
Optimizing
C86~ Compiler

fata
systems

COMPUTER INNOVATIONS, INC.

Optimizing
C86~™ Compiler

fAIITH d a t a
systems HEATH

NOTICE
This software is licensed (not sold). It is licensed to sublicensees, including end-users, without either
express or implied warranties of any kind on an "as is" basis.

The owner and distributors make no express or implied warranties to sublicensees, induding end-users,
with regard to this sofhvare, including merchantability, fltness for any purpose or non-infringement o(
patents, copyrights or other proprietary rights o(others. Neither o(them shall have any liability or responsi
bility to sublicensees, including end-users, (or damages of any kind, including special, indirect or conse
quenbal damages, arising out of or resulting from any program, services or materials made available
hereunder or the use or modification thereof.

This publication could contain technical inaccurades or typographical errors. Changes are periodically
made to the in(ormation herein; these changes will be incorporated in new editions o(this pubflcaflon.

Technical consultation is available for any problems you encounter in verifying the proper operation
of this product Sorry, but we are not able to evaluate or assist in the debugging of any programs
you may develop. For technical assistance, write:

Zenith Data Systems Corporation
Software Consultation
Hilltop Road
St. Joseph, Michigan 49085

or call:

(6(6) 982-3884 Application Software/SoftStuff Products
(616) 982-3860 Operating Systems/Languages/Utilities

Consultation is available from 8:00 AM to 7:30 PM (Eastern Time Zone) on regular business days.

RESTR(CIED RIGHTS LEGEND
Use, duplication, or disdosure by the Government is subject to restrictions as set (orth in paragraph
(b)(3)(B) of the Rights in Technical Data and Computer Software dause in DAR 7-104.9(a).
Contractor/Manufacturer is Zenith Data Systems Corporation of Hilltop Road, St. Joseph, Michigan
49085.

Trademarks and Copyrights
C86 and Optimizing C86 are trademarks of Computer innovations, inc.
CP/M-86, MP/M-86 and ASM-86 are trademarks of Digital Research, inc.
IBM is a registered trademark of International Business Machines.
MS is a trademark o(Microsoft Corporation
SB-DOS is a trademark of Lifeboat Laboratories
UNIX is a trademark o(Bell Telephone Laboratories.

Copyright o 1981, 82, 83, 84 by Computer Innovations, Inc.
Copyright © 1984 by Zenith Data Systems Corporation.

Essential Requirements (or using Optimizing C86 Compiler:

a. Distribution Media: Three 5.25-inch, soft-sectored, 48-tpi disks
b. Machine Configuration (minimum): Z-100 PC, (92K memory, two floppy disk drives and CRT

HEATH COMPANY
BENTON HARBOR, MICHIGAN 49022

ZENITH DATA SYSTEMS CORPORATION
ST. JOSEPH, MICHIGAN 49085

Copyright (c) 1981,82,83,84 Computer Innovations, Inc.

Al 1 r i g h t s r e s e r v ed . Pr i nt ed i n t he U n i t e d S t a t e s o f America.
No part of this p ublication may be r eproduc ed , s t o r ed i n a
retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording or o ther w i s e
without the prior written permission of Computer Innovations,
Inc. and Zenith Data Systems Corporation.

C86 is a Trademark of Computer Innovations, Inc.
OPTIMIZING C86 is a Trademark of Computer Innovations, Inc.

MS-DOS is a Trademark of Microsoft Inc.
SB-DOS is a Trademark of Lifeboat Associates.

UNIX is a Trademark of Bell Telephone Laboratories.
CPM-86, MPM-86 and ASM-86 are Trademarks of Digital R search.

IBM a Registered Trademark of International Business Machines.
PLINK86, and P F IX86PLUS are Trademarks of phoenix S of t w a r e

Associa te s L t d .

September 1984

This document describes the OPTIMIZING C86 compiler, associated
programs, and support library. It is not a language reference
manual. I t will assist users in preparing C programs, for
compilation and execution under CPM-86, MPM-86, IBM PC-DOS, MS
DOS, SB-DOS and 86DOS.

OPTIMIZING C86 USER'S MANUAL

Document Ver s i on : 2 . 2 0

Software Version: 2.20 (and later)

COMPUTER INNOVATIONS ~ INC

9 80 Shrewsbury Ave , S u i t e 31 0
Tinton Falls, N.J. 07724

T A B L E C O N T E N T S0 F

2 3

ERAL INFORNAT ION.
Introduction.
l. Information.

1. GEN
l .

2 . Language f e a t u r e s .
3. Operating systems.
4. Hardware.
5 . Support s e r v i c e s .
Optimizing C86 features.
Version 2 . 2 0 Fea t u r e s
1 . Ctype .h .
2 . New swi t ches
3. New func t i o n s , .
I nsta l l a t i o n g u i d e .
l. Unsqueeze the files
2 . DOS f i l e s .
3. Transfer files.
4. Create a test program
5 . Compil a t i o n .
6 . L i n k i n g
7 . Execut i o n .
Using the compiler
1. Batch files.
2. Using the DOS linker
3. Us ing CHKDSK.
File system
1 . Basic s e r v i c e s .
2 . St r eam serv i c e s .
3. The DOSALL I/O library.
4. The DOS2 I/O library
5. File opening modes
6 . DOS charac te r d e v i c e s
7 . Console i n p u t
8. Standard files.
Language information.
1 . Data t y p e s .
2 . Sto rage t y p e s
3 . Def i n i t i on o f ex t er n
4. Debugging .
Converting to V2.20 from V1.33.
1 . Po i n t e r s .
2. 8087 suppor t
3 . 2. 0 I / O l i b r a r y .
Assembly language functions.
1 . Header f i l e s
2. Hodel .h
3 . Pro l og ue . h .
4. Calling conventions for functions...
5 . Retu rned r e s u l t s .
Compiler options.........,............
1. Big model switch.
2 . 8087 sw i t c h .
Overlays
1 . P l i n k 9 5 .

. . . 1 - 1

. . . 1 - 1
• ..1-1
. . . 1 - 1
• ..1- 1
. . . 1 - 1
. . . 1 - 2

. 1-2
. . . 1 - 3
. . . 1 - 3
. . . 1 - 4
. . . 1 - 4
. . . 1 - 4
. . . 1 - 4
. . . 1 - 5
. . . 1 - 6

.1-6
. . . 1 - 7
. . . 1 - 7
. . . 1 - 7
. . . 1 - 7
. . . 1 7
. . . 1 - 8

. .1-8
. . . 1 - 8
. . . 1 - 9
. . . 1 - 9
. . . 1 9

.1-9
. . . 1 9
. .1-10
. .1-10
. .1-10
. .1-11
. .1-11
. .1-11
. .1 - 12
. .1-12
. .1 -12
. .1-13
. .1-13
. .1-13
. .1-13

.1-14
.1-14
.1-14

. .1 -15

. .1-15

. .1-16
.1-16

. .1-17

. .1 - 1 7
1-17

10

12

13
14

Hints and other comments
1. Kernighan and Ritchie
2. Initializing structures and arrays..............
3. String initializers for character arrays in stru
4. Structure and union member names.............
5. Assigning pointer and int data types.........
6. Redefinition of function name error message..
7. Run time error messages....
8. Undocumented functions.
9. Eliminating the standard functions..

1 0. Tr i g l i br a r y
1 1. Creat i n g COM f i l e s .
12. Creating ROM files.
13. Using 8 bit characters in strings.... . .

14. Conver t i ng BDS-C programs
15. Pathnames.
16. Porting code to OPTIMIZING C86.........
Menory layout under DOS...........
What to do if things go wrong
1. Problems with functions in the library..
2. Big Model and memory limits.
3. Problems with opening a file.
4. System function.
5. I n t e r r u p t s a n d i n t r i n i t
6. Serial port communications.
7 . Funny e r r o r s o u t o f c c l .
8 . Big model p o i n t e r a r i t h me t i c
9. Undefined results, (or a lesson in uninitialized
1 0. Scanf and i t ' s u s e
11. St r ncpy .
12. "Fixup offset exceeds field width".............
13. I f a l l el s e f a il s .

1-1 7
1-17
1-1 8
1-18
1-18

. .1-18
. .1-19

1-19
1-19

..1-19
.1-20
.1-20
.1-20

. .1-20
1-20

.1-21
. .1-21
.1-22
.1-23

. .1-23
.1-23
1-23

.1-23

.1-24

.1-24

.1-24
1-2 4
1-25
1-25
1-25
1-25
1-26

.2-1
.2-1

2-1
.2-1

2-1
.2-2
2-3

.2-4
2 — 4

.2-5
..2-6
. .2-6

2-6
2-6
2-6
2-6
2-7
2-7
2-7
2-7
2-7
2-8

2. PROGRAM DESCRIPTIONS.

ccl , p r e p r ocessor
1 . Func t i o n .
2. Usage.
3 . F l ag s
4 . Not es .
5 . Feat u r e s .
6 . I , ine c o n t i n u a t i o n .
7. Er ro r messages.
8 . Notes .
cc2, pa r se r
1 . Func t i o n .
2. Usage
3. Flags
4. Er ro r messages.
5 . Notes
c c3, code generato r .
1 . Funct i o n .
2. Usage.
3 . Flags
4. Er ro r messages.
cc4, optimizer

6

4 5 6 7 8 9

1 2 3

7

5

1 . Funct i o n .
2. Usage.
3. Flags .
4. Er ro r messages
A rch, source l i b ra r i a n .
1 . Funct i o n .
2. Usage.
3 . Fl ags .
4 . Notes .
M arion, ob j ec t l i br ar i a n
1 . Func t i o n
2. Usage.
3 . Fl ags .
4. Notes.
Usq, Fi l e u n squeezer
1 . Funct i o n
2. Usage.
3 . Flags .
4 . Notes .

i nt Sent r y ()

m t ex r t (s t a t u s)

i nt m a in()

int abort(format,args...)

char *abstop t r (address)

c har * a l l oc (s i z e)

double atof(string)

l ong a t o i (s t r i n g)

3. L I BRARY FUNCTIONS.
INTRODUCTION.
1 . Source l i b r a r i e s .
2. Recompiling library functions.
3. Understanding the library descriptions.

.

default, Define default conditions.
.

gentry, Entry to a function.

• • • • • .2 8
• • • • • .2 8
• • .. • .2-8
. 2 8

. .2-9
• 2- 9
. 2 - 9

• 2 9
.. . • . .2 9
. 2 1 1
• • • • • 2-11

.2-11
• ... • 2 11
• • . • .2-11
• • ...2 1 2

.2-12
• 2 - 1 2
• • • • .2 12
• • • • • 2 12

3-1
.3-1
3-1

• .3 2
. .3-2
. .3-4

3-6

exit, Terminate program execution without closing fi.3-7

m ain, I n i t i a l i ze f o r p r o g r am execut i o n .
.

abort, Abort execution of a program with a message.. .3-10

abstoptr, Absolute memory address to pointer..
.

alloc, Allocate a storage region on the heap.
. .

atof, Convert ASCII to floating point.
.

1 0. a t o i , C o nver t ASCI I t o i nt e ge r (l o n g)

11. basicget, Get a "record" written by a basic program .3-17
int basicget(stream, buff,bufflen,fieldptr,fieldcnt)

12. bdos, Execute a basic DOS function........ 3- 19

. . . 3 - 1 1

. . . 3 - 12

.3-9

.3-14

. . . 3 - 16

in t bdo s (fcode,d x) /' S MAI.I. MODEI.*/
int b d os (f code,dx ds) /» BIG MODEL */

char *cal loc(nelem,el size)

d ouble ce i l (a r g)

int c hd i r (p a t hname)

int chmod(f i l ename,mode)

13. calloc, Allocate a bTock of memory..................3-21

1 4. ce i l , C e il i n g f u n c t i o n .

15. chdir, Change to a new working directory.
.

16. chmod, Change the mode of a file.

3 22

3-2 4

. .3-25
int clearerr(stream)

i nt c l o s e (f d)

int corn f i s h (channel)
int can ge t c (channel)
int corn putc(channel,ch)
int corn rdy(channel)
int can rst(channel, baud, parity, stop,lengt
unsigned int corn stat(channel)

20. coreleft, Get size of unused stack.

21. creat, Create a new empty file.

22. Z-100 PC video display routines: (Z-100 PC ON

u nsigned i n t c o re l ef t () ;

int c r e a t (f i l en ame, mode)

c rt c l s ()
crt home()
crt gmod()
int crt line(xl,yl,x2,y2,color)
int c r t mode(mode)
int crt rdot(row,column)
int crt roll(top,bottom, left, right,n)
int crt srcp(row,column, page)
int crt wdot(row,column, color)

unsigned char ~envf ind(name) / * dos 2 . 0 +
24. exit tsr — exit, terminate and stay resident

25. exit, Terminate program execution.....

26. exp, Exponential function.

27. fabs, Floating absolute value.

28. farcall, Call a "far" function.

29. fclose, Close a stream
int f c l os e (s t r eam)

int f e o f (s t r e am)

int f e r r o r (s t r e a m)

int f f l ush (s t r e am)

int f g e t c (s t r e a m)

char *fgets(buffer,bufleng,stream);

unsigned char * f i l e d i r (f i l es p ec ,mode)

int f i l en o (s t r e am)
37. floor, Floor function.

d ouble f l o o r (v a l)

17. clearerr, Clear a stream error indicator......

18. close, Close a file.

19. Z-100 PC Communicat i ons Func t i o ns : (Z - 1 0 0 PC

h)

ONLY!) .3-27

. .3 30

23. envfind, search environment for defined name

exit t s r ()

i nt ex i t (v a l u e)

d ouble exp(va l)

d ouble f abs (v a l)

int farcal 1(offset, segment,srv,rrv)

30. feof, Return end of file status.

31. ferror, Return error status of a stream..

32. fflush, Flush a stream to disk.

33. fgetc, Get a character from a stream

34. fgets, Read a string from a stream

35. filedir, return a list of matching file names

36. fileno, Get file handle.

.3-31

L Y!) . . . 3 - 3 3

. 3 - 3 6
only * /
. 3 - 3 7

.3-39

.3-40

.3-41

. 3-42

.3-43

3-4 4

. . . 3-45

3-46

. . .3-47

.3-48

3-4 9

3-26 Q

.3-51 Q

Q

3-52

FILE * fopen(f i lename,fomod e)

int fprintf(stream, format,args...)

int fputc(byte, stream)

int f p u t s (s t r i n g , s t r e am)

int fread(where,elsize,nelan,stream);

i nt f r e e (po i n t e r)

FILE * freopen(filename,fomode,stream)

double frexp(val,eptr)

59. issomething, Character class tests.
.

3-65

47. fseek, Seek using a long offset 3-68

48. ftell, Tell R/W position in a stream .
.

49. ftoa, Convert float to ASCII.
. 3- 71

50. fwr ite, Write to a stream

51. gcdir, Get the current directory. 3-73

52. getc, Read a character from a stream..
. ,

53. getchar, Get a character from stdin.. 3- 75

54. gets, Read a string from standard input.
.

55. getw, Get a word from a stream 3 — 77

56. index, Find a character in a string.. 3- 78

57. inportb, inportw — Input a byte or word f rom a p o r t . 3 - 79

58. intrinit, intrrest — Init and restore for interrupt.3-80

38. fopen, Open a stream 3 -5 3

39. fprintf, Print to a stream

40. f p u t c , O u t pu t c h a r a c te r t o a s t r e am 3- 58

41. fputs, Output a string to a stream

42. fread, Read items from a stream

43. free, Return a region to the heap..
.

44. freopen, Close and reopen a file. 3- 6 3

45. frexp, Split double into mantissa and exponent. 3 - 6 4

46. fscanf, Scan fields from a stream
int fscanf(stream, format,args)

long fseek(stream, offset, base)

long ftel 1(stream)

int ftoa(value, buffer,iplaces,fplaces)

int fw r i t e (w here,e l s i ze , n e le m,s t r e a m)

char *gcd i r (d r i v e name)

int ge t c (s t r e am)

i nt ge t c h a r ()

char *gets(buffer,bufleng);

int ge tw(s t r e am)

c har * i n d e x (s t r i n g , c c)

char i npor t b (po r t n o)
int i n po r t w (por t no)

int r i n i t (f u n c , s t a c k , vecno)
int r r e s t (v ecno)

int i s a l n um(cc) /* alpha-numeric «/
int i s a l p ha(cc) /* alphabetic «/
i nt i s a sc i i (c c) /* a defined ASCII character «/
i nt i s c n t r l (c c) /* a control character */
i nt i s d ig i t (c c) / * a d i g i t * /
int i s l o wer (cc) /* a lower case alphabetic «/
i nt i s p r i n t (c c) /* a printable character */
int i s p unc t (cc) /* a punctuation character */
int i s s pace(cc) /* a white space character */
i nt i s u pper (cc) / * an upper c ase c h ar ac te r * /

3-74

3-76

3-72

3-70

3-61

3-55

3-59

3-83

3-85

61. itoa, Convert an integer to ASCII.

char *makefnam(input, default, result);

c har *mal l o c (s i z e)

int mkdi r (pathname)

double modf (va l , i p t r)

int movblock(soffset,sseg,doffset,dseg,count)
81. movmmn, Move memory within a program.........

82. open, Open an existing file.
int open(f i l ename,mode)

unsigned char outportb(portno,value)
int outportw(portno,value)

int peek(offset,seg)

68. lower, Convert a string to lower case.....

3-86

62. itoh, Convert an integer to hexadecimal... 3- 87

63. key getc,key scan,key shft- Z-100 PC keyboard funct.3-88

64. longjmp, Restore an envirorxaent

65. l d e xp , Io a d e x ponent

66. l o adexec, Load or e x ecute a p r o g ram.

67. log, log10, logarithm functions. 3-92

3-93

69. lseek, position R/W pointer in a file.........3 - 9 4

70. ltell, Tell the R/w position within a file.

71. ltoa, Convert a long integer to ASCII.........

72. ltoh, Convert a long integer to hexadecimal.

73. ltos, Convert a long integer to a string...

74. main, Entry point for a C program

75. makefcb, Make a file control block..........

60. i swap, Swap two integers.
i nt i s wap(i n t a , i n t b)

i nt i t o a (n , b u f f e r)

i nt i t o h (n , b u f f e r)

i nt key ge t c ()
int key sc an()
i nt key s h f t ()

i nt l o n g jmp(envp,value) ;

double ldexp(mantissa, exponent)

int loadexec(f ilename,par am, f uncode)

d ouble l o g (v a l)
double logl0(val)

c har * l o wer (s t r i n g)

long lseek(fd,offset, base)

long ltell(fd)

i nt l t oa (n ,buf f e r)

i nt l t o h (n , buf fe r)

int ltos(n,buffer, base)

int main(argc ,argv)

char *make feb(f i 1 en arne)
76. makefnam, Make a f ile name.

77. malloc, Allocate uninitial ized memory from the hea.3-106

3-107

3-108

3-100

3-102

3-104

3 89

3-91

3-96

3-97

int movmem(source,dest,count)

78. mkdir, Make a new subdirectory.

79. mod f, Split double into integer and f r a c t i o n

80. movblock, Move a block of memory............... 3-109

3-110

3-112

83. outportb, outportw — Output a byte or word to a p.3-114

3-98 0

84. peek, Examine the content of a word in memory......3-116

85. poke, Store data in memory. 3-117

98

97

96

94

93

95

90

91

92

89

87

88

86

rindex, Reverse i n d ex s earch.

Z-100 PC printer functions (Z-100 P

rename, Change the name of a file.
. . . .

pok eb (o f f set,seg,byte);
pokew(of f set,seg,word);

pow, Return X t o t he p o wer Y
double pow(x,y)

printf, Print to stdout
i nt p r i n t f (fo rmat , a r g s . . .)

i nt pr t b u s y (p r i n t e r)
i nt pr t er r (p r i n t e r)
int prt putc(printer, character)
int prt rst(printer)
p rt sc r ()
i nt pr t st at (p r i n te r)

ptrtoabs, Convert a pointer to an ab
long p t r t o abs(address)

int pu t c (cc , s t r e a m)

i nt putchar (c)

i nt pu t s (s t r i n g)

int pu tw(w,s t r eam)

qsort (a r r ay ,nunber,wid th ,cmpf)
read, Read characters from a file.

. . . .

i nt r e ad (f d ,bu f f e r , cou n t)
realloc, Change size of a heap area.

. .

c har * r e a l l o c (o l d p , s i z e)

int r ename(f r om, to)
rewind, position to the beginning of

long rewind (s t re am)

c har * r i n d ex (s t r i n g , c c)

int rmdi r (p a t hname)

c har *sb r k (s i z e)

int scanf(format,args)

i nt segread(r v)

mt se t j mp(envp)

int setmem(address, count, value)

i nt s p r i n t f (s t r i n g , f o rmat ,a rgs)

double sq r t (v a l)

int sscanf (string, format,args)

char *strcat(stringl,string2)

putc, Output a character to a stream.
.

putchar, Output a character to stdout.

puts, Output a string to a stdout.
. . . .

p utw, Output a w or d t o a st r ea m

qsort, Sort an array of records in m

99

100. rmdir, Remove a specified directory ..
.

101. sbrk, Request manory at string break.
.

102. scanf, Scan fields from std in.

103. segread, Read the segment registers.
.

104. setjmp, Save the environment for longjmp.
.

105. setman, Set manory to a byte value

106. sprintf, Print to a string in manory.
.

1 07. sq r t , S q u ar e r o o t .

108. sscanf, Scan fields from a string.
.

109. String functions.......
. . . .

anory. .

C ONLY!)

/ * poke a b y t e " /
/ » poke a word * /

solute address .3-122

. . . 3 - 129

.3-131

. .3-132

a n open f i l e. .3 - 1 3 3

. .3 134

. .3-135

. . . 3 -123

. . .3 -124

. . .3 -125

3-126

. . . 3 - 127

.3-118

. . . 3 1 19

. . . 3 -120

.3-142

.3-144

.3-145

. .3 146

. .3-140

. .3-136

. .3-138

.3-147

.3-149

114. trigonometric functions.

110. sysint, Execute an INT instruction.... 3- 1 5 5

111. sysint21, Execute an INT 21H instruction..........

112. system, Execute a program .3-159

113. toascii, tolower, toupper - Convert characters...3-161

115. ungetc, Push back an input character..............3-165

116. unlink, Erase a disk file. . .3-167

117. upper, Convert a string to upper case.............

118. utoa, Unsigned integer to ASCII conversion........

119. wqsort, Sort a set of records in memory...........

120. write, Nrite characters to a file.................3-172

u nsigned char ' s t r c h r(s , c)
i nt s t r cmp(st r i n g l , s t r i n g 2)
char *strcpy(to,from)
u nsigned s t r l e n (s t r i n g)
char *strncat(stringl,string2,max)
i nt s t r ncmp(st r i n g l , s t r i n g 2 , n)
char *strncpy(to, f rom,n)
unsigned char *strpbrk(s l ,s2)
unsigned char * s t r r c h r (s,c)

int s y s i n t (v ec ,s reg , r r eg)

int s y s i n t 2 1 (sreg,r reg)

i nt sy s t em(st r i n g)

c har t oasc i i (c)
i nt t o l o w er (c)
i nt t oupper (c)

d ouble s i n (v a l)
double cos(val)
d ouble t an (va l)
d ouble as i n (v a l)
d ouble acos(va l)
d ouble a t an (v a l)
double a t an2(x , y)

int ungetc(c,stream) /* ung et to stream */
int ungetch(c) /* unget to std in */

int un l i n k (f i l e n ame)

c har *upper (s t r i n g)

int utoa(value,buffer)

int wqsort(n,cmpf,xchgf,data)

i nt wr i t e (f d , b u f f e r , c o u n t)

3-157

3-163

0
3-168

3-169

Append ices

A. APPLICATION NOTES. . A-1
. A-1
. A-2
.A-2
. A-3

.A- 8
F ORMAT... . . A - 9
.A -1 0

.A-12

1. PLINK DEMONSTRATION.
2. CREATING .COM FILES.

1. New prologue.h
2. New amain.asm
3. Notes on getting can files created:....

3. TECHNICAL NOTES ON THE 8087 FLOATING POINT
4. Variable length tables at run time........
5 . Cal l i n g a fun c t i o n w i t h a po i n t e r .

6. TECHNICAL NOTES ON READING A NUMBER FROM THE CONSOLE. A-13

7 • TECHNICAL NOTES ON THE USE OF MOVBLOCK. A- 14
8. TECHNICAL NOTES ON DEFAUf T MEMORY VALUES. A- 1 5
9. TECHNICAL INFO ON THE CORRECT USE OF FOPEN().A - 1 6
10. TECHNICAf. INFORMATION ON LOW-LEVEL Z-100 PC ROM CAL.A-17
11. TECHNICAL INFO ON BIG MODEL POINTERS.A- 17
12. TECHNICAL INFO ON DOING SEND / RECEIVE FOR Z-100 PC • A-18
13. TECHNICAL INFORMATION ON USING THE ANSI.SYS DEVICE .A-19

. Index-1INDEX

OPTIMIZING C86 USER'S MANUAL GENERAL

1. GENERAL INFORMATION

1.1. Introduction.

Welcome to the world of "C" and the OPTIMIZING C86 C Compiler.
We hope you wi l I f i nd t h i s a useful and satisfactory product. If
you have any questions, or problems, please cal I, telex or write.

1.1.1. Information.

This manual prov ides the information needed to use the Computer
Innovations OPTIMIZING C86 implementation of the C Programming
Language. It assumes a basic knowledge of C, your machine and
your operating system. You will also need a copy of "The C
Programming language" by Kernighan and Ritchie.

If you are learning C, you will find that the examples in KI R
will usually run without change. Although KIR is a very good
book, we suggest that you also obtain some of the other books now
available on the language. They provide valuable perspective.

1.1.2. Language features.

All language features are suppor t ed , and al 1 p r og r am s in
Kernighan and Ritchie should run. Our 1 ibrary includes all t he
standard library functions mentioned in KIR, a selection of UNIX
V7 routines, and a set of machine and operating system dependent
f unct i o ns . Together they should let you exploit the full p o wer
of your computer, and the portabi 1 ity of most C code.

1.1.3. Operating systems

The OPTIMI Z I NG C86 compiler r uns on a n 8 0 8 6 o r 8 0 8 8 p r o c e s s o r
under two different operating systems. Throughout this manual we
u se "CPM" t o refer to CPM-86, CONCURRENT-CPM86 and MPM-86 and
"DOS" to refer to MS-DOS.

The documentation prov ided with your operating system is needed
for a ful 1 understanding of some I ibrary functions. We have
found that it is very important to have a technical reference for
your operating systan. The Z-100 PC technical reference manuals
o r s i m i l a r ones for MS-DOS machines have some invaluable
information concerning operating system interfacing from C. This
information is not readily found in most DOS manuals.

1.1.4 . H ardware.

To run the compiler you wi 1 I need 128Kb of memory. T his i n c l u d e s
an al lowance of 16Kb of memory for your operating system. You
wil I also need at least 256Kb of disk space for the compiler,
utility programs and some working space. Two dis k d r i v es a r e
recommended. The compiler c an be r u n o n a s i n g e d r i v e Z- 1 0 0 P C ,
but this may be hazardous to your s ani t y .

1-1

OPTIMIZING C86 USER'S MANUAl GENERAI

1.1.5 . Support serv ices.

If you have difficulty with the C86 compiler or documentation, we
would like to hear from you. Zenith maintains a software support
line for all of our software products which operates from 8:00 AM
to 7:30 pM Eastern Time. This support line should be used only
for questions or bug reports concerning the compiler and its
documentation — we cannot help you with programming tasks. If
you need assistance, or wish to report a problem with the
compiler, call (616) 982-3860. This support line is prov ided to
you at no cost so that you can make best use of the C86 compiler.

When call ing our software support line, please try to have all
pertinent information regarding your problem at hand, including:

The C86 compiler version and serial number. To obtain the
version number, TYPE the file "VERSION.C86" (this file is
located on the first distribution disk) .
Any options you are using to invoke the compiler.

* Names of any object libraries you link with your code.
" The type of computer you are using, along with any

optional hardware which is installed in your machine.
* The version of the operating system you are using.
* The version of the ROM in your computer.

Also, please try to isolate the problem you are having as much as
possib le , s i n c e t h i s w i l l hel p us i n sol v i n g t he pr o b l em. I f i t
is at all possible, try to have your machine available when you
call — this can be very helpful to us when we are diagnosing your
p roblem repor t .

For more complex issues you should send the problem to us in
written form along with a 1 isting of the code sequence which is
n ot work ing , a s i t i s v e r y d i f f i c u l t t o c o mmunicate l o ng po r t i o n s
of code over the phone. When writing, please remember to include
the information shown above. Our customer support address is:

Zenith Data Systems
Software Consultation
Hilltop Road
S t. J o seph , M I 4908 5

1.2. Optimizing C86 features.

Features of the C86 compiler since version 2.10:

* Code is typically 10% to 20% smaller and twice as fast as
the code generated by our version 1.33D compiler. Speed
gains of up to 4 times have been noted.

1-2

OPTIMIZING C86 OSER'S MANUAL GENERAL

The big model switch allows programs up to the 1 imit of
your memory s i ze in b o th c o de a nd d a t a r e g i ons.
Per formance testing indicates that typical big memory
model programs with fairly heavy pointer usage run at
about the same speed as under our old 1.33 compiler.

* The compiler now produces Microsoft type object files.
These files may be linked using the regular DOS linker.
Thus we no longer supply our own linker or t h e p r o g rams
that convert object codes as we did in CPM versions and
older versions of the DOS compiler.

The compiler has an option which will cause it to produce
assembly source that can be assembled with MASM.

* Floating point operations using in-line 8087 code run
substantially faster.

* The 8087 Tr ig and math 1 ibrary has been r e-coded i n
assembly language to use the full power of the 8087.
Speed gains in this area are impressive.

* A I/O package that takes full advantage of DOS V2.00 is
now included. This gives full access to files in other
directories, and is substantially smaller and faster than
the DOSALL I/O package.

* Machine dependant support for DOS and the Z-100 PC has
been extended with basic graphics support. A number o f
other functions have been added to the libraries.

* We supply DOS format object libraries, a nd a p ro g r a m
(marion) t o m a i n ta i n t he s e l i br ar i e s . We a l s o ha v e a
s ource code a r c h i ve r (a r c h) .

Q

1.3. Vers ion 2 .20 Fe atures

There were many new additions to version 2.20 of C86. T here i s
improved documentation (note new section 1.14 — What to do if
things go wrong), improved 8087 code generation, pathname support
on include files, optimization switches for the 80186 and 80286
processors, optimizations for the compiler itsel f, and many new
f unct ions for the run-t ime 1 ibrar ies.

1.3.1. Ctype.h

We have added ctype.h. If you include this file the table lookup
of the simple character testing functions will override the
source code func t i o n c a l l s i n t he r u n - t i m e l i brary. T he tab l e
has what we consider to be the most used of the character testing
routines and is much faster than calling the functions to do the
same job.

1-3

GENERALOPTIMIZING C86 USER'S MANUAL

1.3.2 . New switches

There have been three new switches added to the compiler in this
release as follows:

-1 produces code that is optimized to take advantage of
the 80186/80286 architecture. Code produced by this
switch will NOT run on the 8086 or 8088.

-h where to search for ()include files (see ccl)

-e extended ASCII enabled. All characters with their 8th
bits set will be converted to a 3 digit octal escape
sequence ~xxx.

corn fish
corn rdy
c rt c l s
c rt r o l l
f i l ed i r
key getc
prt busy
p rt r s t
rewind
s tr r chr

corn getc
corn rst
crt gmod
envf i nd
freopen
key scan
p rt e r r
p rt sc r
strchr
toasc i i

For more information on the switches see the ccl documentation.

1.3.3. Mew functions

There were many new functions added to the C86 libraries. There
were many functions added to take advantage of the Z-100 PC bios
calls. F o r e x ample, we added more graphics functions,
communications functions, printer and keyboard functions that
work on Z-100 PC, and MS-DOS machines. W e h ave also added
functions to make our library more compatible with version 5.0
UNIX. The fol lowing list shows the new functions:

corn putc
corn stat
crt h ome
e x it t s r
i nt r r e s t
key sh f t
p rt pu t c
p rt s t a t
s trpbrk

0

For a full description of the functions see chapter 3.

1.4. Installation guide.

The OPTIMIZING C86 C Compiler package is delivered on one or more
write protected diskettes. DON'T ever write on your distribution
disk(s) .

1.4.1. Unsqueeze the files.

You should format one or more diskettes, which will be used to
hold your unsqueezed master copies of the compiler. Follow your
operating system instructions to do this.

1-4

~8 6 USER'S MANUAL
OPTIMIZING

GENERAI.

check t h e

X and Y •

Set X as Y o

e d j

'] e
t h i s

rog
e do>

ats pace l i m i t s

"tY
informatio~ ~
i nst ruc t i o n

• ICOP

o f your un sQe

eac
l e t t e

ue'
j xspace requ

- I e c o n t e n t .

e

should be jo n s on your computer.

entering eezed master diskettes.

you shou d u a l l y t h e y w i l l be A a n d B .

~r default drive by typing "X:".

your formatted diskette in drive X and one
o f t h e

Then p c
~ter disks in drive Y.

In the f ollowing instructions,comPi le ~
su bstitute the actual drive letters on your

system for

. ~ e c t o r y o f t he d i s t r i but i on d i s k o n e i n d r i v e Y byG et t h e
. ~ Y: " . You should see file names that are similar toenter ing

xnes 1 isted under the heading "DOS FILES".

For a l 1
the file + f ir s t three files, the second character of the file
except ™ e - on wil l be t he l e t te r "Q " , i nd i c a t i n g t h a t t he f i l esname exteo i z ed " f o r m a t .

This format reduces the
amount of diska re in " s q . e d t o s h i p t he f i l es,

and also provides checksums to

~k c o n t a i n i n g t h e f i l e " r ea d .me" .
Type thi s f i l e by

F i nd t h e
,

~ Y:r ea d one". I f we need to p r ov ide any additional
enter i ng

t h i s f i l e wi l l cont a i n
i t . F ol l o w a ny s uc h

s queeze p r o g r am " u sq.exe" t o y o u r
working d i s k byCoPY the y Y:usq.exe/ v " . You wi 1 1 need to do this for each

file on the master d i s ke t t e w ith a "q" a s t h e
T hen f o r

r o f i t ' s f i l e name exten t i on r un t h e unsqueeze
second 1

t example, to unsqueeze the file "std io.hq" on theprogr~~. n ter " us q Y : s t d i o . hq" .
T he unsqueezed v e r s i o n o f

1 1 be placed on drive "X" with the name "stdio.h".
rocess for each of the squeezed master fil es. TheRePe

ram will take wildcards for the filenames but thisunsqeeze P
o e car e f u l l y . You must take into account the disk

"unsqueezed" f i l es a re
usually much larger than theNo

" , f j] es . Any problems reported indicate some machine"squee'
s of tware p r o b] e n or f aulty distribution disks.

If
malfunctto"'

that your distribution disks
are faulty p leaseyou conc l

suppl ier . If al 1 el se fails, cal 1 us. /c ontact y o u

Final l y w r i t ~

1.4.2 . DOS f

d is t r r
' rston].y the f i r

rsion.cversio
read .md .me

les

protect and label your unsqueezed master diskettes.

i but io n d i s k s c o n t a i n t h e f o l l o w i ng f i l es.
N ote t h a tthree f iles are shipped in "unsqueezed" format.

c86 The version of the files on this disk.

Unsqueeze program .
Final instructions and notes.

usq.exe
Standard header f ile.s td to .h
Compiler pass 1* ccl .exe

1-5

GENERAL

OPTIMIZING C86 USER'S MANUAL

cc2.exe
cc3.exe
cc4.exe
arch.exe
marion.exe
base.arc
d osal l . a r c
dos2.arc
mathbase.arc
mathsft.arc
math87.arc
zdspc.arc
c86sas. I ib
c 86san.l i b
c8 6s2s. I ib
c86s2n. I ib
c86bas.l ib
c86ban.l ib
c 86b2s.l i b
c86b2n .lib
zds pc s . I ib
zdspcb.l i b
prologue.h
epilogue.h
model.h
e rror .h
ctype.h

The basic math library.
Software 8087 math routines.
Hardware 8087 math routines.

Compiler pass 2 .
Compiler pass 3 .
C ompiler pass 4 .
Source library maintenance program.
Relocatable library maintenance program.
The basic support library.
I/O library for

all versions of DOS.

I/O library for DOS 2.0+ (includes pathnames)

Z-100 PC routines (non-portable)
Library; small, dosall, mathsft.
Library; small, dosall, math87.
Library; small, dos2,

m athsf t .

Library; small, dos2,
math87.

Library ; b i g , dosall, mathsft.

I ,ibrary ; b i g , dosall, math87.

L ibrary ; b i g , dos2, m athsf t .

L ibrary ; b i g , dos2, math87.

Library; small, Z-100 PC routines.
I,ibrary ; b i g , Z -100 PC rou t i n e s .

Assembly header f i l e .
Assembly trailer file.
Assembly b ig/small control f ile.
Error def in it ion header f i le .
Character c lass t a b l e 0

1.4.3. Transfer files.

Copy the f iles you need from your
unsqueezed master d isks to

w orking d i s k s . For your initial use you
wil l ne e d t h e f i l e s

marked with an asterisk ("*") above.
The remaining files are not

You should a l s o copy any o ther needed
utility programs, such as a

Create a source program. We suggest you use the editor
supplied

with your operating system,
although any editor that creates

standard text files should be satisfactory.

S ince C i s a c a s e

sensi t i v e l ang u age "main " i s d i f f e r e n t f r om " M AIN" .

You wil l

need to t ype your source c ode i n l owe r case fo r i t t o work

properly . As an example we w il l u s e " h e l l o. c " , w hich conta i ns :

needed at this time.

text editor, to your
w orking d i s k .

1.4.4. Create a test program.

()include " s t d i o . h "

main()
(

p rin t f (" He l l o , Wor l d~n") ;

1-6

OPTIMIZING C86 USER'S MANUAL GENERAL

1.4.5:,, a ap;1 t . assess
To compile the program, type the following four lines:

X :ccl Y : h e l l o
X :cc2 Y:he l l o
X :cc3 Y:he l l o
X :cc4 Y:he l l o

where disk drive "X:" contains the compiler and disk drive "Y:"
contains the source program. You should substitute the correct
designators for your system in the above command 1 ines. These
are usually " A:" a nd " 8 : " . They may be omitted for f iles
residing on the default drive (Usually drive "A:").

The result of this process will be the file "Y:hello.obj".

1 • 4.6;- Lfinking~- -I f

Link the program to get the executable version by typing:

X:link Y:hello„con/map,X:c86sas

We assume that the 1 ibrary ("c86sas.l ib") resides on the same
disk as the programs. More information on the use of the linker
may be obtained by consul ting you DOS manual.

1 .4.7. Execut i o n .

T he program should b e executed by typing "Y:hello" (without the
q uotes) , f o l l o wed by a c a r r i a g e r e t u r n (o r e n t e r) . The program
will then type the message "Mel lo, World" on the console.

1.5. Using the caapiler.

1.5.1. Batch files.

The commands required to run the compiler may be placed in a
"batch" file t o r e d uce t y pi n g a n d er r or s . All the programs
return termination status, so that under DOS 2.0+ the batch file
may be arranged to terminate on error . W e us e t h e f ollowing
batch file (named cc.bat) for most compilations.

cc2 %1

cc3 %1

ccl %2 %1
if errorlevel 1 goto done

if errorlevel 1 goto done

if errorlevel 1 goto done

if errorlevel 1 goto done
g oto a l l o k
:done
p ause erro r i n c o mpi l a t io n
:al lok

cc4 %1

1-7

OPTIMIZING C86 USER'S MANUAI, GENERAL

The first argument is the name of the source file, the second is
optional, and is any compiler switches. for example:

W ould do a s i mple compi l a t i o n
Compile "big" and "8087".

cc xyz
cc xyz - nb

See your Operating System documentation for more information

1.5.2. Using the DOS linker.

The standard DOS linker should be used to link your compiled code
with one of our libraries. Multiple ".obj" files and multiple
libraries may be used to create one " .exe" f i l e .

As far as we have been able to check, an object f ile will always
over-ride a 1 ibrary member which has the same pub l ic symbols.
However, 1 ibrary searching is performed once only, from left to
r ight. Therefore, i f you 1 ink wi th the 1 ibrar ies "A+8+C",
library 8 cannot call out any modules from 1 ibrary A, and library
C cannot call out anything from A or B. As a result, you should
always place our library last, since it will never call out any
module from any other library.
See your link documentation for information on producing maps and
on automatic response files.

1.5.3 . Us ing CHKDSK.

Aborting any program that has an open output disk file causes DOS
to "forget" that part of your disk space. If you do it often
enough, you will have no usable disk space left. This space may
be reclaimed by the DOS program CHKDSK. We suggest that you run
CHKDSK once a day on yo ur w o rk i ng d i s k s .

1.6. File systma.

The i/o packages are intended to present a UNIX like interface to
the programmer. This section provides information that will help
you understand the i mplications of the d e s i g n .

A standard UNIX system has two groups of input/output functions.
The basic group prov ides i/o buffered by the operating system,
and very few services for programmers. The second group prov i des
within-program buffering and a large col lection of services.

We have provided both sets of functions. They react as a UNIX
based program would expect. The following sections provide more
i nformat ion .

1-8

OPTIMIZING C86 USER'S MANUAL GENERAL

1.6.1. Basic services.

The basic services are provided by the functions:

open
creat
close
read
write
lseek
l t e l l

Open an existing file.
Erase any existing file, then open a new (enpty) file.

Read bytes fran a file.
Write bytes to a file
Posit i o n i n a f i l e .
Report current position in file.

Close a f i l e .

All the above functions identify the file by a file descriptor,
which is returned by open and create, and inpu t t o a l l ot he r
functions. By UNIX convention, file descriptors are small non
negative integers, and open/create must return the smallest
possible file descriptor for any cal l. You can depend on t h i s .
As a result, you can predict the file descriptors returned by a
sequence of open/creat/close calls.

1.6.2. S t r eam services.

Al 1 other input/output functions use a stream identifier. This
provides a variety of useful services including formatted input
and output. These functions should be used by your p r o g rams fo r
portability, and generality.

A stream identifier is returned by the function "fopen". Stream
identifiers are by UNIX convention pointers to type "FILE", where
" FILE" i s d e f i ned i n " s t d i o .h" . The a c t u a l de f i n i t i on i s
implementation dependent, and our DOSALL and DOS2 libraries have
d i f f e r e n t d e f i n i t i o ns . You should not assume any relationship
between f ile descriptors and stream identifiers in your programs.

1.6 3 The DOSALL I/O library.

T his I / O 1 ib r ar y wi l 1 r u n o n all versions of DOS. It orov ides al 1
the services available under DOS 1 . 1 , a l ong with c or r ec t
redirection handling under any ve r s i o n o f D OS. I t d oe s s u ppor t
path names when executed under DOS 2.0. You shou l d u se t h i s
library if you are writing programs that wi 1 1 have to run under
D OS 1.0, 1 . 1 o r 1 .25 .

1.6.4. The DOS2 I/O library.

You should use this library i f you can . I t i s s maller , f a s t e r
and more extensive than the DOSALL 1 ibrary, and will have more of
our attention. It provides full use of the DOS 2.0 I/O system,
i nclud ing pa t h n a mes, b u t c a n o n l y be us e d w i t h D O S 2 . 0+
operating systems. The choice is yours.

1.6.5. File opening modes.

Because DOS and UNIX have different end of 1 ine and end of file
conventions, we have had to make a distinction between binary and

1-9

GENERALOPTIMIZING C86 USER'S MANUAL

A SCII data . Th i s wa s done i n t h e f i l e ope n i n g l og i c t o m in i m i z e
program conversion effort. Thus we have ASCII and BINARY open
modes for f iles. Once the mode is chosen, the remainder of the
program should work without problems, unless you mix ASCII and
binary data in one file.

1.6.6 . DOS character dev ices.

We provide special processing for "CON:", " PRN:" an d " A U X : " ,
which refer to the console, printer and auxiliary communications
port respectively. These files may not be opened in update mode,
but may be opened more than once in a program. Under the DOSALL
1 ibrary bdos calls 1 through 5 are used to transfer this data in
unbuffered mode. These are treated as regular files under the
DOS2 library. We have heard of some bugs in DOS 2.0 that cause
some problems when treating the serial port as a f i l e. Yo u
should use the new functions that communicate with the serial
port in the V2.20 C86 library if you possibly can.

1.6.7. Console input.

Special p r o c ess ing i s pr ov i d e d f o r t he C ONSOLE ("CON:") i f i t i s
opened in ASCII input mode. In this case we always input a
complete line of input from the keyboard. Thus the line editing
characters are available to the user. Note that files open to
the keyboard do NOT share a common buffer, so that interlaced
reads on more than one file opened to the keyboard may give
surprising results. This may change in a future release.

This mechanism provides that console input is read a 1 ine at a
time. Thus your program will wait until a return has been input
before proceeding. If you want to input single characters, and
do not require the carriage return, you should open another
channel to the console in binary mode, or use bdos() calls, which
will also give you control of echoing.

1.6.8. Standard files.

Three files, named std in, stdout and stderr, are opened at
program initiation. These f iles are available to the program for
the function indicated by their names. By default, these files
are opened to the console ("CON:") in ASCII mode.

The defaults for stdin and stdout may be changed by a process
known as redirection on the command 1 ine that invokes the
program. R edirection is specified in the command line as

0

fol l ows:

progname (newin)newout other arguments

Which causes "progname" to read its input from the file "newin"
instead of the keyboard and write its output to the file "newout"
instead of the console. The filenames may be any legal filename
or any of the character device file names. Of course, you can' t
open the printer for input.

1-10

OPTIHIZING C86 USER'S MANUAL GENERAI.

If std in and stdout are both red irected to the same disk f i le,
THE INPUT FILE WILL BE DESTROYED' USUALLY BEFORE ALL THE INPUT
HAS BEEN READ.

You may also append data to the end of an existing ASCII file,
using the command:

progname »appout other arguments

I f f i l e " ap p o ut " d oes no t e x is t , i t wi l l be c r ea t e d

1.7. Language information.

The f ollowing information is needed for a full definition of the
C86 programming environment. It should be used in conj unction
with K I R.

1 .7.1 . Dat a t y p e s .

The supported data types and their s izes a r e :

char
unsigned char
short
unsigned shor t
int
u nsigned i n t
pointer
long
uns igned long
f l oa t
double

8 bi t s
8 b i t s
1 6 bi t s
1 6 bi t s
1 6 bi t s
1 6 bi t s
16 bits or 32 bits
3 2 bi t s
3 2 bi t s
3 2 bi t s
6 4 bi t s

(8087 fo rmat)
(Used fo r f . p . c al c u l a t i o n s)

Pointers are 16 bits long in the smal 1 model and 32 bits in the
big model. All pointers in a single program must be the same
leng th.

The floating point data storage uses the 8087 data formats, even
i f you are using the floating point software. Our bul letin board
has a complete description of the floating point formats. To
have access to the bul letin board you need t o j o i n o ur us er
group, which can be done by contacting Computer Innovations.
Float data has a n 8 bit exponent, allowing numbers up to
approximately le+38. Double precision has an 11 bit exponent,
al lowing numbers up to approx imately le+308. Float s a r e AL WAYS
converted to double before being used or passed to a function.
ALL floating point calculations are done in double precision.

1.7.2 . S t o rage t y p e s .

Auto, extern and static are as defined in KsR. Register class is
converted to auto for the moment, but this w il l c han g e a s w e
enable more of our optimization logic. I f yo u a r e w r i t i ng new
code, then you should apply register class where appropriate in

1-11

GENERALOPTIMIZING C86 USER'S MANUAL

preparation for future releases of the compiler.

1.7.3. Definition of extern.

The use of the keyword "extern" varies radically from compiler to
compiler. Our definition is taken from KSR page 206 item 11.2.

Any external data item must occur exactly once without the
keyword "extern". This entry may have an initial izer. It
causes storage to be reserved for the data item.

All other entries must include the keyword "extern" and may
not contain an initial izer. They do not cause storage to be
reserved .

1 7 4 D ebugging.

Most debugging should be done by adding print statements and re
compil ing the program.. However, your standard debugging package
may be used to debug programs. You can obtain a memory map from
your linker. You may then place break points on the first
i nst r uc t i o n o f a f unc t i o n , a n d e x amine l oc a l var i ab l e s and
arguments. We have found that the DOS debug package is much more
difficult to use under the big model than the smal 1, so work with
the smal 1 model if you can.

When al 1 else fails, the assembly source output from the compiler
should help you to find bugs. Note that because of problems in
the assembler, the assembled assembly source code may not match
the direct object code exactly, although functionally it will be
identical. Typical ly the assembler may chose another op code for
the same instruction. For example it may use a regular three
byte jump instruction, where the compiler wi 1 1 use a two byte
short j ump.

In the generated assembly code, labels lines take the form:

It i s :

.OXXX ;NNN

where the xxx is the approximate address of the label in the
assembled code and NNN is the approximate 1 ine number of the
source code that resulted in the surrounding assembly code.

I t i s usually easier to add a few print statements and recompile.
symbol ic debugger is available. It is cal led PFIX86 PLUS and

is a very useful symbolic debugger. For more information contact
Computer Innovations.

1.8. Converting to V2.20 freya V1.33.

All changes made to the library are intended to make OPTIMIZING
C86 conform to the standards in KsR. If you find unusual things
happening, you should examine the library documentation, or even

1-12

OPTIMIZING C86 USER'S MANUAL GENERAL

the library source code for changes in definitions. V ery f e w
changes have occurred, but it is probable that the 2.0 and DOS
AI L l i b r ar i es hav e minor differences. In particular, the
def inition of STRNCPY was incorrect, a nd has been c h a nged t o
conform to UNIX usage.

1 .8.1 . Po i n t e r s .

If you are converting running code to the big model, your most
probable errors will be mis-use of pointers. Since the b i g mode l
uses 16 bit ints and 32 bit pointers, pointers and ints are no
longer equivalent. You must declare pointers as pointers for the
c orrec t c o d e t o b e g e n e r a t e d . You must also declare functions
that return pointers to be returning pointers. This has ca used
us signif icant problems, as the compiler does not p r o v id e much
help in detecting such errors.

Code that uses the function "segread" under the small model
almost certainly should NOT use it in the big model. Examine
1 ibrary functions, such as " open" in DOSALL, for examples of the
correct c ode .

1.8.2. 80 87 support.

This version of the compiler generates in- line 8087 code and also
includes a trig and math package for direct use of the 8087.
Note that this library is distinct from o ur C l a nguage t r i g an d
math functions for use with floating point software. T his shou l d
r esul t i n yo u r f l oat i n g p o i n t c o d e running about three times
f aster .

1.8.3. 2.0 I/O library.

This is provided as an alternative to the standard DOSAIL
1 ibrary . I t pr ov i des additional functions, such as change
directory, make directory and full path name support. This wi 1 1
finally anerge as our standard 1 ibrary, and most I/O performance
enhancements wil 1 be done to this 1 ibrary only. Use this library
if you can. The DOS2 libraries a l l ha ve a "2" as the middle
character in the library descriptor (e.g. C86s2s) .

1.9. Assembly language functions.

This section provides basic information required to write
assembly language functions. This information may change with
future versions of the compiler. If you must use assembly code,
keep the function short and to the point. Most things can be

Something we should point out now is that the layout and format
for assenbly language source files that you are linking with C86
are important. You should follow the layout of some o f ou r
assanbly functions in the run-time archives. I t woul d b e a v er y
good idea if you could read and understand such things as where
local data goes, how to interact with the big model, segment

done i n C.

1-13

GENERALOPTIMIZING C86 USER'S MANUAL

names, etc. from our source code. A very good example is the
"write.asm" source in the DOS2 run-time source archive.

1 .9.1. Header f i l e s .

Three header files are provided to support assembly language
p rogramming. T hey a r e :

Defines the model to assemble.
Defines segment names.
Closes the assembly file.

model .h
prologue.h
epilogue.h

These f iles are intended to make your assembly code easier to
c onver t i f any c ha n ges a r e needed for f u t u r e r e l e ases . Yo u
should include each of these three files in any assembly code you
write. Your code should be placed after the inclusion of
prologue. See a small library routine like peek.asm for an
example.
We would like to note that common versions of masm have a number
of problems,and that the code you write may not be the code you
get. You must check the resultant code with the debugger in a
test program. The most canmon problems are:

Incorrect data addresses. (bad relocation)
Incorrect instructions. (wrong op code or address fields)
Incorrect code addresses (segment nesting fails)

1.9.2. Model.h

This file should be included at the head of any assembly language
function. It is used to define the assembly language switch
"QBIGMODEL", which currently takes the value "0" for a smal l
model assembly, and "1" for big model assemblies. N ote t ha t w e
plan other values for later releases.

1.9.3. Pr ologue.h

The f i l e "prologue.h" should be included immediately after
"model.h". It defines all the basic segment names in the correct
order to resul t in a correct 1 ink and also def ines the symbol
"8AB" which is the argument base for the chosen model, prov ided
you have used the standard entry logic, which consists of:

BP
BP, SP

PUSH
MOV

The standard return logic consists of:

MOV
POP

SP,BP
BP

1-14

OPTIMIZING C86 USER'S MANUAL GENERAL

The segment names def ined by prologue.h and the order that they
have to occur in memory after linking are:

8CODE
8DATAB
8DATAC
8DATAI
8DATAT
8DATAU
8DATAV

Code goes here in the small model.
Beginning of data segment.
Character strings and constants.
I ni t i a l i s e d g l o ba l d a ta .
To find out where DATAU begins.
Unini t i al i s e d g l o b a l da t a .
To f i n d o u t w h er e DATAU ends.

The compiler will create additional code segment names if you are
c ompil i n g w i t h th e b ig m ode l s w i t c h . These segments will always
preceed the data area in memory when the code is linked.

All your code should be placed in 8CODE, and any data in 8DATAI.
You can put your data in the other segments, as long as you
qualify all references by "DGROUP:". Note that the DATAU area is
initialized to zero at program startup time.

The file PROLOGUE.H should be included in all assembly language
code. If you invent any additional segment names, make sure t h ey
a re l i n k e d i n t o r eas o n ab l e p l ac e s . The run time system makes
assumptions about the order of segments in memory.

1.9.4. Calling conventions for functions.

Cal 1 s to functions, in C or assembly language, use the fol lowing
c onvent i ons :

Ca 1 1 ing C f unct ions push the l eft-most argument last, and
the right most argument first. Thus the left-most argument
is at the "top" of the stack.

Al 1 character arguments are conver ted to int before being
p laced on t h e s t a c k .

Registers ax,bx,cx,dx,si and di may be used by the cal led
function, and do not have to be saved or r esto r ed . THI S M A Y
CHANGE IN A F U TURE RELEASE.

The cal led function is entered by a "near" cal 1 in the smal 1
model and a "far" call in the big model.

Registers cs, ss, ds, es and bp must be preserved. Registe r
bp is the frame pointer.

1 .9.5 . Re t urned resul t s .

char, short and int are returned in register ax.

long is returned in registers ax an d d x , ax i s l eas t
s ign i f i c a n t .

1-15

GENERALOPTIMIZING C86 USER'S MANUAL

Doubles are returned in ax, dx, bx and cx where ax is least
significant and cx contains the exponent. This WILL change
in the near future.

Big model pointers are returned in ax, dx.

Arguments are popped from the stack by the calling function,
since the called function does not know how many arguments
w ere suppl i ed .

FUNCTIONS WHOSE NAMES BEGIN WITH A DOLLAR SIGN ARE INTERNAL
COMPII ER KNOWN FUNCTIONS AND DO NOT NECESSARILY FOLLOW THESE
CONVENTIONS. These may be changed but be careful to read the
existing code to determine the conventions used. They vary from
function to function.

See the distributed archives for samples of assembly language
code.

1.10. Compiler options.

1.10.1. Big model switch.

If you do not use this switch, you wil 1 generate a small model
program, which allows you up to 64Kb of code plus 64Kb of data.
Over 90% of all C programs will run in the smal 1 model, and they
will be smaller and run faster.

The big model switch will al low the whole program to be up to
1000Kb in size, but the following additional limits apply:

0
No one source file may generate more than 64Kb of code.
This limit would be hard to exceed.

The total of global and static data must not exceed 64Kb.
This 1 imit may be exceeded by having large arrays in your
program. The way around that is to create a pointer to the
array data and allocate space to the pointer at run time.
As a result, no single array may contain more than 64Kb of
data. But you can have more than one array. This should
not result in having to change much of your code.

The total stack space is 1 imited to 64Kb. Again, local
arrays could use up all available stack space, and the
solution is to use dynamic allocation.

The remainder of memory is avail able from the heap in
chunks just less than 64Kb in length.

In the big model pointers are 32 bits. The pointers hold both
t he segment and offset parts of the address. T he m o s t
significant two bytes of the double word pointer holds the
segment and the least significant word hold the offset. The
following shows how to break up the pointer into its parts:

1-16

OPTIMIZING C86 USER'S MANUAL GE N ERAL

/ * b i g model e xample * /
c har *b i gpo i n t e r ;
int segment, offset;

segment = ((uns igned l o ng) bigpoin t er) » 1 6 ;
o f f s e t = bigpo i n t e r ;

There are examples on how to get the proper formats a l 1 t h r o ugh
the run-time library source code. Look at the code for further
examples.

1.10.2. 80 87 s w i t c h .

This switch generates code to use 8087 hardware instead of the
software package. The result is much faster execution. Note
that 8087 code run on a machine without an 8087 will cause the
machine to hang, and you will have to re-boot.

1 .11. Over lays .

We no longer support our 1 33 overlay mechanism. The o n l y
available solution is to use PLINK86.

1 .11.1 . P l i n k 8 6 .

It wi 1 1 handle overlay systems under both the small and big
models, but we have had some reports that it is u nable t o h a n d l e
real ly complex overlay s tructures. You wi 1 1 need to obtain
v ers i o n 1 . 3 0 (or l a t e r) o f PL I NK 8 6 , which a p p a r e n t l y c ur es a
number of problems in the prev ious versions.

It is important that you use a "class" statement, to force the
d ata a r eas t o b e p l aced after ALL your code, and that the data
segments be in the correct order. To get this to work you must
therefore put the "class" statement at the end of your PLINK86
commands. Do not put the "class" statement in your pLINK86 f i le
if you are not using overlays, it wil 1 not work. We used t h e
following "class" statement:

class DATAB,DATAC,DATAI,DATAT,DATAU,DATAV,HEAP, STACK

1.12. Hints and other caanents.

The fol lowing notes may help you with coding problems that are
frequently reported to us.

1.12.1. Kernighan and Ritchie.

Many of the programs in K &R wi 1 1 no t compile and/o r 1 i n k
correctly unless you insert the following as the first 1 ine of
the prog ram:

))include " s t d i o . h "

1-17

GENERALOPTIMIZING C86 USER'8 MANUAL

You wil 1 also have to change "open" and "fopen" c all s t o m a t c h
our conventions, which differ sl ightly from the standard UNIX
conventions.

1.12.2. Initializing structures and arrays.

K& R do not point out that local arrays and structures (ie def ined
i nside a f u n c t i o n) c a nnot b e i n i t i a l i z e d a t c o mp i l e t i m e u n l e s s
they are declared static. Thus inside the function main() the
f ol l o wing i s v a l i d :

main()
(

stat i c c ha r * d ays []= ["mon"," tue" , "wed");

Without the word static, you wil 1 get the warning "initial izer
needs l v a l " . Th i s t y p e of i n i t i a l i zat i on i s a l wa y s v alid a t a
global level, with or without the word "static".

1.12.3. String initializers for character arrays in structures.

If you have a character array as a mmnber of a structure, and you
wish t o i n i t i a l i ze i t wi t h a s t r i ng , e nc l ose t he s t r i n g i n
b races. e g { " i n i t i al i z e r s tr i n g ") .

1.12.4. Structure and union mm4er names.

In this version of the compiler, all structure and union member
names share the same name space. Therefore, the c ompi l e r
considers that any member can be part of any structure/union.
The alternative is to assume that each structure/union defines a
separate name space, and to prov ide much tighter checking of
member names. We plan to add a switch to provide this checking
in a future release.

To remain f ully portable, we recommend that each member name be
unique. We always begin each manber name with some mnemonic for
the structure/union that contains it.

1.12.5. Assigning pointer and int data types.

In most C Compilers integers and pointers are of the same size
(in hits). Programmers frequently save an integer in a poin t e r ,
or a pointer in an integer. This is NOT a portable construction,
and KsR specifically warns against this practice.

In this version of C86, if a program is compiled with the big
model option, pointers are 32 bits, and these type of assignments
will provide interesting debugging experiences. You should also
make sure that any function that returns a pointer (including
l ibrary f u nc t i ons) , is declared before it's first use. The
compiler does not warn about these constructs, because in some

0
1-18

OPTIMIZING C86 USER'S MANUAL GENERAL

c ases they are l egal. Take care.

1.12.6. Redefinition of function name error message.

A number o f u s e r s h a v e h a d p r o b l a n s with this error message. It
is caused by cal l i n g a f un c t i o n b e f o r e i t i s d ef i ne d . W h e n a
function is used before it is defined, the compiler assumes that
the function returns an int. If you later define the function to
return any other data type, then you really have redefined the
function. T o el iminate this error message, a d d an ex t er n
definition of the function, with the correct data type, before
i ts f i r st use .

1.12.7. Run time error messages.

There a r e a nu m ber o f r un time error messages embedded deep
within the system. The message is the name of a function or
generic type of function in upper case. For example "WRITE", or
"ALLOC". These are used to deal with to tall y i mpossib l e e r r o r
situations, which should only be encountered dur ing debugging.
These er ro r messages are a l w ays written to the console, and are
always followed by an abort. See " exit" for help in locating
these prob l ems.

We would also like to mention the "BAD FILE" e rror message, wh i ch
is caused by trying to use a file that is not currently open.
This message will only appear in DOSAIL libraries.

Unusual error messages can also be produced by programs that have
destroyed memory.

1.12.8. Ilndocumented functions.

We often add functions to the library before we add l i brary
documentation. An examination of the library source archives may
be interesting. It wi 1 1 also be useful to read the source code
in our 1 ibraries when you need some examples of C code.

1.12.9. El i minating the standard functions.

If you don't need any of the standard library functions, you
should modify the functions " e xi t " , "amain" and " main". These
functions call in most of the standard library c ode. Yo u c a n
probably el iminate al 1 of " main", s ince i t i s m a in l y r es p o n s i b l e
for file redirection and argument parsing.

You should see the function " fmtou t " and " fmtin" if you want to
eliminate t h e f l oa t i n g p o i n t s u p p or t l i br ar y . This will save
a bout 1 . 5Kb o f c o d e .

Since the linker only includes functions needed by the program
being linked, this will reduce the size of the final program.

1-19

OPTIMIZING C86 USER'S MANUAL GENERAl

1.12.10. Tr ig l i br a r y .

The C language versions of the trig functions were written using
the book "Software Manual for the Elementary Functions" by Cody
and Waite (Prentice-Hal 1 1980). You may f ind this book to be a
useful reference for more information on the algorithms used i n
these functions. The 8087 assembler tr ig functions were created
from code donated by a number of generous compiler owners.

1.12.11. Creating CON files.

The only reason that we have found to create a COM f i l e i s fo r a
device d r i v e r . I f yo u ar e wr i t i ng a d e v i c e d r i v e r an d w ou ld l i ke
to know all of the procedures on how to create a COM file the
information is on our user group bul letin board. To f ind out
more about our user group contact our sales staff for more
information. A lso check future versions o f ou r us e r g r ou p
newsletter for the description on how to do this, it might just
s how up there a l s o .

1.12.12. Creating ROtl files.

we are now selling a se t of routines to help you create "romable"
code at a naninal fee. This package is called ROMPAK and to find
out more about it contact Computer Innovations.

1.12.13. Using 8 bit characters in strings.

There is now a new switch for the cunpiler which allows extended
ascii characters to appear in your C programs. The '-e' wil I
convert all characters with their 8th bit set to a 3 digit octal
escape sequence gxxx. There is now no need for the "al lbits"
program of earlier versions of C86. Be warned that some text
edi t o r s w i 1 1 not wo r k wi t h t h i s s wi t c h . See ccl documentation
for more deta i 1 s.

1.12.14. Convert ing BDS-C programs.

You will have to modify some 1 ibrary function calls and the
g lobal data def i n i t i ons.

If you have a number of programs, it may be quicker to modify our
library functions to match the BDS-C definitions. W e hope t h a t
the C86 users group wil 1 be able to prov ide such a I ibrary.

We recommend the following method of converting the global data
definitions. We assume that the global definitions are in one
file which is "gincluded" with each of the source files.

Add the word "EXTERN" in front of each existing definition.

1-20

OPTIMIZING C86 USER'S MANUAL GENERAL

In one f i le, before the "I include" statement for the global
def i n i t i on s , a d d t h e d ef i n i t i on :

redefine EXTERN

In all other files add the definition:

redefine EXTERN extern

You should also use the "-u" switch with program CC2.

1.12.15. Pa thnames.

There is now ful 1 pathname support in both the OOSALL and UOS2
1 ibraries. There are also full pathnames available for the
0 include preprocessor statement. See the documentation for ccl
for more details. One other note under this section, if you ever
include a pathname in a character string constant make s ure t h a t
you have two backslashes for every one in the string. I n o t h e r
words, the backslash is the escape character in C.

1.12.16. Porting code to OPTIMIZING C86.

A number of users have transported code that compiled under UNIX
a nd ot he r C C omp i l e r s t o O P T I MI Z I N G C 8 6 . Generally there was
little or no conversion effort involved, except for the very non
standard i/o libraries provided with some compilers.

Some of our compile time switches are intended to r educe t he
problems of p ortability. See the program description sections
f or detai l s .

1-2 1

OPTIMIZING C86 USER'S MANUAL GENERAI,

1.13. Memory layout under DOS.

The fol lowing shows the layout of memory when a typical C
program (such as the compiler) is executing under DOS.

interrupt vectors

DOS code and dos controlled areas

program segment prefix

c ode of c pr o g r a m

data (static) of c program

heap (dynamic) Expands towards stack

unused, available for heap or stack
growth

stack (g r ows t o wards t h e h e ap)

unused memory

command.corn (resident part)

With the smal 1 model, code and data areas are 1 imi ted to 64Kb
each. In the big model, total code and data are 1 imited by the
size of manory, but the static and stack sub-sections of data are
1 imited t o 6 4 K b e a c h .

1-22

OPTIMIZING C86 USER'S MANUAI GENERA(

1.14. What to do if things go wrong.

This section of the manual wil 1 be the place where hints and help
wi 1 1 be given out for what we consider to be the most recurringproblems with C86 usage.

1.14.1. Problems with functions in the library.

In general, if you are having problems with a library function,
try and create a sample program. You cou l d t r y t o r un the
example program found i n c h a p t e r 3 und er t he f unc t i on
descr i p t i o n. Som e ti me s i t i s as simple as not declaring a
function that returns a non- integer.

1.14.2. Big Model and memory limits.

A common problem with C86 big model users is that they say that
they have "a 256K machine and I can only allocate about 80 or
90K". The reason why is that we only access 96K for the stack
and the heap as a default. T his way us er s o f C 8 6 c a n b o t h u s e
the big model on just about al 1 machines and a l s o u s e t he
" system()" f unc t i o n . Since the "system()" f unction needs unused
memory outside of where the program is loaded you cannot access
al 1 of the machine's memory for the data segment if you want to
use the function. You can change the value of M A X F MEM in
default.c, (see default in ch. 3) recompile the function, and

include the object module in your 1 ink edit step to access more
memory for the big model. The number in MAXFNEM is the nunber of
16 byte paragraphs. If you access al 1 of memory you wil 1 not be
able to use the system function.

1.14.3. Problems with opening a file.

Nake sure you always check the returns on a file open. Also make
sure that when you include a path name that you u se t w o
backslashes for one inside double quotes. Sometimes you will
also run into a file limit when using the DOS2 libraries. The
DOS2 file limit defaults to 8 and 3 or 4 files are a l r e ady o pened
before your program starts to execute . Th i s de f a u l t can be
changed in your DOS config.sys file. Fopen a l s o n e ed s a b ou t 1 K
on the heap i n t h e small model and 2K in big model for the file
b uffe r .

1.14.4. System function.

tf you are hav ing problems with fitting your program into memory
when using the system function there are s ome things yo u ca n d o .
If you can somehow use less data space for you programs (either
the one calling the system function or the program called by it)
you can shrink the size needed by changing defau l t . c . The
default variable that you want to change is MAXFMEM. When you
shrink this value, m ake sure you ar e c a r e f u l . It is much better
to err on the side of having extra unused memory than to make the
program unusable.

1-23

OPTIMIZING C86 USER'S MANUAL GENERAL

If nothing happens when you invoke the systmn function, make sure
that command.corn is found either in your path or on the default
d rive and d i r e c t o r y .

Al so system wil 1 not work with your switchar set to another
character. You can either modify the source to the system
function to cope with your switch character or you can reset it
to the default.

1.14.5. Interrupts and intrinit.

Since this is a somewhat tricky area you should really understand
the documentation and examples in chapter 3 under the intrinit
function. Something that is very important to mention again here
is that the functions that will be invoked by the interrupt
handler must be very, very short. Don't ever do a printf() cal 1
inside one of those functions. I t w ill be too much code.
Certain interrupts are so frequent (the timer tick for instance)
that you can hardly do anything inside the interrupt function.

1.14.6. Serial port caaaunications.

The new functions added to version 2.20 of C86 should help
greatly with the communications problem. If you can 1 ive with
the buffering and speed limitations this is definitely the way to
go. Treating the COM por'ts as a file and using the I/O system
a re hazardous under DOS 2.0, so that should be avoided. O n
faster machines we have achieved 9600 baud rates using our
1 ibrary functions, so it can be done. If you really need to get
high data transfer rates you should write your own interrupt
dr iven communications package.

1 .14.7. Funny errors out of c c l .

If you are getting funny errors out of ccl, run that pass of the
compiler over again with the '-p' switch set on so you can see
what the preprocessor is generating. Usually it becomes apparent
what is wrong when you see this output. Some of the more common
mistakes are that you have a "/*" in your program. A beginning
of comment inside double quotes must be esacaped when it appears
i n the p r ogram (i . e . " /~*") . Also check that all included files
have a newl ine at the end of the file. This would cause a 1 ine
wrapping prob l a n .

l. 14.8. Sig model pointer arithmetic.

Version 2.20 of C86, assumes that big model programs do all
pointer arithmetic in the same data segment. There is a good
chance this may change in later versions. But for now you must
do pointer arithmetic in absolute addresses by using the
ptr toabs() and abstoptr() functions if you cannot assume the same
data segment in the big model. Q

1-24

OPTIMIZING C86 USER'S MANUAI. GENERAL

1.14.9. Undefined results, (or a lesson in uninitialized pointers)

If you f ind that you are getting memory corruption or that some
other strange, undef ined results are happening, you s hould c h ec k
f or u n i n i t i a l i z e d p o i n t e r s . In C when you declare a variable to
be a pointer to a certain data type you must then have it point
to a reserved space in memory to hold that data type. Just
declaring a pointer does not save space for the variable. I f yo u
are confused by this whole area of C, there is a clear discussion
of pointers in the book "The C Programming Tutor" by Icon A.
Wortman and Thomas O. Sidebottom. Chapter 7 of this book is very
well w ri t t en .

Another very common cause of strange resul ts and memory
corruption is array subscripts out of bounds. This should be
checked very careful ly when tracking down strange results.

1 .14.10. Scanf and i t ' s u s e .

Scan f and fscanf are for formatted input. Since humans are not
formatted ind iv iduals scanf should not be used to gather human
inputs. Scanf works best when it is reading inputs that were
formatted by machines (e.g. from print f) . When deal ing with
human input i t is much better to use gets or fgets to read the
input into a buffer. The buffer can then be handled much easier
by the programmer for error checking, formatting, etc. than if
you were trying to do the same thing from stdin.

Scanf also works on ascii representations of the data. To read a
binary f ile of integers for example, you would not use scanf. To
read the binary formats you would have to use read or fread to
read the data directly into a memory location.

1.14.11. S t r ncpy

You should be very careful of the use of the strncpy function.
It does not always put a NULL after the destination string. Make
sure you carefully read the description of the function in
chapter 3 if you think you are having trouble with it. You may
want to rewrite this function to suit your needs.

1.14.12 . "mixup offset exceeds field width"...

If you are getting this message from the DOS linker that you are
using you are most likely doing one of the following things:

* You have mixed near cal 1 s with far cal ls. This means you
are linking together object code compiled with the big
model and object code compi 1 ed with the smal 1 model.
Double check this and re-compile if you are not sure how
some of your object modules were compiled.

1-2 5

OPTIMIZING C86 USER'S MANUAL GENERAI

'If you are linking in any assembler modules you probably
are not fol lowing the layout and formats needed for the
assembler source code. You should definitly understand the
section on assembly language functions in this chapter.
Also, make sure you follow the layout and format of one of
our assembler functions that make up the run-time 1 ibrary.
A good example is "write.asm" in the DOS2 archive. The
local data of the assembler function must be put in one of
the data segments defined by our prologue.h f i le. Also,
the names of the code and data segments have changed from
previous versions of C86. Double-check to make sure that
all of your assembler code is in the correct format.

* For some strange reason the linker gives this error message
if you exceed the 64K limit in g lobal and static data.
What this usually means is that you either have one large
global array or many small ones which when added up exceed
the limit. The best way to check this out is to add the
sizes of the data segments from the link map output. If
this exceeds 64K you must shrink it down by dynamically
allocating some of the data regions rather than having
t hen be g l o b a l .

1.14.13. If all else fails...

We would appreciate it if you did a few things for us before you
called with a problem with C86. First try and read the manual
again in the appropiate places for some information. As strange
as it may seem, the answer to your problem might be found that
way. If you feel you have found a bug after this, please have an
example that is as simple as possible. This helps us greatly.
Also, include in your correspondence your serial number or have
it ready if you call. If you send a letter please include a
phone number so we can call you if we need more information.

0

1-26

OPTIMIZING C86 USER'S MANUAL
PROGRAMS

2. PROGRAM DESCRIPTIONS

2.1. ccl , p r e processor.

2 .1.1 . F unc t i o n .
This pass o f t he compiler r eads t h e s o u r c e p r o g r am, p r oc e s s e s
1 ines beginning with the preprocessor control character ("¹"),
and outputs a file of lexemes.

2.1.2 . Osage.

The coxmand line required to execute the preprocessor is:

ccl [-labcdehinpstu] filename

If the f i 1 e name does not i n clude a per i od , a d e f au l t e x t e n s i o n
of " .c " i s as s umed. The output file has a ".Scl" extension.

are:

2.1.3. F l a g s .

to ccl, which makes batch files less complex. The f l ag s

Produce c o d e t ha t i s o p t i mi z e d t o t ake advantag e o f t he
80186 or the 80286 architecture. Code pr od uced b y t h i s
switch WILL NOT run on the 8088 or the 8086.

(Effects cc4) Generate assembly source code instead of a
".obj" output file.

Big memory model switch. I f t h i s sw i t c h i s on a l l po i n t e r s
are four bytes in length and functions that return pointers
MUST be dec l a r e d be f o r e us e . A l 1 pa r t s o f an execu t a b l e
program MUST be compiled or assembled with the same setting

Indicates that comments a re n e s t e d . With t h i s f l ag the
compiler expects each opening comment token ("/*") to have a
matching closing comment token ("*/"). Without it, comments
are processed as specified in KI R. We recommend AGAINST the
use of this swi tch. If you wish to comment out bl ocks of
code, use an ¹ i fdef with a symbol that is n ever d e f i n e d .
Because this switch exists, comment tokens inside quotes in
y our p r o g r a m h a v e t o b e sepa r a t ed with a bac k - s l as h .
WARNING: this switch wi 1 1 go away in the near future.

Defines t h e c h a r a c t e r s t h a t f ol l ow, up to the next white
s pace , as i f t hey had bee n s pec i f i ed i n a " ¹d e f i n e"
statement before the first li ne of t h e s o u rce p r ogram. More
than one of these flags may be present in the command line.
You can onl y def ine the presence o f the name; you c a nnot
give it a value.

enables processing of C source files w ith e x t e nd e d A S C I I

Al 1 compiler flags, for al 1 passes of the compiler may be input

of this switch.

2-1

PROGRAMSOPTIMIZING C86 USER'S MANUAI

characters in than. Any character e ncountered i n t he so u r c e
file with it's 8th bit set will be converted to a 3 digit
octal escape sequence. This flag may cause very strange
results when used with certain editors. You shou l d n ot e
that the only safe place t o i nc l ud e ex t e nd e d a s c i i
characters is inside character str i ngs .

-h w here to search for () include files. (See notes)

Identifiers are significant to 31 characters instead of 8.
The result is non portable but more maintainable.

(Effects cc3) Generate code to use the 8087 Numeric data
processor chip for all floating point operations. Otherwise
code will be produced for the floating point package.

preprocesso r ac t i ons hav e been pe r f o rmed . Th i s i s a
valuable debugging tool for problems caused by ()def ine

-p P rint a l i sting of the source program to stdout after al 1

statements.

-s (Effects cc2) Process string literals as an array of

(Ef fects cc3) Generate cal ls for program tracing. This
currently generates a call to Sentry before any other c ode
for each function. The Sentry function may be changed as
desired to assist in program debugging. See the description
of Sentry in the 1 ibrary.

(Effects cc2) Treat all occurrences o f t h e r e se r v e d w o r d
" char " a s an oc c u r r en c e o f " uns i g ne d c h ar " . This i s
provided for canpatibil ity with some 8080 C Compilers. It
also sets the "-s" flag.

"unsigned char" instead of an array of "char".

2.1.4. Notes.

How to use the '-h' switch:

- hsystem[,projec t]

project is the name of the path to search for project files.
These places will be searched if the filename does not contain a
drive or pathname specif ier. The o r de r o f se ar c h i ng i s as

system is the name of the path to search for system fi les.

fol l ows:

For f i l e s w h i c h a r e () inc l uded w i t h " "

search the path specif ied by the source file. (e.g. if you
are compi 1 ing c:~c86~program.c and you () inc l ud e " s t d i o .h " t he
compiler will attanpt to open c:~c86~stdio.h first). 0
For f i l e s w h i c h a r e () i n c l uded w i t h () or

2-2

OPTIMIZING C86 USER'S MANUAL PROGRAMS

search according to the path speci f ied by the project
pathname.

search according to the path specified by the system
pathname.

Example:

ccl p r o g ram -h~c86~,~new~

program.c contains: g include <stdio.h>

the compi ler wi 1 1 attempt to open std io.h in the fo 1 lowing
order :

"~new~std io .h "
"Xc86~s td io. h"

Example:

ccl Xc86XProgram -hc:Xsystemg iXProjec t y

program.c contains 0 include "std io.h"

the compiler will attempt to open std io.h in the fol lowing
order :

"~c86$std io .h"
"~project~std io.h"
"c:~system~std io.h"

Remember that i f you have a ' : ' , ' / ' , or 'g' in the 0 include
filename, the compiler will try to open it "as is" and no other
search i n g w i 1 1 be do ne . I t i s a l so i mp o r t a n t t o r em ember t ha t
project and system path names must be termination by

2.1.5 . F e at ures .

All preprocessor lines beg in with a "g" i n column one of a line.
As a special feature of the c urrent version of c cl , t h i s
character may NOT be followed by any spaces.

The preprocessor implements the following features:

ginclude "filename" — Include the content of a file. T o f i n d o u t
how to use it with the ' — h' switch see the notes above. I f
you do not use the '-h' switch it wi 1 1 look in the following
places for the filename to be included:

1. The directory that the C source file is in.
2. The default directory.

ginclude < filename> — See notes above.

2-3

OPTIMIZING C86 USER'S MANUAL PROGRAMS

()def i n e n ame x x x — Replace each instance of "name"
(name must be an identifier) by xxx in all the
fol lowing text o f the program. The repl acement
t ex t , " xxx" may b e a n y s e q uence o f c har a ct e r s ,
spaces and tabs, terminated by the end of the
source 1 ine.

name(args) replacement t ext - Replace each
instance of "name(args)" by the replacement text.
The args in the defined replacement text are
replaced by the supplied arguments. The number
of suppl ied arguments must match the number of
actual arguments.

()define

() ifdef name — Inc l ude f ollowing c ode if "name" has been defined
in a "()def ine" s t a t ement .

() ifndef name — Include fo 1 lowing code i f "name" has not been
d efined i n a "()def ine" s t a t ement.

()if expr — Include the following code if the expression is "true"
(not ze r o) . On l y co n s t a n t s a r e a l l o wed i n t h e
expression.

()else - I n c l ud e or ex c l u d e t he f ollowing code based on the
inversion of the matching previous conditional
expression.

()endif — Terminate the action caused by the previous conditional.

()undef name — Rmnove the most recent definition of name, if any.

2.1.6. Line continuation.

All lines, not just quoted 1 iterals, may be continued by placing
a backslash as the last character of the line. This is handy for
long literals and macro definitions. No line or literal may be
l onger t h a n 512 c h a rac t e r s .

2.1.7 . E r ror messages.

We hope they are self explanatory. We report the line number at
which we detected an error, which may not be the same as the 1 ine
that contained the cause of the error. If the message does not
seem to apply to the line reported, look at the previous line(s).

We report out of balance (), [] and { } pairs within a f i le. The
message contains the 1 ine where the error was detected and the
line containing the opening (, [or {. Depending on the type of
error these may be hundreds of 1 ines apart. If you can not find
the problem, add a closing),] or } at the end of the range and
run through cc2. It wrll report the unbalanced condr tron wrth
more prec i s i on .

We find that the "-p" flag is handy for problems related to the

2-4

OPTIMIZING C86 USER'S MANUAL

expansion of macro text. I t wi l l al s o h e l p f i n d problemscaused
by tw o 1 i n e s o f c ode s epara te d b y m an y 1 i n e s of comments or

PROGRAMS

preprocessor statements.

2 .1.8 . No t e s .

Avoid circular definitions such as:

redefine qwerty qwerty

They wi 1 1 cause cc l t o crash, possibly without an error message.
The "-p" option will probably help you find the cause.

The defined constant " C86 BIG" is useful for conditional ly
compiling b i g a n d smal l m ode l s o u rce code. Speci f y i n g '- b '
automaticallyd ef i n e s " C86 B I G " so yo u d o n ot hav e t o u s e
gdef ine t o d e f i n e i t . Examples of i t's use are shown t h r o ughout
the run-time source code archives.

2-5

OPTIMIZING C86 USER'S MANUAL PROGRAMS

2.2. cc2, parser

2.2.1 . Funct ion.

Reads the lexemes output by ccl, parses the program and outputs
files of initialized data, a symbol table and parse trees.

2.2.2. Usage.

cc2 [- su] f i l e n ame

2.2.3. F l ags .

NOTE: All flags should go in ccl for simplicity. The f ollowing
flag effects this pass of the compiler:

Treat al 1 occurrences of the reserved word "char" as an
occurrence of "unsigned char". T h is is provided for
compatibility wit h some 8080 C Compi l e rs . I t a l so se t s t h e
ll s ll f] ag

-s Process string literals as an array of "unsigned char"
instead of an array of "char".

Both the above switches should be avoided unless you are porting
code from other systens.

2.2.4. Er ror messages

Most of these should be obvious. The most difficult is "syntax
error", which means you added or omitted a required reserved word
or operator. In this case, the parser will report an error when
it sees a word that could not legally follow the valid phrase
already processed. We intend to provide better diagnostics and a
listing of error messages and corrective actions in the near
f uture .

If you cannot see the cause of the error, re-run ccl with the -p
option. This frequently makes the cause obvious.

2 .2.5 . Notes .

In 8080 compilers, character variables are frequently used to
minimize code size. For the 8086 they should be changed to int,
a s character variables lead to awkward code sequences. O f
course, this does not apply to character strings, or places where
character variables are natural.

We also recommend the use of "unsigned char" in preference to
"char". The opt imizer can produce much better code for the
unsigned variety on the 8086.

2-6

OPTIMIZING C86 USER'S MANUAE PROGRAMS

2.3. cc3 , code generator .

2 .3.1 . Funct i on .

Inputs a file of parse trees, and generates intermediate object
c ode fo r c c 4 .

2.3.2. Usage.

cc3 [- n t] f i l en ame

2.3.3. F l a g s .

NOTE: Al 1 fl ags should go in ccl for simpl icity. The fol lowing
flag effects this pass of the compiler:

-n Generate code to use the 8087 Numeric data processor chip
for all floating point operations. Otherwise code will be
produced for the floating point package.

Generate calls for program tracing. This c ur r en t l y
generates a call to Sentry before any other code for each
function. The Sentry function may be changed as desired to
assist in program debugging. See the description of Sentry
in the library.

2.3.4 . E r r o r me ssages.

Any error messages output by this pass are fatal. T hey are t h e r e
in case we forgot something. I f some i n v a l i d C c o d e d oe s g e t
past cc2 it is reported in this pass. We have added a l i ne
number to errors reported in this pass, but we are un a b l e t o
determine the filename. This should help in locating your
pr oh l an .

2-7

PROGRAMSOPTIMIZING C86 USER'S MANUAL

2.4. cc4, optimizer.

2 .4.1 . Funct ion .

Inputs a file of basic code information, performs optimization
and outputs object code or assembly source code.

2.4.2 . Usage.

cc4 [- a) f i l en a me

2 .4.3 . F l a g s .

NOTE: Al 1 flags should go in ccl for s impl i c i t y . The fo l l ow i n g
flag effects this pass of the compiler:

-a Generate assembly source code instead of a " .obj " output
f i l e .

2.4.4. Er ror messages.

Any error messages output by this pass are fatal. Mo s t a re

internal control messages. The only message c aused by y ou r c o d e
is the "name case conf l ict" message. Since the masm assembler
converts al 1 names to upper case, we do too, and we report if two
names map into the same name. We do this test here, s ince i t
only applies to global names, and this should reduce the changes
to your source code if this condition should arise.

If you had the infamous 'ALI,OC' message come out of this pass of
the compiler it means that the optimizing pass ran out of data
space. It is usual ly an indication that you have e i t he r one
gigantic function or switch statement. The "wor k - a r o u nd " i s t o
spl it up your source f ile, large function, or statement and

compile t he separate p a r t s .

2-8

OPTIMIZING C86 USER'S MANUAL PROGRAMS

2.5. Ar ch • source l i b r a r i a n .

2 .5.1 . Funct i on .

This program al lows you to maintain a sing le 1 ibrary f i le
c onta i n i n g a num be r o f i nd i v i d u a l s ource f i l es . You av oi d
cluttering up a disk directory with a number o f t i ny s our c e
f i l e s . I t i s p r ov i d e d t o enable you to ma inta in the system
source 1 ibrary archive file.

2 • 5 • 2 • Usage

arch [- dmpr t ux] l i b n a ne f i l en ames.
.

2 .5.3 . F l a gs .

Only one of the fol lowing flags may be used for a s ing l e
execution of the program:

Delete the filename(s) from the library.

J ust l i ke ' — t' flag but just the filenames, one per line.

Just like '-x' flag except that the file doesn't get written
to disk and is displayed at the console.

Read files from stdin, one per line.

Table (print) the content of the library o n stdout. O n l y
the 1 ibrary name is allowed. Prints the file header lines,
w hich are d e sc r i bed b e l o w .

Update the library by adding or replacing the filenames to
the 1 ibrary. Creates a new copy of 1 ibname a nd renames t h e
o ld c o p y t o " . bak " . Wil l c r ea t e a n e w 1 i b r a r y i f i t does
not ex i s t .

Extract a copy of the named files from the archive and place
in files with the same names.

2 .5.4 . N o t e s .

The default extension for the library is " .arc" .

The default extension for the filenames is ".c". Note that the
extension is considered part of the filename within the library,
but a d r i v e s p e c i f i c a t i o n i s not.

The ar c h i v e f i l e i s a s t anda r d asc i i f i l e , and may be p r i n t ed
without any editing other than tab expansion, e xcept i f you ha v e

Z's (End-of-file) in your C files.

2-9

PROGRAMSOPTIMIZING C86 USER'S MANUAL

The following is a handy way to extract a l l o f t he f i l es i n an
archive using the flags cleverly:

arch -m ARCHNAME) arch - r x A RCHNAME

ARCHNAME is the name of the archive file.

Within the library, each module consists o f a hea d e r l i ne
followed by a file body. The header line contains:

* The letters "-ARCHIVE-" or "+ARCHIVE+"
* The name of the file
* The number of characters in the file body.

The date the file was last changed.
* The time the file was last changed .

2-10

OPTIMIZING CB6 USER'S MANUAL PROGRAMS

2 .6. Marion, object l ib r a r i a n .

2 .6.1 . Funct i on .

Maintains a Micro-Soft format 1 ibrary of object modules. This
avoids cluttering up the disk with a large number of file names,
and typing al 1 those names on the 1 ink command 1 ine.

2.6.2. Osage.

marion [-bdelmux] libname filename.
.

2 .6.3. F l a g s .

Y ou may use the " - b " , "-e" and one other flag from the fol lowing
list for each execution of the program.

T he f l ags a r e :

-b Create a backup 1 ibrary before doing anything else. I f t h e
flag is followed by a letter, the new version of the 1 ibrary
is created on the drive designated by the letter.

-d Delete the files from the library.

Suppress checksum error messages for record types 80, f0 and
fl. These messages can be ignored because the Microsof t
equivalent o f mar ion does not calculate correct checksums
for these record types. When marion updates a module, al 1
checksums in that module and al 1 fo 1 lowing modules are
correctly calculated, and written to the f ile.

-1 L ist t h e n ames o f modu l es , module si z e s and defined global
symbols in the library.

-m List the names of modules in the 1 ibrary in their order of
occurrence in the 1 ibrary. T his option is usefu l f o r
constructing batch files.

Update the 1 ibrary by adding/ replacing modules in the
1 ibrary. A new 1 ibrary wil 1 be created if one does not
exist. Module names are the input filenames without any
extension .

— x Extract copies of the named modules from the library.

2.6.4 . Notes .

The backup flag and the error flag may be used in conjunction
with one other flag. Since the 1 ibrary update is done OVER the
input 1 ibrary, we strongly recommend that you have a safe copy of
your input 1 ibrary, or use the backup switch. If this program
should fail or be aborted, the 1 ibrary is likely to be UNUSABLE.

2-11

PROGRAMSOPTIMIZING C86 USER'S MANUAL

2.7. Usq, P i l e u nsqueezer.

2 .7.1 . Funct i on .

Transforms a squeezed file into the original unsqueezed version.

2.7.2. Usage.

usq filename

2 .7.3 . F l a g s .

None.

2 .7.4 . N o t e s .

The filename may include a drive designator and/or wi ldcards.
The input is a squeezed file, the output is (we hope) a copy of
the original file, before it was squeezed. The output file will
be written to your default drive and directory.

To unsqueeze all the canpiler files use:

usq X:cc? .eqe

This program wil 1 produce an error message if the output file
does not checksum correctly, and has been mod if ied to repor t
errors if the output file will not fix on the disk. However, we
would advise that you check that there is some free disk space
after performing the unsqueeze, just in case.

This is a copy of a publ ic danain program by Dick Greenlaw. The
source of sq.c and usq.c is available on our user group bul 1 etin
board.

2-12

OPTIMIZING C86 USER'S MANUAL PROGRAMS

2-13

OPTIMIZING C86 USER'S MANUAL LIBRARY FUNCTIONS

3. L IBRARY FUlKTIONS

3. l. INTRODUCTION

The following pages describe the functions provided in the
1 ibrary. There are equivalents of most of the commonly used UNIX
functions, plus various functions which let you have full control
of your operating environment. Note that some of the functions
are only supported under' DOS 2.00 and later.

Most of the operating system and hardware dependent functions are
by definition non portable, however most operating environments
offer similar capabilities. With some care, you can write code
that may be ported to other systems with few problans.

3.1.1. Source l i b r a r i e s .

The following source libraries are distributed in squeezed,
archived form on your distribution disk:

* base.arc

* dosal l . a r c
* dos2.arc

* mathbase.arc Basic math support.

* mathsft.arc Software 8087 support code.
* math87.ar c Hardw ar e 8087 su pport c o d e .

* zdspc.arc 2-1 00 PC specific routines (non-portable)

Basic support code for a C program.

DOS 1.1 level I/O library.
DOS 2.0 level I/O library.

The distributed libraries contain the complete content of one of
the archives from each of the above four groups (this excludes
the non-portable zdspc.arc). The DOS and math options are made
by the appropriate archive selection, in conjunction with the
setting of the big model and 8087 compiler switches.

The Z-100 PC specific routines are all in " zdspc.arc" . The y ar e
i n a l i b rary t hat i s s e p a r a t e f r o m t h e s t a n d ar d C86 l i br ar i es .
THESE FUNCTIONS ARE HIGHLY NON-PORTABLE. They should not be used
if direct portabi l i t y i s a major concern. Also , b e c a us e o f t he
way some 1 inkers work you will need to include the Z-100 PC

library before the standard libraries. A n e x ample is as
f ol l o ws :

link program+object,,/map,zdspcs+c86s2s

3-1

OPTIMIZING C86 USER'S MANUAL LIBRARY FUNCTIONS

3.1.2. Recanpiling library functions.

All the functions in one library must be compiled with the same
settings of the big model switch (-b) and the numer ic data
processor switch (-n), and these are the only switches you should
u se for l i b rary functions. Note that the big model switch for
assembly code is in the file "model.h".

In some cases, an archive wil 1 contain both C and assembly
language versions of the same function. In this case please
inspect the assembly code for any usage restrictions (eg smal 1
model only) . Usually the assenbly version is the one to use.

You should try to update an existing library with those functions
that need re-compilation, rather than re-compil ing the whole lot.

3.1.3. Understanding the library descriptions.

Each function, or related group of functions, is described on a
separate page. The f irst entry on the page is the name of the
function and a brief description of its purpose. The remaining
information is presented under a set of standard headings. The
h eadings a r e :

* Synopsis. A de f inition of thec all ing s e quence fo r t h e
function, the order and type of the arguments of the
function, and the type of value it returns (if any) .

This information is presented from the perspective of a
person about to write the function being described, so
that you may know what type of data to provide in a
cal 1 to the function.

For example, i f an argument is described as being a
pointer to int (int *), then you should use one of the
fol lowing forms for that argument in a cal 1 to the
f unct i o n :

s integer variable
name of an array of int
p ointe r t o i n t v ar i a b le (su i t ab l y i n i t i a l i s e d)

Faulty cal 1 arguments are one of the most common
problems we encounter .

* Funct i o n .

* Retur n s .

* Notes .
any
the

What the library f unct ion does .

What the return values are and what they mean.

Information that did not fit anywhere else, and
information that might hei p you in your usage of
f unct i on .

Some samples of the use of the function.* Example.

3-2

OPTIMIZING C86 USER'S MANUAL LIBRARY FUNCTIONS

* DOS. Special notes about interactions with your operating
systan.

* Operating Systan. Which operating systems the functions works
with .

* See also. Nam e s of other functions that provide supporting
or equivalent services.

* Use w i t h . F unctions that are tightly related to th is
funct i on . Usually indicates that other functions which
cannot be used in conjunction with this function are
also included in the library.

3-3

defaul tOPTIMIZING C86 USER'S MANUAI

3.2. default, Define default conditions.

3.2.1. Function

T his f i l e i s us e d t o e s t a b l i s h r u n t i m e d e f a u l t va l u e s f o r a C
program. We may add entries to this f ile from time to time, so
look at the source code for more up to date information.

When running a program that was compiled with the big model the
defaul t i s o nl y abo u t 90 K + f o r t he da t a s e g ment . We do not
access all of memory so that there is enough memory for the
system function (load and execute a progam) to run. You should
change the default value in MAXFMEM if you need more data space
than 96K in the big model.

You may change these values to suit your needs, but if you do so
include the complete source of default.c in your program. You
can also just link in the recompiled object module.

Values currently defined are:

STAKMEM

MINRMEM

T he max imum n u m b e r o f p a r a g r a ph s o f
stack+heap space that the program wil 1 use.
This will allow you to control the size of
progr'ams that use the terminate and stay
resident cal ls. Unused memory may be used
for other purposes. If more menory is needed
in the big model this defaul t should be
changed. This is the value you are most
likely to change in this file.

The minimum number of bytes that must be left
as stack space after a successful cal 1 to
sbrk0. Ranenber that there are no other run
t ime stack checks.

The number of Paragraphs at the top of memory
t hat may not be used by the program. W e
intended this to b e u s e d t o p r e s e r ve
command.corn, but command.corn has grown to
about 15K, and that is too much memory to
skip in 128Kb and smal ler systems. For now
our default value is zero paragraphs. This
c ontrol c o u l d b e u se d to c r ea t e a
communication region between programs, by
reserv ing additional space.

T he min imum n u m be r o f p a r a g r a ph s o f
stack+heap space that must be avail able for
the program to run. C h ecked at start-up
t ime.

M I NFMEM

3-4

OPTIMIZING C86 USER'S MANUAL defaul t

BUFS IZE The buffer si ze for the I/O system in the
DOS2 library. It is different for the small
and big models. You can vary this default
and make the buffers any size that you want.

3.2.2. Operating System

DOS 3.0, DOS 2 . 0+ , DOS 1 . 1+

3 .2.3 . See a l s o

amain() .

3-5

OPTIMIZING C86 USER'S MANUAL Sentry

3.3. Sentry, Entry to a function.

3.3.1 . Synopsis

i nt Sent r y ()

3 .3.2 . F unct i on

This f u n c t i o n i s called as the first instruction of any function
that was compiled under the trace fla g ("- t ") . Th e supplied
version does a stack overflow check, and reports "NO CORE" on an
e rror .

3.3.3 . Returns

No t h i ng .

3 .3.4 . N o t e s

You may modify this function to prov ide any checking that you
need. , It could also be modified to call a C function if the code
is extensive. Just be careful that the called C function is NOT
compiled with the " -t " f l a g .

3.3.5. Operating System

D OS 3.0 , DOS 2 . 0+ , DOS 1 . 1 +

3-6

OPTIMIZING C86 USER'S MANUAL ex it

3.4. exit, Terminate program execution without closing files.

3.4.1. Synopsis

i n t ex i t (st a t us)
int status;

3 .4.2 . F unct i on

Performs the standard program termination procedure. No cleanup
procedures are performed, file buffers are NOT flushed and files
are NOT c l o s ed . The supplied s tatus value is returned to the
operating systmn as the termination status of the program.

Normal ly the function " ex i t " should be used to terminate a
program. This procedure should only be used in cases of extrcme

value

emergency.

By convention, non zero termination status values indicate
abnormal program termination.

3.4.3. Debugging f ea tu re

T his r o u t i n e
v ery us e f u l .
t o ex i t and
a ccording t o

ex it tbc

provides a debugging feature that has proved to be
At the time " exit" is called, t he v a l u e p ro v i d e d

the global character variable " exittbc" a re t e s t ed
the following condition table:

action

zero
negat ive
p osi t i v e n o n - z e r o
p osi t i v e n o n - ze r o

any
any

n o stack t r a c e
s tack t r a c e
n o stack t r a c e
s tack t r a c e

zero
non-zero

The resulting print out is a list of call addresses, showing the
addresses of al 1 active cal ls at the time " exit" was cal led.
This list may be compared with the linker map output to determine
the names of the active functions.

The flag " exittbc" may be set using code at the beginning of
your program, o r u s i n g y ou r d ebugger.

3.4.4 . Notes

Your operating system may close your files anyway.

3 .4.5 . DOS before V2 . 0 0 .

Terminates by issuing interrupt Ox20. The termination status is
not available. The version of dos is determined at run time and
saved in the variable " SYSVERS" by the function amain() .

3-7

ex itOPTIMIZING C86 USER'8 MANUAL

3 .4.6 . DOS 2 . 0 + .

Terminates by issuing interrupt Ox21, sub code Ox4C. The ex it
status is placed in register AL. This status may be tested in
batch files or by the invoking program. Note that only one byte
of status is returned.

3. 4.7. E xample

To turn on the debugging feature.

main()
(

extern char exittbc;

e xi t t b c =Oxf f; /* turn it on */

/* run the code of the program, the */
/* trace will be printed on most crashes */

/* return all ok (trace done anyway) */r etur n 0 ;

3.4.8. Operating System

DOS 3.0, DOS 2 .0+ , DOS 1 . 1+

3 .4.9 . See a l s o

exit

3-8

OPTIMIZING C86 USER'S MANUAL main

3.5. main, Initialize for progrma execution.

3.5.1. Synopsis

i nt m a in()

3 .5.2 . Punct ion

This f unc t i on i n i t i a l i zes memory for the execution o f a C
program. It performs the following act ions :

* Builds the argc and argv data for the function "main".
* Detects any re-direction of stdin and/or stdout. (Not DOS 2.0)
* Opens stdin, stdout and stderr in ASCII mode.
* Executes the program by performing the s tatenent :

exit (main (argc ,a rgv)) ;

3.5.3. Returns

N ever r e t u r n s .

3.5.4. E r ror messages.

The f ollowing error messages may occur . The program will abort.

More than 20 parameters occurred on the
command line.

"TOO MANY ARGS"

"REDIRECTION ERROR" One of std in, stdout or stderr coul d
not be o p ened.

3.5.5 . Notes

Since the name of the program being executed is not available,
the f irst argument prov ided to "main" i s al ways the lower case
l e t t e r "c" . T here f o r e "main" wi 1 1 always have at least one

The length of the canmand line is limited to about 128 characters
by the operating systen, and generally no indication is provided
that the canmand line is too long. B e care f u l .

argument.

3. 5. 6. DOS

I f the program is r unning u n d e r D OS 2 . 0 + , std in, stdout and
stderr will use the default files and redirection provided by
DOS. Under earlier versions of DOS, this function creates std in,
stdout and stderr and processes the redirection information.

3.5.7. Operating System

D OS 3.0, DOS 2 . 0+ , DOS 1 . 1 +

3-9

abortOPTIMIZING C86 USER'S MANUAL

3.6. abort, Abort execution of a program vith a message.

3.6.1 . Synopsis

int abort(format,args...)
char * format ;
i n t a r g s. . . ;

3 .6.2 . Funct i on

Prints a newl inc and the message "ABORT: " to stderr. It then

prints the abort message to stderr. Finally it prints another

newl inc and calls exit with a hex value of "7FFF".

This is a convenient way to terminate a program when unexpeqted
e rr o r s o c c ur .

3 .6.3 . N ot es

See fprintf for details of available format control codes.

This function is provided in most UNIx systems, but it does not
take any arguments. There it causes a core d ump and p r o g r am
termination, and not the output of a message.

3.6.4 . Example

To abort a program if a required file is not available:

I include "std io.h"

main()

F I LE "fo pen ();
F ILE * f d ;

fd= fopen(" f ilename.dat","r");
i f (fd ==NULL) abort("could not open f ilename.dat");

3.6.5. Operating System

DOS 3 • Og DOS 2 0+/ DOS 1 1+

3 .6.6 . See a l s o

exit, printf, fprintf, sprintf

3-10

OPTIMIZING C86 USER'S MANUAL abstopt r

3.7. abstoptr, Absolute memory address to pointer.

3.7.1. Synopsis

char *abstop t r (address)
l ong address ;

3 .7.2 . F unct i on

Convert a 20 bit absolute memory address to the standard big
pointer format. The of fset part of the pointer returned by this
function will always be in the range 0 through 15 (decimal).
Thus the resultant pointer provides access to the next 64Kb of
manory.

3 .7.3 . Re t u r n

Returns a big model po inter for the 20 bit absolute memory
address.

3 .7.4 . Notes

This function is not usable in the small manory model.

I f you a r e d o i n g b i g mode l p o in t e r ari t)xnet i c y o u w i l l nee d t h i s
function along with the ptrtoabs() function. Without these
functions big model pointer arithmetic assumes that the data
segments are the same for the pointers. Since t h i s f unc t i on i s
very non-portable you should not use it in the big model if it is
at al 1 possible. We may change the way pointer arithmetic is
done in future versions.

Pointers returned by this function s hould n o t be de c r a nent ed , as
you wi 1 1 wrap to the end of the segment. I f y ou ne ed t o
d ecranent s uch a p o i n t e r s ee pt r t o a b s .

This function was written mainly for use in malloc and free

3. 7. 5. Example
To obtain the absolute manory address of a buffer.

char buffer[23];
extern long abstoptr();

printf("Address of buffer is %D~n",abstoptr(buffer));

3.7.6. Operating System

DOS 3 0 / DOS 2 0+ g DOS 1 1 +

3 .7.7 . See a l s o

p tr t o abs

3-11

allocOPTIMIZING C86 USER'S MANUAL

3.8. alloc, Allocate a storage region on the heap.

3.8.1. Synopsis

char *a l l o c (s i z e)
u nsigned in t s i ze ;

3.8.2. Funct ion

Al locates a region "size" bytes in length in the heap and
initial izes it to zeros. If there is not enough space on the
heap to allocate a region of the required size, it prints the
message "ALLOC" to stderr and calls " ex i t " .

3 .8.3 . Re t u r n s

The address of the first byte of the allocated region.

3.8.4. Notes

Using the big memory model, blocks of up to 65516 (OxFFE8) bytes
may be requested. In the bigmodel, the default amount of memory
available is about 96K for the heap and the stack. This can be
changed (either increased to access all of manory on your machine
or decreased to leave more unused memory) by ed iting the file
default.c. We have found that most users of C86 can 1 ive with

about 96K o f h eap and s t ack space rn the b rgmodel .

Total memory avail able using the smal 1 memory model is about
64000 bytes .

Obtains memory from the free list (maintained by "free") if
possible. Otherwise obtains memory using the function sbrk. See
the description of "free" for more information.

The f u n c t i on "coreleft" may be used to check that memory is
available before calling "al loc".

WARNING: In the big model this function must be declared (see the

example below). In general, you should get used to the idea of
declaring all functions which do not return an integer.

3.8.5. Example

To allocate space for a 1000 byte array:

/* define alloc to return a pointer */c har *a l l o c () ;

c har *a r r a y ;
array =alloc (1000) ;

3-12

OPTIMIZING C86 USER'S MANUAI, a 1 1 oc

3.8.6. Exmnple

To obtain a buffer dynamically for string storage

e xtern char * a l l o c () ; / * i mpor t an t i n t he b i g model l ! * /
e xtern char * f g e t s () ; / * i mpor t an t i n t he b i g mode l ! ! * /
extern i n t f pu t s () , f r ee () ;
c har *b u f f e r ;
extern unsigned int coreleft();

if(coreleft() (1000)abort("you need to buy more core");

buffe r = alloc(255); /* buffer points to 255 byte cells */

fputs("Enter a line of data > ",stdout);
fgets(buffer,255,stdin); /* for example */
fputs(buffer,stdout);
f ree(buf fe r) ; /* free makes this memory available */

/* on successive memory allocations */

3.8.7. Operating System

DOS 3 0 / DOS 2 0 + g DOS 1 1 +

3 .8.8 . See a l s o

mal loc, cal lac, realloc, sbrk, free, coreleft

3-13

atofOPTIMIZING C86 USER'S MANUAL

3.9. atof, Convert ASCII to floating point

3.9.1. Synopsis

double atof(string)
char * st r i n g ;

3 .9.2 . Funct i on

Convert a string containing a ' sc i e n t i f i c no t a t i o n' f l oa t i ng
point number to a double precision floating point number.

The str ing can contain optional leading whi tespace, an integer
part, a fraction part, and an exponent part. The i n t e g e r p a r t
consists of an optional sign fol lowed by zero or more decimal
digits. The fraction part is a decimal point followed by zero or
more decimal digits. The exponent part consists of an 'E' or 'e '

followed by an optional sign followed by a sequence of decimal
digits. There must be an integer part or a fraction part at

least. The exponent part is optional.

3 .9.3. Retur ns

The conver ted number.

3.9.4. Notes

This function must be declared, since it returns a double. Use:

extern double atof();

The largest number that may be entered is about "+1E+300", and i t
can have about 15 significant digits.

Preceed ing plus signs in the number a re not a l l owed. T h e y w i l l
return zero in the software floating point run-time code.

3.9.5 . Example

To convert an input string to double:

char buffer[132];
double dnum;
extern double atof();

fgets(buffer,sizeof buffer,stdin);
dnum=atof(buffer);

3-14

atofOPTIMIZING C86 USER'8 MANUAL

3.9.6. example

extern double atof(); /* atof converts string to float */
double r e s u l t ;
c har * s t r i n g ;

s t r i n g = "-1.56678899";
resul t = a tof (s t r i n g) ;
pr intf ("gnATOF~n'4s = %ggn",string,result);

/* up to 15 significant digits allowed */

str i ng= "3. 54009e10";
r esul t = a tof(s t r i n g) ;
p r int f (" 4s = %ggn",string, result);

3.9.7. Operating System

DOS 3.0, DOS 2.0t, DOS 1.1+

3 .9.8. See a l so

f toa, s s c an f

3-15

atoiOPTIMIZING C86 USER'S MANUAL

3.10. atoi, Convert ASCII to integer (long).

3. 10. 1. Synopsis

long ato i (s t r i ng)
char *string;
3.10.2 . Funct ion

Convert a string containing the ASCII representation of a number
to an int or long.

The str ing can contain optional 1 cad ing wh i tespace, an optional
s ign and a s e r i e s o f de c i ma l d i g i t s .

3.10.3 . Returns

The converted number as a long. If the number is in the range
+32767 to -32768 the function may be used as though it returned
an in teger .

3.10.4 . Notes

This function does not test for errors during the conversion
process. Thus i f the input number is too large, or any i 1 legal
character is encountered in the input string, the function wil 1
silently return an incorrect result.

3.10.5 • Example

extern long atoi(); /* atoi converts an ASCII string to long */
l ong l r e s u l t ;
c har s t r [2 5 5] ;

s trcpy(s t r , " 3 2767") ;
l r es u l t = a toi (s t r) ;
prin t f (" X nATOIXn%s= %DXn",str,lresult);

/* the ASCII string can have a sign */

l resul t = a t o i ("- 4 5 000") ;
pri n t f (" ~ n ATOI~n%s= % lan" , " - 45000" , l r esu l t) ;

3.10.6. Operating System

D OS 3.0, DOS 2 . 0+ , DOS 1 . 1 +

3-1 6

OPTIMIZING C86 USER'S MANUAL basicget

3.11. basicget, Get a "record" written by a basic progran.

3.11.1. Synopsis

int basicget(stream,buf f,buf flen,f ieldptr,f ieldcnt)
FILE *s t r e am; /* where to read data */
u nsigned char b u f f ; /* where to put it «/
int bufflen; /* how much to put */
unsigned char * f i e l d p tr [] ; /* field pointers */
i nt f i e l d c n t ; /* max number of f ields */

3 .11.2 . Funct i on

Reads a I ine of up to "buff len" characters from file "stream"
into the buffer "buff". Then constructs an array of u p t o
"fieldcnt" pointers in "fieldptr" .

If the first character of a field is a quotation mark, the field
terminates at the next quotation mark, otherwise the field
t erminates at the next comma . In either case, the field
termination characters are stripped from the field.

3.11.3 . Returns

* Minus one at end of file.
* Minus two if the input line was too long to fit in "buff"
* Zero if there were more than "fieldcnt" fields.
* Otherwise the number of fields in the record.

3-17

OPTIMIZING C86 USER'S MANUAI basicget

3 .11.4 . E x~ p i e

() include " s t d i o . h "

()define BSIZE 128
()define MAXFIELD 10

main()

char b f [B SIZE+2];
char * f p [MAXFIELD];
i nt j ;

j=basicge t (s t d i n , b f ,B S I Z E , f p , MAXFIELD);
p rin t f (" number o f f i e l d s wa s %d~n" , j) ;
f or (j =0; j(MAXFIELD;++j) {

print f (" F i e l d %d i s %shn" , j , f P [j]) ;

If you enter the following input:

This, i s , " a f i e l d w i t h a , embedded",in, it

Y ou should ge t b a c k :

number of fields was 5
Field 0 i s Th i s
Field 1 i s i s
Field 2 i s a f i e l d wi th a , embedded
Field 3 i s i n
F ield 4 i s i t

3.11.5. Operating Systmn

DOS 3. 0, DOS 2. 0+, DOS 1 . 1+

3-18

OPTIMIZING C86 USER'S MANUAI bdos

3.12. bdos, Execute a basic DOS function.

3.12.1. Synopsis

int b dos (f code,dx)
i nt f c o d e ;
unsigned dx;

int bdos(fcode,dx ds)
i nt f c o d e ;
u nsigned l ong dx d s ;

3.12.2. Funct ion

/* SMALL MODEL */
/* the function code for your 0/S */
/* an optional argument */

/* BIG MODEL */
/* the function code for your 0/S */
/* an optional argument */

This function lets you execute most basic operating system
defined functions. The value "fcode" specifies the requested
act i on . The v al ue "dx" i s optional, and will be placed in
register dx before calling your operating system.

3.12.3. Returns

The value r e t u rned by your operating system in register ax.

3. 12. 4. Notes

Operating functions that need input in registers other than dx or
return values in registers other than ax may be called using the
function "sysint", or "sysint21".

If you are using the big model, the value supplied is assuned to
be a pointer. The first word of the value i s p l a ced i n dx , and
t he s e c o n d w o r d i n ds . This p r o d uces a c or r ec t call f or
functions that need an fcb address. If you don't need the ds
value, you may pass an int or omit the value altogether.

DOS

The value "fcode" is placed in register ah.

3.12.5 . Example

T o c h ec k t he cons o l e to see if the user wants t o ab o r t t he
program:

Under DOS use:

bdos (11);

3-19

bdosOPTIMIZING C86 USER'S MANUAL

3. 12. 6. Exmnple

e xtern i n t b d o s () ;
char disk, status,a character;

a charac t e r = bdos(1)&0xf f ; /* get a character from keyboard */

bdos(2,'A'); /* d isplay the letter 'A' on the c r t * /

a char a c t e r = bdos(3)s0x f f ; /* get a character from comm line */

bdos(4,'A'); /* w r ites the letter'A' to the comm line */

bdos(9,"Print this dollar terminated string on the crt$ ");

/* to set default disk: */

bdos(14,d isk 'a') ; / * w i l l sel e c t d i s k b: */

/* to get console status: */

disk = ' b ' ;

s ta t u s = bdos(11)s0x f f ; /* if status, char is ready */

3.12.7. Operating System

DOS 3.0, DOS 2 .0+ , DOS 1 . 1+

3 .12.8 . See a l s o

makefcb, sysint, sysint21

3-20

OPTIMIZING C86 USER'S MANUAL call oc

3.13. calloc, Allocate a block of memory.

3.13.1. Synopsis

char «calloc(nelem,elsize)

unsigned ne l a n ;
uns ig ned el s i ze;

3.13.2. Funct ion

Obtains a region nelan«elsize bytes in length from the heap, sets
the area to zero and returns its address. I f no s uc h ar ea i s
available, returns zero.

3.13.3. Notes

/* number of elements «/
/* size of each elenent */

Using the big memory model, blocks of up to 65516 (OxFFES) bytes
may be requested. In the bigmodel, the default amount of memory
available is about 96K for the heap and the stack. This can be
changed (either increased to access all of manory on your machine
or decreased to leave more unused memory) by editing t he f i l e
default.c. We have found that most users of C86 can live with

about 96K of heap and stack space in the bigmodel.

WARNING: You need to declare this function in the big model!

3.13.4. Example
()define NUMBER 255
()define S IZE 1

extern char * c a l l o c () ; / * ne e ded i n b i g mode l ! ! * /
e xter'n char * f g e t s () ; / * needed i n b i g mode l ! ! * /
e xtern i n t f pu t s () ;
extern i n t f r ee () ;
c har * b u f f e r ;

/* to allocate NUMBER*SIZE bytes : */
b uf f e r = calloc(NUMBER, SIZE)
i f (! b u f f e r) abor t («Ug, TOO BIGgn") ;
fputs("Enter data followed by CTRL-Z)",stdout);
/* buffer can now be used: */
while(fgets (buf f e r , NUMBER,std in))

/ * t h e a b ove will echo console input until EOF */
f ree(buf f e r) ;
/* free returns the area of store to the heap for

later menory allocation calls */

fputs(buf fer,stdout);

3.13.5. Operating System
DOS 3.0, DOS 2.0t, DOS I.lt

3 -13 .6. See a l so
alloc, malloc, realloc

3-21

ceilOPTIMIZING C86 USER'S MANUAL

3.14. ceil, Ceil iog function.

3. 14. 1. Synopsis

d ouble ce i l (a r g)
d ouble a r g ;

3.14.2 . Returns

The a double precision number which contains the smallest integer
greater o r e q ua l t o ar g .

3 .14.3 . N o t e s

WARNING: This function needs to be declared to work properly.

3.14.4. Example

/* returns double */extern double c e i l () ;
double dval, dresult;

/* ceil returns the smalles integer >= argument * /

dval = 178.3456;
d resul t = c ei l (dva l) ;

printf ("gnCEIL~nceil te = 'bean",dval , d r es u l t) ;

dval = -3 4 . 2 3 3 3e3 ;

d resul t = ce i l (d v a l) ;

prin t f (" ~ n c e i l 4e = te~n",dval,dresult);

dval = 12 . 00
d resu l t = c ei l (dva l) ;

print f ("~nceil ' i e = %e~n",dva l , d r e s u l t) ;

/* dresult contains 179. */

/* dresult contains -34233 */

/* dresul t contains 12.00 */

3.14.5. Operating System

DOS 3.0, DOS 2.0+ , DOS 1 . 1+

3 .14.6. See a l s o

f loor

3-22

OPTIMIZING C86 USER'S MANUAL chd ir

3.15. chdir, Change to a new working directory.

3. 15. 1. Synopsis

int c hd i r (p a t hname)
char * pa thn arne;

3.15.2. Funct ion

Ca 1 1 s the operating system to set a new working directory. The
path name must be reachable from your current directory, and is
operating system dependent. You should refer to your operating
system documentation for more information.

3 .15.3. Retu rns

EOF if an error is detected, otherwise zero.

3.15.4. Notes

This function is only usable on a system running DOS V2.0+.

If you code path names in strings, don't forget that you need two
backslash characters to enter one backslash in the string.

3.15.5. Example

To change to directory gc86 on your default disk.

chdir("~gc86 ");

To change to directory "xxx~yyy~zzz" on drive A:.

chd ir("A :xxx~~yyy~~zzz") ;

3.15.6. Operating System

D OS 3.0, DOS 2 . 0 +

3 -15.7 . Use w i t h

mkdir , r m d i r , a l l f i l e 1/ o l og i c

3-23

OPTIMIZING C86 USER'S MANUAL

3.16. clxsod, Change the mode of a file.

3.16.1. Synopsis

int chmod(f i l ename,mode)
char * f ilename;
int mode;

3.16.2. Eunct ion

Cal 1 s the operating system to set the mode bits for the f i le to
those requested. The available mode bits and their meanings are
operating system dependent, and you should r e fer to y o ur
operating system technical reference manual for more information.

3 .16.3 . Re t u r n s

EOF if an error is detected, otherwise zero.

3.16.4. Notes

This function is only usable with DOS V2.0 and later.

Using undocumented bits in the requested mode is not recanmended.

I .egal f i l e m odes :
01H Read Only
02H Hidden
04H Sys t em
OBH Volume label
1 0H Subd i r e c t o r y
2 0H Ar c h i v e

3.16.5. Example

int mode;
4 define NORMAL Ox 0 0
()define READONLY Ox01
() de f inc HIDDEN 0 x0 2
()def ine SYSTEM O x 0 4
()def ine VOLUME O x 0 8
()define SUBDIR Ox1 0
4define ARCHIVE Ox20

mode = NORMAL;
mode = READONLY;
mode = HI DDEN;
mode = SYSTEM;

chnod ("f il ename.dat " ,mode);
)
3. 16. 6. Operating System
D OS 3.0, DOS 2 . 0 +

/ * n o rmal f i l e * /

to a normal f ile */
t o readonly * /
hidden attribute */
system at t r i bu t e * /

/* set the f ile' s attributes */

/ * s e t
/ * s e t
/* set
/ * se t

3-24

OPTIMIZING C86 USER'S MANUAL c learer r

3.17. clearerr, Clear a streaa error indicator.

3.17.1. Synopsis

() include " s t d i o . h "
int clearerr(stream)
FILE ' s t r e a m;

3.17.2 . Ret urns

Nothing

ACTION

Clears an error indicator maintained for the stream. The error
indicator may be read using the function " fer r o r " .

3.17.3. Example

extern int clearerr();
extern i n t fer r o r () ;
extern F I L E * f o pen() ;
e xtern i n t f c l ose () ;
FILE * s t r e a m;

s t r e am = fo p e n (" a : f o o . b a r " , " a ") ;
i f (s t r e am= =NULL) abort (" c an ' t o pen a : f oo .bargn ") ;

/* clears a stream error indicator */

/* more processing of stream */

i f (f e r r o r (s t r e am)) [
print f�('"jnError associated with foo.bar~n");
clearerr(stream); /* clears the error for stream */

/* take corrective action */

3.17.4. Operating System

DOS3 0 g DO S 2 0 + g DOS 1 1+

3 .17.5 . See a l s o

ferror, fopen, fclose, fread

3-2 5

closeOPTIMIZING C86 USER'S MANUAL

3.18. close, Close a file.

3.18.1 . Synopsis

int c l o s e (fd)
i nt f d ;

3 .18.2. Funct i on

Flushes any outstanding output data to the file, and then closes
the file designated by file descriptor fd. Returns the file
control block and buffers to the heap, and makes fd available for
the next call to open or creat.

3 .18.3. Re t u r n s

.zero if successful
minus one if any error was detected

3 .18.4. No tes

The use of this routine is discouraged. Use the alternative
routine fclose. In this release, even i f an error is reported,
the file buffers and control blocks are released, so the file is
real l y ' c l o s ed ' .

3.18.5. Exanple

e xtern i n t o p e n () ;
e xtern i n t cl os e () ;
int fptr, success;

fpt r = open("CON:" ,AREAD);
i f (f p t r <0) abor t (" c an ' t o pen CON:~n") ;

/* console gets read here */

success = c lose(f p t r) ;

/ * i f suc c e s s== 0 , c l o s e was s u cces s f u l ,
i f s u c cess== 1 erro r o c c u red * /

3.18.6. Operating Systan
D OS 3.0, DOS 2 . 0+ , DOS 1 . 1 +

3.18.7. Us e w i t h
open, c r e a t , r ea d , w r i t e

3 .18.8 . See a l s o
f open, f c l o s e

3-26

OPTIMIZING C86 USER'S MANUAL c orn funct i o n s

3.19. Z — 100 PC Oaaaunications Functions: (Z-100 PC ONLY!)
corn fish, can getc, can putc, can rdy, can rst, corn sta t

3.19.1. Synopsis

int can fish(channel)
int channel;

int ccaa getc(channel)
int channel;

int cun putc(channel,ch)
int channel;
char ch;

int crm rdy(channel)
int channel; / a O=CON1 1=CON2 */

int ccrc rst(channel, baud, parity, stop, length)
int channel, baud, parity, stop, length;

unsigned int eras stat(channel)
int channel; /~ 0 = CON1 1 = COM2 */

3.19.2. Funct ion

corn fl sh attempts to flush the channel associated with the
function and returns the modern status w ord a l s o .

corn getc will wait until a character is ready at the channel and
then return it. It does no conversion on the character.

corn putc outputs a character to the channel specified and returns
the status word (see notes) after the attemt to send it.

corn rdy returns a 1 if a character is waiting or a zero i f not .

corn stat gets the communication channel status and returns the
modem status word. See the notes section for a description of
what coa stat returns.

corn rst resets the baud rate, parity, stop bit and length of the
channel speci f i ed and returns the modem status word. See t h e
notes for a description of the format for the parameters.

3-27

c orn func t i o n sOPTIMIZING C86 USER'S MANUAL

3 .19.3 . Notes

corn stat modem status words:

8 9

b i t p o s i t i on mask (Hex)

Ox0001
0 x0002
Ox0004
Ox0008
Ox0010
Ox0020
Ox0040
0 x0080

0 x0100
0 x0200
Ox0400
0 x0800
Ox1000
Ox2000
Ox4000
Ox8000

Notes on ccm rst parameters:

o verrun e r r o r

meaning

delta clear to send
delta data set ready
trail edge ring detector
delta rec. line sgnl dtct
c lear t o sen d
d ata se t r ea d y
r ing i n d i c a t o r
rec. line signal detect

data r e ady

pari t y e r r o r
f raming e r r o r
b reak de t ec t
xmitter holding reg empty
x mitte r s hi f t r eg e m p t y
timeout occurred

A B C

D E F

BAUD RATES:

baud rate (bits / second)value

110
150
300
600

1200
2400
4800
9600

PARITY:

value Parity setting

NONE
ODD
NONE
EVEN

STOP BITS:

value Number of stop bits

3-28

OPTIMIZING C86 USER'S MANUAL corn funct i o ns

WORD LENGTH:

value Wo rd leng th (b i t s)

c orn getc , k e y s c an , and corn r s t .

All of the a bove information is available in your friendly
neighborhood technical reference manuals or programmer's guide.

3.19.4. Examples

* Here i s a small piece of code to illustrate the use of corn rdy,

c an rs t (0 , 7 , 0 , 1 , 3) ; /« 9600, no parity, 1 stop, 8 data */

f or (; ;)
(
w hile (can r d y (0) = = 0)

ch = c an getc (0) ;
putchar (ch) ;
i f (key scan () ! = EOF)

I

/« display characters when they cane «/

/* wait for a character */

/* read it */
/* write it to the screen «/
/ * a ke y was p r essed * /

break;

In order to see if a character is ready:

ready = corn st a t (0) 6 O x 0 100;

In order to see if clear to send s igna l i s s et :

c lear = corn st a t (0) & O x 0010;

To set COM1 to 9600 baud, no parity, 1 stop bit,
8 data b i t s use :

corn rst (0 , 7 , 0 ,1 , 3) ;

To set COM2 to 300 baud, odd parity, 2 stop bits, 7 data
b its u se :

c an rs t (1 , 2 , 1 , 1 , 2) ;

3.19.5. Operating System

PC DOS 3. 0, PC DOS 2. Ot, PC DOS l. I+

3-29

c orele f tOPTIMIZING C86 USER'S MANUAL

3.20. coreleft, Get size of unused stack.

3.20.1. Synopsis

unsigned in t c o r e l e f t () ;

3.20.2. Funct ion

Returns the number of bytes unused on the stack. Th is i s t he
number of bytes between s-break and the content of register 'sp' .

3.20.3 . Notes

The number returned is frequently negative, so that the' function
should be declared to return an unsigned integer if correct sign
operations are to be performed .

This function makes no allowances in the returned number. Y ou
should subtract a safety margin from the returned value for files
to be opened and local storage in functions. After t hi s t he
value may be used to allocate manory.

Free areas in the heap are not considered. Thus after performing
an alloc it is possible that the coreleft value has no t been

A major use of this function is with algorithms that can use all
available core, such as text editors for text storage. Thus the
size of buffers can be set dynamically at run time.

In the big model this function returns 64K until there is less
than 64K of heap space available. When there is less than 64K of
heap space available it will return the amount of mmnory

a l t e r ed ,

a vai l ab l e .

3.20.4 . Exasple

extern unsigned int coreleft(); /* returns available manory */
u nsigned in t c o r e ;

core = c orele f t () ; /* memory available */
printf("~nCoreleft: %x Hexadecimal~n",core);
printf("Coreleft: %u Unsigned decimal~n",core);

3.20.5. Operating System

DOS 3 • 0 • DOS 2 • 0+i DOS 1 • 1+

3 .20.6 . See a l so

alloc, malloc, calloc, realloc, free

3-30

OPTIMIZING C86 USER'S MANUAL creat

3.21. creat, Create a new empty file.

3.21.1. Synopsis

int c r e a t (f i l en ame, mode)
char *filename;
unsigned mode;

3 .21.2 . Funct i on

Filename must be valid for your operating system or one of t he
special names defined below.

If a f i l e wi t h t he n ame " f i l e n ame"e xist s i t i s de l e t e d . A n e w
file is then created . Valid open modes are defined in "std io .h",
a nd have th e v a l u e s :

A READ
AWRITE
AUPDATE
BREAD
BWRITE
BUPDATE

1 2

4 5

0 open
open
open
open
open
open

f or ASCII r e a d
f or ASCI I w r i t e
for ASCII update
for b i n ary r e a d
for binary write
f or b i n ar y u pdate6

Please use the names in your code, because the values are subject
to change without notice.

3.21.3. Returns

.A negative number if any error was detected

. A posi t i v e n umber (a f i l e des c r i p t o r) o t h e r w i s e

3 .21.4 . Notes

The use of this routine is discouraged. Use fopen.

The open mode is not recorded with the file, therefore when the
file is next used it may be opened in any one of the six modes.

I f a f i l e i s c r ea t e d i n A S CI I m ode :

* Carriage return/linefeed
converted to newl ines ('gn')

* Newl ines wi 1 I be converted
p airs o n o u t p u t .

* Cont r o l - z i n t he f i l e wi l l
input .

pair s i n t he f i l e wi l l be
o n i npu t .
to carriage return / l i n e f eed

be returned as end of file on

If a file is created in binary mode only physical end of file (as
returned by your operating system) can be returned by the i/o
system. Logical EQF conventions must be implemented by the user
programmer .

3-31

creatOPTIMIZING C86 USER'S MANUAL

3 .21.5 . D OS

The following names are processed specially by the i/o system:

"CON:"
"PRN'"
"AUX'"

The console
The printer
T he can dev i c e

If the abov e names are used (inc 1 ud ing the col on), data is
processed in unbuf fered mode (except for console input) .

If the console is opened in ASCII input mode, input data must be
terminated by a carriage r etur n (j us t l i ke UNI X) . I f i t i s
opened in binary mode, input is c harac t e r by c h ar ac t e r (r aw
mode) .

3.21.6 . Exmsple

extern int creat(); / * opens a new f i l e * /
e xtern i n t c l os e () ;
i nt f d ;

fd = creat (" f o o . b a r " , AUPDATE);
i f (fd<0) abort("~ncreat error occuredgn") ;
printf("gnfoo.bar createdgn"); / * use f i l e he r e * /
c lose(fd) ;

3.21.7. Operating System

DOS 3 Og DOS 2 0+g DOS I 1+

3.21.8. Use w i t h

open, read, wr i te, cl ose, 1 seek, I tel I

3 .21.9 . See a l s o

f open, f c l o s e

3-32

OPTIMIZING C86 USER'S MANUAL crt functions

3.22. Z-100 PC video display routines: (Z-100 PC ONLY!)
crt cls, crt gmod, crt home, crt line, crt mode, crt rdot,
crt roll, crt scrp, crt wdot

3.22.1. Synopsis

c rt c l s ()

crt home()

crt gmod()

int crt line(xl,yl,x2,y2,color)
unsigned int xl,yl; /~ from co-ordinate */
unsigned int x 2 , y 2 ; /~ to co-ordinate ~/
int color ; /~ color of line */

int cr t mode(mode)
int mode;

int crt rdot(row,column)
int row;
int colman!

int crt roll(top,bottom, left, right,n)
int top;
int bottas;
i nt l e f t ;
i nt r i g ht ;
int n ;

int crt srcp(row,column, page)
int row;
int colmsn;
int page;

int crt wdot(row,colmsn,color)
int row;
int colman;
i nt col or ;

3 .22.2 . Funct i on

crt cls clears the screen on page 0 on the Z-100 pc and brings

/~ desired mode code ~/

the cu r so r h ome.

crt home positions the cursor to the upper left hand corner of
the Z-100 PC monitor on page 0.

crt gmod re turns the mode of the crt for t he Z - 1 0 0 P C (se e
notes) .

crt 1 inc draw a line on the monitor in graphics m ode (s e e
crt mode) . It takes two coordinates and a color a s parameter s .

3-33

crt functionsOPTIMIZING C86 USER'S MANUAL

For val id modes see thecrt mode sets the mode of the monitor.
notes description.

crt rdot returns the ' co l o r ' of t he
monrtor (Only i n g r aph ics mode) .

crt rol 1 scrolls a section of what is on the monitor. The
section from the top and left corner and the bottom and right
corner is scrolled either up or down n lines. Y o u m ight
e xperiment w i t h t h i s f u n c t i o n i n a small test case first.

crt srcp sets the cursor to the specified row, column and page on
t he monitor . P age i s u sua l l y s e t t o zero. If you want to use
the other pages be warned that some other functions in this group
assume the use o f p a ge zero.

crt wdot writes a dot of the specified 'color' at the given row
and column (Only i n g r aph ics mode) .

3.22.3. Notes

Valid modes for the Z-100 PC monitor:

spec i f ied po in t o n t he

mode meaning

40 x
40 x
80 x
80 x

320 x
320 x
640 x

80 x

25 BW (default)
25 COLOR
25 BW
25 COLOR

200 COLOR
200 BW
200 BW

25 BW CARD

G

For the functions crt line, crt rdot, and crt wdot the monitor
must be in a graphics mode. The 1 imiting values of all supplied
arguments (e.g. coordinates) are a function of the chosen mode.
Using out of range values wil 1 get you into problems for any of
these functions. The default colors for these functions are as
fol l ows:

PALETTE
bckgrd
green
r ed
brown

PALETTE 1
bckgrd
cyan
magen ta
white

COLOR
0
1
2
3

The default palette is 1 and the default background is black. To
change the palette and background see your Z-100 PC Technical
Reference manual for more information.

3-34

OPTIMIZING C86 USER'S MANUAD crt functions

3.22.4. Exmaple

* simple graphics example
(
i nt i ;

crt mode(4) ; /» set 320 X 200 color graphics */
c rt l i ne (1 0 0 , 150,200,150,2) ; / * d r aw a l i ne * /
c rt l i ne (2 0 0 , 150,200,100,2) ; / * a n o t h e r . . . «/
c rt l i ne (2 0 0 , 100,100,100,2) ; / » and anothe r . . . */
c rt l i ne (1 00,100,100,150,2) ; /* to make a square!! */

f or (i = 0; i (5 0 ; i += 3)
c rt wdo t (1 25+ i , 1 50 , 1) ;

crt mode(2) ; /* reset monitor back to normal */

,/* draw dotted line «/

3. 22. 5. Operating Systaas

DOS 3 Og DOS 2 0+g DOS 1 1+

3-35

OPTIMIZING C86 USER'S MANUAL e nvf i nd

3.23. envfind, search environment for defined name.

3. 23.1. Synopsis

unsigned char *envf ind (name) / * dos 2 . 0 + o n l y * /
unsigned char ~name;

3 .23.2 . Funct ion

Searches the DOS 2.0+ environment for a defined name.

3.23.3 . Returns

If the name is found, it returns the translat ion o f t ha t name.
Otherwise it returns a NULL pointer.

3 .23.4 . Notes

The returned string is obtained from mal loc, so you must free it
when you are finished with it .

T he input t o e n v f i n d () i s c a s e s e n s i t i v e .

3.23.5 . Rrample

u nsigned char "envf ind () ;
u nsigned char * c o ;
unsigned char s [2 55] ;

w hile(gets (s ,255)) (
upper(s);
i f (c p= envfind(s)) (

puts(cp) ;
f ree(cp) ;

) e lse p u t s (" NOT FOUND");

3.23.6. Operating System

D OS 3.0, DOS 2 . 0 +

3-36

exi t t srOPTIMIZING C86 USER'S MANUAL

3.24. exit tsr — exit, terminate and stay resident

3.24.1. Synopsis

exit t sr ()

3.24.2. Funct ion

Exit your program and then make it resident. This will al low it
to be executed later by a certain system interrupt defined by the
user.

3 .24.3 . No t e s

The function will stay in memory until a re-boot.

Interrupts 0 thru 3F and 80 thru FO are reserved for DOS, Intel
and Basic. You obviously can not use any of these for you
terminate and stay resident function.

A very handy tool to read and understand whenever you venture
into this area is the tecnical reference manual of your favorite
computer. We highly recanmend purchasing one of these for your
sanity's sake. To get a copy check with your computer dealer.

Since most of the programs that you would 1 ike to terminate and
stay resident should be small, you probably will want to shrink
the size of the default data segment in a C86 program that is
going to use this function. The default value MAXFMEM found in

default.c in base.arc should be changed. See the def a u lt
function for more information.

3-37

exi t t srOPTIMIZING C86 USER'S MANUAL

3.24.4 . Example

how to set up resident program

/* use a free interrupt vector */
/* save some space for stack */

()define VECNO Ox50
()define STACK 3000

i nt he l l o()
(

bdos (9, "grgnHello wor l d~ r~n$ ") ;
)

use this program to load "hello" into memory so that it can
be called through interrupt Ox50. hello() could be w ri t t e n
in C or assembler. Remanber that 'main' and 'hello' will both
be loaded into memory. If these programs are not going to use
a lot of data space, you may wish to decrease the amount of
data space allocated to your program. See the documentation

*/
main()
(
extern i n t he l l o () ;

on default for more information.

/* set up vector to point
to your routine */

/* terminate, stay resident */

in t r i n i t (he l l o , STACK,VECNO)

exi t t sr () ;

how to call resident program

/+
use a program such as this to call the resident process

*/

() include (s t d i o . h)

main()
(
struct regval (int ax,bx,cx,dx,si,di,ds,es;) srv;

s ysi n t (V ECNO,&srv i 6 l s r v) I

3.24.5. Operating System

D OS 3.0, DOS 2 . 0 +
3 .24.6 . See a l s o

exit , ex i t , sy s i nt , s y s i n t 21

3-38

OPTIMIZING CB6 USER'S MANUAL exit

3.25. exit, Terminate progrmn execution.

3.25.1. Synopsis

i nt e x i t (v a l u e)
i nt v a l u e ;

3 .25.2 . Funct i on

This f u n c t i o n i s called to terminate the execution of a program.
It flushes any output buffers and then closes any open files. It
t hen c a l l s " exit " w i t h t he suppl ied value. By convention, non
zero values indicate that the program terminated abnormal ly.

T he advan tage of t hi s f u n c t ion is t ha t a p r og r am may be
terminated without returning through al 1 the currently a ct i v e
call i ng f u nc t i o ns .

3. 25.3. Returns

N ever r e t u r n s .

3.25.4 . Notes

The value is returned to the operating systen as the termination
status of the p r o g r am . C urrently only D O S 2 u se s t h i s
i nformat i o n .

3.25.5 . Example

/*
/* exit terminates program e xecut ion * /

an example: */
i f (FATAL ERROR) ex i t (7) ;

Operating System

D OS 3.0, DOS 2 . 0+ , DOS 1 . 1 +

3 .25.7 . See a l s o

exit

3.25.6 .

3-39

OPTIMIZING C86 USER'S MANUAL exp

yxp, Exponent ia I. function.

3.26.1. Synopsis

d ouble exp(va l)
d ouble v a l ;

3.26.2 . Returns

The exponential function of the argument "val".

3 .26.3 . Eotes

Returns a large value (le+300) if the result would be too large.

3.26.4. Example

main()
(

extern double exp () ; / "
d ouble dval , d r e s ;

dval = 10 ;
dres = e xp(dval) ;
/ * d r e s c o n t a i n s e
printf("~ne to the

d val = -15.0 ;
dres = e xp(dval) ;
/ * d r e s c o n t a i n s e
printf("one to the

10 */
%g = %ggn",dva l , d r e s) ;

exp(val) raises e to the val power */

(-15. 0) * /
' 4g = %ggn",dva l , d r e s) ;

3. 26. 5. Operating System

DOS 3 Og DOS 2 0+g DOS 1 1+

3 .26.6 . See a l s o

l og, l o g 10 , pow, s q r t

3-40

OPTIMIZING C86 USER'S MANUAL fabs

3.27. fabs, Floating absolute value.

3.27.1. Synopsis

d ouble f abs (va l)
d ouble v a l ;

3.27.2 . Returns

The absolute value of val.

3.27.3 . Rxample

main()
(

e xtern doubl e f a b s () ;
d ouble v a l ue , a v a l u e ;

value = 1 . 5 e 2 5 ;
avalue = fabs (va l ue) ;
/' in this case avalue contains value «/

printf("gnFAB~nfabs(tg) = %gran",value,avalue);

value = -2 . 3 e 1 0 ;
avalue = fabs (v a l u e) ;
/* in this case avalue contains -value */
prin t f (" ~ n f a b s (%g) = %ggn",va l ue , ava l u e) ;

3.27.4. Operating System

D OS 3.0, DOS 2 . 0+ , DOS 1 . 1 +

3-4 1

f arca l lOPTIMIZING C86 USER'S MANUAL

3.28. farcal 1, Call a "far" function

3.28.1. Synopsis

struct reg str(unsigned int ax,bx,cx,dx,si,di,ds,es;];

int farcal 1(offset, segment,srv,rrv)
int offset; /* the offset address of the function */
int segment; /* the segment of the function */
struc t r e g s t r * sr v ; /* suppl ied register values */
struc t r e g s t r * r r v ; / * re t u rned reg i s te r v a l ues * /

3 .28.2 . F unct i on

Calls the function at the address and segment suppl ied after
setting the registers to the supplied values. After returning,
the returned register values are placed in the structure pointed
to by rrv. The value of farcal 1 is the content of the processor
status register after execution of the call.

3.28.3. No te s

The returned values may overlay the values suppl ied with the
c al l .

The cal led function must preserve the values in registers SS, BP
and SP.

Generally this function follows the conventions of sysint.

You may need to modify this code, depending on the use you are
making of the function.

3.28.4. Operating System

D OS 3.0, DOS 2 . 0+ , DOS 1 . 1 +

3 .28.5 . See a l s o

sysint, sysint21, seg read

3-42

OPTIMIZING C86 USER'S MANUAL fclose

3.29. fclose, Close a strewn.

3. 29.1. Synopsis

() include " s t d i o . h "
int f c l os e (s t r e am)
FILE * s t r e am;

3.29.2. Funct ion

Fl ushes any outstanding buffered data and then closes the stream.
All buffers are returned to the heap.

3.29.3. Returns

Minus one if an error was detected, otherwise zero (NULL).

3.29.4 . Notes

In previous releases the internal file information was preserved
if an error was detected during the close processing. T his i s n o
l onger t r u e .

3.29.5. Exanple

e xtern i n t fc l o s e () ; /* fclose is used to close
extern FILE * fopen(); /* obtained through a call
FILE * s t r e am;
int errstat;

stream = fopen("tempf ile.tmp","r"); /* open
fputs("~nFCLOSE~n",stdout);
e rr s t a t = fclose(stream); / * r e t u r n s - 1

a st r e am «/
to f open () * /

tmp file */

i f e r ro r * /

3 • 29-6- Operating System

D OS 3.0, DOS 2 . 0+ , DOS 1 . 1 +

3.29.7. Use w i t h

fopen, fgets, fprintf, fscanf, putc, getc

3 .29.8 . See a l s o

c lose, r e ad , w r i t e , open

3-43

feofOPTIMIZING C86 USER'S MANUAL

3.30. feof, Return end of file status.

3.30.1. Synopsis

()include " s t d i o . h "
int f e o f (s t r e am)
FILE * s t r e a m;

3 .30.2. Funct ion

Test if the stream is at end of file.

3.30.3. Returns

True (non-zero) if the stream is at end of file; otherwise zero.

3.30.4 . Notes.

End of file status is a transient thing on character devices.

A disk file will remain at end of file unless you seek to another
posi t i o n i n t he f i l e .

3.30.5. Operating System

D OS 3 Og DOS 2 0 +

3 .30.6. See a l s o

fopen, fclose, ferror

3-44

OPTIMIZING C86 USER'S MANUAL f er ro r

3.31. ferror, Return error status of a stream

3.31.1. Synopsis

4 include " s t d i o . h "
in t f e r r or (s t r e am)
FILE * s t r e am;

3.31.2. Funct ion

Reports the error status associated with the stream. T he er r o r
indicator is set if an error has ever been detected since the
stream was o p ened. The error indicator may be r eset b y t he
function "clearerr".

3 .31.3. Retu rns

Zero if no error has been detected, otherwise a negative error
s tatus v a l u e .

3.31.4. Example

()include " s t d i o . h "

extern i n t fer r or () ;
e xtern F ILE * fopen() ;
e xtern i n t fc l os e () ;
int errstat;
FILE * s t r e am;

s t ream = fopen("xyz " , " w ") ;
i f (! s t r eam) abort (" can' t o pen xyzgn") ;

/ * p r o c ess ing done here * /

/* returns error status of a stream * /

e rr s t a t = fe r r o r (s t r e am) ; /* look for errors ~/
i f (e r r s t a t) pr i n t f (" g n e r r or s p r ocess ing f i l e ' xy z ' g n ") ;

3.31.5. Operating System

D OS 3.0, DOS 2 . 0+ , DOS 1 . 1 +

3 .31.6. See a l so

clearerr, fopen, fclose, fflush

3-45

f f l u shOPTIMIZING C86 USER'S MANUAL

3.32. fflush, Plush a stream to disk

3.32.1- Synopsis

() include " s t d i o . h "
int f f l ush (s t r e am)
FILE * s t r e am;

3 .32.2. Funct i on

Wr ites a l 1 bu f f e r e d dat a a n d f i l e c ont r o l i n f or m a ti o n f o r t he
stream to disk. T his provides some security for data f iles
against p r o g r am c r ashes.

3 .32.3 . R e t urns

Zero if successful, minus one if an error occurred.

3 .32.4 . No t e s

Your operating system may not actual ly perform the disk write
operations if your disk is a Winchester. Be warned.

3. 32. 5. Example

/* flushes a stream to disk */extern int ff lush();
e xtern F ILE * fopen () ;
e xtern i n t f c l os e () ;
F ILE * fd ;
i nt i ;

fd = f open("foo.bar","w");
i f (! fd) r e t u r n ; /* check if opened */

/* do processing and write the outout to the f ile ' fd' */

f flush (fd); /* make sure all data is safe on disk */

/* at this point we can per form operations that could cause the
program to crash, such as input from the operator, without
risk to data already recorded on disk */

fc lose (fd);

3. 32.6. Operating System

DOS 3 0 g DOS 2 0 + g D OS 1 1 +

3 .32.7 . Use w i t h

fopen, fread, fwrite, fclose

3-46

OPTIMIZING C86 USER'S MANUAL fgetc

3.33. fgetc, Get a character fran a stremn

3.33.1. Synopsis

include "std io .h"

in t f ge t c (s t r e am)
FILE * s t r e am;

3.33.2. Funct ion

Reads one charac te r f r o m a st r eam.

3.33.3. Returns

Actually r e t u rns an i n t whose top byte is set to zero. I f a nerror o c c urs r e t u r n s m i nus one.

3.33.4. Notes

Macros in "std io.h" convert function cal ls to getc and getchar
into calls to fgetc.

This is the most basic input function for the DOS2 I/O 1 ibrary.

If the result of this function is assigned to a variable of type
unsigned char it will not sign extend the top byte during a
compari son o f an i nt eg e r (i .e. E O F) . This may result in some
1 oop cond i t i ona 1 s not wo r k i ng cor rect 1 y.

3. 33.5. Exmnple

extern int fgetc(); /* gets a character from an input stream */

extern i n t fc l os e () , f pu t c () ;
i nt c h ;

/* the following will echo console input a buffer a t a t i me . */

fputs ("~nFGET+nEnter Data Terminated by CTRL-Z > ",stdout);
w hile ((ch = f g e t c (s t d in)) ! = E OF) f p u t c (c h , s t d o u t) ;

e xtern F ILE * f o p en () ;

3.33.6. Operating System

DOS 3.0, DOS 2.0+, DOS I.lt

3 .33.7 . See a l s o

fopen, fclose, fputc, printf, scanf

3-4 7

fgetsOPTIMIZING C86 USER'S MANUAL

3.34. fgets, Read a string fran a strema.

3.34.1. Synopsis

char * fgets(buffer,bufleng,stream);
c har * b u f f e r ; /* where to put it */
unsigned int bufleng; /* how much to read */
FILE *s t r e am; /* stream to use */

3 .34.2 . F unct i o n

Reads characters from the stream into the buffer until:

A newl inc is read from the input stream
(bufl eng-1) characters have been transferred
End of file is encountered

In all cases the string will be terminated by EOS.

3.34.3 . Re t urns

— The address of the data buffer
Zero at end of file or if an error is detected

3 .34.4 . No t e s

If the fi 1 e was opened in ASCII m ode, c a r r i a g e r e t u r n and
control-z characters will receive special processing.

3. 34. 5. Example

extern char * fgets(); /* reads characters into a string */
extern i n t f pu t s () ;
c har s t o r age [255] ;
i nt r e s u l t , bu f l eng ;

b uf l e ng = 2 5 5 ;

fputs("gnFGETS~nEnter a line of data~n",stdout);
r esul t = fgets(storage,bufleng,stdin);
if (! resu l t) pr i n t f (" g n EOF or ERROR~n");
else fputs(storage,stdout);

/* the newl inc character will be put onto the string */

Operating System
D OS 3.0, DOS 2 . 0+ , DOS 1 . 1 +

3.34.7 . Use w i t h
fopen, fclose, putc, getc
3 .34.8 . Se e a l s o
o pen, c l o s e

3-48

OPTIMIZING C86 USER'S MANUAL f iled ir

3.35. filedir, return a list of matching file names.

3.35.1 . Synopsis

unsigned char * f i l e d ir (f i l es p ec ,mode)
unsigned char *filespec;
unsigned int mode;

3 .35.2 . Funct i on

Takes a wildcard file specification and file mode a returns a
1 ist of matching f ile names. The file specification may include
a drive specification and a path name.

3. 35.3. Returns

A list of filenames that do not include the drive specification
and path name. Each f i lename is NULL terminated and the l ast
f ilename is terminated by a NULL.

3 .35.4 . N o t es

The returned list is obtained by cal 1 to mal loc so it must be
freed when you are finished with it.

Modes are descibed in your DOS technical reference manual. A
mode of zero would return the names of all regular o r "no rma l "
f i le names. Check your DOS manual for the DOS Disk Di rectory
section for more details.

Legal F i l e Modes f o r c h mod() an d f i l ed i r ()

Attribute byte:

01H
02H
04H
08H
10H
20H

Read Only
Hidden
System
Volume label
S ubdirec t o r y
Archive

3-49

f i l ed i rOPTIMIZING C86 USER'S MANUAL

3. 35.5. Exmaple

/* First example of f iledir() */

extern char ~ f i led ir ();
char * f i r s t ;
char *next ;
char f i l e s p e c [255] ;
int mode;

mode = 0; / * r eg u la r f i l es * /
strcpy(f ilespec,"C:*.C"); / * get all *.c in current dir on c: */

/* get list of f ile names "/f i r s t = f i l e d ir (f i l es p e c ,mode);
i f (f i r s t == NULL)

(
fpr int f (stder r,"Couldn' t find any files *.c on c:gn");
r eturn ;

/* a NULL terminated list of file names */
f or (nex t = first; *next != NULL;)

(
p r int f (" t h e f i l e n ame i s : % s~n" , nex t) ;
next = next + strlen(next) + 1;

f ree(f i r s t) ; /* filedir ALLOCates space for the list */

/" Another example with mode examples */

¹def i ne
¹ def i n e
¹def i ne
¹def inc
¹def ine
¹de f inc
¹def inc

/ * no rmal f i l e * /N ORMAL 0 x 0 0
READONLY Ox01
H IDDEN Ox0 2
S YSTEM O x 0 4
V OI.UME O x 0 8
SUBDIR Ox1 0
A RCHIVE O x 2 0

/* to get normal files */
l i s t = f i l ed i r (" * . + " , NORMAL);

/* to get systan files */
li s t = f i l ed i r (" * . * " ,S YSTEM);

/* to get the volume id */
li s t = f i l ed i r (" * . * " , V OLUME);

/* to get hidden,
l i s t = filedir("*

3.35.6. Operating System
D OS 3.0, DOS 2 . 0 +

readonly files */
.* " , H I DDEN ~ READONLY);

)

3-50

OPTIMIZING C86 USER'S MANUAL f i l e no

3.36. fileno, Get file handle.

3.36.1. Synopsis

0 include "std io.h"

int f i l en o (s t r eam)
FILE * s t r e a m;

3 .36.2 . Funct i on

Get the file descriptor used for input and/or output from/to this
stream. T his function lets you use file descriptor I /O o n
streams.

3 .36.3 . R e t ur ns

The file descriptor associated with the stream.

3.36.4 . Notes

This function has changed since the early v e r s i ons of 2 .10 of
C86. WARNING: There is no relationship between file descriptors
and DOS f i le handles in the DOS2 1 ibrary code. Making t h i s
assumption wil 1 def initly get you into trouble.

3. 36. 5. Operating System

DOS 3 Og DOS 2 • 0+ / DOS 1 1 +

3 .36.6 . See a l s o

fopen, read, write, close,lseek

3-51

f l oorOPTIMIZING C86 USER'S MANUAL

3.37. floor, Eloor function.

3.37.1. Synopsis

d ouble f l o o r (v a l)
d ouble va l ;

3.37.2 . Returns

A double containing the largest integer less than or equal to
val.

3.37.3. Example

extern double f l oor () ;
double dval, dresult;

a rgest i nt e g e r (= dva l * //* floor returns the 1
dval = 1 .456 ;
dresul t = f l o o r (dva l) ;
print f (" ~ n f l oo r (%g)

dval = -3,4;
d resu l t = f l o o r (d va l) ; / * d r e s u l t c on t a i n s - 4 . */

printf (" ~n f loor (%g) = %g~n",dval,dresult);

dval = 4 . 0 ;
d resu l t = f loor (dva l) ; /* dresult contains 4.0 */

print f ("~nfloor (%g) = %g~n",dval,dresult);

/* dresult contains l. */
%g~n",dval,dresult);

3.37.4. Operating System

D OS 3.0, DOS 2 . 0+ , DOS 1 . 1 +

3.37.5. S ee a l s o

ceil

3-52

OPTIMIZING C86 USER'S MANUAI. f open

3.38. fopen, Open a strema.

3.38.1. Synopsis

4 include "std io.h"

FILE * f o pen(f i l e name,fomode)
char «filename,«fcmode;

3 .38.2. Func t i o n

It II

w+ "wl

II alt
II a+ I I I I sr tl

«r« tt « rw«

I

Open the file "filename" with the mode "fomode". Filename may be
any legal file name. The open modes currently supported are:

The file must exist and is opened for ASCII read.
The file must exist and is opened for ASCII update.
Any existing file is deleted. A new file is created
and is opened for ASCII write.
Any existing file is deleted, and a new file created
and opened in ASCI I update mode.
If the file does not exist, create it. Then open the
file for writing and position at the end of file.
If the f i le does not exist, create it. Then open the
file for updating and position at the end of file.

I

If a "b" is concatenated to the above strings, the f i l e i s op e n ed
in binary mode, and carriage return/1 inefeed translation does not
occur'

For UNIX v5.0 compatabil ity, it is prefered that you u se t h e
modes "a+" «r+" , and "w+"

When a file is opened in update mode (using modes "r+", "rw",
«w+", "wr" , "a+", or "ar") both input and output can be done for
t he g i v en f i l e . WARN I N G: In future implementations o f t he
library you wil 1 not be able to switch from either output to
input or from input to output without an intervening fseek() or
rewind() call. This way positioning of where you want to w ri t e
and read from is up to the user in update mode.

3.38.3 . Returns

A non zero f i l e s t r e a m pointer if the f i le was successful ly
opened. Ot he r w is e , ze r o . It is very important that you always
c heck t h e r e t u r n of this function before using the stream
pointer .

3 .38.4 . No t e s

This is the standard method for opening files.

3-53

fopenOPTIMIZING C86 USER'S MANUAL

3. 38.5. DOS

The spec ia 1 f i 1 enames "CON:" , " PRN:" , a nd " AU X: " m a y b e us ed

prov ided that they can support the requested fomode. In DOS 2.0+
you can open any available device as a file but you do not need
to put a colon (':') at the end of the device name.

3.38.6. Example

¹ include "std io.h"

e xtern F ILE * f o p en () ;
extern i n t f c l ose () ;
FILE * p t r ;

/* various modes */
ptr = fopen("foo.bar","r"); /* ASCII Read Disk File */
i f (p t r) f c l os e (p t r) ;

ptr = fopen("CON:","wb"); /* D i rect Console Write */
f putc (0x07,p t r) ;
i f (p t r) fc l os e (p t r) ;

ptr = fopen("CON:","rb"); /* D i r ect Console Input */
i f (f g e t c (p t r)== 3) printf("~nCTRLC Enteredgn");
i f (p t r) fc l os e (p t r) ;

ptr = fopen("a : f i l e n ame.ext " , " w ") ; / * AS CI I W r i t e * /
i f (p t r) f cl os e (p t r) ;

ptr = fopen("PRN:","w"); /* AS C II Write to PRINTER */
i f (p t r) f c l os e (p t r) ;
/* DOS will not allow opening "PRN:" for read * /

/* ASCII Write Starting at EOF */
ptr = fopen("a:filename.ext","a");
i f (p t r) fc l os e (p t r) ;

/* ASCII Update Starting at EOF */
ptr = fopen("a:filename.ext","a+");
i f (p t r) fc l os e (p t r) ;

/* ASCII Read/Write Update */
ptr = fopen("a:~~bin~~filename.ext","r+");
i f (p t r) f c l o s e (p t r) ;

3.38.7. Operating System
DOS 3.0 , DOS 2 . 0 t , D O S l . l t

3 .38.8 . Use w i t h
fclose, getc, putc, fflush, fclose, printf

3 .38.9 . See a l s o
o pen, c r e a t

3-54

OPTIMIZING C86 USER'S NANUAL f pr i n t f

3.39. fprintf, Print to a stremn.

3.39.1. Synopsis

4 include "std io .h"

in t f p r i n t f (st r e a m, fo rmat ,a rgs . . .)
FILE ~s t r e a m;
char * format ;
s ee below fo r a r g s)

3 .39.2 . Funct ion

Output data under control of a format string to the file stremn.

The output file is defined by the stream pointer. This i s t he
value returned by fopen when the file was opened, o r on e o f t he
special standard values "stdout" or "stderr". T he f i l e sh o u l d b e
opened i n A SCI I mode, unless you need files to run with UNIX.

The format string contains characters that are c opied t o t he
o utput f i l e , a nd co n v e r s i o n s p e ci f i c a t i o n s . Each con v e r s i on
specification causes conversion of one argument and the output of
t he c o n v e r t e d v a l ue . You need as many arguments as there are
conversion specifications in the format string.

Each conversion speci f i cat ion beg ins wi th a percent ("%")
character, and ends with a conversion control character. Between
these two characters are the following optional control fields:

A minus s i g n

A f i l l char

This indicates that the output data s hould b e
left justified, instead of the default r i gh t
justification.

A zero indicates that the field should be filled
with zeros instead of spaces.

This may be an asterisk ("*") or a number, and
i f supp l i ed sp ec i f i e s t h e m i n i mum f i e l d wi d t h .
The asterisk indicates that the next argument is
a n in t eger , a n d i t i s t he wi d th s p e c i f i c at i on .

At least this many characters will be output for
t he f i e l d . No r e wi l l b e o ut p u t i f r equ i r e d . If
the data is shorter than the field width, it
wi 1 1 b e f i l l ed wi t h t he f i l 1 c har a c t e r
spec if ied above .

A f i e l d w id t h

3-55

f pr i n t fOPTIMIZING C86 USER'S MANUAL

A p r ec i s i o n

c onversion c ha r ac t e r .

This consists of a period, followed by an
asterisk or a decimal number. As above, t he
asterisk indicates that the precision is the
next argument. The meaning (if any) o f t h e
prec i s i o n s pec i f i c a t i on i s de f i n ed by t h e

An '1' or 'L', indicates that the corresponding
argument is a long or unsigned long. This code
may be used in conjunction with any of the
integer convers ion codes.

A long f l a g

T he al l owed convers ion codes a r e :

The argument is an integer. It is converted to a signed
decimal nunber. As a non standard extension, the precision
field will result in a period, precision places to the left.
This is handy for money fields.

The argunent is an unsigned integer. It is converted to an

unsigned decimal nmnber.

The argument is an integer. It is output as a hexadecimal
number without a leading "OX". The precision field has no
meaning for this type of field.

The argument is an integer. It is output as an octal nunber
without a leading zero.

The argument is an integer. I t is o utput a s a b i nar y
nunber. This is an extension to the KI R specification.

The argument is a floating point number. I t i s o ut p u t i n
scien t i f i c not at i on , i n t he form " i.ffffffEeee". T h e
precision field specifies the number of fractional places in
the output number, the default being 6.

The argument i s a f l oat i ng p o i n t nu mber . I t i s output
without an exponent field in the form "i.f". T he prec i s i on
field specifies the number of places after the decimal
point. The default is 6 places. A prec i s i o n o f zer o
s uppresses the pe r i od a l s o .

Outputs a floating point number using conversion code "e" or
" f " . It uses the conversion code that needs the least
width.

The argument is the address of a string. I f p r e c i s i o n i s
supplied, then at most the left-most precision characters of
the string wil 1 be output.

The argument is a single character. The precision field has
no meaning for this type of field. O

3-56

OPTIMIZING C86 USER'S MANUAL f pr i n t f

If the character following a percent is not part of a v al i d
conversion specification, it is output unchanged. T his a l l o w s
you to output a percent sign with the format string "%%".

U pper c as e c o n v e r s i o n c o d e s "D", "X" , "0" , "U", and "B " a r e
equivalent to "ld", " l x" , " lo" , " lu" and " l b" r espect i v e l y .

3.39.3 • Returns

Nothing .

For examples of the format control string, see Kernighan and
Ri tch ie.

3.39.4. Notes

The floating point output routines have been modified to output
the literal value "NAN" (standing for "Not A Number") for values
that are out of range. The detection mechanism for this case is
good if you are using the 8087, but you should be careful when
using the floating point package. In general, any floating point
logic should be written so that you can detect this type of
problem before it occurs.

3.39.5. Operating System

DOS 3 0 / DOS 2 0+ ~ DOS 1 1 +

3.39.6. Use w i t h

printf, sprintf, fopen

3-57

OPTIMIZING C86 USER'S MANUAL f putc

3.40. fputc, Output character to a stream

3.40.1 . Synopsis

4include "stdio.h"

int fputc(byte, stream)
c har by t e ;
FILE * s t r e a m;

3 .40.2 . Funct i on

Outputs the byte to the stream.

3 .40.3 . Re t u r n s

The constant EOF if an error occurs, otherwise the byte.

3 .40.4 . Notes

This is the basic output function in the DOS2 library.

3.40.5. Ex ample

/* the byte to be output "/
/* where to put it */

/* put a character to file stream */e xtern i n t f pu t c () ;
char ch ;
FILE * f p t r ;
i nt r e s ;

fpt r = stdout ;
ch = ' * ' .

res = fputc(ch,fptr); /* write ' *' to stdout */
/* res contains EOF if an error occured, else ch */

3.40.6. Operating Systan

D OS 3.0, DOS 2 . 0+ , DOS 1 . 1 +

3 .40.7 . See a l s o

fopen, printf, fclose

3-58

OPTIMIZING C86 USER'S MANUAL fputs

3.41. fputs, Output a string to a strean.

3.41.1. Synopsis

()include "stdio .h"

int f pu t s (s t r i n g , st ream)
char * st r i n g ;
FILE ~st remn;

3 .41.2. Funct i on

Outputs the string to the file designated by the stream pointer,
until a null character (value of binary zero) is detected. If
t he f i l e was o pe n e d i n ASC I I m o d e , newl ines are output as
carriage return/linefeed pairs.

3 • 41.3. Returns

The constant EOF if an error is detected, otherwise zero .

3.41.4. Example

To print a string on the standard error strean:

fputs("Print this string on standard errorgn",stderr);

3.41.5. Example

()include "stdio .h"

e xtern i n t f p u t s () ; / * wr i t e a st r i n g t o a f i l e s t r e a m * /
e xtern char * f g e t s () ;
extern F ILE ~ fopen() ;
e xtern i n t fc l o s e () ;
c har * s t r i n g ;
FILE ~s t r e am;

stream = fopen("a:filename.dat","w");
i f (! s t r e am) abor t (" c a n ' t o p en a : f i l e n ame.dat ") ;
s t r i n g = " Test Da t a " ;
fputs(string, stream);
fclose(stream);

/* the following code will echo console input */
fputs("gnEnter data followed by a CTRL-Z > ",stdout);
w hile(f g e t s (s t r i n g , 2 55 ,s t d i n))

fputs(string,stdout);

3.41.6. Operating System
DOS 3.0, DOS 2.0+ , DOS 1 . 1+

3-59

freadOPTIMIZING C86 USER'S MANUAL

3.42. freed, Read items from a stremn

3.42.1. Synopsis

() include "s t d i o . h "

int fread (where,elsi ze,nelaa,stream);
char *where; /~ where to put the data */
u nsigned el s i ze ; /* size of an elenent in bytes */
unsigned nelem; /* number of elements to read */
FILE *s t r eam; where to get them */

ACTION

Reads nelen elenents of elsize bytes each.

3.42.2. Returns

The number of COMPLETE elanents read. Zero is returned if the
end of file is encountered or if an error is detected .

This function may return less than the requested number o f
elements. In files that have been opened in ASCII mode, a newline
is considered to complete the input for the current elenent.

3.42.3. Exmaple

4include "stdio.h"
(

e xtern i n t f r e a d () ;
extern F I I .E * f open() ;
e xtern in t fc l o s e () , f r e e () ;
e xtern char * c a l l o c () ;
c har *des t ;
unsigned s i ze , n u nber ;
FILE *source;
int num read;

/* read items from a stream */ 0

size = 1; / + read by tes * /
n|xnber = 255; /* read up to 255*size bytes */
source = fopen("a:f ilename.dat","r");
i f (! source) r e t u r n ;
dest = calloc(255,1); /* get area to read into */
num read = fread(dest,size, number, source) I /* read */
/* T f (num read == 0) end of file or error occurred */
/ * i f (n um read!=number) EOF was encountered */
f ree(dest) ; /* return area to heap */

3.42.4. Operating System
DOS 3.0, DOS 2.0+ , DOS 1.1+
3 .42.5. Use wi t h
fopen, fseek, fscanf, fclose

3-60

OPT IM I Z ING C86 US ER ' S MANUAL free

3.43. free, Return a region to the heap.

3.43 • 1. Synopsis

i nt f r e e (poin t e r)
char *pointer;

3.43.2. Function

Free a region of storage and return it to the heap. Pointe r i s
the address of the region, which must have been obtained by a
call to alloc, mal loc, cal loc or real loc.

Aborts after writing "FREE" to the console if the heap or the
returned b l oc k h eader has been co r r up ted.

3.43.3, Returns

Nothing.

3.43.4. @utes

Corruption of the heap wi 1 1 be caused by storing outside of the
allocated region. Frequently this problan is the result of:

al locating too few bytes to hold a structure.
array subscript out of range.

— an unin i t i a l i s e d p o i n t e r .

3.43.5. Exaaple

To allocate and subsequently free a string area 18 b y t e s i n
length:

char *string,*alloc();

s t r i n g = al l oc (18) ;

f ree(s t r i n g) ;

/* aborts if not enough core */
/* more processing */
/* all done now */

3-61

freeOPTIMIZING C86 USER'S MANUAL

3.43.6 . Example

/* free up allocated space */e xtern i n t f r ee () ;
e xtern char * c a l l o c () ;
char * p t r ;
i nt i ;

p tr = c a l l o c (1 00 , 1) ;

f or (i =0;i (26 ; i ++) * (p t r +i) = 'A'ti; /* use ptr for storage */

/ * t h e s t a tment pt r [i] = 'A'+ i; is same as above */

free(ptr); /* return to heap to make available for

/* allocate and zero 100 bytes */

subsequent memory allocation requests */

3.43.7. Operating Systaa

DOS 3.0, DOS 2.0+, DOS 1.1+

3 .43.8. See a l so

alloc, malloc, calloc, realloc

3-62

OPTIMIZING C86 USER'S MANUAI f r copen

3.44. freopen, Close and reopen a file

3 • 44.1. Synopsis

4include "stdio.h"

FILE * fr copen (f ilename,fomode,stream)
unsigned char *filename; /* file name string */
unsigned char * f omode; /* file open mode string */
FILE *s t r e am; /» currently open stream ptr »/

3 .44.2. Func t i o n

Close the file associated with stream and attempt to open a new
file using the file name and mode given.

3 .44.3. Retu r ns

A pointer to the new file opened or NULL if the file open failed .

3.44.4. Operating System

DOS 3 Og DOS 2 • 0+g DOS 1 1+

3.44 • 5. See also

f c lose, f o p en

3-63

f rexpOPTIMIZING C86 USER'S MANUAL

3.45. frexp, Split double into mantissa and exponent.

3.45.1 . Synopsis

double frexp(val,eptr)
d ouble va l ;
i nt * e p t r ;

3 .45.2 . F unct ion

Returns the mantissa and exponent of a double. T h e mantissa is
less than one and greater or equal to a half. The exponent is
stored at the address specified by "eptr" .

3.45.3 . Re turns

A result such that:

/* where to put exponent */

val == mantissa*(2**exponent);

Where "**" means 2 to the power "exponent"

3 .45.4. Notes

T he exponent is in the range -1023 through +1023. Ze r o i s
returned if the input value is zero.

This routine is useful for "normalization" of floating point
quant i t i e s.

3.45.5 . Example

e xtern doubl e f r e x p () ;
double dval, mantissa;
i nt exponent ;

dval = 1 . 2 e 1 0 ;
mantissa = f r exp (dva l , & exponent) ;

/* frexp returns values such that:
dval = mantissa * (2 to the power ' exponent') * /

printf("gnPREXP~n(%g)= (%g) * 2 t o t he (' l d) gn" ,
dval,mantissa, exponent);

3.45.6. Operating System
DOS 3.0, DOS 2.0+ , DOS 1 . 1+

3 .45.7. See a l s o

ldexp, modf

3-64

OPTIMIZING C86 USER'S MANUAL fscanf

3.46. fscanf, Scan fields from a strean.

3.46 • 1. Synopsis

() include " s t d i o . h "

i nt f sc an f (stream, format,args)
FILE * s t r e am; /* where to get data */
char " f o rmat ; /* conversion control data */
something *a rgs ; /* where to put data */

3.46.2. Funct ion

Reads ASCII characters from the input stream, interprets them
under control of the format string, and stores them at the
addresses specified by the ranaining arguments.

3.46.3. Returns

The number of values successful ly input and converted. The
standard version includes the number of literal characters
matched in the control string in the count.

Fscanf returns EOF if EOF is encountered as the first character.

CONVERSION CONTROL

The format control string contains:

Blanks, tabs and newl ines(white-space characters), w hich a r e
ignored .

Literal characters (other than 4) which must match the next
non white-space character from the input stream.

Conversion specifications consisting of a ' 4 fo l l o wed by a n
optional assignment suppression character ("*"), an opt i ona l
number specifying a maximum field width, and a conversion

A conversion specification controls the processing of the
next input field from the stream. T h e r e sult of t he
c onver s i o n i s p l ac ed at the address specified by the
corresponding argument .

If the assignment suppression indicator is specified, the
converted value is discarded. No argument shou l d b e
specified in the argument lis t fo r s uc h v a l u e s .

Generally, white-space preceeding an input field in the
input stream is discarded. I f a f i e l d wi d t h i s spec i f i ed ,
no more than that number of characters will be read from the
input stream.

character .

3-65

fscanfOPTIMIZING C86 USER'S MANUAL

The legal conversion control codes are:

d Conv ert a decimal number and store in an integer. Input
stops at the first non decimal digit.

o An o ctal nunber. Store in an integer.

x A he xadecimal nunber, with or without a leading OX.

h A s h ort decimal integer. For this machine this is identical
to a "d" c o nvers ion c ode.

b A bi nary number. Store in an integer.

e A f l oat i n g p o i n t n mnber i n s ci e n t i f i c no ta t i o n . A lead i ng
sign, decimal point and exponent field are optional. The
result is stored in a float.

f Sa m e as the "e" conversion code.

s The input is a string of characters, and the corresponding
argument should point to an area large enough to hold the
string and a terminating zero ("$0"). The input string is
terminated by the first white-space character afte r t he
beginning of the string. The white space character is not
stored.

A single character is to be stored. Leading white-space
characters in the input stream are not skipped by this
conversion code. If a field width is specified, that number
of characters will be transferred to success iv e memory
locations. To read the first non white space character from
the input stream use "'41s".

Q
All the above conversion codes that produce an integer or float
may be made to return a long or double by using the upper case
letter or preceeding the lower case conversion code by the lower
c ase l e t t e r " 1" .

3-66

OPTIMIZING C86 USER'S MANUAL fscanf

3.46.4. Notes

You MUST provide the ADDRESS of the variable to contain the input
data. For most variables the correct expression is & var name.

This, and related functions, are real ly designed to read machine
generated files. If you want to read input typed by a human, seethe notes under scanf and sscanf.

Any unmatched characters are pushed back onto the input stream,
and are returned by the next input request from the stream.
Reading end of file or an error will terminate the function.

In general, you should also read s canf a nd s s canf t o understand
how al l of t hes e functions fit together and all of their
implica t i o ns .

3.46.5. Exmsples

There is a good description of scanf and printf in KaR. I t i s

3 • 46.6. Operating System

DOS 3 Og DOS 2 0+g DOS 1 1+

3 .46.7. Use wi th

sscanf, fprintf, fscanf

recanmended reading.

3-67

fseekOPTIMIZING C86 USER'S NANUAL

3.47. fseek, Seek using a long offset.

3.47.1. Synopsis

4 include "std io.h"

1 ong f seek(stream,of f set,base)
FILE " s t r e am;
long offset;
int b ase;

3.47.2. Function

This function allows you to alter the read/write position pointer
for a disk file. This pointer defines the character that will be
read/written on the next i/o operation on the file. To issue

0

this call:

stream is a stream pointer returned by fopen.
— offset is an adjustment relative to base
— base is a code for the base value of the seek

Al 1 owabl e base code s are:

- 0 Relative to beginning of file. Offset must be positive
- 1 Relative to current position in file
— 2 Relative to the end of the file (SEE NOTE BELCW)

3.47.3. Returns

6— minus one if an error is detected
- The current position in the file if successful.

3.47.4. Notes

fseek(fd,OL,O) will let you process the first byte in the file on
the next i/o operation. fseek(fd,-lL,1) will let you process the
most recently processed byte again.

Because of a serious bug in DOS, seeking before the beginning of
the file or after the end of the file will cause undefined
results in DOS 2 0+ version of our library. It is your
responsibil ity to handle these cases.

Seeks on a non disk file return the error code -1. Seeks beyond
End Of File should be avoided, since they may result in files
with missing sectors, which could result in incorrect EOF
indications in subsequent processing.

ASCII files may be used, but the presence of carriage return/line
feed pairs may make it difficult to determine the seek offset.

3-68

OPTIMIZING C86 USER'S MANUAL f seek

For f iles open in binary mode, the end of f i le is assumed to be
the physical end of file point. This probably was not what you

The open logic for ASCII mode files reads the last sector looking
for a control-z, and sets the end of file position accordingly.

intended.

3. 47. 5. DOS

This feature is provided, and uses the operating system provided
f i l e s i z e . Thus i t w i l l not w o r k w i t h f i l es written by programs
using CPM end of f i le convent ions.

With the DOS-ALL I/O package, files must be open in r ead o r
read/write mode for this function to operate correctly.

3.47.6. Example

4include "stdio.h"
()define BEGIN 0
()define CURRENT 1
()define END 2
(

e xtern l ong f s e ek () ; /* uses a long offset */
e xtern F ILE * f o p e n () ;
e xtern i n t f c l os e () ;
FILE *s t r e am;
long offset, lpos;
int base;

stream = fopen("a:filename.dat","r");

/* To position on first byte: */
o ff se t = OI„
lpos = fseek(stream, offset, BEGIN);

/* To position such that last byte will be reprocessed: */
o ff se t = - 1 L ;
lpos = fseek(stream, offset, CURRENT);

/* To position such that the byte at End of File - 100
will be processed next: */

o f f se t = -100L; lpos = fseek(stream, offset,END);

/* In the above calls to fseek, lpos contains either:
(-1) if an error detected (such as seek beyond EOF)
or the current position relative to the beginning */

)
3.47.7. Operating System

DOS 3.0, DOS 2 . 0+ g DOS 1 . 1+

3 .47.8 . Use w i t h
fopen, fclose, ftel 1, fread, getc, putc

3-69

f te l lOPTIMIZING C86 USER'S MANUAL

3.48. ftell, Tell R/W position in a strema

3.48.1. Synopsis

() include " s td io . h "

long ftel 1(stream)
FILE * s t r e am;

3.48.2 . Returns

The current read/write position in the stream.

3.48.3 . Notes

On many systems, this is the only way to obtain a valid offset to
u se wi t h f se e k .

3.48.4. Example

() include " s t d i o . h "

extern long ftell(); /* get current position in the f ile */
e xtern F ILE * fopen() ;
e xtern i n t fc l os e () ;
FILE *s t r e a m;
long position;

stream = fopen("a:filename.ext","a");
f pr int f (s t ream,"Sample Oaten") ;

p osi t i o n = ftell(stream);
/* position contains the current position in the file */

fclose(stream);

3-48.5. Operating System

OOS 3.0, OOS 2.0+, OOS 1.1+

3-70

OPTIMIZING C86 USER'S MANUAL f toa

3.49. ftoa, Convert float to ASCII.

3.49.1. Synopsis

int ftoa(value, buffer,iplaces,fplaces)
double va l ue ; / * t h e v a l u e
c har *bu f f e r ; / * bu f f e r t o
unsigned i p l aces; / * nunber o f
unsigned fp l aces; /» number of

t o conver t * /
hold output string */
integer places */
fractional places */

3.49.2. Punction

Converts the input value to an ASCII output string of the format
» [-] i i i . f f f E [-] eee" . The number of integer places, a nd t h e
number of fractional places are under the user's control.

3.49.3. Notes

The sum of ipl aces and fpl aces should not exceed 15, the number
of sign if i cant d i g i t s i n a dou b l e p re c i s i o n n umber. I f t he
n umber i s t oo 1 a r g e , returns the 1 i terai value ' NAN' (" No t A
Number") .

3.49.4. Exmnple

extern i n t f t oa() ;
extern char * c a l l o c ();
extern i n t f r ee () ;
d ouble dv a l ;
c har *o u t s t r ;
unsigned int places;
unsigned f rac p l a c es ;

o utst r = cal l o c (2 55 , 1) ;

dval = -100 . 0 144 ;
i nt p l a c e s = 5 ;
f rac p l a c e s = 7 ;

ftoa(dval,outstr,int places,frac places);
/» outstr now contains: " -1.0001440E+002" * /

f ree(outs t r) ;

3.49.5. Operating System

DOS 3 • O g DOS 2.0 + I DOS 1 . 1+

3 .49.6. See a l so

atof, scanf, sscanf

3-71

f wr iteOPTIMIZING C86 USER'S MANUAL

3.50. fwrite, Write to a stremn.

3.50.1. Synopsis

include "stdio .h"

int fwr ite(where,elsize,nelem,stream)
char *where; /* pointer to data */
u nsigned e l s i z e ; /* size of one element */
unsigned nelem; /* nmnber of elmnents to write */
FILE *s t r eam; /» where to put it «/

3 .50.2. Funct i o n

Transfers elsize«nelmn bytes to the specified stream.

3.50.3 . Returns

The number of elanents written to the stream.

3.50.4 . Bxanpie

/* write to a stream »/e xtern i n t f w r i t e () ;
e xtern char * c a l l o c () ;
e xtern i n t f r e e () ;
c har *bu f f e r ;
unsigned s i ze , number;
F ILE *ou t p u t ;
int num written;

buffe r = calloc (255,1) ;
s ize = 1 ;
nunber = 255 ;
output = fopen("a:filename.ext","a");
strcpy(buffer,"gnSample Data is Heron");
num written = fwrite(buffer, size, number, output);
/* num written contains the nunber of elements

f ree(buf f e r) ;
written (zero if error) */

3.50.5. Operating System

DOS 3.0, DOS 2 .0+ , DOS 1 . 1+

3 .50.6. Use w i t h

fopen, fclose, fread, fseek, fpr intf

3-72

f wr i t eOPT IM I Z ING C86 USER� ' S MANDAL

3.51. gcdir, Get the current directory.

3.51.1. Synopsis

char *gcd i r (d r i v ename)
char *d r i v ename;

3.51.2. Punction

Obtain the ful I pathname for the current directory on the
specified drive.

If the drivename string begins with a letter in the range 'A'
through 'P' and is followed by a colon (":"), then that is the
drive used. Otherwise the result is for the current default
drive .

3.51.3 . Ret urns

A string al located from the heap containing the drive and full
path name of the current directory on the specified drive. If
any error occurs, or you are not running on DOS 2.0+, returns
zero.

3 .51.4 . Notes

You can dispose of the returned string using the function "f ree" .

3.51.5. Example

To obtain the current default directory:

g cdir (" ") ;

To obtain the default directory on drive B:

g cdir (" b : any r ubbish ") ;

3.51.6. Operating System

DOS 3.0, DOS 2.0+, DOS l.lt

3 .51.7. Use wi th

chdir , f o p en , o pen

3-73

g etcOPTIMIZING C86 USER'S MANUAL

3.52. getc, Read a character fran a stremn.

3.52.1. Synopsis

() include " s td io . h "

int ge t c (s t r ean)
FILE *s t r e am;

3 .52.2. Funct i on

Read the next input character from the stream.

3 .52.3 . Re t u r ns

The input character as a positive integer.
-1 on end of file or if an error was detected.

3 .52.4 . No t e s

This function is defined as a macro in stdio.h. Actually the
function fgetc is used.

I f t h e s t r e a n i s op e n i n A S CI I mode, newl ine processing (e tc) i s
performed. Otherwise no special processing is performed.

3. 52.5. Exmnple

To copy standard input to standard output.

i nt c c ;

while ((cc= getc (s t d i n)) != -1) putc (c c , s t d o u t) ;
/* get here at end of f ile */

3.52.6. Operating System

D OS 3.0, DOS 2 .0+ , DOS 1 . 1+

3 .52.7. Use w i t h

fgetc, fopen, fclose, putc, fpr intf

3-74

OPTIMIZING C86 USER'S MANUAL getchar

3.53. getchar, Get a character frcm stdin.

3.53.1. Synopsis

i nt ge tcha r ()

3.53.2. Function

R ead th e ne x t c har a c t e r f rom std in . Th i s i s normally the
console, but it may be a file if redirection has been performed.
3.53.3. Returns

A positive integer if a character is returned. - 1 a t e n d of
file, or if an error was detected.

3.53.4. Notes

This call is converted by a macro in stdio.h into the call
fgetc(s td in) .

Stdin is normally assigned to the console keyboard, which is open
in ASCII mode. Under this condition, input from the console is
b uffe red a l i ne at a t i m e , an d wil l no t be av a i l ab l e t o t he
program until the user enters a carriage return.

If you want unbuf fered input from the console, u se bdos() o r
sysint21() to make direct calls to your operating system. This
will al low you to control the recognition of special characters
and the echo of input characters.

3.53.5. Operating System

DOS 3.0, DOS 2 .0+ , DOS 1 . 1+

3 .53.6. Use wi th

fopen, fclose, putc, printf

3 .53 • 7. See a l so

o pen, c l o s e

3-75

getsOPTIMIZING C86 USER'S MANUAL

3.54. gets, Read a string fran standard input.

3.54.1. Synopsis

char *gets(buf fer,bu fl eng);
c har *bu f f e r ;
unsigned int bufleng;

3.54.2. Funct ion

Reads characters from the stream into the buffer until:

/* where to put it «/
/* how much to read */

— A newl inc is read fran the input stream
(bufleng-1) characters have been transferred
End of file is encountered

In all cases the string will be terminated by a NULL.

3.54.3 . Re t urns

— The address of the data buffer
Zero at end of file or if an error is detected

3 .54.4 . Notes

WARNING: This function is not the same as the UNIX standard! If
you are concerned about portability use the function fgets as
f o 1 iowa:

fgets(buf fer,bufleng,std in);

I f t he f i l e wa s open e d i n ASC I I mod e , c ar r i ag e r e t u r n and
control-z characters will receive special processing.

3.54.5. Operating System

DOS 3.0, DOS 2 . 0+ , DOS 1 . 1+

3 .54.6. Use wi th

fopen, fclose, putc, fgetc

3 .54.7 . See a l s o

o pen, c l o s e

3-76

OPTIMIZING C86 USER'S MANUAL getw

3.55. getw, Get a word from a streaa.

3.55.1. Synopsis

() include " s t d i o . h "

int g e t w (s t r eam)
FILE * s t r e am;

3.55 • 2. Function

Read the next input word from the stream.

3.55.3. Returns

The input word. EOF on end of file or if an error was detected.

3.55.4 . Notes

The error and end of file indications returned by this function
are also a val id data word. Use the functions feof and ferror to
distinguish these cases.

I f t h e s t r e a m i s o pe n i n A S CI I mode, newl inc p r ocess ing (e t c) i s
performed. Otherwise no special processing is performed.

3.55.5. Exasple

()include " s t d i o . h "

{ extern i n t g e t w () , p u t w () , f er r o r () ;
FILE *instream, *outstream,* fopen();
i nt word ;

i ns t r e am = fopen("a:filename.ext","r");
if(!instream) return; /* file not found */
o uts t r e am = fopen("a:filename.out","w");
i f (! o u t s t r eam) { f c l o s e (i n s t r eam); r e t u rn ;)
f or(; ;) / * do f o r e ver * /

{
word = getw(i n s t r e a n) ;
i f(feo f (i n s t r ean) ~(ferror(instream)) break; /* stop now */
putw(word,outstream);
)

fclose(outstrean);
fclose(i n s t r eam);

3.55.6. Operating Systma
DOS 3.0, DOS 2.0+ , DOS 1 . 1+

3.55 • 7. Use with
fgetc, fopen, fclose, putc, fprintf

3-77

indexOPTIMIZING C86 USER'S MANUAL

3.56. index, Find a character in a string.

3.56.1. Synopsis

char * i ndex(s t r i n g , c c)
c har * s t r i n g ;
char cc ;

3.56.2. Function

Report the first occurrence of the character cc (if any) in the
s tr i ng .

3.56.3. Returns

Zero if the character was not found in the string. I f the
character is found, returns a pointer to the character.

3.56.4. Notes

The function strchr() is the same as this function. You should
use the strchr() function to be more UNIX v5.0 ccmpatible.

3.56.5. Exmsple

/* string to search */
/» char to find */

extern char * i ndex() ;
c har *s t r i n g ;
char ch ;

/* this could be used to implanent a function to check
if a character is part of a given set of characters,
as well as for extracting the position of the character
in the string. A function is vowel(c) could be written:

Q
is vowel(ch)
char ch ;

return(index ("aeiouAEIOU",ch));

Of course, this could be ()defined as a macro:
()def ine i svowel (ch) i ndex("aeiouAEIOU",ch)

/* another example */
s tr i ng = " 123456789"; c h = ' 1 ' ;
i f (i ndex(s t r i n g , ch) ! ~ 0)

print f (" ~ n»index('4s,%c) = '4c~n",
s tr ing, c h , * index (str ing,ch)) ;

3.56.6. Operating System
DOS 3. 0, DOS 2.0+ DOS l. 1+

3 56 7 . See a l so
string functions, rindex

3-78

OPTIMIZING C86 USER'S MANUAL inport functions

3.57 • inportb, inportw — Input a byte or word fraa a port.

3.57.1. Synopsis

char inportb(portno)
int portno;

int inportw(portno)
i nt po r t no ;

3.57.2. F unct i o n

Inportb inputs a byte from a user supplied por t number (por t no) .
The port nunber must be valid for the addressed device. In some
cases a 16 bit port number is required. For o l de r d e v i c e s a n 8
bit number is required, and it may have to be in either byte of
portno. One possibil ity is to place the port number in both
upper and lower bytes of portno. It returns the byte from the
port .

Inportw inputs a word from a port number (portno) . T he por t
nunber must be valid for the addressed device. Usually a 16 bit
port number is required. This function is not needed for most
devices currently available, as they do not support 16 bit i/o
transfers. It returns the word read from the port. T he by t e s
may also be i n r e v e rse o rder .

3.57.3. Ez anple

* Inportb example

extern unsigned char inportb();
unsigned int portno;
u nsigned char b y t e ;

portno = 1 ;
byte = inpor t b (p o r t n o) ;

* inportw example

e xtern uns igned i n t i np o r t w () ;
unsigned int portno;
u nsigned in t w o r d ;

portno = 1 ;
word = i npor tw (por tn o) ;

3.57.4. Operating System
DOS 3.0, DOS 2 .0+ , DOS 1 . 1+
3 .57.5 . See a l s o
outport functions

3-79

interrupt functionsOPTIMIZING C86 USER'S MANUAI.

3.58. intrinit, intrrest — Init and restore for interrupt processing

3.58.1. Synopsis

intrinit(func,stack,vecno)
int (~func)()) /a function which will process interrupt a/
unsigned stack; /a 4 bytes of stack needed by function */
unsigned vecno; /a 4 of vector for interrupt trap +/

intrrest(vecno)
unsigned vecno;

3.58.2. Function

i n t r i n i t i n i t i a l i ze s t he i nt er r u p t v ec t o r " v ec n o " so tha t t he
specified function is executed whenever the interrupt occurs.

intrrest restores the original interrupt handling address to the
proper vector location specified by vecno.

0

3.58.3. Notes

This function also needs the function intrserv. Interserv() is in
the C86 libraries. You need to understand your hardware and
assembly language programming to use this routine correctly.

Make sure you provide enough stack space for the function, as
there are no run time checks, and stack overflow wil 1 provide an
interesting debugging experience. About 5000 bytes should be
used for debugging. In production you need 128 bytes plus the
size of your local data.

The interrupt entry is relatively fast,
mechanism before writing a lot of code.
to cope with the communications 1 inc
pen, game paddies, etc.

If you are processing a device interrupt (eg the RS-232 USART) i
you may need to issue an End Of Interrupt command to the 8259
interrupt controller chip. This may be done using outportb().

IMPORTANT: Interrupts are disabled while your f unct i o n i s
executing, so keep it small and fast. Do not do a printf inside
your function. Sane interrupts are so fast that you can not even
do another interrupt. The timer tick (see example) only has time
to decrement a variable. It is very important to keep it small
a nd fas t .

The operating system is in an unstable state while an interrupt
is being processed. Bdos() cal ls 12 and below should be safe,

0
but you should test this
It should be fast enough

(up to 9600 baud), light

b ut check t o b e s u r e .

3-80

OPTIMIZING C86 USER'S MANUAL interrupt functions

When your program terminates, you should restore the interrupt
vector to its original content. This appl ies only to vectors
t hat may be c a l l e d af t er yo u r pr o g r am t e r m i n a t es . Cl a s s i c al
instances are Clock, Break key and Key-board handlers. Otherwise
strange things will happen after your program has been executed.
You can cause a software interrupt with sysint. T his may he l p
you debug a prototype interrupt routine, as it can be traced with
the debugger.

The 2.1 version of intrinit has been recoded for the two
following reasons:

It uses the official MSDOS entry point for
pokeing the interrupt vector
It provides for restoring the original interrupt
handling address to the vector location through
the function intrrest(vecno) .

3.58.4. Example

NOTES ON USING INTERRUPT SERVICE ROUTINES

The following is a program to demonstrate the use of intrinit
to assign new interrupt service routines to the clock tick and
cntl-break interrupts under DOS. This program will d o a b d os(6,7)
to sound a beep intermit tentl y. Th is can be tur ned o f f by
press i ng CTRL-BREAK.

() include <std io.h>

()define STACK 5000
()define T ICK Oxlc
()define KEYBOARD Oxlb

long counter ;
l ong s t a r t ;
int ctrlbreak;

/* interrupt service routine for clock tick */
t imer()
(

/* no. bytes of stack to save */
/* Clock Tick interrupt «/
/* Control-Break interrupt */

c ounter - - ;

/* interrupt service routine for control-break */
ctr l ()
(

c t r l b r e a k = 0 ;

3-81

OPTIMIZING C86 USER'S MANUAL interrupt functions

/* main routine */

main()
(

printf("~nEnter approximate no. of seconds: ");
s can f ("%D",Scounter) ;
printf("Number entered: %D~n",counter);
i f (counter == 0) counter = l ;
c ounter * = 20 ;
s tar t = count e r ;
printf("press CTRL-BREAK to stop this process:gn");

int r i n i t (t i m er , STACK, TICK);
intrinit(ctrl, STACK, KEYBOARD);

f or (c t r l b r e a k= l;c t r l b r e a k ;) (
w hile(counter > 0)

bdos(6, 7);
counter = st a r t ;

/ * count d own * /
/* quit */
/ * i s sue beep * /
/" reset counter */

/ * was on 8MHz 80186 * /

/" set up new routine */
/* set up new routine */

i f (! c t r l b r e ak) g o t o done;

done:
i ntr rest (T ICK);
intrrest(KEYBOARD);

} / * e n d p r o g ram fo r i nt r i n i t * /

/ * restore original */
/ * res tore original */

int r r e s t () e x ample

/* The following is an example of trapping the Control-C
handler .
It now uses intrrest() to reset the vector number.

*/
() include (s t d i o . h >
extern i n t d u nmy() ;
main()

i n t f o o ;

int r i n i t (d ummy,256,0x23) ; /* set to point to drxmay */
f or (f o o =0;! foo;) b d o s (2 , ' - ') ; / * pr i n t ou t ' — ' , w h i l e U w a it * /
i n t r r e s t (0 x23) ; / * r e s t o r e o r i g . " C hand l e r addr * /

int dummy()

i nt f o o ;
foo = I ;
bdos(2, ' *');

3.58.5. Operating System
D OS 3.0 , DOS 2 . 0+ , DOS 1 . 1 +

3-82

OPTIMIZING C86 USER'S MANUAL issomething

3.59 • issomething, character class tests.

3.59.1. Synopsis

int i s a l n um(cc)
int i s a l p ha(cc)
i nt i s a sc i i (c c)
i nt i s c n t r l (c c)
i nt i s d i g i t (c c)
int i s l o wer (cc)
int i s p r i n t (cc)
int i s punct (cc)
int i s s pace(cc)
int i s upper (cc)
c har cc ;

3.59.2. Funct ion

Test the suppl ied character to see if is a member of a specific

/* alpha-numeric */
/ * a l p habet i c * /
/» a defined ASCII character */
/* a control character */
/ » a d i g i t * /
/* a lower case alphabetic */
/* a printable character */
/* a punctuation character */
/» a white space character */
/ * an upper c ase charac te r * /

c lass.

3.59.3. Returns

One if the character is a manber of the class, o therwise ze r o .

3.59.4 . Notes

The classes tested by the functions are:

f unct i on

isalnum
isalpha
isasci i
i scnt r l
rsdrgr t
i slower
i spr in t
ispunct

isspace
isupper

class

'a ' thru ' z ' , 'A' t h r u ' Z ' , '0 ' thru '9 '

Ox00 thru Ox7f
Ox00 thru Oxlf, Ox7f
' 0 ' t h r u '9'
'a ' t hru ' z'
Ox20 thru Ox7e
0 40 thru 0 57 , 0 7 2 t h r u 0 1 0 0 ,
0133 thr u 0 140 , 0 173 t h r u 0 1 76
Ox20, 'gt ' or '~n'
' A ' t h r u 'Z '

thru ' z ' ' Ai t hr u sZ'

See ctype.h for an alternative to function calls to perform these
f unct i ons .

3-83

issomethingOPT I)(IZ ING C86 USER'8)(ANUAL

3. 59. 5. Exmnple

i nt r ;
/* character class tests:

I NPUT: c h a r a c t e r
OUTPUT: integer value:

class1 if character in
0 i f n o t

i sa I nlxx (' () ');
i salpha(' C ') ;
i sasci i (p x f f) ;
i scntrl (' ~ t ') ;
zsdzgzt (' 0 ') .
i slower (' W');
i spr in t (0 x7f) ;
ispunct(' ');
isspace(' s') ;
isupper (' W');

/ + r i s
/ * r i s
/ * r r s
/ " r z s
/ * r i s
/ " r i s
/ * r i s
/* r r s
/ * r i s
/ * r i s

Q */
*/

p */
*/

] * /
p */
p */
p */
0 */

4/

r =
r =
r
r =
r =
r
r =
r =
r =

r =

'% dg n", ' () ', i sa 1 nun (' () '));
% & n",0 xp 7, 1 salpha (0 x07));
% d~n",Oxp 7, i saac i i (0 xp 7));
%dgn" 'Xt' ti scntrl('Xt

%dgn",' a', islower (' a'));

pr int f ("~nisalnun(%c)
print f ("~nisa lpha (%c)
p r i n t f ("~n I sa sc i i ('% c)
print f ("~niscntrl (%c)
pr intf ("~n isd ig i t (%c)
prin t f (" ~ n i s l ower(%c)

3.59.6. Operating Systan

DOS 3.0, DOS 2 • 0+, DOS 1.1+

3-84

OPT IMIZ ING C86 USER' S MANUAL 1 swap

3.60. iswap, Swap two integers.

3.60.1. Synopsis

i nt i s wap(i n t a , i n t b)
i nt ~ i n t a , * i n t b ;

3 .60.2. Func t i o n

Swaps the two integers pointed to by inta and intb.

3 .60.3 . Re t u r ns

Nothing

3.60 • 4. Notes

This function MUST be called with the addresses o f t he t wo
integers t o b e s wapped. Using the v a l u e (s) will lead to obscure
systan failures, that are difficult to find.

3.60.5. Bxmnple

e xtern i n t i sw ap () ;
i nt x , y ;

/* integer swap */

x = 5 ; y = 6 ;
prin t f (" i nx=%d, y=%din" , x , y) ;

iswap(&x,&y);

/* now x equals 6 and y equals 5 */
printf("ISWAPin x=%d, y=%&,n",rely)'

/* MUST supply addresses «/

3.60.6. Operating System

DOS 3.0, DOS 2.0+ , DOS 1 . 1+

3-85

i toaOPTIMIZING C86 USER'S MANUAL

3.61. itoa, Convert an integer to ASCII.

3.61.1. Synopsis

i nt i t o a (n, b u f f e r)
i nt n ;
c har *b u f f e r ;

3.61.2. Funct ion

Converts the input binary integer n into the equivalent ASCII

string in buffer. A leading minus sign is output if the number
is negative. The buffer must be at least 7 characters in length,
to hold the largest possible number. The string is terminated by
a binary z e r o .

3.61.3. Returns

The number of characters placed in the buffer. The value is
equivalent to strlen(buffer) after the conversion is canpleted.

/* value to convert */
/* where to put ascii characters +/

3.61.4. Notes

Uses the function sprintf.

3.61.5. Example

/* integer to ascii conversion */extern i n t i t oa() ;
extern i n t fpu t s () ;
i nt b i n a r y ;
c har s t r i n g [7] ;
i nt n u n ;

b inary = - 1 2 ;
nun = i t o a (b i nary , s t r i n g) ;
/* num contains the number of chars put in string */
f put s (s tr i ng, s tdou t);

3.61.6. Operating System

DOS 3. 0, DOS 2. 0+, DOS 1. I+

3.61.7. See a ls o

sprintf, f print f

3-86

i tohOPTIMIZING C86 USER'S NANUAL

3.62. itoh, Convert an integer to hexadecimal.

3.62.1. Synopsis

i nt i t o h (n , b u f f e r)
unsigned in t n;
c har «buf f e r ;

3.62.2. Function

Converts the input integer into the equivalent hex string in
buffer. The string is terminated by a binary zero. Buffer must
be at least 5 characters in length. No leading "OX" is placed in
t he buf f e r .

3.62.3. Returns

The number of character s pl aced in the buf f er. Th i s i s
equivalent to strlen(buffer) after the conversion has been done.

3.62.4. Notes

Uses the function sprintf

3.62.5. Exaaple

/* the value to convert «/
/* where to place it */

e xtern i n t i t oh () ;
e xtern i n t f pu t s () ;
u nsigned in t n ;
c har hexst r [5] ;
int number;

n = Ox3f f ;

number = i t o h (n , hexs t r) ;

/* hexadecimal characters are stored in hexstr «/

fputs(hexstr,stdout);

3.62.6. Operating System

DOS 3.0, DOS 2.0+ , DOS 1 . 1+

3 .62.7. See a l so

sprintf, fprintf

3-87

key funct i o nsOPTIMIZING C86 USER'S MANUAL

3.63. key getc,key scan,key shft-Z-100 PC keyboardfunct. (Z-100 PC ONLY!)

3.63.1. Synopsis

int key getc()

int key scan()

i nt key shf t ()

3.63.2. Function

key getc reads the next character typed at the keyboard. Returns
the ASCII value of the character (in the low byte) and the
keyboard scan code (in the high byte). The character is removed
fran the keyboard buffer and is not echoed to the screen.

key scan s c a ns t h e k e y b oard f o r a c har a c t e r . I t d oe s a n o n

destructive read, that is, the character is not removed from the
keyboard buffer. It will return an int in the same format as
key getc if a character is available, otherwise it returns -l.

key shft returns the keyboard shift status byte as described in
t he notes .

3.63.3. Notes

See the Z-100 PC Technical Reference Manual for more details.

Keyboard shift status byte:
0

mask
Ox01
Ox02
Ox04
Ox08
Oxlo
Ox20
Ox40
Ox80

bi t meaning
RIGHT SHIFT KEY depressed
LEFT SHIFT KEY depressed
CTRI, key depressed
ALT key depressed
SCROLL state active
NUMBER lock engaged
CAPS lock engaged
INSERT state e ngaged

0 1 2 3

4 5 6 7

3.63.4. Example

'k To read a charac te r and i t ' s sc a n c ode :
i nt c ;
c = key ge t c () ;

To find out if the right shift key is being depressed:
rshkey = key sh f t () 6 O x 01 ;

To find out if the control key is being depressed:
c t r l k e y = key sh f t () & O x 04;

3.63.5. Operating System
MS-DOS Version 2+, MS-DOS 1. 1+

3-88

OPTIMIZING C86 USER'S MANUAL long jmp

3.64. longjmp, Restore an enviromeent.

3.64.1. Synopsis

()include " s t d i o . h "

int longjmp(envp,value);
jmp buf * e nvpi
i nt v a l u e ;

3 • 6 4.2. Funct i o n

/* to define jmp buf */

Restores t he environment to one previously saved using the
f unct i o n se t j m p () . The value is returned as the exit value of
set jmp() .

3.64.3. Returns

N ever r e t u r n s .

3.64.4. Hates

This is a very dangerous function, but if you really want to use

The env irorment must have been saved using set jmp by a function
that is currently active, and which is the same function or a
parent of the function containing the call to longjmp.

3.64.5. Operating System

D OS 3.0, DOS 2 . 0+ , DOS 1 . 1+

3 .64.6 . Use wi t h

set jmp

i t see se t j m p() •

3-89

ld expOPTIMIZING C86 USER'S MANUAL

3.65. l dexp, Load exponent

3.65.1. Synopsis

double ldexp(mantissa, exponent)
double mantissa;
int exponent ;

3 .65.2 . Funct ion

R eturns t h e d o u b l e :

mantissa*(2~*exponent)

3.65.3 . Notes

This is the inverse of the function "frexp".

3.65.4. Example

e xtern double l d e xp () ;
double mantissa;
int exponent ;
d ouble d r es u l t ;

mantissa = 1.444 ;
exponent = 10 ;

dresul t = ldexp(mantissa, exponent);

/* dresult contains: 1.444 * (2 1 0) */
printf("gnLDEXPgn%g = %g * (2 to the %d) ~n",

dresult, mantissa, exponent);

3.65.5. Operating System

DOS 3.0, DOS 2.0+ , DOS 1 . 1+

3.65.6. S ee a l s o

frexp, modf

3-90

OPTIMIZING C86 USER'S MANUAL loadexec

3.66. l oadexec, Load or execute a progran

3 • 66. 1 • Synops i s

int loadexec(f ilenane,paran,f uncode)
char * f i l e n a ne;
struct pblock *param;
int f u ncode;

3.66 • 2 . Funct io n

Performs the DOS V2.0 load or execute a program function cal l.
This function is called by the system function. The sys t em
function is much easier to use and is recommended over the
loadexec function.

3.66.3. Returns

Zero if successful, otherwise a DOS 2.0 error code.

3.66.4. Notes

This function is ONLY available under DOS V2.0.

We really wanted to create the UNIX functions 'exec' and
'system', but that would have removed some useful abi l i t i es of
this systan service.

See the writeup of service Ox4b in the DOS V2.0 manual for full
d etai l s o f t h i s f u n c t i o n . Funcode is 3 to load a program, and
zero to l o a d a nd execute a pr o g ran.

The f ilename is a standard DOS V2.0 f ile name with path
s peci f i c a t i o n i f de s i r e d .

The parameter block is
filename and param block
even in a small model
function "system" for an

Since this function wil 1 load and execute a program in unused
memory you may not have enough r oom i f y ou a re r u n n i n g y ou r
program on a computer with a smal 1 amount of memory. I f yo u d o
not have enough room in your machine, you will have to modify the
defaults in default, so that the program will leave some memory
free. Otherwise there will be no manory available for loadexec
to load the target code into.

3.66.5. Operating Systan
D OS 3.0, DOS 2 . 0 +

3 .66.6. See a l so
systan

as explained in the DOS manual. The
pointers are ALWAYS big model pointers,

example.
p rogram. S e e t he so u r c e c o d e o f t he

3-91

OPTIMIZING C86 USER'S MANUAL

3.67. log, log10, Logarithm functions.

3.67.1. Synopsis

d ouble l og (va l)
d ouble v a l ;

d ouble l o g10(va l)
d ouble v a l ;

3 .67.2. Retu rns

Log returns the natural logarithm of the value.

Log10 returns the logarithm of val to the base 10.

3 .67.3. Notes

Both functions return zero if the value is zero or negative.

3.67.4 . Rxmaple

(
e xtern double l o g () ;
extern double l og10();
d ouble dva l ;
d ouble dresu l t ;

dval = 45 .023 ;
dresult = log(dval);
/* dresult contains 3.80717.....

log returns the natural logarithm */

dval = 45 . 0 2 3 ;
d resul t = log10(dva l) ;
/* dresult contains 1.6534....

log10 returns the base 10 logarithm */

p rin t f (" ~nLOGgn'ig log(%g) ~n",24.56, l og (24.56)) ;
printf("~nLOGIO~n%g log10('ig)~n",77e3,1og10(77e3));

)

3.67.5. Operating System

DOS 3.0, DOS 2 .0+ , DOS 1 . 1+

3 .67.6. See a l s o

exp, pow, sqr t

3-92

OPTIMIZING C86 USER'S MANUAL lower

3.68. lower, Convert a string to lower case.

3.68.1. Synopsis

c har * l ower (s t r i n g)
c har * s t r i n g ;

3.68.2. Punction

Converts all uppercase characters in the string t o l o wer c a s e .
All other characters are unchanged .

3 .68.3. Ret u r ns

The address of the string.

3.68.4. Esaaple

Read a filename and force it to lower case.

(
char f i l e n ame[SO];

printf("Enter file name: ");
gets(f i l ename,75);
lower(f i l e name);
prin t f (" ~ nname is : — %s~n", f i l e n ame);

3.68.5. Operating System

DOS 3.0, DOS 2.0+ , DOS 1 .1+

3 .68.6. See a l so

upper

3-93

lseekOPT INIZING C86 USER'S MANUAL

3.69. lseek, Position R/W pointer in a file.

3.69.1. Synopsis

long lseek(fd,offset, base)
i nt f d ;
long offset;
int base;

3.69.2. Function

This function allows you to alter the read/write position pointer
for a disk file. This pointer defines the character that will be
read/written on the next i/o operation on the file. To issue
this call:

fd is a file descriptor returned by open or creat.
offset is an adjustment relative to base.
base is a code for the base value of the seek.
The file must be open in read or read/write mode.

Al lowable base codes are :

- 0 R e lative to beginning of file. Offset must be positive
- 1 R elative to current position in file
- 2 R e lative to the end of the file (SEE NOTE BELOW)

3.69.3. Returns

.minus one if an error is detected

.The current position in the file if successful. D
3 69.4. Notes

Lseek(fd,OL,O) will let you process the first byte in the file on
the next i/o operation. Lseek(fd,-1L,1) will let you process the
most recently processed byte again.

Seeks on a non disk file return the error code -1. Seeks beyond
End Of File should be avoided, since they may r esul t i n f i l es
with missing sectors, which could result in i ncor r ec t EO F
indications in subsequent processing.

ASCII files may be used, but the presence of carriage retur'n/line
feed pairs may make it difficult to determine the seek offset.

The open logic for ASCII mode files reads the last sector looking
for a control-z, and sets the end of file position accordingly.

3-94

OPTIMIZING C86 USER'S MANUAL lseek

3.69,5 . DOS

This feature is provided, and uses the operating systan provided
f i l e s i z e . Thus i t wi l l not wo r k w i t h f i l es written by programs
using CPM end of file conventions.

3.69.6. Exanple

Ndefine BEGIN 0
()define CURRENT 1
()define END 2

e xtern l ong l s e e k () ;
e xtern i n t o p en () , c l o s e () ;
i nt f d , ba s e ;
long offset, lpos;

fd = open("a:filename.dat",AREAD);
if(fd(0) return;

/* To position on the first byte: */
o f f s e t = OL; l po s = lseek(fd,offset, BEGIN);

/* To position so that last byte will be reprocessed: */
o f f se t = -1L;
lpos = lseek(fd,offset, CURRENT);

/* To position such that the byte at End of File

o ffse t = -5 0 L ;
1 po s = l seek (fd,o f f se t, END);

/* In the above calls to lseek, lpos contains either:
(-1) if an error detected (such as seek beyond EOF)
or the current position relative to the beginning */

50 will be processed next: */

close(fd) ;

3.69.7. Operating Systsxs

DOS 3.0, DOS 2.0+ , DOS 1. 1+

3 • 69.8. Use w it h

open, creat, close, ltell

3-95

) te l lOPTIMIZING C86 USER'S MANUAL

3.70. ltell, Tell the R/W position within a file.

3.70.1. Synopsis

long ltell(fd)
x nt f d ;

3.70.2. Funct ion

This function returns the absolute position of the byte in the
file which will be processed by the next i/o operation. To issue
this call:

fd is a file descriptor returned by open or creat.

3.70.3. Returns

The absolute position of the next byte in the file
— minus one if any error is detected

3.70.4. N o t e s

This function must be declared as returning a long integer before
its use in a program. It will always return an error when used
on a non disk file. This fact may be used to determine if a file
i s d is k f i l e.

This function is equivalent to lseek(fd,OL,1);

3.70.5. Rxample

extern unsigned long ltell();
e xtern i n t o p e n () , c l os e () ;
i nt f d ;
unsigned long position;

fd = open("a: f ilename.ext",AUPDATE);
i f(fd (0) r e t u r n ;
fprintf(fd,"Sample Detain");

p osi t i o n = l t e l l (f d) ;
/~ position contains the current position in the file */

prin t f (" gnCurrent pos i t i o n i s : ' 5D~n",posi t i o n) ;
close(fd);

3.70.6. Operating System
DOS 3.0, DOS 2.0+ , DOS 1 . 1+

3 .70.7 . See a l s o
o pen, c r e a t , l s e e k , cl os e

3-96

l t oaOPTIMIZING C86 USER'S MANUAL

3.71. ltoa, Convert a long integer to ASCII.

3.71.1. Synopsis

i nt l t o a (n ,buf f e r)
long n;
char * buffe r ;

3 .71.2. Funct i o n

Converts the input long binary integer n into the equivalent
ASCII s t r i ng i n buf f e r . A l ead i ng m i n u s s i g n i s out p u t i f t he
nunber is negative. The buffer must be at least 12 characters in
length, to hold the largest possible number. The string is
terminated by a binary zero.

3.71.3. Returns

The number of characters placed in the buf fer. The value is
equivalent to strlen(buffer) after the conversion is completed.

3. 71.4. Exanple

e xtern i n t l t oa () ;
e xtern i n t f pu t s () ;
long number;
char longstr[12];
int nunchars;

/* converts a long to an ASCII string */

/* must be at least 12 chars */

number = 10223444L;
numchars = Itoa(number,longstr);

/* numchars contains number of characters converted */
/* longstr contains "10223444" */

fputs(longstr,stdout);
)

3.71.5. Operating Systaa

DOS 3 Og DOS 2 0+g DOS 1 1+

3-97

l tohOPTIMIZING C86 USER'S NANDAL

3.72. ltoh, Convert a long integer to hexadecimal.

3.72.1. Synopsis

I nt l t o h (n , b u f f e r)
unsigned l ong n ;
char *b u f f e r ;

3.72.2. Function

Converts the input long integer into the equivalent hex string in
buffer. The string is terminated by a binary zero. Buffer must
be at least 9 characters in length. No leading "OX" is placed in
t he bu f f e r .

3.72.3. Ret urns

T he number of characters placed in the buf fer. T h i s i s
equivalent to strlen(buffer) after the conversion has been done.

3. 72.4. Exasple

extern i n t I t oh () ;
extern i n t f pu t s () ;
unsigned l ong number;
c har hexst r [9] ; /* must be at least 9 chars */
int numchars;

nunber = 10223444L;
numchars = ltoh(number,hexstr);

/* numchars contains the number of characters converted */

fputs(hexstr,stdout);

3.72.5. Operating System

DOS 3 Og DOS 2 0+g DOS 1 1+

3-98

OPTIMIZING CS6 USER'S MANUAL l t os

373 • ltos, Convert a long integer to a string.

3.73.1. Synopsis

int ltos(n,buffer, base)
long n; /» the number to convert */
c har *bu f f e r ; /* where to put it «/
int base; /* the base for conversion to characters «/

3 .73.2. Funct i on

Converts the input long integer into the equivalent s tr i n g of
characters in the output area ' buf f e r ' . The string is terminated
b y a b i n a r y z e r o . The output buffer must be long enough to hold
the largest possible output nunber, as this routine does not
check.

The conver'sion is controlled by the value supplied as the base.
If the base is positive, an unsigned conversion is p e rf o rmed,
otherwise a signed conversion is performed, a nd a minus s ig n i s
output if required.

This routine may be used to convert a signed or unsigned long to
an ASCII string to any base in the range 2 through 16 (decimal) .

3.73 • 3. Returns

The number of characters placed i n t he buf f e r . Thi s i s
equivalent to strlen(buffer') after the conversion has been done.

3 73.4. No tes

This routine was written to provide a canmon conversion rout i ne
f rom b i n a r y t o AS C I I. It is not typically available on UNIX
systems.

3.73.5. Example

extern i n t l t os () , f put s () ;
unsigned l ong nunber ;
char str[34); /* make sure it' s long enough */
int numchars;

nunber = 10223444L;
nunchars = l t o s (number,s t r , - 2) ;

f p u t s (s t r, s td o u t);
)

3.73.6. Operating System

DOS 3 • Og DOS 2 0+~ DOS 1 1+

/* convert to signed binary */

/ * p r i n t i t ' /

3-99

mainOPTIMIZING C86 USER'8 MANUAL

3.74. main, Entry point for a C progran.

3. 74. 1. Synopsis
int main (argc ,argv)
r nt a rgc ; /* number of arguments on the canmand line */
c har *argv [) ; /* an array of pointers to the arguments */

3.74.2. Funct ion

This function is user supplied. I t i s t he m a i n f un c t i on o f a C
program. I t is called with the number of arguments on the
canmand line and an array of pointers to the argument strings.

On a UNIX system, the first argument is always the name of the
program. Since this is unavailable, we substitute a lower case
"c". Thus argc will always be at least one.

Entries on the command 1 ine beginning with a ">" or "<" symbol
are assumed to specify redirection and are not supplied t o t h i s
f unct i on . See " main" for details.

3.74. 3. Returns

Zero if the program run without errors, non-zero otherwise.

3.74.4. Example

The canmand 1 ine:

myprog This i s a Li n e >pm:
would result in main (inside the file myprog.c) being cal led
wxthrr

* argc conta i n i ng 5
* argv pointing to an array of pointers, which point to the

s tr ings :

IIoil
"This"
Il~ sN
IIall
"Line"

3-100

OPTIMIZING C86 USER'S MANUAL main

3.74.5. Example

To print each of the canmand line arguments on a separate line:

() include <std in .h)

main(argc,argv)
i nt a r g c ;
c har ~argv[] ;

i nt i ;

/" count of arguments */
/* a rg umen t s t r i ng s */

for (i =o; i<argc; i++)
prin t f (vgnargv[%d] = '4s",i , a rgv[i]) ;

3.74.6. Operating System

DOS 3 • 0~ DOS 2 0+g DOS 1 1+

3 .74.7. See a l so

S main, m a i n

3-101 '

make febOPTIMIZING C86 USER'S MANUAL

3.75. makefcb, Make a file control block.

3 • 75.1. Synopsis

char *make feb(f ilename)
char * f i 1 en arne;

3.75.2. Function

Makes a file control block. The input filename str ing may
c ontain :

— A single letter drive specifier fol lowed by a colon.
- A path specification of up to 63 characters
— A file name of up to 8 characters,
- An extent consisting of a period followed by up to three

characters .

The File Control slock is obtained by a call to cal loc.

3.75.3. Returns

The address of the created file control blocb. On error makefcb
returns NULL. The format of the file control block is specified
i n the f i l e " f i l ei o. h " (f o und i n d osa l l . a r c) .

3.75.4. Notes

Characters less than Hex 21 are considered as errors. Filenames
containing question marks may be used with this function, but
should not be used with other suppl ied file manipulating
functions. When you have finished with the fcb, you should
return the area to the heap using the function ' free'.

If this function is executed under DOS 2.0+, the path name (if
any) will be extracted and saved in the returned fcb. I f i t i s
executed on earlier versions of DOS, the path information will be
d iscarded.

The path information is prov ided for the convenience of the
DOSALL library functions. We recommend you do not use the path
facil ities in your own coding, as the mechanisms may change in

You should use the DOS 2.0+ calls, and avoid this service if you

0

future r e l e ases.

can.

3-102

OPTIMIZING C86 USER'S MANUAL make fcb

3.75.5. Bxaaple

extern char *makefcb() ;
e xtern i n t f r ee () ;
char *filename;
char * f c b l , * fcb2, «fcb3, * fcb4 , * f c b 5 ;

filename= "a:f ilename.ext"; /* f ull speci f ication */

fcbl = makefcb (f i l e n mne);

/* fcbl contains the address of the File Control Block
created by makefcb. The File Control Block is obtained
through a call to alloc, and therefore the fcb can be
freed when you are done with it. Other valid calls
include:

*/

fcb2 = makefcb(" f i l e ") ;
fcb3 = make fcb("b :???????? .c") ;
fcb4 = makefcb(" p r og .da t ") ;

fcb5 = make fcb("c :~~bin~~c86'Acc3.exe") ;

/* '?' may be used with this function , but not with the
other f ile functions (such as rename) */

f ree(fcbl) ;
free(fcb2);
f ree(fcb3) ;
f ree(fcb4) ;
f ree(fcb5) ;

3.75.6 • Operating System

DOS 3 Og DOS 2 0+g DOS 1 1+

3 .75.7. See a l s o

open, creat, fopen, bdos, sysint

3-103

make fnamOPTIMIZING C86 USER'S MANUAL

3.76. makefnan, Make a file name.

3. 76. 1. Synopsis

char *make fnam(input, default, result) i

char « input ; /* the input file name "/
char *de faul t ; /* the default file name /
c har * r e s u l t ; /* where to build the result */

G
3.76.2 . Funct ion

Builds a composite disk file name in the r esul t a r e a, b y
ccmbining canponents from the input and default file names.

This function considers the input and default file names to
consist of the following four canponents:

C.

* A drive designator, consisting of one letter followed by a
c olon (' : ') .

* A path specification, consisting of all the characters
after the drive designator, if any, up to the last back
slash (' g ') or f o r war d sl as h (' / ') i n t h e s t r i ng .
Reminder: the backslash ('~') is the escape character in

* A file name consisting of all the characters following the
path specification, if any, up to a period, or the end of
the s t r i ng .

* A file extent, consisting of all the characters after the
period terminating the file name up to the end of the
str i ng. 0

If the input file name contains a component, then that canponent
is copied to the result string. If the default string contains a
component that is not present in the input string, t hen t h e
defaul t component becomes part of the result string. I f a
component is missing from both input and default strings, then it
is also missing fran the result string.

In addition, each part of the path name is truncated to the first
eight characters, the f i le name to the f irst eight characters,
and the extent to the first three.

3.76.3 . Returns

The address of the null terminated result string .

3.76.4 . Notes

This function does not cope with device names, such as "con:" or
" lp t : " . So check that you don' t use than.

This function can be used to supply defaul t components of file
names, or to force components of file names to specific values.

This function is not a standard C langauge function.

3-104

OPTIMIZING C86 USER'S MANUAL make fnam

3. 76.5. Ex maple

To set a default extension of ".c" on a user suppiled file name:

make fnam(userf ile,".c",zesf ile);

To f o r c e a d r i v e o f " b : " and an e x t e n s i o n o f " .c " on a user
supplied file name:

make fnam("b:.c",user file,resf ile);

3.76.6. Operating System

DOS 3 0 i DOS 2 0+ g DOS 1 1 +

3 .76.7. Use wi th

open, fopen, rename, unlink

3-105

mallocOPTINIZING C86 USER'S NANUAL

3.77. malloc, Allocate uninitialized memory fran the heap

3.77.1. Synopsis

char *mal l oc (s i ze)
unsigned s i ze ;

3.77.2. Funct ion

Obtains a region of size bytes from the heap. T he reg io n i s n o t

/* nmnber of bytes needed»/

i ni t i a l i z e d .

3.77.3. Returns

The address of the allocated region, or zero (NULL) i f n o t e n o ugh
mmnory was available.

3.77.4. Notes

Using the big memory model, blocks of up to 65516 (OxFFEB) bytes
may be requested. In the bigmodel, the default amount of memory
available is about 96K for the heap and the stack. This can be
changed (either increased to access all of memory on your machine
or decreased to leave more unused memory) by editing the file
default.c. We have found that most users of C86 can 1 ive with

about 96K of heap and stack space in the bigmodel.

It is very important that this function is declared in the big
model as returning a pointer to a character. Undefined results
w il l o c cu r i f t h i s f un c t i o n i s n o t d e c l a r e d .

3 77. 5. Exmaple

/ » impor tan t i n b ig mode l !! »/e xtern char *mal l o c () ;
e xtern i n t f r e e () ;
c har »bu f ;
unsigned nunber bytes ;
i nt i ;

n uxber by t e s = 255;
buf = malloc(nuxber bytes); /» n ot i n i t i al i z e d * /

you can i n i t i al i z e y o ursel f i f nec c essary * /
for (i =0;i (nmxber by tes ; i + +)

/ * use bu f » /
f ree(buf) ;

b uf[i) = EOS; / E O S = '~0' */

)
3.77.6. Operating System
DOS 3. 0, DOS 2. 0+ i DOS l. 1+

3 .77.7 . See a l s o
a l l oc , c a l l o c , r ea l l o c , sbrk, free, coreleft

3-106

OPT IN IZ ING C86 USER� ' S HANUAI, mkd ir

3.78. mkdir, Nake a nev subdirectory.

3.78.1. Synopsis

int mkdi r (pathname)
char «pathnane;

3 .78.2 . Funct i on

Cal 1 s the operating system to make a new subd irectory in the
current working directory. The path name for the new directory
i s essent ia l l y 1 i m i ted t o a single eight character name, and i s
operating system dependent. You should r e f e r t o yo ur operat i ng
systen docuaentation for more Information.

3.78.3 . Returns

EOF if an error is detected, otherwise zero.

3.78.4 . Notes

This f u n c t i o n i s on l y ava i l ab l e f o r D OS V2 .0« .

3.78.5. Operat ing System

D OS 3.0, DOS 2 . 0 +

3 .78.6 . I I se v i t h

c hdir , r m d i r

3-107

mod fOPTIMIZING C86 OSER'S MANVAL

3.79. modf, Split double into integer and fraction.

3. 79. 1. Synopsis

double mod f(val, ipt r)
d ouble va l ;
d ouble * i p t r ;

3.79.2 . Funct ion

Stores the integer part of "val" indirectly through the pointer
"iptr" , and returns the fractional part. The fractional part is

always greater than or equal to zero.

3.79.3 . E xanple

(

double
double
double

d ouble modf() ; / " d o ubl e p r e c i s ion mod funct ion * /
val;
i nt par t ;
fr ac;

val = 1234. 5555;
frac = mod f(val,a int part) I

/x frac contains .5555, int part 1234 ~/
print f("gnMOD+n'4g = mod f ('4g,tg) ~n", fr ac,val , i n t p a r t) ;

/ ~ the i nput v a l ue * /
/* where to put the resul t */

extern

val = -1 9 . 8 1 2 ;
f rac = m odf(val,a in t par t) ;

/~ frac contains .812, int part -19 ~/
print f�("~n'Lg = mod f (%g,%g) ~n",frac,val, int part);

)

3.79.4. Operating System

D OS 3.0 , DOS 2 . 0+ , DOS 1 . 1 +

3 . 79. 5. See a l s o

f rexp, l d exp

3-108

OPTIMIZING C86 USER'S MANUAL movblock

3.80. movblock, Move a block of memory.

3.80.1. Synopsis

i nt movblock (so f f s e t , s s eg ,d o f f s e t , d s eg , count)
unsigned soffset; /* source offset relative to "/
unsigned sseg; /* the source segment «/
unsigned doff set; /» destination offset relative to »/
unsigned dseg; / » t h e d e s t i n a t i o n segment ' /
unsigned count ; /» nunber of bytes to move»/

3 .80.2 . F unct i o n

Moves a block of memory from anywhere in memory to anywhere i n
manory. T h e s o urce and destination addressesare spec i f i e d by
standard offset/segment double word values.

Up to 64000 bytes may be moved.

I f t he move i s f o r exactly 2 words, interrupts a re d i sab l e d.
This allows you to move data to an interrupt vector address .

In a b i g m o de l p r o g r am, soffset and sseg may be supplied by ONE
pointer. Likewise doffset and dseg.

3 .80.3 . Re t ur ns

Nothing .

3 .80.4 . No t e s

T his r o ut i ne i s i n t en ded f o r m o v i n g d a t a t o/ f r o m memory t h a t is
"outs ide" a p r o g r a m.

DOS

DOS provides a system c al l f o r se t t i ng i nt e r r u p t vecto rs . I t
should be used instead of movblock.

3. 80. 5. Operating Syst»sn

D OS 3.0 , DOS 2 . 0+ , DOS 1 . 1 +

3 .80.6 . See a l s o

movmem

3-109

movmemOPT IMIZ ING C86 USER'S MANUAL

3.81. movmem, Move memory within a progrmn.

3.81.1 . Synopsis

int movmem(source,dest,count)
c har ~ sour c e , * d e s t ;
unsigned int count;

3 .81.2 . F unc t i o n

Copies a b l ock of memory, count bytes in length, starting at

address source t o t h e area starting a t add r e s s de s t . Th i s
routine is written so that a valid copy will be made even if the
source and destination regions overlap.

3 .81 3 . R e t u r n s

Nothing .
3 .81.4 . N o t e s

This routine is intended for moving data " wi t h i n " a p r o g r mn . I n
a big model progrma it p rovides t he s a m e c a p a b i l i t i e s as
movblock .

3-110

OPTIMIZING C86 USER'S MANUAI. movmcm

3.81.5 . E xmaple

, srce , d e s t , t m p) ;

, srce , d e s t , tm p) ;

, srce, d e s t , t m p) ;

e xtern i n t m ovmcm() , f r e e ();
extern c ha r a c a l l o c () ;
unsigned int byte count;
c har * s r c e , «dest , tmp.

byte c o un t = 100 ;
srce = c al l oc (byte count , l) ;
s trcpy (s r c e , " Source string Written Here");
dest = cal l o c (b y t e c o un t , s i z e o f (c h a r)) ;
s trcpy(des t , " Des t i n a t i o n s t r i n g H e re") ;
tmp = c al l o c (b y t e c o un t , s i z e o f (c h a r)) ;

printf("gnBEFORE MOVMEMgn");
printf (" srce : / m i d "modest I g" '1st "Xntmp I %mid"Xn"

movmem(srce, tmp,byte count);
p r int f (" ~ n s r c e : ~ "%s~ "gndest : %mid "Xntmp

movmem (des t,srce,byte coun t);
printf("~nsrce: ~mls~"Rudest I X "lsd� "Xntmp

movmem(tmp,dest,byte count);

Prin t f ("~ n AFTER MOVMEB~n");
pr intf (" s r c e : / mi d� "gndest: g "%sf "gntmp: ~ mls/ "~n"

f ree(tmp); f r e e (srce) ; f r ee (d e s t) ;

Q IIt sQII Q nII

, srce , d e s t , t m p) ;

3.81.6. Operating System

DOS 3.0, DOS 2 . 0+ g DOS 1 . 1+

3 .81.7 . See a l s o

setmsm, movblock

3-111

open
OPTIMIZING C86 USER'S MANUAL

3.82. open, Open an existing file.

3.82.1 . Synopsis

int open (f i l e n ame, mode)
char * f i l e n a ne,"
unsigned int mode;

3 .82.2 . Funct i on

Filename must be a v alid f i l e n ame fo r y o u r o perat ing s y s t a s o r
one of the special names defined below. I f a f i l e o f t h a t nam e

c urren t l y ex i st s i t i s open e d , o therwise a n e r r o r i s retur ned .

Valid o pen modes a re de f i ned i n "stdio.h", and have the values:

AREAD

AWRITE
AUPDATE
BREAD
BWRITE
BD PDATE

0 1 2

4 5

ope n
open
open
o pen
open
open

f or ASCI I r e a d
f or ASCI I w r i t e
f or ASCI I u p d a t e
f or b i n a r y r ea d
f or b i n a r y w ri t e
f or b i n ar y u p da t e6

3 .82.3 . Re t u r ns

A negat ive n unber i f a n y e r r o r i s d e t e c t e d .
A posi t i v e n uxber (a f i l e de s c r i p t o r) i f s uc c ess f u l .

3 .82.4 . N o t e s

Opening a f i l e i n AS CI I m ode means:

Carriage return/linefeed pairs i n t h e f i l e wi l l be

converted t o n e w l i ne s (' g n ') on i npu t .
Newlines wi l l be c on v e r t e d t o c arr i ag e r e t ur n / l i ne f e ed
p airs on ou t p u t .
Control-z in the file will be returned as end of file on

input .

No convers io n i s pe r f o r med on f i l e s op e ned i n b i na r y mode .

You must use the function creat to creat a n ew f i l e . unl i ke t h e
function fopen, t hi s f u n c ti o n w i l l no t c r eat a f i l e f o r yo u , i t

must be done with another function call.

3-112

OPTIMIZING C86 USER'S MANUAL open

3.82. 5. DOS

The following special file names are supported:

— To open the console "CON:"
— To open the p r i n t e r "PRN:"
— To open the can dev ice " AUX:"

3.82.6. Exmaple

e xtern i n t o p en () ;
e xtern i n t c l os e () .
char ~ f i l e nane;
unsigned int mode;
i nt f d ;

mode = AREAD;
f ilename = "a:f ilename.ext";
fd = open(f ilename,mode);
i f (fd<0) pr intf("~nError opening %s~n",f ilenaxe);
e lse c l os e (fd) ;

mode = AWRITE;
filename = "CON:"; /* write to console */
fd = open(f i l e n ame,AWRITE);
i f (f d<0) p r i n t f (" ~ nError opening console f o r w r i t e g n ") ;
e lse c l ose (f d) ;

mode = BREAD;
filename ="a:filename.dat";
fd = open(filename, mode);
/* open in binary mode, no CRLF or CTRLZ conversion */
i f (fd) = 0) c l o se (fd) ;

3.82.7. Operating System

DOS 3.0, DOS 2.0t, DOS 1.1+

3 .82.8 . Use w i t h

creat, read, write, close, lseek, ltell

3.82.9. See a l s o

f open, f c l o s e

3-113

outport functionsOPTIMIZING C86 USER'S MANUAL

3.83. outportb, outportw Output a byte or word to a port.

3.83.1. Synopsis

unsigned char outportb(portno,value)
unsigned int portno;
char val ue;

int outportw(portno,value)
int portno;
int va l ue ;

3.83.2. Function

Outportb outputs a byte to a user supplied port number (portno).
The port number must be valid for the addressed device. In some
cases a 16 bit port number is required. For o l de r d e v i c e s an 8
bit number is required, and i t may have to be in either byte of
portno. One possibil ity is to place the port number in both
upper and lower bytes of portno. It returns the byte read from
t he por t .

Outportw outputs a word to a user suppl ied port number (poztno).
The port nunber must be val id for the addressed device. Usuall y
a 16 bit port number is required. This function is not needed

for most devices currently available, as they d o no t s u p p or t 16
bit I/o transfers. It returns the word output fran the port.

3-114

OPTIMIZING C86 USER'S MANUAL outport functions

3.83.3. Example

outportb example

extern unsigned char outportb();
unsigned int portno;
c har byt e v a l u e ;

b yte v a l u e = Ox07;
portno = 0 ;
outportb(portno,byte value);

* outportw example

extern unsigned int outportw();
unsigned int portno, word value;

w ord va l u e = Oxf f a a ;
portno = 1 ;

outportw(portno,word value);

3.83.4. Operating System

DOS 3.0, DOS 2.0+, DOS l.lt

3 .83.5. See a l so

inportw, inportb, outportw

3-115

peekOPT IHIZ ING C86 USER'S HANUAL

3.84. peek, 8xamine the content of a word in memory

3.84.1. Synopsis

int peek(offset,seg)
unsigned offset;
unsigned seg;

3.84.2 . Funct ion

Get the content of a word anywhere in memory. The offset/seg is

a standard double word pointer. In the big model a r egular
pointer may be used.

3.84.3 . 8 e t urns

The content of the requested word.

3.84.4 . Notes

/* offset of the word relative to */
/" a segment register value */

Sometimes you may want to poke and peek inside the memory that
the program is loaded into. To f ind out where the program is
loaded use the function segread() .

3. 84. 5. Example

extern i n t p e e k() •
unsigned offset;
unsigned segment;
i nt word ;
i nt i ;

segment = Ox100;
putchar ('~n') ;

f or (o f f se t =0; of f set(20;o f f set++)

word = peek(of fset,segment);
pr int f ("peek (%xH,%xH) = %d~n",of f set,segment, word);

)

3.84.6. Operating System

DOS 3. 0, DOS 2.0+ , DOS 1 .1+

3 .84.7. See a l s o

pokeb, pokew, segread

3-116

OPTIMIZING C86 USER'S MANUAL po ke

3.85. poke, Store data in memory.

3.85.1. Synopsis

pokeb(of f set,seg,byte);
unsigned offset;
un s ig ned seg;
c har by t e ;

pokew(offset ,seg,word);
unsigned offset;
unsigned seg;
unsigned word;

3.85.2. Punct ion

Put a word or byte at the specified offset/seg address in memory.
The offset/seg pair are a standard double word pointer.

/ * poke a b y t e */
/» the of fset relative to «/
/» the segment value */
/» the value to poke */

/ » poke a word * /
/* the offset relative to */
/» the segment value */
/* the value to poke */

3.85.3. Returns

The value poked.

3.85.4. Notes

Sometimes you may want to poke and peek inside the memory that
the program is loaded into. To find out where the program is
loaded use the function segread() .

3.85.5. example
(

extern uns igned char pokeb() ;
extern unsigned int pokew();
unsigned offset;
unsigned segment;
c har by t e ;
unsigned word;

segment = Ox200;
o ff se t = 0 ;

byte = peek (of f se t,segment) a 0 x f f;
pokeb(offset, segment, byte);

word = peek(offset, segment);
pokew(offset, segment, word);

)
3.85.6. Operating System

DOS 3.0, DOS 2.0+ , DOS 1 . 1+

3 .85.7. See a l so
peek, movblock , s e g r ead

3-117

OPTIMIZING C86 USER'S MANUAL pow

3 .86. pow, Return X t o t h e power T .

3.86.1. Synopsis

double pow(x,y)
d ouble x , y ;

86 2 R e t u r ns

The value of x raised to the power y.

3.86.3 . Notes

Returns zero if both x and y are zero.

Returns le+300 if the result would overflow.

3.86.4 . Example

extern double pow() ; /* returns base to the exponent */
d ouble base , e x p ;
double r e s u l t ;

base = 2 . 7182818;
e xp = - 2 . 5 ;

resul t = p o w(base,exp) ;

/* result contains 0.08208.... */
prin t f (" ~ npow(%g,%g) = %g~n",base,exp , r es u l t) ;

base = 10 . 0 ;
exp = 6 . 0 ;

resul t = pow(base,exp) ;

/* result contains 1000000.0 */
prin t f (" g npow(%g,%g) = %g~n",base ,exp , r e s u l t) ;

3 .86.5. See a l so

e xp, l og , l o g 10 , s q r t

3.86.6. Operating System

D OS 3 Og DOS 2 0 + / DOS 1 1 +

3-118

OPT T 1IZ INC C86 USER'S HANUAL p rin t f

3.87. printf, Print to stdout

3.87.1. Synopsis

i nt p r i n t f (fo rma t,a rg s . . .)
char * format;
s ee below fo r a r g s ;

3.87.2. Function

Output data under control of a format string to file stdout.

The output file is stdout, which is normally open to the console.
However, it is subject to redirection, and may be open to a disk
file or the line printer. The file should be open in ASCII mode.

S ee fp r i n t f f or addi t i on a l i nf or ma t i o n .

3.87.3 . Returns

Nothing .

3. 87. 4. Example

For examples of the format control string, see Kernighan and Ritchie.

3.87.5. Operating System

DOS 3. 0,' DOS 2. 0+, DOS l. 1+

3 .87.6 . Use wi t h

fprintf, fopen, fclose

3-119

printer functionsOPTIMIZING C86 USER'S MANUAL

3.88. Z-100 PC printer functions (Z-100 PC ONLYI)
prt busy, prt err, prt putc, prt rst, prt scr, prt stat

3.88.1 . Synopsis

int prt busy(printer)
int printer; /a 0,1,2 ~/

i nt pr t e r r (p r i n t e r)
i nt pr i n t er ; / ~ 0 l i2 « /

int pr t putc (printer, character)
i nt pr i n t e r ; / a 0 1 2 ~/
char character ; /~ the character to print ~/

int prt rst(printer)
i nt pr i n t e r ;

p rt scr ()

int pr t s t at (p r i n t e r)
int printer;

3.88.2. Fu nction

prt busy checks the printer status to see if it is busy. Returns
1 i f i t i s bus y , 0 i f i t i s not .

prt err checks the printer status to see if device is off- line,
timed out, paper out or i/o error has occurred. T he par amet e r
"printer" can be either 0, 1, or 2. Returns 1 if an error has
occured, 0 if it has not.

prt putc attempts to pr int a c haracte r t o t he printer. Va 1 id
printers are 0 through 2. Returns the printer s ta tu s by t e as

prt rst initial izes the printer port and returns the pr inter
s tatus b y t e .

prt scr prints the screen to the printer on the Z-100 PC.

prt stat will return the current status of the printer (see

/~ 0,1,2 ~/

described in the notes.

notes) .

3-120

uP'IIMIZING C86 USER'S MANUAL printer functions

4 5

6 7

3

Bit

0 1 2

Mask

Ox01
Ox02
Ox04
Ox08
Oxlo
Ox20
Ox40
Ox80

3.88.3. Notes

The printer status byte is organized as follows:

Meaning

Timeout Occurred
[Unused]
[Unused)
I /O er r o r
selected
out o f p a per
acknowledge
busy

3.&8.4. Example

* This example displays the status of the printer

!

, (stat
, (stat
, (sta t
, (stat
, (stat
, (stat

i nt s t a t ;
int printer;

p rin t e r = 0 ;
stat = pr t s t a t (p r i n t e r) ;

printf("~nprinter status:gn");
printf("Timeout: %dgn"
p rin t f (" I / O E r r o r : %dgn"
printf("Selected: %dgn"
printf("Out of paper: %dgn"
printf("Acknowledge: %dgn"
prin t f (" Busy: %dgn"

* To print from stdin to the printer until EOF. This is a simple

/* display status of the printer */

a Ox01) ! =

a Ox08) ! =

a Ox10) ! =

a Ox20) ! =

8 Ox40) ! =
Ox&0) r =

0);
0);
0);
0);
0);
0);

example and does not check for paper out, timeout, etc.

i nt ch ;
int printer;

p rin t e r = 0 ;
prt rst(printer);
while ((ch =getchar ()) ! =EOF)

(
i f (pr t e r r (p r i n t e r))

a bort (" pr in te r e r r o r : s ta t u s = %xnan",prt stat (printer));
w hile(pr t b u sy (p r i n t e r)) p r i n t f (" p r i n t e r b u sygn") ;
i f (ch == ~gn') pr t putc (pr inter , ' gr ');
rt putc(printer,ch);

3.88.5. Operating System
MS DOS 3.0, MS DOS 2.0+, MS DOS 1.1+

3-121

ptr t oabsOPTIMIZING C86 DSER'S MANUAL

3.89. ptrtoabs, Convert a pointer to an absolute address.

3.89.1. Synopsis

long p t r t o abs(address)
char " add r ess ;

3.89.2. Funct ion

Convert a long pointer to an absolute 20 bit memory address.

3.89.3. Returns

The absolute value corresponding to the suppl ied BIG MEMORY MODEL
POINTER.

3 .89.4 . Notes

This function is suppl ied for use with big memory model pointers

ONLY. I t c a n b e used to compare pointers that may be in
different segment spaces.

If you must compare pointers that could be in different segments
in the big model you must use this function. Comparison of two

pointers in the big model without using this function wil 1 assune
that the segments are the same for the two pointers. WARNING:

This function is non-portable and should not be used if at all
possib le . A l so , The de f i n i t i on of how pointer difference works
in C86 may change in future releases.

A machine pointer consists of two words, an of fset followed by a
segment value. This function calculates the absolute v alue b y
the fo rmula:

a bs va l = segment * 16 + of f set;

3.89.5. Operating System

DOS 3. 0, DOS 2. 0+, DOS l. 1+

3. 89. 6. See also

abstopt r

3-122

OPTIMIZING C86 USER'S MANUAL putc

3.90. putc, Output a character to a strean.

3.90.1. Synopsis

0 include "std io.h"

int p u t c (c c , s t r e an)
char cc ;
FILE *s t r e am;

3.90.2. Funct ion

Outputs the character to the strean. Conversion of newlines will
take place if the file was opened in ASCII mode.

3.90.3. Returns

The charac te r c c .

/* the character to write */
/* where to write it */

3.90.4. Notes

T his i s d ef i n e d w i t h a m a c r o i n s t d i o . h , so that "stdio.h" must
be included in your source program. The function fputc is
actually used to output the data.

3.90.5. Operating System

DOS 3 Og DOS 2 • 0+ / DOS 1 1 +

3 .90.6 . Use wi t h

putchar, getchar, fopen, fclose, fputc, fgetc

3-123

OPTIMIZING C86 USER'S MANUAL putchar

3.91. putchar, Output a character to stdout.

3.91.1. Synopsis

()include " s t d i o . h "

int p u t c h ar (c)
char c ;

3 .91.2 . Funct i on

Outputs the character to stdout. This file is normal ly assigned
t o the c onso l e .

3.91.3. Notes

Defined in std io> to be equivalent to fputc(c,stdout);

3.91.4. Operating System

DOS 3. 0, DOS 2. 0+, DOS l. 1+

3 .91.5 . Ose wi t h

putc, getc, getchar, fopen, fclose

3-124

OPTIMIZING C86 USER'S MANUAL puts

3.92. puts, Output a string to a stdout .

3.92.1. Synopsis

i nt pu t s (s t r i n g)
c har * s t r i n g ;

3.92.2. Punction

/* the data to write */

Writes the null terminated string, and then a newl inc to the
standard output stream, s tdout .

3 .92.3 . Re t u r n s

Zero if no error detected, o therwise - l .

3.92.4. N o t e s

puts appends a newl ine, fputs does not. T hat' s w ha t U N I X d o e s
too.

3 .92.5. See a l so

fopen, gets, putc, printf, ferror, fputs

3.92.6. Example

() include "std io .h"

e xtern i n t p u t s () ; /* write a string to a stdout */
c har * s t r i n g ;
i nt r e s ;

s t r i n g = "This is a string of characters";
p rint f (" ~nca l l i n g p u t s~n") ;

res = puts (s t r i n g) ;

/* writes the string and then a ' ~n' to stdout */
/* res contains -1 if error detected */

3.92.7. Operating System

DOS 3.0, DOS 2.0+ , DOS 1 . 1+

3-125

putwOPTIMIZING C86 US ER ' S MANUAL

3.93. putw, Output a word to a strean.

3-93.1. Synopsis

int pu t w (w,s t r e am)
i nt w ;
FILE *s t r e am;

3.93.2. Funct ion

Writes the word "w" to the specified stream. I f t h e f i l e i s
open in ASCII mode, newl inc translation will be performed on each
of the two characters in the word. The least significant byte of
the word is written first.

3. 93. 3. Returns

The word itself, or -1 if an error was detected.

3.93.4. Example

()include " s td i o .h "

e xtern i n t p u t w () ;
i nt w ;
FILE * s t r e am;
int result;

w = ' ab' .

s t ream = s tder r ;

r esu l t = putw(w,s t r e am) ;

/ * t h i s wi l l wr i t e ' a b ' t o st r e a m " /
/» result contains -1 if error detected */

I

)

3.93.5. Operating System

D OS 3 • 0, DOS 2 . 0+ , DOS 1 . 1 +

3.93.6. Use w i t h

getw, putc, fopen, fclose

3-126

OPTIMIZING C86 USER'S MANUAL

3.94. qsort, Sort an array of records in manory

3. 94. 1 • Synopsi s

qsor t(array,nunber,width,cmpf)
char «ar ray ; /* address of array of data to be sorted */
unsigned number; /* number of entries in the array «/
u nsigned wid t h ; /* width of an entry in bytes */
int (« a npf) () ; /* crmparison function */

qsort

3.94.2. Funct ion

Sorts an array containing "number" entries each of width "width"
bytes using Hoare's Quicksort algorithn.

The canparison function is called with two pointers to entries in
the array. I t m ust compare the two entries and return the
followingvalues:

-1
0
+1

fi r s t (s econd
f i r s t == second
fi r s t >second

3.94.3. Returns

Nothing

3 .94.4 . Notes

This routine will abort if it runs out of working space. Working
s pace may be ad j us ted by a r econpi l a t i o n .

3.94 • 5. Example

Read a series of lines from stdin, sort into ascending sequence,

This p r o g r am ca n b e u s e d t o sort a n a s c i i f i l e i n t o a s c e n d i n g
sequence. It reads it's input from stdin, and outputs to stdout.

3.94.6. Operating System

D OS 3.0, DOS 2 . 0+ , DOS 1 . 1 +

and output to stdout.

3-127

qsortOPTIMIZING C86 USER'S MANUAL

/* s o rt lines from std in into ascending sequence
*/

N Include "stdio.h"

()define MAXLINES 1000
unsigned cha r * l i ne [MAXLINES];

extern unsigned char *alloc();

comp(a,b) /* compare two for the sort */
unsigned cha r * * a , * * b ;

r eturn s t r c mp(*a , * b) ;

main()
[

i nt j , k ;
unsigned char buf fer[132];

for(j =0; j<MAXLINES;++ j) [
i f(! fge t s (b u f f e r , 1 3 0 , s t d i n)) break;
line [j] =alloc(str len (buf fer) +1);
s trcpy(l ine[j] ,buf fe r) ;

]
qsort (l i n e , j , s i zeof (unsigned char *) , c omp);
f or (k = 0;k<j ;++k) pr i n t f (" ' 4s" , l i n e [k]) ;

/* all input */

3.94.7. Operating System

DOS 3. 0, DOS 2. 0+, DOS 1. It

3-128

OPTIMIZING C86 USER'S MANUAL r ead

3.95. read, Read characters from a file.

3.95.1. Synopsis

int read(fd,buffer, count)
uns ig ned in t fd;
c har *bu f f e r ;
unsigned int count;

3.95.2. Function

Read up to count characters from the file specified by the f i l e
descrip to r f d . I f t he f i l e i s op e n i n A SCI I mode, n ewline an d
end of file processing will be performed .

3.95.3. Returns

This function returns the number of characters placed i n t he
buffer. This will be the equal to count unless an end of file is
detected, in which case a short record may be returned .

A returned value of zero indicates end of file, a minus one that
indicates an error was detected.

This function stops reading at an end of line in an ASCII file.

3 .95.i . N o t es

This is the main input procedure for the DOSALL l i b r a r y . Al l
other input procedures call read for their data .

3-129

readOPTIMIZING C86 USER'S MANUAL

3. 95.5. Example

e xtern i n t r ea d () ;
e xtern i n t o p e n () ;
e xtern i n t c l os e () ;
extern char * a l l oc () ;
extern i n t f r ee () ;
uns igned in t fd;
char * b u f f e r ;
unsigned int bytecount;
i nt num read , i ;

bytecount = 255 ;

fd = open("a:filename.dat",AREAD);

if(fd<0) { fputs("file not opened",stdout); return;)

for (i = 0; i<bytecount ; i++) * (b u f f e r + i) = ' ~0 ' ;

num read = read(fd,buffer,bytecount);
/* num read contains:

b uf f e r = alloc(bytecount+1);

i F -1 e r r o r
i f 0 EO F
if >0 number of characters put in buffer */

c lose(fd) ;
f ree(bu f f e r) ;
r eturn ;

3.95.6. Operating System

DOS 3.0, DOS 2.0t, DOS 1.1+

3 .95.7 . Use wi t h

w rite , o p en , c r e a t

3-130

OPTIMIZING C86 USER'S MANUAL r eal l o c

3.96. realloc, Change size of a heap area.

3.96.1. Synopsis

char *real loc(oldp,size)
c har * o l d p ; /* the address of the old region ~/
uns igned s i ze; /* the required size */

3.96.2. Funct ion

block.

Increases or decreases the size of a block of memory in the heap
to "size" bytes, preserving the content of the beginning of the

The new block may be at a different address from the original
block. The content of the block is preserved up to the size of
the smal ler of the sizes of the new or old blocks.

As a non-standard extension, if the address of the old region is
zero, this function is equivalent to the function malloc() .

The address of t h e new b l ock , or zero if no block of the required
size could be allocated. If zero is returned, the original data
has been dest royed.

3.96.4. Rxanple

3.96.3. Returns

e xtern char * r e a l l o c () ;
extern char * a l l o c() ;
e xtern i n t f r ee() ;
c har * p t r ;
u nsigned s i ze ;

size = 100;
ptr = a lloc(s i ze) ;
s trcpy(p t r , " t h i s i s i n i t i a l dat a. ") ;
size = 200 ;
ptr = realloc(ptr,size);

strcat(ptr,"this is added later");
prin t f (" ~ n t s~n" , p t r) ;
/* more space gets allocated for ptr

without disturbing the present contents. */
f ree(pt r) ; /* release manory */

3 .96.5 . See a l s o
alloc, calloc, malloc, sbrk, free, coreleft

3.96.6. Operating Systaa
D OS 3.0 , DOS 2 . 0+ , DOS 1 . 1 +

3-131

renameOPTIMIZING C86 USER'S MANUAL

3.97. rename, Change the name of a file.

3.97.1. Synopsis

int r ename(f rom, to)
char * f rom,* t o ;

3 .97.2 . F unct ion

Change the name of a disk f i le from "from" to "to".

3.97.3 . Re t urns

zero if the rename was successful
A negative number if an error was detected.

3. 97. 4. Notes

This function uses the operating system rename function. Both
file names should specify the same disk drive, a nd nei t he r s h o u l d
include asterisks or question marks.

The file must not be open when this function is called.

If executed under DOS 2.0+, both names may contain identical path
i nformat i on .

3.97.5. Example

extern i n t r en ame() ;
c har * p r e sent , *newname;
i nt r e t c o d e ;

present = "a:oldfile.ext";
newname = "a:newf i l e . new";
r et c o d e = rename(present ,newname);
/* ret code contains zero if successful */
/* DO NOT USE ' ~' s IN EITHER NAME */
printf("~n%s '%s renamed to %s~n",present,

return ;
r et c o d e== 0 ? "was" : "was not " , newname);

3.97.6. Operating System

DOS 3.0, DOS 2 .0+ , DOS 1. 1+

3-132

OPT IMIZ ING C86 USER'S MANUAL

3.98. rewind, position to the beginning of an open file

3.98.1. Synopsis

long rewind(stream)
FILE ~s t r e a a ;

3.98.2. Funct ion

rewi nd

Attempt to position the file pointer associated with the stream
to the beginning of the file.

3.98.3 . Re t urns

OL if successful and a negative number otherwise.

3.98.4. Notes

This is equivalent to fseek(stream,OL,O);

3.98.5. Operating System

DOS 3.0, DOS 2 . 0+ , DOS 1. 1+

3 .98.6. See a l so

fseek

3-133

r indexOPTIMIZING C86 USER'S MANUAL

3.99. r i n dex, Reverse index search

3. 99. 1. Synopsis

c har * r i n d e x (s t r i n g , c c)
c har «s t r i n g ;
char cc ;

3.99.2. Function

Find the last occurrence of the character cc in the string.

3.99.3 . Re t urns

Zero if the character was not found, else a pointer to the

character in the string.

3.99.4. N o t e s

The function strrchz() is the same as this function. You should

use the strrchr() function to be more UNIX v5.0 crxnpatible.

3. 99. 5. Exanple

/* the string to search */
/* the character to find */

extern char " r index() ;
c har «s t r i n g ;
char ch ;
c har * r e s u l t ;

s tr i n g = "this is a string of data";
ch = ' t ' '

r esul t = r index(s t r i n g , c h) ;
/* result contains 0 if not found */
/* in this case result points to the ' t '

in data near the end of the string «/

I

resul t = r index("1234567890", ' A ') ;
/* in this case result contains 0 */
return ;

3.99.6. Operating System

DOS 3 • Og DOS 2 • 0+g DOS 1 1+

3.99.7. See a l s o

string functions, index

3-134'

OPTIMIZING C86 USER'S MANUAI, rmd ir

3.100. rmdir, Remove a specified directory.

3. 100. 1. Synopsis

int rmd i r . (pathname)
char ~ pa thname;

3.100.2. Funct ion

C all s t he ope r a t i n g s y s t e m t o r emove (d e l e t e) t he s pe c i f i ed
directory. The path name must be reachable from the current
working directory, and the directory must be empty. T he pat h
name is operating system dependent. You shoul d r e f e r t o y our
operating system documentation for more information.

3.100.3 . Returns

EOF if an error is detected, otherwi se zero.

3.100.4 . Notes

This function is only available for DOS V2.0+.

3.100.5. Operating Systems
DOS 3.0, DOS 2 . 0+

3.100.6. Use w i t h

c hdir , mkd i r

3-135

sbrkOPT IM IZ ING CB6 USER' S MANUAL

3.101. sbrk, Request memory at string break.

3. 101. 1. Synopsis

c har * s b r k (s i z e)
unsigned i n t s i ze ;

3.101.2 . Punct ion

R eturn t h e a d d r ess o f a region of length "size" bytes.

3.101.3 . Returns

The address of a region of the required length, or zero if none
i s ava i l a b l e .

3.101.4 . Notes

This function knows about the way memory is al located by the

linker. It uses a magic cell to maintain the address of the next
free block of menory, and checks that al locating this region will
not over wr i te the machine stack.

It al so knows about another word that spec if ies the minimum
amount of moory t h a t must e x i s t b e t ween the s tr i ng b r ea k and t h e

bottom of the machine stack.

D on't f i d d l e i n t h i s r ou t i ne .

The function mal loc cal ls sbrk when there is not enough manory in

The max imum amount o f memory that can be al located by a sing le
call is about Oxffe8 bytes.

WARNING: If you get memory with the sbrk() function you cannot
f ree() o r r ea l l o c () i t .

the free list.

3-136

OPTIMIZING C86 USER'S MANUAL sbrk

3.101.5. Bxmaple

e xtern char * s b r k () ;
e xtern i n t f p u t s () ;
u nsigned in t s iz e ;
c har *p t r ;

size = 100; p t r = sb r k (s i z e) ;
i f (p t r == 0)

fputs("No space available at string breakgn",stdout);
return ;

/* ptr points to an area 100 bytes long if it was available,
otherwise, ptr contains 0 */

strcpy(ptr,"SBRK: sample data");
strcat (p t r , " c a n be addedgn") ;
fputs(ptr,stdout);

3.101.6. Operating System

DOS 3.0, DOS 2.0+ , DOS 1 .1+

3 .101.7. See a l s o

malloc, calloc, realloc, alloc, free

3-137

scanfOPTIMIZING C86 USER'S i4IANUAC,

3.102. scanf, Scan fields from stdin

3.102.1. Synopsis

int scan f (format,args)
char * f o zmat ; /* the input conversion control */
scmething * a r gs ; /* pointers for result locations */

3 .102.2. Func t i o n

Reads input from std in and conver ts under control 'of a format
s tr i ng .

3.102.3. Returns

The number of arguments successfully matched and stozed. EOF is
returned at EOF or if an error is detected.

3 .102.4. Notes

This function should not be used when dealing with human inputs.
You should use the fgets oz gets function to enter a human input
line to a buffer and then format the buffer using sscanf. This
function and fscanf should be used for machine formatted inputs
that have a def inite form and when a high degree of error
checking is not needed. Error recovery from s scanf i s m u c h
easier t h a n sc anf ' s .

Scanf should not be used along with the function getchar (and
it's related functions). The input stream stdin could get vezy
confused if you mix scanf and other input functions.

Scanf returns the number of arguments matched and stored. As an
example, the format control string "%d/%d/%d" would return 5 on a
successful scan of the input. It would match the two literal
slashes ('/') and the three integers.

This is equivalent to the call:

fscanf(stdin,format,args);

See fscanf for details of the format control string.

See sscanf for other information on this use of this function.

3-138

OPTIMIZING C86 USER'S MANUAL scan f

3.102.5. Bxmnple

e xtern i n t s c a n f ();
i nt num cvt , i , num [3] ;

fputs("gnSCANF:gnType three integer values ",stdout);

/+ the addresses must be provided for arguments ~/
num cvt = scanf("4d '4d '4d",snum[0],@num[I] ,anum[2]);

for (i =0; i<num cvt; i++)
pr intf ("~n%d*'4d=%d~n",

num[i] ,num[i] , num[i]+num[i]) ;

/* calling scanf(format,args) is equivalent to calling
fscanf(stdin,format,args) . See fscanf for details. */

3.102.6. Operating System

DOS3 0 g DO S 2 0 + g DOS 1 1+

3 .102.7. See a l so

f scanf , s s c anf

3-139

seg readOPTIMIZING C86 USER'S MANUAL,

3.103. segreadr Read the segment registers.

3.103.1. Synopsis

i nt segread(r v)
struct (int scs,sss,sds,ses;} *rv; /* reg save area pointer */

3.103.2. Function

Reads the segment registers of the CALLING function and places
the values into the four words of the structure. For u se w i t h
the snail model only.

3.103.3 . Returns

Nothing .

3.103.4. Notes

This handy function is designed to provide information needed by
various machine dependent functions. The definition is set up so
that no changes are needed to use it with the big model.

When we converted our I ibrary code to run under the big model, we
el iminated the use of this function in almost every case. I f you
are compi l i n g u n de r t he b i g m o d e l, and you are still using
segread, then please examine your code careful ly. It is almost
g ua r an teed to be wro ng .

In the big model the data segment is included in the body of the
pointer. To get the segment in the big model you need to use the

following construct:

unsigned int seg,of f; /* big model */
c har * p ;

seg = ((unsigned l ong) p)))16;
o f f s e t = p ;

3-140

OPTIMIZING C86 USER'S MANUAL seg read

3-103.5. Exmnple

e xtern i n t s e g r ead() ;

struct (int scs, sss, sds, ses; } rzv;
unsigned int code segment, d a ta segment,

stack segment, extra segment;

seg read (&rrv);
/* reads the segment registers of the calling function */

code segment = r rv .scs ;
stack segment = r rv .sss ;
data segment = r rv .sds ;
ex tr a segmen t = rrv. se s;

pr int f ("~n8086 SEGMENT REGISTERS:Xn");
pr int f ("~nCS: '44 x~nDS: K4 x~nSS: %4 x~nES: 44 xnan",

code segment, data segment,
stack segment, extra segment);

3.103.6. Operating System

DOS 3.0, DOS 2.0+ , DOS 1 . 1+

3 103.7. S ee a l s o

sysint, movblock, peek, poke

3-141

setjmpOPTIMIZING C86 USER'S MANUAL

3.104. setjmp, Save the enviromsent for longjmp.

3.104.1. Synopsis

() include " s td io .h "

int se t j mp(envp)
jmp buf * e nvp;

3.104.2. Funct ion

Saves the current env ironment in the memory area pointed to by
the envp for subsequent use by longjmp() .

/* to define jmp buf */

/* where to save the environment */

3. 104. 3. Returns

This function returns zero itself, but if longjmp is executed it
appears to return the value passed to longjmp.

3 .104.4. Notes

This is a very dangerous function. You have been warned .

The typedef of jmp buf occurs in stdio.h.

The purpose of setjmp and longjmp is to al low you to terminate a
block of code, and return to a previous point in your code with
an error value. It enables you to avoid long sequences of error
returns, and to fail up a series of functions.

When called this function saves various machine status values in
the environment buffer and returns zero.

Af ter cal 1 ing setjmp, you can cal 1 long jmp later in the same
f unction, or in f unct ions cal 1 ed by the same f unction. Af ter
exiting the function that cal led setjmp, you may no longer use
the env i r onment i n l o n g j mp.

Mote that variables in the function that calls setjmp are not
restored to their values at the time s etjmp was cal led bu t w i l l
have the values in than at the time long jmp was called.

Test these functions so that you understand than before depending

I1 ' I I

on them.

See the f o l l o w ing example.

3-142

OPTIMIZING C86 USER'S MANUAL setjmp

3.104.5. Example

()include " s t d i o . h "
jmp bu f env i ro nment;
main()
{

i nt e r r o r c o d e ;

e rror c ode=setjmp(environment);
i f (e r ro r c ode!=0) { /* must be a restore via longjmp */

/* do error thing */

a nother f u nc t i o n () ;

a nother f u n c t i o n ()
{

/ * have de tec ted an e r r o r s o get ou t * /

longjmp(environment, error value); /*restore environment */
/* long jmp never returns, so can' t get here */

3.104.6 • Operating System

DOS 3.0, DOS 2.0+ , DOS 1 .1+

3 .104.7. Use w i t h

long jmp

3-143

setmanOPTIMIZING C86 USER'S MANUAL

3.105. setmem, Set memory to a byte value.

3.105.1. Synopsis

int setmem(address, count, value)
char *address ;
u ns rgned in t c o u n t ;
c har va l u e ;

3.105.2. Funct ion

Set bytes of manory in the range address through (address+count
1) to the value "value". T h is function is frequently used t o
zero b l ocks o f manory .

3.105.3 . Returns

Nothing .

3.105.4. Example

extern int setmem(); /* set block of memory to a value */
extern char * a l l o c() ;
e xtern i n t f r ee () ;
char *address;
unsigned int count;
c har va l u e ;

count = 255;
address = a lloc (count) ;
value = '~0'

setmem(address, count, value);

/ * use address * /

f ree(address) ;

3.105.5. Operating System

DOS 3. 0, DOS 2. 0+, DOS 1. 1+

3-144

OPTIMIZING C86 USER'S MANUAL spr int f

3.106. sprintf, Print to a string in memory

3.106.1. Synopsis

int sprintf(s tring, format,args)
c har * s t r i n g ; /* where to put results */
char * f o r mat ; /* the format control string */
something args ; /* optional data to be converted */

3.106.2. Function

Using the arguments (if any) under control of the format string,
create a string in menory containing the converted data.

3.106.3. Returns

Nothing.

3. 106. 4. Note 6

The conversions are as described under the function fprintf. The
output of the conversion is placed in the " st r i n g " , w h i c h i s
terminated by a NULL('$0').

The area of memory reserved for the string must be long enough
for the result, as no checks are performed.

3.106.5. Exanple

extern i n t s p r i n t f () ;
extern char * c a l l o c() ;
e xtern i n t f r e e () ;
extern i n t f pu t s () ;
char *destination;

destination = calloc(255,1);
s prin t f (d e s t i n a t i o n ,

"%4d %4d %4d"g
4 5, 123, 5 0) ;

/ * t h e s t r i n g d e s t i n a t i o n w i l l con t a i n

fprintf were called . */

fputs(destination,stdout);
f ree(dest i n a t i o n) ;

the same data as a file would if

3.106.6. Operating System
DOS 3 Og DOS 2 0+g DOS 1 1+

3 .106.7. See a l s o
fprintf, sscanf, fscanf

3-145

sqr tOPTIMIZING C86 USER'S MANUAL

3.107. sqr t , S q uare root.

3.107.1. Synopsis

d ouble sqr t (v a l)
d ouble va l ;

3.107.2 . Punct ion

Returns the square root of the number val.

3.107.3. Notes

Returns zero if val is negative.

3.107.4 . Example

e xtern double sqr t () ;
d ouble dva l ;
d ouble r v a l ;

dval = 45.00 ;
rval = sqrt(dval)
/* rval contains
print f (" The squar

dval = -1 0 . 0 ;
rval = sqrt(dval)
/* rval contains
return ;

)

3.107.5. Operating System

DOS3 0 g DO S 2 0 + g DOS 1 . 1+

the square root of 45.00 */
e roo t o f t g = %gran",dval,rval) ;

0 because dval i s (0 * /

3-146

OPTIMIZING C86 USER'S MANUAL sscanf

3.108. sscanf, Scan fields fran a string.

3.108.1. Synopsis

int sscanf(string, format,args)
c har * s t r i n g ; /* String contains the input data */
char * f o rmat ; /* the input conversion control */
something *args; /* pointers for result locations */

3.108.2. Function

Reads input from the ASCII string and converts under control of a
format string.

3.108.3. Returns

The number of arguments successful ly matched and stored. You
cannot read past the end of the input data s tr i ng .

3.108.4. Notes

This i s s i m i l a r t o t he c a l l :

f scan f (stream, format,args) I

i nput f i l e .
e<cept that data is read from a string in memory instead of an

This function may be used to re-scan input data using more than

See fscanf for details of the format control string.

See scanf for other important information on this function.

o ne fo rmat .

3-147

sscanfOPTIMIZING C86 USER'S MANUAL

3. 108. 5. Ex maple
])include " s t d i o . h "

extern i n t s s c a n f ();
extern char * c a l l o c() ;
e xtern i n t f r ee() ;
e xtern F I L E * f o p e n () ;
e xtern i n t fc l os e () ;
extern cha r * fg e ts () ;
c har * b u f f e r ;
c har * b u f s t a r t ;
F ILE * i n p u t ;
c har * s [1 2] ;
i nt i , j ;

fputs("~nSSCANF:~nType in strings separated by spaces~n"
, stdout) ;

input = fopen("CON:" , " r ") ;
b uffe r = cal l o c (2 5 5 , 1) ;
f or (i =0;i<10;++i) s [i] = cal l o c (1 00 , 1) ;
fgets(buffer,255,input);

b ufs t a r t = buf f e r ;
f or (i =0;i<10;++ i)

[
i f (sscanf (buf f e r , " ' t s " , s [i]) <1) b reak ;
i f (s t r l e n (bu f f e r)) s t r l en(s [i]) +1)

b uf fe r += (st r l e n (s [i]) + 1) ;
e lse b r eak ;
]

for (j =0; j<= i ; t+ j)
p r intf(" i t s [i d] = %s~n", j ,s [j]) ;

for (i = 0; i<10;++ i) f r e e (s [i]) ;
free(bufstart);
f close(input) ;
return ;

3.108.6. Operat ing Systsxs

DOS 3. 0, DOS 2. 0+, DOS 1. 1+

3 .108.7 . See a l s o

fscanf, scanf, sprintf, fprintf

3-148

OPTIMIZING C86 USER'S MANUAL str ing f unctions

3.109. String functions
strcat, strchr, strcmp, strcpy, str len, strncat, strncmp,
s trncpy, s t r p b rk , s t r r ch r

3.109.1. Synopsis

char ~strcat(stringl istr ing2)
char ~stringl,~string2;

unsigned char ~strcbr(s,c)
unsigned char as,c;

int stranp(stringl,string2)
char astringl,~string2)

char ~strcpy(to, f rras)
char ~to,~fran;

unsigned strlen(string)
char ast r ing;

char ~strncat(stringl,string2,maz)
char *stringl,*str ing2;
unsigned mazl

int s t r ncmp(stringl,st r ing2,n)
char ~stringl,~string2;
unsigned n;

char ~strncpy(to, f ran,n)
char ~to,* f r o m;
unsigned n;

unsigned char ~strpbrk(sl ,s2)
unsigned char *s l , ~ s 2 ;

unsigned char ast r rchr (s , c)
unsigned char ~s,c;

3 .109.2. Funct i on

strcat appends a copy of string2 to the end of stringl. It al so
returns a pointer to the first character of stringl.

strchr finds the first occurrence of the character c in s and
returns a pointer to it. strrchr finds the last occurrence of
the character c in s and returns a pointer to it. Both functions
will return a NULL if the character is not found.

3-1 49

string functionsOPTIMIZING C86 USER'S HANUAL

strcmp compares the two strings, character by character, and
r eturn s a n i nd i c a t i on o f w hi c h s t r i n g i s 1 o we r i n t he AS C I I
collating sequence. The following shows the result of strcmp:

— Hinus one if st ringl is less than string2
— Zero if stringl is equal to string2
— Plus one if str i ngl is greater than string2 0

strcpy makes a copy of the string at the address "from" in the
buffer at address "to" and returns a pointer to the destination
s tr i ng .

strlen returns the length of the string. In C, character strings
are terminated by the first byte with a value of binary zero.

strncat appends a copy of string2, or the first "max" characters
of string2 (whichever is the smaller), to the end of stringl. It
also returns a pointer to the destination string.

strncmp compares the two strings, character by character, and
r etu rn s a n i nd i c at i on o f wh i c h s t r i ng i s l owe r i n t he AS C I I
collating sequence. The comparison stops after n characters have
been compared, or the end of a string has been detected. The
returns of strncmp are the same as the returns of strcmp (see
above) .

strncpy makes a copy of the string at address "from" in the
buf fer at address "to". Copy at most "n" characters. If the
input str ing is less than "n" characters in length, pad the
remainder of the destination field with binary zeros. I f t h e
source contains "n" or more characters, the string "to" WILL NOT
BE TERMINATED BY AN END OF STRING CHARACTER. This function
returns the address of the destination string.

strpbrk returns a pointer to the first occurrence in string sl of
any character from string s2, or NULL if no character from s2
exists i n s l .

3 .109.3 . Notes

WARNING: In the copy (strncpy and strcpy) and append (strcat and
strncat) functions it is the user's responsibility to e nsure t h a t
there is enough memory to hold the result. This routine cannot
per form such checks.

THE DEFINITION OF STRNCPY WAS INCORRECT UNDER OUR RELEASE V1.33.
The current definition conforms to UNIX conventions.

The functions strchr and strrchr are the UNIX names for C86's
index and rindex. You should use these functions because they
are more portable to UNIX systaxs.

3-1 50

OPTIMIZING C86 USER'S MANUAI, string functions

3.109.4. Bxmaple

/* STRCAT example ~/

extern char * s t r c a t () ;
e xtern char * c a l l o c ();
e xtern i n t f r e e () , f pu t s () ;
c har * s l *s2, *s3, * outs t r ;

outst r = ca l l o c (2 5 5 , 1) ;

sl = " st r i n g ¹ I
s2 = " st r i ng ¹ 2
s3 = " st r i n g ¹ 3

strcpy(outstr,"outstring: ");
strcat(outstr,sl);
strcat(outstr,s2);
street(outstr,s3);
fputs(outstr,stdout);

f ree(outs t r) ;

/* STRCMP example */

e xtern i n t st r c m p () ;
char *stringl, *string2;

int result;

st r i n g l = " th i s " ;
s tr i n g 2 = " the" ;
result = strcmp(stringl,string2);
/" result contains +1 */

r esul t = st r c mp (" sample" , " sample s t r i n g ");
/* result contains -1 "/

r esul t = s trcmp("a" , " z ") ;
/* result contains -1 */

r esul t = s trcmp(st r i n g l , " t h i s ") ;
/ * r e s u l t co n t a i n s 0 * /

r esul t = s trcmp("a" , " a t l as t ") ;
/* result contains -1 */

3-151

string functionsOPTIMIZING C86 USER'S MANUAL

/* STRCPY example */

4def ine BLOCK 255

e xtern char * s t r c p y () ;
extern cha r * c a l l oc () , * fgets () ;
e xtern i n t f r ee() , f p u t s () ;
c har * s r c e , *dest ;

srce = cal l o c (BLOCK,1) ;
dest = calloc(BLOCK,sizeof(char));

fgets(srce,BLOCK,stdin);
s trcpy(dest , s r c e) ;
fputs(dest,stdout);

f ree(srce) ;
f ree(dest) ;

)

/* S TRL EN ex am pl e */

extern int strlen(); /* returns length of string */
u nsigned l e ng t h ;
char *string;

s t r i n g = "123456789";
length = s tr l en(st r i n g) ;

l ength = strlen("a:f ilename.ext");

* s t r i n g = '$0';
l ength = s tr l e n (s t r i n g) ;

/* length is 9 */

/* length is 14 */

/ * l e n g t h i s 0 * /

3-152

OPT IM IZ ING C86 USER� ' S MANUAL string functions

/* STRNCAT example */

extern char * st r n c a t () ;
extern char * a l l o c () ;
extern i n t f r ee () ;
char * s l , *s2, *s3 , *dest ;

dest = alloc (255) ;
* dest = E O S;

s l = "number 1
s2 = "number 2)
s3 = "number 3

s trcpy(dest , " de s t : ");
s trncat (des t , s 1 , 3) ; / * des t i s : "dest : n u m" */

s trncat (des t , s 2 , 5) ; / * des t i s : "dest : n umnumbe"~/

strncat(dest,s3,255); /* dest: "dest: numnumbenumber 3 " */

f ree(dest) ;

/* STRNCMP example */

extern int strncmp(); /* cunpare strings up to a point */
char * s l , *s2; int result;

s l = "this is sample data";
s2 = "this is not real data";

resul t = strncmp(sl , s 2 , 255) ;
/* result is +1 because ' s') ' n ' * /

r esul t = s trncmp(sl , s 2 , 6) ;
/* result is 0 because strings are the same for the first

6 characte r s . */

resul t = strncmp("first","second",3);
/* result is -1 because ' f' < ' s ' * /

r esul t = strncmp(sl,"this",4); /* r esul t i s 0 * /

r esul t = strncmp("book","ballast",I);
/* result is 0 because only the first character from each

string is compared */

3-153

string functionsOPTI!4IZING C86 USER'S)4ANUAL

/* STRNCPY example */

e xtern char + s t r n cpy () ;
c har * c a l l o c() , *srce , *dest ;

srce = c al l oc (255, 1) ; d e s t = c alloc (255,1) ;

strncpy(srce,"this is sample data .",5);
/* srce contains "this " */

strncpy(dest,"also, on the hill were three",100);
/" dest contains the entire string */

strncpy(dest,srce,2); /* dest contains "th" */

strncpy(dest,"versions of the code were",10);
/* dest contains "versions o" */

3 .109.5. See a l so

sprintf, sscanf

3.109.6. Operating Syst~

D OS 3.0 , DOS 2 . 0+ , DOS 1 . 1 +

3-154

OPTIMIZING C86 USER'S MANUAL sysint

3.110. sysint, Execute an INT instruction.

3.110.1. Synopsis

struct regval (int ax,bx,cx,dx,si,di,ds,es; };

i nt sys i n t (v ec , s reg , r r e g)
u nsigned char v e c ;
s truct r e g va l * sr e g ;
s truc t r e g va l * r r e g ;

3 .110.2. Func t i o n

Execute an INT instruction after setting registers to the values
in the structure pointed to by sreg. The values in the registers
after the instruction are placed into the struct pointed to by

/* interrupt to execute */
/ * r e g i s t e r s b e f o r e i n t * /
/» registers after int */

r reg before r e t u r n i ng .

3.110.3 • Re/urus

T he value o f t he 8 0 8 6 f l ag r eg i s t e r after completion of the
interrupt. The values used to test the returned status bits
are:

0 x001
0 x002
0 x004
0 x008
Ox010
0 x020
Ox040
Ox080
0 x100
Ox200
Ox400
Ox800

not used .

C arry f l a g .
not used.
Parity flag.

Auxiliary Carry flag.

Z ero f l a g .
S ign f l a g .
T rap f l a g .
Interrupt Enable flag.
Direction flag.
Over flow flag.

not used .

3 .110.4 . No t es

Registers cs, ss, and bp cannot be set up using this function.

The structures for input and output may overlap, or be the same

This function can be used to request operating system a ct i o n s
that cannot be requested via the bdos call.

structure if desired.

3-155

sysintO PT INIZ ING C86 U S ER' S i4lANUAL

3.110.5. Example

The following is a function to get the system date and time
u sing sys i n t .

getdate: get system date and time

D OS l.xx an d 2 . x x
*/
getdate (da t e)
i nt da t e [4] ;

struct regval { int ax,bx,cx,dx,s i,d i,ds,es; } srv;

s rv .ax = Ox2a00;
sys int(0 x21,a srv,a srv);
date [0] = s rv.cx ;
date[1] = srv.dx ;

s rv . a x = Ox2c00;
s ysin t (0 x21,asrv ,as rv) ;
date [2] = srv.cx ;
date [3] = srv.dx;

/*
print out the current date and time

*/
main()
[
I nt d a t e [4] ;
int year, month,day,hour, minutes, seconds, hundredths;

g etdate (dat e) ;

year = date [0] ;
month = date [1] » 8;
day = date[1] 6 Oxff;
hour = date [2) » 8 ;
m inute s = date[2] a Oxff;
seconds = date [3] » 8 ;
h undredth s = date[3] 6 Oxff;

prin t f (" d a te : %2d/ '402d/44d %2d:'402d:502d.%02d~n",

)

3.110.6. Operating System

D OS 3.0 , DOS 2 . 0+ , DOS 1 . 1 +

3 .110.7 . See a l s o
sysin t 21 , b d os , s e g r e ad

month,day,year, hour, minutes, seconds,hundredths);

3-156

OPTIMIZING C86 OSER'S MANUAI. s ysin t 2 1

3.111. sysint21, Execute an INT 21H instruction.

3.111.1. Synopsis

struct regval (int ax,bx,cx,dx,si,di,ds,es; };

i nt sys i n t 21(sreg , r r e g)
s truc t r e g v a l * s r e g ;
s truc t r e g v a l * r r eg ;

3.111.2 • F unct i o n

Execute an INT 21H instruction after setting registers to the
values in the structure pointed to by sreg. The va l u e s i n t he
registers after the instruction are placed into t he s t r uc t
pointed to by rreg before returning.

/ * r eg i s t e r s b e f o r e i n t " /
/* registers after int */

3 .111.3. Retur ns

The value of the 8086 flag register after completion of the
interrupt. The values used to test the returned status bits
are:

Ox001
0 x002
0 x004
0 x008
0 x010
0 x020
Ox040
0 x080
Oxl00
0 x200
Ox400
Ox800

C arry f l a g .
not used .
Parity flag.
not used .
Auxiliary Carry flag .

Z ero f l a g .
S ign f l a g .
T rap f l a g .
In terr upt Enable fl ag .
Direction flag.
Over flow flag.

not used .

3-111-4 • Notes

Registers cs, ss, and bp cannot be set up using this function.

The structures for input and output may overlap, or be the same
structure if desired.

This function can be used to request operating system a ct i o n s
that cannot be requested via the bdos call.

This function is somewhat more efficient for the major cal ls to
the DOS opera t i ng sys tan�.

3-157

sysin t 21OPTIMIZING C86 USER'S MANUAL

3.111.5. Example

The following is a function to get the systmn date and time
u sing sys i n t 2 1 .

getdate: get systen date and time

D OS l.xx a n d 2 . x x
*/
getdate(date)
i nt da t e [4] ;
[
struct regval [int ax,bx,cx,dx,si,d i,ds,es;] srv;

s rv . ax = Ox2a00;

sysint21(&srv,& srv) ;
date [0] = s rv.cx ;
d ate [i] = srv.dx ;

s rv . a x = Ox2c00;
sysin t21 (&srv ,& srv) ;
date[2] = s rv.cx ;
date[3] = s rv.dx ;

/*
print out the current date and time

*/
main()
[
i nt da t e [4] ;
i nt year, month,d ay,hour,m inutes,seconds, hund red ths;

g etdate(dat e) ;

year = date [0] ;
month = date [1] » 8 ;
day = date[1] & Oxff;
hour = date [2] » 8 ;
minutes = date[2] & Oxff;
seconds = date [3] » 8;
hundredths = date[3] & Oxff;

printf("date: %2d/%02d/44d 42d:%02d: 402d.%02d~n",
month,day,year, hour, minutes, seconds,hundredths);

3.111.6. Operating System

DOS 3.0, DOS 2.0+ , DOS 1 . 1+

3 .111.7. See a l s o
sysint , b d os , s e g r e ad

3-158

OPTIMIZING C86 USER'S MANUAL system

3.112. system, Execute a progrmn.

3.112 • 1. Synopsis

i nt sy s tem(st r i n g)
c har ~s t r i n g ;

3.112.2. Funct ion

The string consists of the name of a program, fol lowed by it scanmand line arguments, exactly as it could have been entered at
the keyboard to execute the program. This function uses loadexec
to load a copy of command corn, and pa s s e s t he s t r i n g t ocommand. can.

3.112.3. Returns

The error code returned by loadexec i f command.corn could not be
l oaded, o t h e r w i se zero. Note that the termination status of ther eque st ed pr og ram i s NOT a v a i 1 ab 1 e.

3.112.4. Notes

The full device and pathname for command.corn must be given by an
entry in the env ironment, with "COMSPEC =". This may be checked
by using the dos ccmmand "set" at the canmand level.

If nothing seems to happen when you call this function, remember
to check the return code of the system cal l. I t mi gh t i nd i c a t e
that canmand.corn was never found and could not be loaded.

If you f ind that you are running out of memory when using this
function, check and see if you can alter the size of the stack
and heap by lowering the default in defau l t .c (s ee default
function). This may be enough to let you run bigger programs on

The big model heap and stack now leave room in unused memory for
the use of this function. The defaul t i n def aul t c can be
varied to make the configuration of memory you need with both the
big model and the system function.

your computer from the system cal l .

3-159

OPTIMIZING C86 USER'S MANUAL system

3.112.5. Example

To obtain a directory of C source files:

system("di r * .c ") ;

To run pass one of the compiler:

s ystem("cc l p r o g - b ") ;

3.112.6. Operating System

D OS 3.0, DOS 2 . 0 +

3 .112.7. See a l s o

loadexec

3-160

OPTIMIZING C86 USER'S MANUAL t o charac te r c o nve r s i o n s

3.113. toascii, tolower, toupper — Convert characters

3.113.1. Synopsis

char toasci i (c)
char c;

int tolower(c)
char c;

int t oupper(c)
char c;

3 .113.2. Funct ion

Toascii returns it's argument with al 1 bits turned off that are
not part of a standard ASCII character (range: 0 — Ox7f). This
is included to be canpatible with other operating systans.

Tolower returns the lower case equivalent if the input character
is upper case, else return the input character.

Toupper returns the upper case equivalent if the input character
is lower case, otherwise it returns the input character.

3 — 161

t o charac te r c o nv e r s i o n sOPTIMIZING C86 USER'S MANUAL

3.113.3. Example

* tolower example

(
extern int tolower();
c har ch l , ch2 ;

chl = 'C' •
ch2 = to l ower (c h l) ;
/* ch2 contains ' c', as expected */

ch2 = to l ower (' () ') ;
/ * ch2 c o n t a i n s '()' */

chl = 'x '
c h2 = t o l o wer (c h l) ;
/ * ch2 c o n t a i n s ' x' * /

* t o upper example

extern int toupper();
c har ch l , c h 2 ;

c hl = 'c ' '
ch2 = toupper (ch l) ;
/ * ch2 c o n t a i n s 'C' , a s expected * /

ch2 = toupper (' () ') ;
/ * ch2 c o n t a i n s ' I ' * /

chl = 'X ' ;

ch2 = toupper (ch l) ;
/ * ch2 con t a i n s ' X' * /

I

3.113.4. Operating System

DOS 3. 0, DOS 2. 0+, DOS 1. 1+

3-162

OPTIMIZING C86 USER'S MANUAL

3.114. trigonometric functions

3.114 • 1. Synopsis

d ouble s i n (v a l)
d ouble va l ;

d ouble cos(va l)
d ouble v a l ;

d ouble t a n (v a l)
d ouble v a l ;

d ouble as i n (v a l)
d ouble va l ;

d ouble acos(va l)
d ouble va l ;

d ouble a t an (va l)
d ouble v a l ;

double a t an2 (x,y)
d ouble x , y ;

3.114.2. Punction

These functions all take or return radian arguments.

trigonometric

3.114.3 . Notes

a sin and a cos r e t u r n zero if the argument is greater than 1.0.

tan returns a number greater than le+300 for arguments close to
pi/2 .

sin and cos return zero for arguments greater than le+8.

3-163

OPTIMIZING C86 USER'S MANUAL tr igonometr ic

3.114.4. Example

()define P I 3 . 1 4 15927;
()define P I HALF 1 .5707963

(
extern double s i n () , /*

c os() , / *
t an () , / *
a sin() , / *
a cos() , / *
atan() , / *
atan2 (); /*

double aval, bval, cval,
double argument;

s in(x) where x i s i n r ad i a n s * /
c os(x) where x i s i n r ad i a n s * /
t an(x) where x i s i n r ad i a n s * /
arcsin (x) - 1 < x < + 1 */
arccos(x) - 1 < x < + 1 */
a rctan(x) - 1 < x < +1 */
arctan(x/y) to return value in

dval ;
p roper quadrant * /

/+ PI radians */
/ * ava l i s 0 * /

/ * ava l i s 1 * /

/* bval is 0 */

/ * 90 d eg rees * /

/ * cva l i s 1 * /

/* cval is 0 */

argument = P I ;

aval = si n (a r gument) ;

aval = cos(argument) ;

bval = tan(argument) ;

argument = PI HALF ;

cval = sin(argument);

cval = cos(argument) ;

cval = tan(argument) ;
/ * c va l) l e300 (tan 90 degrees i s i nf i n i t e) */

dval

dval

aval

aval

dval

aval

sin(1.2); /* d val is 0.9320 */

/ * dva l i s 0 . 36 235 * /

/ * a va l i s PI H ALF * /

/ + aval i s 0 * /

cos(1. 2);

as in (1. 0);

acos (1. 0);

acos (47,0) / * i l l egal , av a l i s 0 * /

atan(33.0); /* aval is l. 5405 radians */

atan2 (10.0,3.0); /* dval is arctan(10/3) */dval

3.114.5. Operating System

DOS 3.0, DOS 2 . 0+ , DOS 1. 1+

3-164

OPT IM IZ ING C86 US ER ' S MANUAL unget

3.115. ungetc, Push back an input character.

3.115.1. Synopsis

()include " s t d i o . h "

int ungetc(c,stream)
char c ;
FILE * s t r e am;

() include " s td io . h "

int ungetch (c)
char c ;

3.115.2. Funct ion

P ush the c h a r a c t e r "c" back i n t o t he stream. Only one character
of push back is allowed. This character w i l l be delivered on the
next input function directed at the file. The input function may
be any of the functions defined in this document that use a

/* unget to stream */

/* unget to stdin ~/

stream.

u ngetch p u s he s a character back to the stream
" std i n " . It is defined by a macro in the standard header f ile.
To use this function you must include the file "std io.h" as par t
of your source p r ogram.

3.115.3. Returns

— The character itsel f.
Minus one if any error is detected.

3.115 • 4. Notes

If an fseek, ftel I, fwrite or ffl ush function is performed on the

file, any character that was pushed back onto the stream wi l l be
f orgot t e n .

3-165

ungetOPTIMIZING C86 USER'S MANUAL

3.115.5 . E x ~ p ie

() include "std io .h"

extern int ungetc(); /* push a character back on a strean * /
extern F ILE * f o p e n () ;
e xtern i n t fc l os e () ;
char ch ; F I L E * st r e a m;

s t ream = fopen("a:filename.dat","r");

w hile ((c h = fgetc (s t r e am)) ! = EOF) i f (i s s pace(ch)) b r e a k ;

ungetc (c h , s t r e a n) ; c h = fge t c (s t r e am) ;
/* ch is now the next whitespace character */

fclose(stream);

3.115.6. Operating System

DOS 3.0, DOS 2 .0 +, D OS 1 .1 +

3.115.7. Use w it h

getc, getchar, fscanf

3-166

OPT IMIZ ING C86 USER'S MANUAL un 1 ink

3.116. unlink, Erase a disk file.

3.116.1. Synopsis

int un l i n k (f i l e n ame)
char « filename;

3 • 116.2. Function

Erase a d i s k f i l e . The f i l e m u s t n o t b e o p e n when t h i s c a l 1 i s
executed.

3.116.3. Re t urns

Zero if the file was successful ly deleted.
— A negative nuaber if any error was detec t ed .

3.116.4 . Notes

File names containing question marks wi 1 1 result in all matching
fi l e s b e i n g d e l e t e d i n t he D OSALLlibrary. In th e DOS2 libraryunl ink wi 1 1 not erase file names with wi l d ca rds (e i t he r ' * ' or' ?') i n t h em .

The DOSALL library supports path names when execut i n g u n de r DOS
2.0+.

3.116.5. Exasple

(
e xtern i n t u n l i n k () ; /* delete a disk file */
char *f ilename;
int result;

filename = "a:delfile.xxx";
r esul t = unlink (f i l e n ame);

prin t f («~nFILE: %s C skin",filename,
result (0 ? "not deleted"

:
"deleted") ;

3.116.6. Operating System

DOS 3.0, DOS 2 .0+ , DOS 1 . 1+

3-157

OPTIMIZING C86 USER'S MANUAL upper

3.117. upper, Convert a string to upper case.

3.117.1. Synopsis

c har *upper (s t r i n g)
c har * s t r i n g ;

3.117.2. Funct ion

Converts al 1 lowercase characters in the string to upper case.
All other characters are unchanged.

3 .117.3 . Re t u r n s

The address of the string .

3.117.4. Operating System

DOS 3.0, DOS 2.0+ , DOS 1 . 1+

3 .117.5. See a l so

lower , tolower , t o upper

3-168

OPTIMIZING C86 USER'S MANUAL utoa

3.118. utoa, Unsigned integer to ASCII conversion.

3.118.1. Synopsis

int utoa(value,buf fer)
unsigned int value;
char * buf fe r '

3.118.2. Funct ion

The value is converted to an uns i g ned ASCI I d i g i t s t r i ng and
stored in buffer. Suffer must be at least six bytes in length.

3.118.3. Ret urns

The count of the number of digits stored in buffer, excluding the
trailing NULL.

3. 118.4. Notes

This function uses sprintf to do the conversion

3.118.5. Exanple

e xtern i n t u t o a () ;
extern cha r * a l l oc () ;
extern i n t f r ee () ;
extern i n t f pu t s () ;
unsigned i n t v a l ;
c har *b u f f e r ;
i nt c o u n t ;

buffe r = a lloc (10) ;
* buf f e r = EOS;
v al = 5 6 8 9 ;
count = utoa(val,buffer);
/* count contains 4, the nunber of characters */
/* buffer is "5689" */
fputs(buffer,stdout);
f ree(buf f e r) ;

3.118.6. Operating System

DOS 3.0, DOS 2.0+ , DOS 1 . 1+

3-169

wqso r tOPTIMIZING C86 USER'S MANUAI,

3.119. wqsort, Sort a set of records in memory.

3.119.1. Synopsis

int wqsort(n,cmpf,xchgf,data)
unsigned n;
int (* cmpf) () ;
int (~xchgf) () ;
c har *da t a ;

3.119.2. Function

Uses Hoares quicksort algorithm to perform an in-core sort of n
records. The function calls a user supplied function to compare
keys of two candidates to be compared. The form of the cal 1 is:

/* number of records to sort */
/* key canparison function */
/* record exchange function */
/» data for cmpf and xchgf */

(*cmpf) (x,y ,&data) ;

where x and y are unsigned integers less than n. T he func t i o n
cmpf must return:

- 1 i f x < y
0 i f x == y
+1 i f x > y

If two records are to be exchanged, qsort performs the call:

(*xchg f) (x,y ,abase);

3.119.3. Returns

Nothing

3.119.4. Notes

0
This function is provided for users converting code from another
well known C Compiler. Its use is not recommended.

Information required by the functions cmpf and xchgf (for example
the base address of the array of data) may be provided by:

B nbedding the i n f o rmat ion w i t h i n t h e f u n c t io n s
Putting the data in a structure and using the address of
the structure as an argument to qsort
Placing the data as arguments to qsort and accessing than
by using base as a pointer to a structure on the stack.
This method is convenient but wil 1 result in NON-PORTABLE
CODE.

3-170

OPT IMIZ ING C86 USER'S MANUAL wqsort

3.119.5. Exaaple

To sort an array of pointers to names into alphabetical order.
We assume that the names are input and output by other code.

/ " sor t example
*/

char *names [1000];
unsigned number;

main()
[

wqsort(number,anamecmp,anameswap,names); /* do the sort */

return 0 ; /* all ok */

/* pointers to name strings */
/* number of names in array "/

/* read in the names */

/» output the names */

/* c cmpare two names
*/

namecmp(i, j,base)
unsigned i , j ;
char * * base;

return s t r cmp((*base) [i] , ("base) [j]) ; /* not easy is it */
]

/* e x change two name table entries
*/

nameswap(i, j,b ase)
unsigned i , j ;
char * * b ase ;
[

i swap ((*base) + i, (*base) + j);
)
3.119.6. Another way

The above is general but not too obvious. The two statements
above could be written:

/* subscripts to name array */
/* pointer to name array */

/* subscripts to name array */
/ * po i n te r t o n ame ar ray * /

/ * do t h e s wap * /

return s t r cmp(names[i] , names[j]) ;
iswap(names+ i,names+ j);

This is far less general, since the variable "names" is embedded
in the code, but is probably quite acceptable for most purposes.

3.119.7. Operating System

DOS 3.0, DOS 2.0+, DOS I.lt

3-171

wri t eOPTIMIZING C86 USER'S MANUAL

3.120. write, Write characters to a file.

3.120.1. Synopsis

i nt wr i t e (fd ,buf f er , c o u n t)
unsigned int fd;
char * buf f e r ;
unsigned int count;

3.120.2. Punct ion

Output count characters from buffer to the file specified by the
file descriptor fd. If the file is open in ASCII mode, newl inc
translation wi 1 1 be performed.
3.120.3. Returns

The number of characters written, which wi 1 1 be the same as count
unless an error occurs. R e t urns minus one i f an er r o r i s
detected, and no characters were written. If it returns a number
which is less than the count parameter, this is to be considered
an error . The most likely cause is that the disk is full and no
more characters could be written.

3.120.4. N o te s

The in famous "WRITE" message is written by this function. It is

an error message that indicates either the file w as not o pen f o r
output mode or that the fi 1 e indicator (either a stream pointer
or a file descriptor depending on how the file was opened) was
invalid. Since this function is the basis for most of the output
in the C85 library any of the output functions could result in a
"WRITE" message occur ing.

3-1 72

OPTIMIZING C86 USER'S MANUAL wr ite

3.120.5. Exanple

extern i n t w ri te () ;
e xtern i n t o p e n () ;
e xtern i n t cl os e () ;
uns igned int fd;
c har * b u f f e r ;
unsigned int count;
int num wr ;

b uffe r = "data to be written to file";
count = s tr l en (bu f f e r) ;

/* file must exist to be opened , e lse use c r ea t * /
fd = open(" a : x x x . x x x " , AWRITE);
i f (f d < 0) { f put s (" f i l e n o t o p e ned" , s t d ou t) ; r et u r n ;)

num wr = write(fd,buffer, count);
/» num wr contains the actual number written */

printf("~nWRITE:gn%u bytes written to file~n",num wr);
close(fd) ;

3.120.6. Operating System

DOS3 0 g DO S 2 0 + / DOS 1 1+

3 .120.7. See a l so

o pen, c l o se , r e a d

3-1 73

I IBRARY FUNCTIONSOPTIMIZING C86 USER'S MANUAL

3-174

OPTIMIZING C86 USER'S MANUAL APPENDIX A

a. APPLICATION»OTES

The following pages are directly from our bulletin board. Theyare included to help people develop certain applications andlearn certain aspects of C programming. Good luck! The sourcescan be downloaded from our user group bulletin board. T o jo i n
the user g roup contact our sales staff.

A.l. PLINK DEMONSTRATION

~ ~*~f i l e : r oot . c * * ~ *
Einclude <std io.h>
main()

o verlay l () ;
overlay2() ;

****file: overlayl.c*~**

() include <std io.h>
o verlayl ()
(

p rin t f (" over l a y l ~n") ;
)
* *a* f i l e : ov e r l a y 2 . c * + * *
()include <std io .h>
overlay2()

prin t f (" over l ay2~n") ;
)

****f i le: test.I nk**~*
output ovlytest.exe
file root
l i b r ar y c 8 6s2s
begin

s ection f i l e o v e r l a y l
section file overlay2

class datab,datac,datai,datat,datau,datav,heap, stack
end

'~**file: test.bat*~*~

plink86 Etest

APPENDIX AOPT IMIZ ING C86 USER'S MANUAL

A.2. CREATING .CON FILES

A.2.1. New pro logue.h

prologue.h 11/5/83

standard prologue for c86 assembly code

DEFINE ARGUMENT BASE RELATIVE FROM BP

8BIGMODEL
EQU 6

EQU 4

IF
8AB
ELSE
8AB
END IF

8CODE
8CODE
8DATAB
QDATAB
8DATAC
8sb
8sw
9DATAC
8DATAI
gib
Qiw
9DATAI
8DATAT
8DATAT
8DATAU
8ub
8uw
8DATAU
8DATAV
8DATAV
DGROUP
8CODE

BYTE PUBLIC ' CODE'

PARA PUBLIC ' DATAB'

BYTE PUBLIC ' DATAC'
byte
word

BYTE PUBLIC ' DATAI '
byte
word

BYTE PUBLIC ' DATAT'

BYTE PUBLIC ' D ATAU'
byte
word

BYTE PUBLIC ' DATAV'

8DA TAB • 8 DATAC i 8 DATA I i 8 DATAT i 9 DATAU • 8 DATAV
BYTE PUBLIC ' C ODE'
CS:8CODE,DS:DGROUP

SEGMENT
ENDS
SEGMENT
ENDS
SEGMENT
label
label
ENDS
SEGMENT
label
label
ENDS
SEGMENT
ENDS
SEGMENT
label
label
ENDS
SEGMENT
ENDS
GROUP
SEGMENT
ASSUME

END OF PROI,OGUE.h

OPTIMIZING C86 USER'S MANUAL APPENDIX A

New amain.ams

The f ollowing file is the modified /main.asm which must be used
to cz'cate a ccm file:

t i t l e 'c86 basic support package'

this is the starting point for all C programs
modified for dos 2.0

include model.h

following is copy of prologue.h
this is included so you can vary the assume statement
this will allow the creation of 8080 and modified big model format

define the following to be true for 8080 (.corn) file

8COMFILE EQU 1
I F 8COMF I L E
IF 8BI GM ODEL
ABORT-THERE IS NO WAY THIS IS REASONABLE
ENDIF
ENDIF

DEFINE ARGUMENT BASE RELATIVE FROM BP

8BIGMODEL

EQU 6

EQU 4

IF
8AB
ELSE
8AB
END IF

8CODE
8CODE
8DATAB
8DATAB
8DATAC
8sb
8sw
8DATAC
8DATAI
8ib
8iw
8DATAI
8DATAT
8DATAT
8DATAU
8ub
8uw
8DATAU
8DATAV
8DATAV

SEGMENT BYTE
ENDS
SEGMENT PARA
ENDS
SEGMENT BYTE
l abel b yt e
l abel wo r d
ENDS
SEGMENT BYTE
l abel by t e
l abel wo rd
ENDS
SEGMENT BYTE
ENDS
SEGMENT BYTE
l abe l by t e
l abel wo rd
ENDS
SEGMENT BYTE
ENDS

8CONFILE

PUBLIC ' DATAV'

PUBLIC 'DATAT'

PUBLIC ' DATAU'

P UBLIC ' DATAI '

PUBLIC 'CODE'

PUBLIC 'DATAB'

PUBLIC 'DATAC'

IF

A-3

APPENDIX AOPTIMIZING C86 USER'S MANUAL

GROUP 8C O DE g8DATAB g 8DATAC ~ 8DATAI ~ 8DATATg8DATAU g 8DATAV

GROUP 8 D ATAB ~8DATAC ~8DATAI g8DATAT ~ 8DATAU~8DATAV

DGROUP
ELSE
DGROUP
ENDIF

8CODE SE G M ENT BYTE PUBLIC 'CODE'

8COMFILE
ASSUME CS:DGROUP,DS:DGROUP
ORG 100H

ASSUME CS:8CODE,DS:DGROUP
ELSE

ENDIF

END OF PROLOGUE.h

8code ends

add stack and heap segments

8HEAP SE G M ENT WORD PUBLIC 'HEAP'
8HEAPBASE LABEL BYT E
8 HEAP EN D S

I FE 8COMF I L E
8STACK SEGMENT PARA STACK 'STACK'

8STACK ENDS
ENDIF

8DATAB SEGMENT
DW 0

DW 128 DUP (?)

;DATA SEGMENT CAN NOT START AT ZERO

8DATAB ENDS

8DATAC SEGMENT

public s y stype, sysvers, pSPSEG, heaptop, SYSENDP

the following identifies the base operating system

1 ;o/s t ype (ms-dos)
0 ;o/s version (low byte 0 if < dos 2.00)
0 ;LENGTH OF PROG IN PARAGRAPHS

8UDEND+2,seg 8udend ;poin ter to base of heap

OFFSET DGROUP:8UDEND+2 ;pointer to base of heap

sys type dw
sysvers dw
SYSENDP DW

T f 8b i gmo d e l
heaptop DW

else
heaptop DW

endif

COREMES DB OAHrODHi NO CORES

)32 BIT POINTER TO THE PROG S E G PREFIXPSPSEG DD

8DATAC ENDS

A-4

OPTIMIZING C86 USER'S MANUAI APPENDIX A

SEGMENT
IN L ABEI, BYT E

ENDS
SEGMENT

8DATAT
8UDBEG
8DATAT
8DATAV
8VDEND
SDATAV
8DATAI

8DATAI

L ABEL BYT E
ENDS
SEGMENT
EXTRN M INF M E M :WORD, MAXFMEM:WORD, MINRMEM:WORD
ENDS

IF 8BIGMODEL
EXTRN MAI N: F AR, EX I T : FAR
segment

segment
EXTRN MAI N: N EAR, EXIT : NEAR

geode
ELSE
8code

ENDIF

SMAIN PROC FAR
JMP SHOR T B EGIN

PLACED HERE FOR SHORT JUMP PROBLEMS

NOCORE:
MOV
MOV
INT
MOV
PUSH
CALL

public amain

amain entry point for c programs

DX,OFFSET DGROUP:COREMES
AH,9
21H
AX,-1
AX

EXI T

;SAY BAD ERROR

;NEVER RETURNS

BEGIN Ich,bx ;reset the 8087 if any
; jus t i n c a s e

IFE

esc
old
8COMFILE
MOV AX ,DG R OUP
MOV DS, AX ;SET UP DS REGISTER

END IF

IFE

MOV
MOV
CMP
JBE
SUB

SBIGMODEL
MOV DI , DS
ADD DIg1000H
CMP DI , AX
JAE DM0 1
MOV AX, DI

WORD PTR DGROUP: PSPSEG+2,ES ;SAVE THE PROG SEG PREFIX
AX,ES:2 ;GET TOP OF CORE IN PARA UNITS
AX,DGROUP: MINRMEM ;IS RESERVED MEMORY AVAILABLE ?
NOCORE ;NOPE
AX,DGROUP: MINRMEM ;SO RESERVE IT

; LIMIT S I Z E T O 6 4 K
;PARAGRAPHS IN 64K
;MORE MEMORY THAN WE NEED ?
;NOPE
;RESET IT

APPENDIX AOPTIMIZING C86 USER'S MANUAL

DM01:
ENDIF

IF 8COMFILE
MOV
ADD
SHR
SHR
SHR
SHR
MOV
ADD

ELSE

ENDIF

DMO 2:

DM03:

MOV

CMP
JAE
SUB
CMP
JB
CMP
JBE
MOV

ADD
MOV
MOV
SUB
CMP
JBE
MOV
SUB
MOV

mov
MOV
SHL
PUSHF
POP
CLI
MOV
MOV
XOR
PUSH
MOV
PUSH
POPF

SI,OFFSET 8HEAP
SI,15
SI,1
S i l l
SI,1
SI,1
CX,DS
SI,CX

SI,8HEAP

SI, AX
NOCORE
AX,SI
AX,DGROUP: MINFMEM
NOCORE
AX,DGROUP: MAXFMEM
DM02
AX,DGROUP: MAXFMEM

SI, AX
D I,DS
AX, SI
AX,DI
AX,1000H
DM03
AX,1000H
SI,AX
DI,SI

si ,ax
CL,4
AX, CL

OF FREE PARAGRAPHS

CX

SS,DI
SP,AX
BP,BP
BP
BP,SP
CX

;GET PARA OF HEAP

;IS HEAP ABOVE 'TOP OF MEM' ?
;YEP

;GOT OUR MINIMUM
;NOPE
;GOT TOO MUCH ?
;NOPE
;RESET IT

;GET THE NEW STACK TOP PARAGRAPH
;GET THE DATA SEG

;GET TOT NUMBER OF PARAS
; DOES IT EXCEED 1 SEGMENT
;NOPE
;USE THE WHOLE STACK
;AND THIS I S T H E SS VALUE WE NEE'
;IN THE CORRECT PLACE

; save s t ack s i z e

;SCALE THE SP VALUE
;GET THE FLAGS
;IN A SAFE PLACE
;TURN OFF INTERRUPTS
;RESET SS
;AND THE STACK POINTER
;CLEAR BP

;RESTORE FLAGS AND INTERRUPTS

get the operating system version (for version dependant 1/o)

push
add
push

int

es
d i ,s i
di
ah,30h
21h

;so we don' t forget it
;get end par agraph address
; save fo r l at e r

mov

OPTIHIZING C86 USER'S HANUAL APPENDIX A

or

isv2 '

xor
jnz

pop

a l ,a l
rsv2
ah,ah
bx

DGROUP: sysvers ,ax
notv2

; i s a ve r 2 . 0 0 s y s t em
;reset ah too if below 2.00
;dump the end of p r og paragraph

mov
jz

set length of program for use of memory after program

bx

mov

notv2:

mov

mov
pop
push
pop

pop
pop

sub
HOV
push

int

es

ax
es,ax
bx,ax

SYSENDP,BX

ah,4ah
21h

bx,ds
ds
ss
es

;get seg of p sp
; in es t o o
;get length of program
;SAVE fOR USER

mov
mov
add
and
sub

si ,80h
cl, [s i]
c1,3
cx,Ofeh
sp (cx
di ,sp
movsb

mov ds ,bx
mov ax,sp
8b igmode 1
push ss

push

c lear th e un i n i t i a l i z e d g l o ba l s t o r age r eg i on

end i f

mov
rep

ax

;save the ds v a l ue
;get the prog seg prefix value

; set des t
;command line offset
;get command line count

; force count even
;get stack pointer value

;move the string
; restore d s

; set po i n te r t o c (xnmand l i n e * *

mov
MOV
MOV
SUB
XOR
REP

cal l t he

call
push
cal l

DI,OFFSET DGROUP:8UDBEGIN
CX,OFFSET DGROUP:8UDEND
CX(DI ;GET THE NUHBER OF BYTES
AX,AX
STOSB ;CLEAR THE AREA

routine DGROUP: main

main

es,bx ;set es to data seg value

t o do o t he r i n i t i a l i sat i o n

;enter c system at 'DGROUP: main'
Put the exit value

;ALL DONE NOW, this never returns

ax
EXIT

SMAIN ENDP
INCLUDE EPILOGUE.H
end SHAIN

APPENDIX AOPTIMIZING C86 USER'S HANUAL

A.2.3. Notes on getting can files created:

How to build .CON files from files produced by the C compiler:

F irs t :

Get assembly output for any functions that you need. This includes
stuff like fopen, main, exit, etc, that you may not normally
t hink o f .

Then:

Assemble all the files with the new prologue.h. You will have to
turn the 8CONFILES switch to 1 in order for this to work. Don' t
forget to assemble Smaincom.asm. Have fun running the assembler.

Then:

Link as normal WITH THE CHAIN FILE FIRST: Do not do any funny stuff
with the linker. You will get the message NO STACK SEGMENT from the
linker. This is to be expected.

Now:

You now have a file with the . EXE extens i o n .

Run EXE2BIN.EXE on it to produce a . BIN f i l e .

If EXE2BIN does not display any messages, you are ok.

Rename the .BIN file to .CON.

Run the program and enjoy .

OPTIMIZING C86 USER'S MANUAL APPENDIX A

A.3. TECHNICAL NOTES ON THE 8087 FLOATING POINT FORMAT

The floating point format used by the compiler is the same as
that for the Intel 8087 numeric data processor. The format is as
fol lows:

FLOAT:

s igni f i c andS b i as e d exponent

1
(implied b i nary po i n t)

the exponent for a float (SHORT REAL) is stored with a bias of 7f
hex. this means that 7f is added to the exponent when it is
stored in this format.

DOUBLE:

s igni f i c a nd

63
5 2 (impl ied b i n ary po i n t)

the exponent for a double (LONG REAL) is stored with a bias of
3ff hex. this means that 3ff is added to the exponent when it is
stored in this format.

For more information on this data format, see the iAPX 86/20,
88/20 Numerics Supplanent. This is part of the iApX 86,88 User's
Manual and can be obtained from Intel at:

Intel Corporation
Literature Dept. SV3-3
3065 Bowers Avenue.
Santa Cl a r a , C A 9 5 051

APPENDIX AOPTIMIZING C86 USER'S NANUAL

usedata(p[i]) ;

f i l l d a t a (p [i]) ;

P[i] = (DATA *)ca l l o c (l , s i z e o f (DATA)) ;

A.i. Variable length tables at run time

TECHNICAL NOTES ON ALLOCATING VARIABLE LENGTH TABLES AT RUN-TINE

Here is an example of how to allocate a pointer table at runtime.
This can be used for most any data type. It is assumed here that
the data is of type DATA. This could be a structure or a simple
d ata t y p e .

/*
*/
main()
[
i nt i ;
int t a b s i ze ;
DATA **p ;
c har * c a l l o c () ;

/* determine number of entries at run-time */
t absiz e 100;

/* get pointer table */

p i (DATA *)ca l l o c (t a b s i z e , s i z eo f (D ATA *)) ;

/* allocate data area for each entry in table */
f or (i = 0; i < t a b s i ze ; i + +) [

]

/* fill in data areas */
for (i = 0; i < t ab s i ze ; i + +) [

)

/* use them somehow */
f or (i = 0; i < t ab s i z e ; i t +) [

)

/* free up data areas */
f or (i = 0; i < t ab s i z e ; i + +) [

]

/* free up pointer table */
f ree(p) ;

/« table index variable /
/* length of table */
/* pointer to DATA table «/
/* calloc returns a pointer «/

f ree(p[i]) ;

OPTIMIZING C86 USER'S MANUAL APPENDIX A

/«
now f illdata and usedata can be written such that they
do not know that they are part of an array:

*/
f i l l d a t a (d)
DATA *d;
(

/* filldata gets a pointer to DATA «/

/* initialize the data somehow «/

usedata(d)
DATA *d; /* usedata gets a pointer to DATA */
(

)
/* do something with the data «/

APPENDIX AOPTIMIZING C86 USER'S MANUAL

A.5. Calling a function with a pointer.

TECHNICAL NOTES ON CALLING A FUNCTION THROUGH A POINTER

noargs()
(
i nt (* p) () ;
extern i n t a () ;

/* p is a pointer to a function returning int */
/* a is a function returning int +/

/* set p to point to a */
/ * cal l a */

p = a ;
(*p) ();

i nt a ()
(

pr intf (" hel l o t h e r e~n") ;
)

withargs()
(
i nt (* p) () ;
extern i n t b () ;
i nt x , y ;

x = 10;
y = 2 0 ;
p = b ;
(*p) (x,y)

)

i nt b (a r g l , a r g 2)
i nt a r g l , a r g 2 ;
(

p rin t f ("a r g l = %d arg 2 = %d~n",arg l , a r g 2) ;
)

/' p is a pointer to a function returning int */
/* b is a function returning int 4/

A-12

OPTIMIZING C86 USER'S MANUAL APPENDIX A

A.6. TECHNICAL NOTES OS READING A NUMBER FROM THE CONSOLE

/* Here is a function to read an INTEGER from the console: */
int getnum(message)
char *message;
[
e xtern char e f ge t s () ;
char buffer[128];
int number;

fputs(message,stderr);
i f (f g e t s (bu f f e r , 1 28 ,s t d i n) = = NULL) r e t u r n 0 ;
i f (sscanf (buf f e r , " %d",snumber) ! = 1)

[
fputs("Invalid input, Please enter an integergn",stderr);
return getnum(message);
)

return number;

/* This can then be called in the following fashion: */
program()
[
int number;

number = getnun("~nplease enter the nusber: ");
printf("~nThe number entered is: %d~n",nunber);

/» For F L OATI NG POI NT numb e r s, y ou must use a different
conversion code in sscanf: */
double getnun(message)
char *message;

e xtern char « fge t s () ;
c har bu f f e r [1 28) ;
double number;

fputs(message,stderr);
i f (f g e t s (b u f f e r , 1 2 8 , s t d i n) == NULI) re t ur n 0 . 0 ;
i f (sscanf (b u f f e r , " % I f " , a number) ! = 1)

(
fputs("Invalid input, Please enter an number~n",stderr);
return getnum(message);
)

return number;

/ * Th i s c a n b e c a l l e d i n a si mi l a r f ash i o n : */
program()
[
double number;
double getnum();

number = getnum("gnplease enter the number: ");
printf("gnThe number entered is: %1+n" ,number);

)

APPENDIX AOPTIMIZING C86 USER'S MANUAL

A.7. TECHNICAL NOTES ON THE USE OP MOVBLOCK

Mere is an example of how to use movblock in the BIG MODEL:

Suppose that you wish to move 10 bytes of data from your data
buffer to the screen memory:

[
c har dat a [10] ;
unsigned int dest seg;
unsigned int dest off;
i nt count ;

dest s eg = address of the segment you wish to write to;
d est o f f = offset within that segment;
c ount = 1 0 ;

movblock(data,dest off,dest seg,10);

]

This should do the trick. You will have to find out what segment and
offset values are needed for your memory map.

In the SMALL MODEL, you will have to determine the segment address
of your data segment. This can be done via segread as follows:

struct segregs [unsigned int scs,sss,sds,ses;] srv;

unsigned int dest seg;
unsigned int dest off;
i nt c oun t ;

c har dat a [10] ;

segread(&srv) ;
dest s eg = address of the segment you wish to write to;

coun% = 10 ;
movblock(srv.sds,data,dest off,dest seg,10);

dest o f f = offset within that segment;

OPTIMIZING C86 USER'S MANUAL APPENDIX A

A.S TECHNICAL NOTES ON DEFAULT MlÃORT VALOES

This is for use with the file default.c in base.arc:

HEAP + STACK

32K
64K
96K

128K
160K
192K
224K
256K
288K
352K
416K
480K
544K
608K
672K
736K
BOOK
864K
928K
992K

800
1000
1800
2000
2800
3000
3800
4000
4800
5800
6800
7800
8800
9800
ABOO
BBOO
CBOO
DBOO
EBOO
FBOO

A-15

OPTIMIZING C86 USER'S MANUAL APPENDIX A

h.9 TECHNICAI INFO ON THE CORRECT USE OF FOPEN()

Here is some information on the correct use of fopen() . In the BIG MODEL,
it is imperative that the function fopen() be declared as a function
returning type FILE ~. Consider the following example:

main()
(
extern F ILE ~fopen() ;
i nt c ;
FILE ' f p t r ;

fpt r = fopen("~~c86Qstd i o . h " , " r ") l
i f (f p t r == NULL)

w hile ((c = fgetc (f p t r)) ! = E OF) pu t char (c) ;
f close (f p t r) ;

abort("could not find file: @ c86~%std io.h");

Note that you should always check the return code of fopen.
Note that you need two backslashes for each one you want.

A-16

OPTIMIZING C86 USER'8 MANUAL APPENDIX A

A 10. TECHNICAL INFORMATION ON LOW-LEVEL Z-100 PC ROM CALLS

C is a uniquely powerful language which is often used for
development of new systems software. C 8 6 provides many
extensions to the standard language in order to allow you to
better exploit the capabilities of your machine, at the expense
of por tabi 1 i ty. Some appl ications, however, may need even
greater access to low-level I/O than the included 1 ibrary
rout ines .

For more information on low-level interfaces to the Z-100 PC,
consult the Z-100 PC Technical Reference Manual. This document
contains information on using the ROM firmware contained in your
machine.

Additional ly, Zenith sells a package of util ities known as the
MS-DOS Version 2 Programmer's Utility Package. This package
contains an 8086 Macro-Assembler wh ich i s c o mpat i b l e w i t h C 8 6 , a
powerful full-screen program editor, and valuable documentation
on interfacing to MS-DOS and the firmware in the Z-100 and Z-100
p c ser i e s .

To order these documents, contact your local Zenith dealer or
d is t r i b u t o r .

A 11 TECHNICAL INFO ON BIG MODEL POINTERS

Here is some code to demonstrate how to split a big model pointer
into it's segment and offset values:

char *p ;
unsigned in t s e g ;
unsigned int off;

/" big model pointer «/
/* where to store segment val*/
/* where to store offset */

/« segment value */
/* offset value */

seg = ((unsigned long) p) » 16;
o ff ~ (u ns igned i n t) p ;

APPENDIX AOPTIMIZING C86 USER'S MANUAL

A.12. TECHNICAL INFO ON GOING SEND / RECEIVE FOR IBM — PC

Here are some functions for doing low-level serial io on the IBM PC.

struct regval (unsigned int ax,bx,cx,dx,si,di,ds,es;)
4define COM1 0
()define COM2 1

send: s end a character to a COM1

returns: The value of the character sent or

E OF if an e r r o r o c c u r r e d
»/
send(ch)
char ch ;
(
s truct r e gva l s r v ;

/ * ah = i , al = ch */
/» select COM1 */
/ * send i t »/
/* an e r ro r o c c u r red » /
/ * no e r r o r o c c u r red * /

srv.ax = Ox100 [(ch 6 Oxf f) ;
srv.dx = C OM1;
sysint (0x14,6 srv,6 srv) ;
i f (srv. ax 6 Ox8000) return EOF;
r eturn c h ;

recv: wait until a character is ready at COM1 and return it
Returns: the character received

»/
recv()

struc t r e g va l s rv ;

do (/» try to receive it «/
/» select function */
/* select COM1 */
/» try to get it */

/* it' s not ready yet */
/* return the character */

s rv . a x = Ox200;
srv.dx = C OM1;

sysint(0 x14,6 srv,ss r v) ;
)

w hile (s r v . a x 6 O x f f 0 0) ;
return (srv.ax 6 Oxff);

vPTjMIZING C86 USER'S MANUAL APPENDIX A

A 13 TECHNICAL INPORNATION (R4 USING TBB ANSI.SYB DBVICB DRIVER

Some pointers on using the ANSI.SYS device driver to control the
screen:

The ANSI.SYS device driver is a can be used for a variety of
screen handling uses. These range from clearing the screen to
positioning the cursor to setting the mode for the screen.

Codes to control this device are given in an Appendix of the MS
DOS 2.0 manual .

Here is how to install the ANSI.SYS device driver:

1. Create or add to the file CONFIG.SYS in the root directory
of the disk that you boot from by adding the statement:

DEVICE ~ ANSI .SYS

2. Make the file ANSI.SYS available on your boot disk. This
file is provided as part of the standard distribution of
your operating system.

3. Reboot your machine.

Once this is done, you will be able to do many screen and
keyboard operations easily. For example:

print f (" ~033[2J") t

p rint f (" ~033[%d;%dH",row,col) ; / * p o s i t i o n c u rsor t o r o w,col ~ /

print f ("~033[%dA",n); / * move cursor up n r ows * /

print f (" ~033[%dS",n);

print f ("~033[%dC",n); /~ move cursor right n columns~/

print f (" ~033[%dD",n); /* move cursor left n columns */

In addition, there are escape codes for doing things like crt
mode selection and keyboard reassignment, but you will have to
look those up yourself if you want them.

/* clear the screen ~/

/* move cursor down n rows ~/

A-19

APPENDIX AOPTIMIZING C86 USER'S MANUAL

A-20

INDEX

8
Sentry

Entry to a function., 3-6

2
2 .0 I / O l i br a r y . , 1 -1 3

8
8087 suppor t . , 1- 13
8 087 swi t c h . , 1 -1 7

A
abort

Abort execution of a program with a message., 3-10
abstopt r

Absolute memory address to pointer., 3-11
APPLICATION NOTES' A 1
Arch

source l i b r a r i a n . , 2 — 9
Assembly language functions., 1-13
Assigning pointer and int data types., 1-18

Convert ASCII to floating point, 3-14
atoi

Convert ASCII to integer (long) ., 3-16

atof

C

cc2

cal loc

B
Basic se r v i c e s . , 1 -9
basicget

Get a "r'ecord" written by a basic program., 3-17

Batch files., 1-7
bdos

Execute a basic DOS function., 3-19
B ig model s w i t c h . , 1- 16

Calling conventions for functions., 1-15

Allocate a block of memory., 3-21
ccl

p reprocessor. , 2 - 1

p arser , 2 - 6
cc3

c ode generato r . , 2- 7

o pt im 1 zer ., 2 - 8
cei l

Ceiling function., 3-22
chdir

Change to a new working directory., 3 — 23

cc4

Index-1

