<number>, XIX
FOR, 3.4
FORMAT, 6.5, 6.71
FORMAT.COM, description of, 6.8
FORTRAN, 1.5
Fourth assembler prompt, 13.3
FRENCH.CHR, description of, 6.8
Function, command, 4.2

G command, 7.17
General registers, 10.49
GERMAN.CHR, description of, 6.8
Global, 3.6
Group, 11.6
GROUP, 10.106
GROUP, definition of, 11.3
<group name>, 10.60

I command, 7.20, 8.28
IF, 10.135
IF1, 10.135
IF2, 10.135
IFB, 10.135
IFDEF, 10.135
IFDIF, 10.135
IFE, 10.135
IFIDN, 10.135
IF NB, 10.135
IFNDEF, 10.135
Illegal character, 3.1
Imaginary drives, 6.94
INCLUDE, 10.109
Indefinite Repeat, 10.155
Indefinite Repeat Character, 10.157

Initialization, 2.3
Initialize FAT's, 6.71
Initializes the directory, 6.71
Input, 1.4
Instruction statement fields, 10.19
.INT, 3.4
Integrity of directory structure, 6.19
Intel, 10.1
Intel 8080 standard, 10.1
Intel codemacros, 10.7
Interactive processing mode, 4.23
Interline commands, 8.5
Interrupt-enable, 10.50
Intraline commands, 8.5
I/O management, 1.7
I/O manager, 1.10, 2.1, 2.5

H command, 7.19
Handshake protocol, 6.32
Hardware, definition of, 1.8
.HEX, 3.4
Hex Arithmetic, 6.46
Hexadecimal Dump, 7.11
<hh>, 6.113
Hidden files, 6.112
HIGH, 10.63
/HIGH, 11.12, 11 • 19

Page X.7

INDEX

IO. SYS, 2.3-2.5, 2.7
description of, 6.9
during initialization, 2.3

IRP, 10.146
IRPC, 10.146
ITALIAN.CHR, description of, 6.9

K

Keyboard, 3.5

Library file, 12.15
Line editor, 6.61
(line), EDLIN usage, 8.6
/LINENUMBERS Switch, 11.12, 11.19
Line printer, 3.5
LINK, 6.5, 6.83, 11.2
LINK.EXE, description of, 6.9
.LIST, 10.162
(list>, 6.45, 6.46

DEBUG usage, 7.7
List file, 11.17, 12.16
(listfile>, 11.14
(listing), 13.6

Listing directives, 10.90
Loading of files, 2.7
LOCAL, 10.148
Logged-in, 3.10
Logical drive names, 6.94
Logical names, 6.96
Long-term storage, 1.9
LOW, 10.63
LST, 3.4, 3.5, 11.2

L command, 7.21, 8.24
LABEL, 10.111

attributes, 10.31
definition of, 10.28-10.29
directive, 10.29

.LALL, 10.162
Language, definition of, 1.5
Leap years, 6.43, 6.114
Legal characters, 3.1

in filenames, 3.3
Legal date, 6.43
Legal drive names, 3.10
LENGTH, 10.70
LIB, 3.4, 6.5, 6.80, 11.8, 12.8
LIB.EXE, description of, 6.9
LIB command

characters, 12.17
prompts, 12.15
scanner, 12.1

(lib-list>, 11.14
Library index, 12.3
<library), 12.10

M command, 7.23
/M switch, 6.71
Macro call, 10.1, 10.4, 10.138
Macro definition, 10.1, 10.4, 10.138
Macro directives, 10.87
MACRO-80, 10.1

directives, 10.5
MACRO-86

assembler, 6.98
MAKE, 6.5, 6.88
MAKE.COM, description of, 6.9

Page X.8

INDEX

Manual boot, 5.2
MAP, 3.4, 6.5, 6.94
MAP.COM, description of, 6.9
/MAP switch, 11 • 12, 11.19
MASK, 10.75
MASM, 6.6, 6.98
MASM. EXE, description of, 6.9
Memory

directives, 10.87
management, 1.7, 2.7
manager, definition of, 1.10

MEMTST.COM, description of, 6.13
<mm), 6.42, 6.113
minus sign, 12.17

0

0 command, 7.27
.OBJ, 3.4, 12.10
Object code, 10.2, 11.1
object modules, 11.1
<object-list), 11.14
Offset, 10.40, 10.66
Offset value, 10.64
Offsets from segment base, 10.11
Operand, attribute values, 10.64
Operand types, 10.44
Operating system,

definition of, 1.7
<operations), 12.10
Operators, record specific, 10.72
ORG, 10.114
%OUT, 10.162
Output, 1.4

N

/<n) switch, 6.70, 9.9
N command, 7.23, 7.37
/N switch, 6.71
NAME, 10.113
<name):, 10.29
Name

definition of, 10.28
field, 10.19
length, 10.20

%NEXT <filename), 6.91
%NOECHO, 6.90
Non-default, 3.10
Non-default drive, 3.13
%NOSYS, 6.90
NUL:, 3.5, 12.8
Null device, 3.5

/P switch, 6.52
PAD character, 6.31
PAGE, 10.162
Page length/line length, 13.7
Page mode, 6.52
Paragraph, 11.3
Parallel device, 6.31
<parameters), XIX
Parity, 6.31, 6.33
Parity flag, 10.50
PASCAL, 1.5

Page X.9

INDEX

Z-DOS Index

PAUSE, 6.6, 6.15, 6.102
/PAUSE switch, 11.12, 11.19
Peripheral, 2.4, 6.28
Peripheral devices, 2.8
Physical devices, 6.23
Physical drive, 6.95
Plus sign (+), 6.36, 11.12, 11.16, 12.17
Pointer (PTR), 10.57
Pointing finger, 5.4
Port number, 6.32
pound sign (¹), 13.1
Precedence, operator and operand, 10.26
Primary name, 3.2
Printer configuration, 6.22
Private, 11.4
PRN, 3.4, 3.5, 6.22
PROC, 10.116
PROC directive, 10.30
Processing, 1.4
Processing modes, 4.21
Programs

application, 1.5
types of, 1.5
utility, 1.6

Protocol, 6.22
Prototype commands, 6.15
PUBLIC, 10.118
Public, 11.5
PURGE, 10.150

R command, 7.29, 8.35
.RADIX, 10.120
RAM, 1.4, 1.10
Random access memory, 1.4, 1.10
(ran'ge), 6.45-6.48
RDCPM, 6.106
RDCPM.COM, description of, 6.13
Read CP/M, 6.107
Real drives, 6.94
RECORD, 10.122
(record), DEBUG usage, 7.7
Record fieldname, 10.73
RECORD specific operators, 10.55
.REF, 3.4, 13.1
Reference symbol, 13.13
Relative

addresses, 10.11
offset, 10.11, 11.6

Relocatable, 11.1
Relocatable code, 10.2
Relocatable load module, 11.2
REM, 6.6, 6.15, 6.109
Remark, 6.109
REN, 6.6, 6.110
RENAME, 6.6, 6.110
Rename File, 6.110
REPEAT, 10.152
Repeat directives, 10.152
Replace a module, 12.2
Replaceable parameters, 6.14
Reserved sectors, 2.8
Response file

definition of, 11.15
LINK, 11.10

Q command, 7.28, 8.40
Question mark (?), 3.6-3.8, 6.110
QWORD, 10.67

Page X.10

INDEX

Z-DOS Index

Resident debugger, 7.4
Run file, 11.2
<runfile), 11.14

Stack pointer, 11.5
/STACK:<number) Switch, 11.12, 11.20
Status report, directory, 6.20
Stop bits, 6.33
Storage, 1.4
<string)

DEBUG usage, 7.9
EDLIN usage, 8.7

STRUC, 10.131
SUBTTL, 10.166
Supported drive names, 3.11
SWEDISH.CHR, descritpion of, 6.9
Switch SW-101, 5.3
Switching default drives, 3.13
Symbolic names, 13.1
Syntax error, 6.45
SYS, 6.6, 6.112
SYS.COM, description of, 6.10
SYSCOPY. DAT, 6.93
SYSCOPY.DAT, description of, 6.10
%SYSTEM, 6.91
System, 2.3

CRT, 6.30
Prompt, 3.12, 4.1
Memory, definition of, 2.2
Resident, 6.4
Resident, commands, 4.1, 4.2, 4.7
Resources, 2.4, 2.8

/S switch, 6.70, 6.75, 9.9
S command, 7.32, 8.32
.SALL, 10.162
SEG, 10.64, 10.65

Segment, 10.65, 10.117
definition of, 11.3
override, 10.16, 10.58
Override (:) Colon, 10.56
registers, 10.49

<segment-name), 10.60
<segment-register), 10.60
semicolon (;), 11.13, 12.18, 13.5
Serial device, 6.32
Shift-count, 10.73
SHORT, 10.61
sign flag, 10.50
SIZE, 10.71
Skip over, 4.15
Software development, 6.44, 7.3
Source code, 10.1
Source file, definition of, 10.18
Source operand, 10.24
SPANISH.CHR, descritpion of, 6.9
Special characters

as delimiters, 10.16
as operators, 10.16

Special libraries, 12.1
Special macro operators, 10.148
<ss), 6.113

T command, 7.33
Table of commands, 6.4
TBYTE, 10.67
Template, 4.8, 4.17
. TFCOND, 10.162

Page X.11

THIS, 10.62
TIME, 6.6, 6.113
Time default, 6.113
TITLE, 10.162
Title defined, 13.13
.TMP, 3.4
Trap flag, 10.50
Two-pass assembler, 10.9
. TYPE, 10.68
TYPE, 6.6, 6.115, 10.67
%TYPE <message>, 6.91

W command, 7.37
/W switch, 6.52
%WAIT [< message>], 6.92
WIDTH, 10.76
Wildcard

characters, 3.6
filenames, 3.6

WORD, 10.70
Word length, 6.34

X

U command, 7.35
Unary minus, 10.78

/X switch, 10.175
.XALL, 10.162
.XCREF, 10.162
.XLIST, 10.162

/V switch, 6.59
/<value>, 6.46-6.48
<value>, DEBUG usage, 7.8
Value returning operators, 10.55
<variable>, 10.53
Variables, definition of, 10.28, 10.32
%VERBOSE 6 91
Virtual

linker, 11.2
memory, 11.7
memory file, 11.8

VM. TMP File, 11.9
Void the current input, 4.15

<YY>, 6.42

Z-100 rear panel, 6.29
Z-207, 5.14
Z-207 controller, 6.95
Z-DOS.SYS, 2.1-2.5, 6.112

description of, 6.10
during initialization, 2.3

Zero flag, 10.50

