
QOoi QOoi =­

Z-Basic
(z-DOS"

aa
systems

NOTICE

This software is licensed (not sold). It is l icensed to sublicensees, including
end-users, without either express or implied warranties of any kind on an "as is"
basis.

The owner and distributors make no express or implied warranties to sublicensees,
including end-users, with regard to this software, including merchantability, fitness
for any purpose or non-infringement of patents, copyrights or other proprietary rights
of others. Neither of them shall have any liability or responsibility to sublicensees,
including end-users, for damages of any kind, including special, indirect or
consequential damages, arising out of or resulting from any program, services or
materials made available hereunder or the use or modification thereof.

Technical consultation is available for any problems you encounter in verifying the
proper operation of these products. Sorry, but we are not able to evaluate or assist in
the debugging of any programs you may develop. For technical assistance, call:

(616) 982-3884 Application Software/SoftStuff Products
(616) 982-3860 Operating System/Language Software/Utilities

Consultation is available from 8:00 AM to 4:30 PM (Eastern Time Zone) on regular
business days.

Zenith Data Systems Corporation
Software Consultation
Hilltop Road
St. Joseph, Michigan 49085

Copyright ' by Microsoft, 1982, all rights reserved.
Copyright • 1982 Zenith Data Systems Corporation
Z-DOS is a trademark of Zenith Data Systems Corporation

HEATH COMPANY
BENTON HARBOR, MICHIGAN 49022

ZENITH DATA SYSTEMS CORPORAT ION
ST. JOSEPH, MICHIGAN 49085

page 10.1

Chapter 10 ALPHABETICAL REFERENCE GUIDE

ABS FunctionQ

BRIEF

Format: ABs(x)

Action: Returns the absolute value of the expression X.

Details

The ABS function returns the absolute value of X without regarding the sign
of X. Given a positive value, it returns that value. Given a negative value,
it returns the corresponding positive value.

Example:

PRINT ABS ('7+(-5))
35

Ok

page 10.2

ALPHABETICAL REFERENCE GUIDE

ASC Function

BRIEF

Format: Asc(xe)

Action: Returns a numerical value that is the ASCII code of the first charac­
ter of the string X$.

Details

The system used to represent characters is called ASCII (American Stan­
dard Code for Information Interchange). There are 128 possible characters
that correspond to 128 seven-bit codes in the ASCllcharacter set. In BASIC
you have the option of interpreting the seven-bit patterns as the decimal
equivalents.

The job of converting between these two interpretations is performed by the
ASC and CHR$ functions. CHR$ is covered on Page 10.15. ASC returns
the decimal equivalent of the first character in the string acting as the argu­
ment. The ASC function can only operate on single characters since (like
all functions) it can only return a single result.

If X$ iS null, an I l l egal Funct ion Call errOr meSSage iS returned. (See Ap­
pendix C for ASCII codes.)

Example:

10 XS = "TEST"
20 PRINT ASC(XS)
RUN
84

Ok

See the CHR$ function Page 10.15 for ASCII-to-string conversion.

Page 10.3

ALPHABETICAL REFERENCE GUIDE

ATN Function

BRIEF

Format: ATN(x)

Action: Returns the arctangent of X in radians.

Details

The ATN function (arctangent) is the inverse function of the tangent (TAN).
If Y is the tangent of zero, then zero is the arctangent of Y. The result of the
ATN function is in the range — Pl/2 to Pl/2 where Pl=3.14159.

The expression X may be any numeric type, but the evaluation of ATN is
always performed in single precision.

Example:

10 INPUT X
20 PRINT ATN(X)
RUN
'7 3

1.249046
Ok

Page 10.4

ALPHABETICAL REFERENCE GUIDE

AUTO Command

BRIEF

FOrmat: A UTO [< li n e n u mber> [, < i nc r e ment >]]

Purpose: To generate a line number automatically after every RETURN.

Details

AUTO begins numbering at <line number> and increases each sub­
sequent line number by <increment>. If both the line number or the incre­
ment value is unspecified, the assumed value (default value) for both line
number and increment is 10. If the line number is followed by a comma but
the increment is not specified, the last increment specified in an AUTO com­
mand is assumed. If line number is unspecified and the increment value is
specified, the starting line number defaults to zero.

If AUTO generates a line number that is already being used, an asterisk is
printed after the number to warn you that any input will replace the existing
line. However, typing a carriage return immediately after the asterisk will
save the line and generate the next line number.

AUTO is terminated by typing CTRL-C. The line in which CTRL-C is typed
is not saved. After CTRL-C is typed, BASIC returns to command level, which
means you must type AUTO again to generate line numbers automatically.

Examples:

Asterisk
Warning

AUTO 100, 50

AUTO

AUTO 60

Generates line numbers 100, 150, 200 ...

Generates line numbers 10, 20, 30, 40...

Will start with line 60 and increment subsequent lines
using the default increment value of 10.

Will start at 0 and increment subsequent lines using
the increment value of 50.

AUTO, 60

For information on editing program lines, see Chapter 3 Page 3.6.

Page 10.5

ALPHABETICAL REFERENCE GUIDE

BEEP Statement

BRIEF

Format: BEEp

Purpose: The BEEP statement sounds the speaker at 1000 Hz for 1/4
second.

Details

Non-graphic versions of BASIC use PRINT CHR$(7) to send an ASCII bell
character. Both BEEP and PRINT CHR$(7) have the same effect.

The BEEP statement can be used in a variety of applications. It can be incor­
porated into a game as a signal for some type of response, or it can be used
as an error trapping signal as shown below.

Example:

2420 REM If X is out of range, complain in line 2430.
2430 IF X (20 T HEN BEEP

Page 10.6

ALPHABETICAL REFERENCE GUIDE

BLOAD Command

BRIEF

F ormat: BLQAD <f i l e spec> [, < o f f s e t >]

Purpose: The BLOAD statement allows a file to be loaded anywhere in
user memory.

Details

File spec Is a valid string expression containing the device and file
name. The file name may be one to eight characters in
length.

Is a valid numeric expression returning an unsigned in­
teger in the range zero to 65535. This is the offset into the
segment declared by the last DEF SEG statement.

Offset

BLOAD and BSAVE are most useful for loading and saving machine lan­
guage programs. (See "CALL Statement"). However, BLOAD and BSAVE
are not restricted to only machine language programs. Any segment may
be specified as the source or target for these statements via the DEF SEG
statement. BLOAD and BSAVE provide a convenient way of saving and dis­
playing graphic images.

Page 1 0.7

ALPHABETICAL REFERENCE GUIDE

8LQAB Commend

CTRL-C may be typed at any time during BLOAD or LOAD. If it is used be­
tween files or after a time-out period, BASIC will exit the search and return
to direct mode. Previous memory contents remain unchanged.

If the BLOAD command is executed in a BASIC program, the filenames skip­
ped and found are not displayed on the screen.

Rules:

1. If t he device identifier is omitted and the filename is less than one
character or greater than eight characters in length, a Bad File Name
error is issued and the load is aborted.

2. If an offset is omitted, the offset specified at BSAVE is assumed. That
is, the file is loaded into the same location it was saved from.

3. If an offset is specified, a DEF SEG statement should be executed be­
fore the BLOAD. When offset is given, BASIC assumes you want to
BLOAD at an address other than the one saved. The last known DEF

SEG address will be used.

4. C A UTION: BLOAD does not perform an address range check. It is
possible to BLOAD anywhere in memory. You must not BLOAD over
BASIC stack, BASIC Program, or BASIC's variable area.

Example:

10 "Load a machine language program into memory at 60:FOOO
20 DEF SEG 'Restore Segment to BASIC DS.
30 BLOAD"PROG1",&HEOOO

1 0 'Load t h e s c r e e n
20 DEF SEG= 8HEOOO 'Point segment at green plane.

30 BLOAD "PICTURE" ,0 'Load file PICTURE into green plane.

Note the DEF SEG statement in line 20 and the offset of zero in line 30. This
guarantees that the correct address is used.

The BSAVE example on Page 10.9 illustrates how "PICTURE" was saved.

Page 10.8

ALPHABETICAL REFERENCE GUIDE

BSAVE Command

BRIEF

F Ormat: B SAVE < f i l e sp e c > , < o f f s e t > , < l e n g t h >

Purpose: Allows portions of memory to be written and saved to the
specified device.

Details

Filespec Is a valid string expression containing the device and file
name. The file name may be one to eight characters in
length.

Is a valid numeric expression returning an unsigned in­
teger in the range zero to 65535. This is the offset into the
segment declared by the last DEF SEG to start saving

Offset

from.

Is a valid numeric expression returning an unsigned in­
teger in the range one to 65535. This is the length of the
memory image to be saved.

Length

BLOAD and BSAVE are most useful for loading and saving machine lan­
guage programs. (See "CALL Statement"). However, BLOAD and BSAVE
are not restricted to only machine language programs. Any segment may
be specified as the source or target for these statements via the DEF SEG
statement. BLOAD and BSAVE provide a convenient way of saving and dis­
playing graphic images.

Rules:

1. If f i lename is less than one character, or greater than eight characters
in length, a BadFile Name errOr iS iSSued and the SaVe abOrted.

2. If o ffset is omitted, a Syntax error message is issued and the save
aborted. A DEF SEG statement should be executed before the
BSAVE. The last known DEF SEG address is always used for the
save.

3. If l ength is omitted, a Syntax error message is issued and the save
aborted.

page 10.9

ALPHABETICAL REFERENCE GUIDE

BSAVE Command

Example:

1 0 'Save t h e g r e e n p l a n e .
20 'Point segment at green plane.

30 DEF SEG = &HEOOO
40 'Save green plane in file PICTURE.

50 BSAVE "PICTURE",0,&H8000

The DEF SEG statement must be used to set the segment address to the
start of the screen buffer. Offset of zero and length &H8000 specifies that
the entire 32K screen buffer is to be saved.

Page 10.10

ALPHABETICAL REFERENCE GUIDE

CALL Statement

BRIEF

Format: cALL <var iable name> [(<a r gument l i s t >)]

Purpose: To call an assembly language subroutine.

<variable name> contains the address that is the starting point in memory
of the subroutine being called.

<argument list> contains the variables or constants, separated by com­
mas, that are to be passed to the routine.

Details

The CALL statement is the recommended way of interfacing 8086 assembly
language programs with Z-BASIC. It is further suggested that the old style
user call (x= USR(n)) not be used.

Invocation of the CALL statement causes the following to occur:

1. F o r each parameter in the argument list, the two byte offset of the pa­
rameter's location within the data segment (DS) is pushed onto the
stack.

2. B A SIC's return address code segment (CS) and offset are pushed
onto the stack.

3. C o ntrol is transferred to the user's routine via an 8086 long call to the
segment address given in the last DEF SEG statement and offset
given in <variable name>.

Example:

100 DEF SEG=EH8000
110 FOO=O

120 CALL FOO(A,BS,C)

page 10.11

ALPHABETICAL REFERENCE GUIDE

CALL SIeakemevf

In the preceding program, line 100 sets the segment to 8000 Hex. FOO is
set to zero so that the call to FOO will execute the subroutine at location Hex
8000H.

The following sequence of 8086 assembly language demonstrates access
of the parameters passed. Storing a return results in the variable 'C'.

M OV B P , S P
MOV B X , 6 [B P]
M OV C L , [B X]
M OV D x , l [B X]

;Get current Stack posn in BP.
; Get address o f B $ d o p e .
;Get length of B$ in CL.

;Get addr of B$ text in DX.

;Get address of 'A' in SI.
;Get pointer to ' C' i n D I .
; Store v a r i a b l e ' A' i n 'C'
;Restore S t a ck , r e t ur n .

M OV S I , S[B P]
M OV D I , 4 [B P]
MOVS WORD
RET 6

Note that, the called program must know the variable type for numeric pa­
rameters passed. In the above example, the instruction MOVS WORD will
copy only two bytes. This is fine if variables A and C are integers. We would
have to copy four bytes if they were single precision and copy eight bytes
if they were double precision.

For a more detailed explanation of this command see Appendix E, "Assem­
bly Language Subroutines".

The CALL statement conforms to the INTEL PUM-86 "Calling Conventions"
outlined in Chapter 9 of the INTEL PUM-86 Compiler User's Manual. BASIC
follows the rules described for the MEDIUM case.

For illustrations of how the stack is altered after a call statement is given,
in addition to the rules you must follow when coding a subroutine, see Ap­
pendix E of this manual.

Page 10.12

ALPHABETICAL REFERENCE GUIOE

CDBL Function

BRIEF

Format: cDBL(x)

Action: Converts X to a double-precision number.

Details

Many scientific, technical, and business applications require more digits
than single-precision can provide. This is particularly true in programs where
numeric quantities must be subjected to a long series of arithmetic process­
es.

Most operations performed on numeric data introduce small amounts of
error. These errors tend to accumulate. At the end of a complex chain of op­
erations, it is doubtful that you will have as many digits of precision as you
started with. To ensure accurate results under these conditions, BASIC pro­
vides a double-precision type that uses eight bytes to represent real num­
bers to 16 decimal digits of accuracy (16 to 17 internally) instead of the
seven digits (eight internally) attainable with the four byte, single-precision.

The CDBL function which converts numeric values to double-precision can
help alleviate this problem of inaccuracy. If you convert the values to double­
precision before the calculation is executed, you can then convert the values
back to single precision (to save space) before printing or storing.

Example:

10 A = 454 .67
20 PRINT A;CDBL(A)
RUN
454.67 454 .6700134277344

Ok

Page 10.13

ALPHABETICAL REFERENCE GUIDE

CHAIN Statement

BRIEF

Fof'mat: CHAIN [MERGE] <filename> [, [<line number exp>]

[, ALL] [, DELETE<range>]]

Purpose: To call a program and pass variables to it from the current
program.

Details

The (filename) in the CHAIN Statement is the name of the program that
is called.

Example:

Filename

CHAIN"PROG1"

Line Number <line number eXp> iS a line number Or an eXpreSSiOn that relateS tO a line
number in the called program. It is the starting point for execution of the
called program. If it is omitted, execution begins at the first line.

Example:

CHAIN"PROGl", 1000

(l ine number exp> is not affected b a RENUM command.

With the ALL option, every variable in the current program is passed to the
called program. If the ALL option is omitted, the current program must con­
tain a COMMON statement to list the variables that are passed. The ALL
option only works if a line number is specified. If a line number is not
specified, no variables are passed if ALL is used. See Page 10.23.

ALL option

page 10.14

ALPHABETICAL REFERENCE GUIDE

CHAIN StIakemeni

Example:

CHAIN"PROG1", 1000,A11

If the MERGE option is included, it allows a subroutine to be brought into
the BASIC program as an overlay. That is, a MERGE operation is performed
with the current program and the called program. The called program must
be an ASCII file if it is to be merged.

Example:

overlay
MERGE
option

CHAIN MERGE"OVRLAY",1000

After an overlay is brought in, it is usually desirable to delete it so that a new
overlay may be brought in. To do this, use the DELETE option.

Example:

CHAIN MERGE"OVRLAY2",1000,DELETE 1000-5000

The line numbers in <range> are not affected by the RENUMcommand.

The CHAIN statement with MERGE option leaves the files open and pre­
serves the current OPTION BASE setting.

If the MERGE option is omitted, CHAIN does not preserve variable types
or user defined functions for use by the chained program. Any DEFINT,
DEFSNG, DEFDBL, DEFSTR, or DEF FN statements containing shared
variables must be restated in the chained program.

The Microsoft BASIC compiler does not support the ALL, MERGE, DE­
LETE, and (line number exp> options to CHAIN. Thus, the statement for­

mat is CHAIN <filename>. If you wish to maintain compatibility with the
Microsoft BASIC compiler, it is recommended that COMMON be used to
pass variables and that overlays not be used. The CHAIN statement leaves
the files open during chaining.

When using the MERGE option, user defined functions should be placed be­
fore any CHAIN MERGE statements in the program. Otherwise, the user de­
fined functions will be undefined after the merge is complete.

page 10.15

ALPHABETICAL REFERENCE GUIDE

CHR$ Function

BRIEF

Format: cHRS(I)

Action: Returns a character which is the ASCII code for value I.

Details

The CHR$ function returns the character associated with the number en­
closed in the parenthesis. It is the inverse function of the ASC function
covered on Page 10.2.

CHR$ is commonly used to send a special character to the terminal. For in­
stance, the bell character (CHR$ (7)) could be sent as a preface to an error
message, or a form feed could be sent (CHR$(12)) to clear the terminal
screen and return the cursor to the home position. (ASCII codes are listed
in Appendix C.)

Example:

PRINT CHRIS(66)
B
Ok

See the ASC function for ASCII-to-numeric conversion.

page 10.16

ALPHABETICAL REFERENCE GUIDE

CINT Function

BRIEF

Format: CINT(x)

Action: Converts X to an integer by rounding the fractional portion. If X is
not in the range-32768 to 32767, an "Overflow" error occurs.

Details

The CINT function converts X to an integer by rounding the fractional portion
of the number to the closest whole number.

Example:

PRINT CINT(45.67)
46

Ok

See the CDBL and CSNG functions for converting numbers to the double­
precision and single-precision data types. See also FIX, Page 10.52 and
INT, Page 10.80. Both return integers.

Page 10.17

ALPHABETICAL REFERENCE GUIDE

CIRCLE Statement

BRIEF

F Ormat: C I RCLE(Xcenter , Ycent e r) , r a d i u s

[,a r i b t e [, s t ar t , en d [, a s pec t]]]

c'wIc I
Purpose: To draw an ellipse with a center and radius as specified by the

arguments.

Details

The CIRCLE statement draws an ellipse with a center and radius as indi­
cated by the first of its arguments. The default attribute is the foreground
color. The start and end angle parameters are radian arguments between
0 and 2* PI which allow you to specify where drawing of the ellipse will begin
and end. If the start or end angle is negative, the ellipse will be connected
to the center point with a line, and the angles will be treated as if they were
positive (Note that this is different than adding 2*P I).

The aspect ratio describes the ratio of the X radius to the Y radius. The de­
fault aspect ratio is .4375 and will give a visual circle, assuming a standard
monitor screen aspect ratio of 7/1 6.

If the aspect ratio is less than one, then the radius is given in X-pixels. If it
is greater than one, the radius is given in Y-pixels. The standard relative no­
tation may be used to specify the center point.

The start angle may be less than the end angle.

page 10.18

ALPHABETICAL REFERENCE GUIDE

CLEAR Command

BRIEF

F Ormat: C LEAR [, [< e x p r es s i o n l >] [, < e x p r e s s i o n 2 >]]

Purpose: To set all numeric variables to zero, all string variables to null,
and to close all open files. Optionally, it sets the end of memory
and the amount of stack space.

Details

<expression1> is a memory location which, if specified, sets the highest
location available for use by BASIC.

<expression2> sets aside stack space for BASIC. The default is 256 bytes
or one-eighth of the available memory, whichever is smaller.

The Microsoft BASIC compiler supports the CLEAR command with the re­
striction that <expression1> and (expression2> must be integer expres­
sions. If a value of zero is given for either expression, the appropriate default
is used. The default stack size is 256 bytes. The default top of memory is
the current top of memory. The CLEAR command performs the following ac­
tions:

Closes all files
Clears all COMMON and user variables
Resets the stack and string space
Releases all disk buffers

Examples:

CLEAR
CLEAR ,32768
CLEAR ,,2000
CLEAR ,32768,2000

page 10.19

ALPHABETICAL REFERENCE GUIDE

CLOSE Command

BRIEF

F Ormat: C LOSE[[4]< f i l e nu mber > [, [4] < f i l e nu mber .. .>]]

Purpose: To conclude I/O to a disk file.

Details

The CLOSE command concludes I/O to a disk file. The (file number> is
the number under which the file was opened. A CLOSE with no arguments
closes all open files.

The relationship between a particular file and file number terminates upon
execution of a CLOSE. The file may then be reopened using the same or
different file number. Likewise, that file number may now be reused to open
any file. A CLOSE for a sequential output file writes the final buffer of output.

The END statement and the NEW command always close all disk files auto­
matically. (STOP does not close disk files.)

See Chapter 6, "File Handling", for more information concerning how the
CLOSE command is used.

Page 10.20

ALPHABETICAL REFERENCE GUIDE

CLS Statement

BRIEF

Format: cLs

Purpose: The CLS statement erases the current screen.

Example:

1 CLS ' Clears the screen .

Page 10.21

ALPHABETICAL REFERENCE GUIDE

COLOR Statement

BRIEF

FOrmat: COLOR [Foreground] [, [B ackground])

Function: The COLOR statement selects the Foreground, and Back­
ground screen display colors.

Details

The COLOR statement is used to select the foreground colors and back­
ground colors for screen display. If you have a monochrome video board,
this statement will be only partially effective. If you have a color video board
but are using a monochrome monitor, your colors will appear in shades of
gray. (The Z-100 All-in-One model has a green non-glare screen, thus your
colors will appear in shades of green).

Foreground: = Foreground (for character color). An unsigned in­
teger in the range zero to seven.

Background Color. An unsigned integer in the
range of zero to seven.

Valid Colors are:

Background: =

0 Black
Blue

2 Green
3 Cyan
4 Red
5 Magenta
6 Yellow
7 White

page 10.22

ALPHABETICAL REFERENCE GUIDE

COLOR Statement 0

Rules:

1. An y values entered outside of the range 0-255 will result in an z11ega1
Function ca11 error. Previous values are retained.

2. For eground color may equal background color. This has the effect of
making any character displayed invisible. Changing the foreground or
background color will make the characters visible again.

3. An y parameter may be omitted. Omitted parameters assume the old
value.

4. T h e COLOR statement may not end in comma (,). For example
COLOR 7 is legal and will leave the background unchanged.

Example:

10 COLOR 7,0

30 COLOR 6,4

Select white forground, and black background.

Change foreground to yellow, background to red.

Changes background to yellow, and any charac­
ters displayed on the screen.

40 COLOR,6

Page '10.23

ALPHABETICAL REFERENCE GUIDE

COMMON Statement

BRIEF

F Ormat: COMMON (l i s t o f var i ab l e s >

Purpose: To pass variables to a chained program.

Details

The COMMON statement is used in conjunction with the CHAIN statement.
COMMON statements may appear anywhere in a program. It is recom­
mended that they appear at the beginning. The same variable cannot ap­
pear in more than one COMMON statement. Array variables are specified
by appending "0" to the variable name. If all variables are to be passed, use
CHAIN with the ALL option and omit the COMMON statement.

Example:

100 COMMON A,B,C,D(),G$
110 CHAIN "PROG3",10

Page 10.24

ALPHABETICAL REFERENCE GUIDE

Arrays in COMMON must be declared in preceding DIM statements.

The standard form of the COMMON statement is referred to as blank COM­
MON. FORTRAN style named COMMON areas are also supported; how­
ever, the variables are not preserved across chains. The syntax for named
COMMON is as follows:

COMMON /<name>/ <list of'variables>

where <name> is one to six alphanumeric character(s) starting with a letter.
This is useful for communicating with FORTRAN and assembly language
routines without having to explicitly pass parameters in the CALL statement.

The blank COMMON size and order of variables must be the same in the
chaining and chained-to programs.

Page 10.25

ALPHABETICAL REFERENCE GUIDE

CONT Command

BRIEF

Format: coNT

Purpose: To continue program execution after a CTRL-C has been typed,
or a STOP or END statement has been executed.

Details

When the CONT command is used, execution resumes at the point where
the break occurred. If the break occurred after a prompt from an INPUT
statement, execution continues with the reprinting of the prompt or prompt
string.

CONT is used in conjunction with STOP for debugging. When execution is
stopped, intermediate values may be examined and changed using direct
mode statements. Execution may be resumed with CONT or a direct mode
GOTO, which resumes execution at a specified line number. CONT may be
used to continue execution after an error.

CONT is invalid if the program has been edited during the break. Any modifi­
cations made to your program causes all variables to be set to zero.

See example provided on Page 10.161, for the STOP statement.

Page 10.26

ALPHABETICAL REFERENCE GUIDE

COS Function

BRIEF

Format: cos(x)

Action: Returns the cosine of X in radians.

Details

The trigonometric (or circular) COS function, is best explained in relation to
a circle (see figure below).

R

A

A given radius with length R defines a right triangle with base X, height Y
and enclosed angles A and B. The ratios of the three sides of the triangle
to one another can be expressed as functions of the angle A.

Specifically,

Y/R is SIN(A)
X/R is COS(A)
Y/X is TAN(A)

where SIN, COS, and TAN stand for sine, cosine, and tangent. These re­
lationships can also be defined in terms of angle B.

The calculation of COS(X) is performed in single-precision.

Page 10.27

ALPHABETICAL REFERENCE GUIDE

COS FUnction

Example:

10 X = 2+COS(.4)
20 PRINT X
RUN

1.842122
Ok

To convert from degrees to radians, use the formula:

Radians = degrees * Pl/1 80

where Pl = 3.14159

Page 10.28

ALPHABETICAL REFERENCE GUIDE

CSNG Function

BRIEF

Format: csNG(x)

Action: Converts X to a single-precision number.

Details

The CSNG function is used to convert a number to a single-precision
number.

Example:

10 A¹ = 975 . 3210 12345678
20 PRINT A¹ ; CSNG(A¹)

9 75.3421012345678 9 75 . 3 4 2 1
01%

RUN

See the CINT and CDBL functions for converting numbers to integer and
double-precision data types. Also see Chapter 5, "Converting Numeric Pre­
cisions", Page 5.51.

Page 10.29

ALPHABETICAL REFERENCE GUIDE

CSRLIN Function

BRIEF

Format: x = CSRLIN

Action: Returns the current line (or row) position of the cursor.

x = CSRLIN

Details

The CSRLIN function returns the current Row position of the cursor. It is
most often used with the POS function, which returns the column position.

x is a numeric variable receiving the value returned. The
value returned will be in the range 1 to 25.

will return the column location of the cursor. This value will
be in the range1 to 80.

x = POS(0)

Example:

10 Y = CSRLIN ' Record cu r r en t l i ne .
20 X = POS(I) 'Record cu r r en t c o l u mn.
30 LOCATE 24,l :PRINT "HELLO" 'Print HELLO on the 24th line.

40 LOCATE Y, X 'Restore position to old line, column.

Page 10.30

ALPHABETICAL REFERENCE GUIDE

CVI, CVS, CVD Functions

BRIEF

FOrmat: CVI (<2-byte st r i ng>)
C VS(<4-byte s t r i n g >)

C VD(<8 — byte str i n g >)

Action: Converts string values to numeric values.

Details

Numeric values that are read from a random disk file must be converted from
strings back into numbers. CVI converts a two-byte string to an integer. CVS
converts a four-byte string to a single-precision number. CVD converts an
eight-byte string to a double-precision number.

Example:

70 FIELD 41, 4 AS NS, 12 AS Bs
80 GET 41
90 Y =CVS(NS)

See also MKI$, MKS$, MKD$, on Page 10.107, and Chapter 6, "File Han­
dling", on Page 6.1.

Page 10.31

ALPHABETICAL REFERENCE GUIDE

DATA Statement

BRIEF

F Ormat: D ATA <l i s t o f constan t s >

Purpose: To store the numeric and string constants that are accessed by
the program's READ statement(s). (See READ, Page 10.142)

Details

Data stored in DATA statements are constants that must be accessed se­
quentially. DATA statements are non-executable and may be placed any­
where in the program. A DATA statement may contain as many constants
as will fit on a line (separated by commas), and any number of DATA state­
ments may be used in a program.

The READ statements access the DATA statements in order (by line
number). The data contained in the data statements may be thought of as
one continuous list of items, regardless of how many items are on a line or
where the lines are placed in the program.

The <list of constants> may contain numeric constants in any format, i.e.,
fixed point, floating point or integer. (No numeric expressions are allowed
in the list.) String constants in DATA statements must be surrounded by dou­
ble quotation marks only if they contain commas, colons or significant lead­
ing or trailing spaces. Otherwise, quotation marks are not needed.

The variable type (numeric or string) given in the READ statement must
agree with the corresponding constant in the DATA statement.

DATA statements may be re-read from the beginning by use of the RE­
STORE statement (Page 10.147).

See the examples in the discussion of the READ statement, Page 10.142.

Page 10.32

ALPHABETICAL REFERENCE GUIDE

DATE$ Statement

BRIEF

Format: DATES = (s t r i n g expr> Toset thecurrentdate.
(s t r i n g v a r> = DATESTOgettheCurrentdate.

Purpose: DATE$ statement may be used to set or retrieve the current
date.

(string expr) Is a valid string literal or variable.

Details

The current date is returned and assigned to the string variable if DATE$
is the expression in a LET or PRINT statement.

The current date is stored if DATE$ is the target of a string assignment.

Rules:

1. If (s t r ing expr> is not a valid string, a Type mismatch error will result.

2. Fo r (s t r ing var>= DATES$, DATE$ returns a 10 character string in
the form mm — dd — yyyy where mm is the month (01 to 12), dd is the day
(01 to 31), and yyyy is the year (1980 to 2077).

For DATE$ = (string expr>, (string expr) may be one of the follow­
ing forms:

Previous values are retained.

"mm-dd-yy"
"mm — dd/yy"
"mm-dd-yyyy"
or
"mm/dd/yyyy"

If any Of the ValueS are Out Of range Or miSSing, an 111e ga1 Funct ion

ca11 error message is issued. Any previous date is retained.

Example:

DATES = "01-01-81"
Ok
PRINT DATES
01-01-1981
Ok

page 10.33

ALPHABETICAL REFERENCE GUIDE

DEF FN Statement

BRIEF

FOrmat: DEF FN<name>[(<parameter l i s t >)] =

<function definition>

Purpose: To define and name a function written by the user.

Details

The <name> in a DEF FN function must be a legal variable name. This
name, preceded by FN, becomes the name of the function. The <parameter
list> is comprised of those variable names in the function definition that are
to be replaced when the function is called. The items in the list are separated
by commas. The <function definition> is an expression that performs the
operation of the function. It is limited to one line.

Variable names that appear in this expression serve only to define the func­
tion. They do not affect program variables that have the same name. A vari­
able name used in a function may or may not appear in the parameter list.
If it does, the value of the parameter is supplied when the function is called.
Otherwise, the current value of the variable is used.

The variables in the parameter list represent, on a one-to-one basis, the ar­
gument variables or values that will be given in the function call.

User-defined functions may be numeric or string. If a type is specified in the
function name, the value of the expression is forced to that type before it
is returned to the calling statement. If a type is specified in the function name,
and the argument type does not match, a Type mismatch error occurs.

A DEF FN statement must be executed before the function it defines may
be called. If a function is called before it has been defined, an Unde­
fined user function error occurs. DEF FNis illegal in the direct mode.

Name

Page 10.34

ALPHABETICAL REFERENCE GUIDE

DEF FN Statement

Example:

410 DEF FNAB (X, Y) = X 5 / Y 2
420 T = FNAB(I , J)

Line 410 defines the function FNAB. The function is called in line 420. An
error in the function call will show up as an error in line 420 not in line 410
where it actually occurred. Therefore, you must look for the error in the line
number in which the function was called.

Page 10.35

ALPHABETICAL REFERENCE GUIDE

DEFINT/SNG/DBL/STR Statements

BRIEF

FOrmat: D E F< t y pe> < r a n g e (s) o ' f l e t t er s>
where (type) is INT, SNG, DBL, or STR

Purpose: To declare variable types as integer, single-precision, double­
precision, or string.

Details

A DEF type statement declares that the variable names beginning with the
letter(s) specified will be that type variable. All value assignments made to
variables are cleared before a define type statement.

If no type declaration statements are encountered, BASIC assumes all vari­
ables without declaration characters are single-precision variables.

Examples:

10 DEFDBL L-P All variables beginning with the letters
L,M,N,O, and P will be double-precision vari­
ables.

All variables beginning with the letter A will be
string variables.

10 DEFSTR A

10 DEFzNT z-N, w-z All variables beginning with the letters I, J, K,
L, M, N, W, X, Y, and Z will be integer vari­
ables.

Page 10.36

ALPHABETICAL REFERENCE GUIDE

DEF SEG Statement

BRIEF

FOrmat: D E F SEG [= <address>]

Purpose: The DEF SEG statement assigns the current value to be used
by a subsequent BLOAD, BSAVE, PEEK, POKE, CALL, or user
defined function call.

Details

The <address> is a valid numeric expression returning an unsigned integer
in the range 0 to 65535.

The address specified is saved for use as the segment required by the
BLOAD, BSAVE, PEEK, POKE, and CALL statements.

Rules:

1. An y Value entered OutSide Of thiS range Will reSult in an Over r1ow errOr
message. The previous value is retained.

2. If t he address option is omitted, the segment to be used is set to the
BASIC data segment. This is the initial default value.

3. If t he address option is given, it should be a value based upon a 16
byte boundary. For the BLOAD, BSAVE, PEEK, POKE, or CALL
statements, the value is shifted left four bits to form the code segment
address for the subsequent call instruction. BASIC does not perform
additional checking to assure that the resultant segment + offset
value is valid.

4. NOTE : DEF and SEG must be separated by a space! Otherwise,
BASIC would interpret the statement, DEFSEG=1oo to mean: "assign
the value 100 to the variable DEFSEG".

Example:

10 DEF SEG=EHFEOO 'Set segment to Monitor ROM.

20 DEF SEG 'Restore segment to BASIC's DS

Page 10.37

ALPHABETICAL REFERENCE GUIDE

DEF USR Statement

BRIEF

F Ormat: DEF USR[<d i g i t >] = < i nt e ge r e x p r e s s i o n>

Purpose: To specify the starting address of an assembly language sub­
routine.

Details

The (digit) may be any digit from zero to 9. The digit corresponds to the
number of the USR routine whose address is being specified. If <digit> is
omitted, DEF USRO is assumed. The value of <integer expression> is the
starting address of the USR routine. See Appendix E, "BASIC Assembly
Language Subroutines."

Any number of DEF USR statements may appear in a program to redefine
the subroutine starting addresses, allowing access to as many subroutines
as necessary.

Example:

200 DEF USR0 =24000
210 X =USRO (Y " 2/2. 89)

See also the CALL statement on Page 10.10.

page 10.38

ALPHABETICAL REFERENCE GUIDE

DELETE Command

BRIEF

FOrmat: DELETE[<line number>] [-<l ine number>]

Purpose: To delete program lines.

Details

BASIC always returns to command level after a DELETE command is exe­
Cuted. If (l ine number> dOeS nOt eXiSt, an I l l egal Function Call errOr
message is displayed.

Examples:

Deletes line 40DELETE 40

DELETE 4o-loo Deletes lines 40 through100, inclusive

DELETE -4o Del e tes all lines up to and including line 40

Page 10.39

ALPHABETICAL REFERENCE GUIDE

DIM Statement

BRIEF

F Ormat: D I M < l i s t o f s ubs c r i p t e d v a r i a b l e s >

Purpose: To specify the maximum values for array variable subscripts and
allocates storage accordingly.

Details

The dimension statement is used to set up the maximum values for array
variable subscripts and to allocate storage accordingly. If an array variable
name is used without a DIM statement, the maximum value of its subscript
is assumed to be 10. If a subscript is used that is greater than the maximum
specified, a subscript out o f range error occurs. The minimum value for a
subscript is always zero, unless otherwise specified with the OPTION BASE
statement (see Page 10.121).

The DIM statement sets all the elements of the specified arrays to an initial
value of zero.

Example:

10 DIM A(20)
20 FOR I =O TO 20
30 READ A(I)
40 NEXT I
5 0 DATA 1,4 , 5 , 7 , 9 , 1 1 , 1 3 , 1 5 , 17 , 19 , 2 1 , 23 , 25 , 27 , 2 9 , 3 1 , 33 , 35 , 3 7 , 3 9 , 4 1

For additional information on the use of the DIM statement, see "Array Vari­
ables," on Page 5.12.

page 10.40

ALPHABETICAL REFERENCE GUIDE

DRAW Statement

BRIEF

F Ormat: D RAW <s t r i n g e x p r e s s i o n >

Purpose: To combine the capabilities of other graphic statements into an
object definition language.

Details

The DRAW statement combines most of the capabilities of the other
graphics statements into an easy-to-use object definition language called
Graphics Macro Language. The GML command is a single character within
a string, optionally followed by one or more arguments.

MOVEMENT COMMANDS

Each of the following movement commands begin movement from the "cur­
rent graphics position". This is usually the coordinate of the last graphics
point plotted with another GML command, LINE, or PSET.

U[<n>]
D[<n>]
L[<n>]
R[<n>]
E[<n>]
H[<n>]
G[<n>]
F[<n>]

Move up (scale factor* N) points
Move down
Move left
Move right
Move diagonally up and right
Move diagonally up and left
Move diagonally down and left
Move diagonally down and right

The above commands move one unit if no argument is supplied.

NI <X,Y> Move absolute or relative. If X is preceded by a "+" or
"— ", X and Y are added to the current graphics position,

and connected with the current position with a line.
Otherwise, a line is drawn to point X, Y from the current
position.

Page 10.41

ALPHABETICAL REFERENCE GUIDE

DRA% Sksfemenk

PREFIX COMMANDS

The following prefix commands may precede any of the above movement
commands:

BP

N

Move but don't plot any points.

Move but return to original position when done.

Set angle n. n may range from zero to three, where
zero is zero degrees, one is 90, two is 180, and three
is 270. Figures rotated 90 or 270 degrees are scaled
so that they will appear the same size as with zero
or 180 degrees on a monitor screen with the standard
aspect ratio of 7/1 6.

A(n>~

C<n> Set att r ibute n. n may range from zero to seven.

Set scale factor. n may range from one to 255. The
scale factor is multiplied by the distances given with
U,D,L,R or relative M commands to get the actual dis­
tance traveled.

S<n>

X<string;> Execute substring (not supported by BASIC compiler).
This powerful command allows you to execute a second
substring from a string, much like GOSUB in BASIC.
You can have one string execute another, which exe­
cutes a third, and so on.

Numeric arguments can be constants like "123nor "= variable;", where vari­

able is the name of a variable. (Not supported by BASIC compiler).

Page 10.42

ALPHABETICAL REFERENCE GUIDE

EDIT Command

BRIEF

FOrmat: EDIT <I inc number>
EDIT

Purpose: To display the specified Line(s) and position the cursor under the
first digit of the line number.

Details

The full screen editor recognizes special key combinations as well as
numeric and cursor movement key-pad keys. These keys allow moving the
cursor to a location on the screen, inserting characters, and deleting charac­
ters as described in chapter 3.

More than one BASIC statement may be placed on a line, but each state­
ment on a line must be separated from the last statement by a colon.

A Z-BASIC program line always begins with a line number, ends with a
RETURN, and may contain a maximum of 250 characters.

With the full screen editor, the EDIT statement simply displays the line
specified and positions the cursor under the first digit of the line number.

The format of the EDIT statement is:

EDIT <line number> OR
EDIT

Line number is the program line number of a line existing in the program.
If there iS nO SuCh line, an Vnderined l i n e number errOr meSSage iS diS­
played.

A period (.) placed after the EDIT statement always gets the last line refer­
enced by an EDIT statement, LIST command, or error message.

Remember, if you have just entered a line and wish to go back and edit it,
the command EDIT. will enter EDIT at the current line. The line number sym­
bol "." always refers to the current line.

Page 10.43

ALPHABETICAL REFERENCE GUIDE

END Statement

BRIEF

Format: END

Purpose: To terminate program execution, close all files, and return to
command level.

Details

END statements may be placed anywhere in the program to terminate
execution. Unlike the STOP statement, END does not cause a Bouc mes­
sage to be printed. An END statement at the end of a program is optional.
BASIC always returns to command level after an END is executed.

Example:
520 IF K>1000 THEN END ELSE GOTO 20

Page 10.44

ALPHABETICAL REFERENCE GUIDE

EOF Function

BRIEF

FOrmat: EOF ((f i l e n umber>)

Purpose: Returns — 1 (true) if the end of a sequential or random file has
been reached.

Details

The EOF function is used to test for end-of-file while inputting, in order to
avoid Input past end errors. If in a random access file, a GET is issued for
a record that is past the end of the file, EOF will be set to — 1, and no error
will occur. A zero will be returned if the end of the file has not been reached.
This function may be used to find the size of a file by using a binary search
or other algorithm.

Example:

10 OPEN "I " , 1 , " DATA"
20 C =O

30 IF EOF(1) THEN 100
40 INPUT 41,M(C)
50 C =C+1: GOTO 30

page 10.45

ALPHABETICAL REFERENCE GUIDE
ERASE Statement

BRIEF

FOrmat: ERASE(list of array variables>

Purpose: To eliminate arrays from a program.

Details

The ERASE statement can be used to make more storage space available
while you are running your program by eliminating arrays from the program
that are no longer needed.

Arrays may be redimensioned after they are erased, or, the previously allo­
cated array space in memory may be used for other purposes. If an attempt
is made to redimension an array without first erasing it, a Duplicate Defini­
tion error occurs.

The Microsoft BASIC compiler does not support ERASE.

Example:

450 ERASE A, B
460 DIM B (99)

Page 10.46

ALPHABETICAL REFERENCE GUIDE
ERR and ERL Variables

BRIEF

Format: x = ERR

Y= ERL

Purpose: To trap an error by returning an error code and line number as­
sociated with an error.

Details

When an error handling subroutine is entered, the variable ERR contains
the error code for the error, and the variable ERL contains the number of
the line in which the error was detected. The ERR and ERL variables are
usually used in IF...THEN statements to direct program flow in the error trap
routine.

If the statement that caused the error was a direct mode statement, ERL will
contain 65535. To test if an error occurred in a direct statement, use:

IF 65535 = ERL THEN

If the statement was an indirect mode statement use:

IF ERR = e r r o r co d e THEN

IF ERL = line number THEN

If the line number is not on the right side of the relational operator, it cannot
be renumbered by RENUM. Because ERL and ERR are reserved variables,
neither may appear to the left of the equal sign in a LET (assignment) state­
ment. The BASIC error codes are listed in Appendix A.

Page 10.47

ALPHABETICAL REFERENCE GUIDE

ERROR Statement

BRIEF

FOrmat: E RROR <integer express i o n>

Purpose: 1) To simulate the occurrence of a BASIC error.

2) To allow error codes to be defined by the user.

Details

The value of <integer expression> must be greater than zero and less than
255. If the value of (integer expression> equals an error code already in
use by BASIC (see Appendix A), the ERROR statement will simulate the oc­
currence of that error, and the corresponding error message will be printed.
(See example below.)

Example:

10 S = 1 0

2 0 T = 5

30 ERROR S + T
40 END
RUN
String too long in 30

Ok

Or, in direct mode:

Ok

ERROR 15
Stringtoolong

Ok

(you type this line)
(BASIC types this line)

Page 10.48

ALPHABETICAL REFERENCE GUIDE

ERROR Statement

To define your own error code, use a value that is greater than any used
by the Z-BASIC error codes. (It is preferable to use the highest available
values, so compatibility may be maintained when more error codes are
added to Z-BASIC.) This user-defined error code may then be conveniently
handled in an error trap routine.

Example:

110 ON ERROR GOTO 400
120 INPUT "WHAT IS YOUR BET";B
130 IF B > 50 0 0 THEN ERROR 210

400 I F E RR= 210 THEN PRINT "HOUSE LIMIT IS $5000"

410 IF ERL = 130 THEN RESUME 120

If an ERROR statement specifies a code for which no error message has
been defined, BASIC responds with the message Unprintable Error.
Execution of an ERROR statement for which there is no error trap routine
causes an error message to be printed and execution to halt.

Page 10.49

ALPHABETICAL REFERENCE GUIDE
EXP Function

BRIEF

Format: Exp (x)

Action: Calculates the exponential value of X.

Details

The EXP function returns the mathematical value of e to the power of X. X
must be < = 88.0296. If EXP overflows, the over r10w error message is dis­
played, machine infinity with the appropriate sign is supplied as the result,
and execution continues.

Example:

10 X = 5

2 0 PRINT EXP (X- 1)
RUN
54.59815

Ok

Page 10.50

ALPHABETICAL REFERENCE GUIDE
FIELD Statement

BRIEF

FOrmat: FIELDs<file number>,<field width> AS <string vari­

able>

[, <field width> AS <string variable>...]

Purpose: To allocate space for variables in a random file buffer.

Details

To get data out of a random buffer after a GET or to enter data before a PUT,
a FIELD statement must have been executed.

The <file number> is the number under which the file was opened. (field
width> is the number of characters to be allocated to (string variable>.

Example:

FIELD tl, 20 AS N$, 10 AS IDS, 40 AS ADD@

allocates the first 20 positions (bytes) in the random file buffer to the string
variable N$, the next 10 positions to ID$, and the next 40 positions to ADD$.
FIELD does NOT place any data in the random file buffer. (See LSET/RSET
and GET in chapter 6, "File Handling". Also refer to these statements in the
Alphabetical Reference Guide.)

The total number of bytes allocated in a FIELD statement must not exceed
the record length that was specified when the file was opened. Otherwise,
a FIELD over flow errOr OCCurS. (The default reCOrd length iS 128.)

Any number of FIELD statements may be executed for the same file, and
all FIELD statements that have been executed are in effect at the same time.

Do not use a fielded variable name in an INPUT or LET statement. Once
a variable name is fielded, it points to the correct place in the random file
buffer. If a subsequent INPUT or LET statement with that variable name is
executed, the variable's pointer is moved to string space.

page 10.51

ALPHABETICAL REFERENCE GUIDE

FILES Command

BRIEF

FOrmat: FI L ES [(f i l en a me)]

Purpose: To display the names of files residing on the current disk.

Details

If (filename) is omitted from a FILES command, all the files on the cur­
rently selected drive will be listed. (filename) is a string formula which may
contain question marks (?) to match any character in the filename or exten­
sion. An asterisk (*) as the first character of the filename or extension will
match any file or any extension.

Examples:

FILES

F ILES "B : + . + "

FILES "+ .BAS"

List all files on default drive

List all files with. BAS extension

List all files on disk B

List all files with a primary name that begins
with "TEST" and has an an extension of. BAS.
The question mark could be any alpha­

FILES "TEST?.BAS"

numeric character.

Page 10.52

ALPHABETICAL REFERENCE GUIDE

FIX Function

BRIEF

Format: FIx (x)

Action: Returns the truncated integer part of X.

Details

The FIX function is used to truncate the integer portion of a number. FIX(X)
is equivalent to SGN(X)*INT(ABS(X)). The major difference between FIX
and INT is that FIX does not return the next lower number for a negative X.

Examples:

PRINTFIX (58.75)
58

Ok

PRINT FIX(— 58. 75)
— 58
Ok

Page 10.53

ALPHABETICAL REFERENCE GUIDE

FOR. • .NEXT Statement

BRIEF

FOrmat: FOR <variable> = X TO Y [STEP z]

NEXT [<variable>] [, <variable>. ..]

Purpose: To allow a series of instructions to be performed in a loop struc­
ture a given number of times.

The <variable> in the format of the FOR... NEXT statement is
used as a counter.

X is the initial value of the counter and Y is the final value.

For
Next
Loops

Details
Looping is a common program structure used in programming applications
when there is a need to repeat a series of instructions several times. The
FOR...NEXT statements are used to keep track of how many times the pro­
gram loops and to provide a way for the program to exit from the loop when
the specified number of loops has been completed.

The <variable> is used as a counter. The first numeric expression (x) is the
initial value of the counter. The second numeric expression (y) is the final
value of the counter. The program lines following the FOR statement are
executed until the NEXT statement is encountered. Then the counter is in­
creased by the amount specified by STEP. If no step value is specified, the

Counters

default value is one.

ct coke A check is then performed to see if the current value is below or equal to
the final value. If it is, the process is repeated. If greater, execution continues
with the statement following the NEXT statement.

We have included a flowchart of a FOR...NEXT loop to help you in under­
standing how these statements function. A flowchart is a graphic illustration,
using standard symbols, to represent the path of a program.

Page 10.54

ALPHABETICAL REFERENCE GUIDE

FOR...NEXT Statement

FOR...
NEXT
FLOWCHART BEG IN

I N I T I A L I Z E

COUNTER

PROCESS

INCREMENT

COUNTER

HAS
COUNTER NO

EACHED AN EX I
VALUE

YES

END

Now that you have seen the flow of the program, consider the examples

Example 1:

below:

10 C =1
20 PRINT C
30 C =C+1
4 0 IF C<=10 THEN 20

10 FOR C =1 TO 10

30 NEXT C
isthesameas 20 P RINT c

The first part of this example uses the IF...THEN statement to execute the
loop. The second part of this example uses the FOR...NEXT sequence to
execute the same loop with the same results. Notice the FOR...NEXT exam­
ple is shorter and will run faster than the IF...THEN loop. If you compare the
example to the flowchart above, you will understand the program structure
of a counter-driven loop.

Page 10.55

ALPHABETICAL REFERENCE GUIDE

FOR...NEXT Skaifemevt

A run of this program will look like this:

RUN
1
2

3 4 5 6

7 8 9 10

Ok

step Not i ce, in the preceding example, STEP was not specified. If STEP is not
specified, the increment is assumed to be one. If STEP is negative, the final
value of the counter must be set to less than the initial value.

The body of the loop is skipped if the initial value of the loop times the sign
of the step exceeds the final value times the sign of the step. For example:

20 FOR I =1 TO 0

30 PRINT I
40 NEXT I

In this example, the loop does not execute because the initial value of the
loop exceeds the final value. It is also important to remember that the final
value of the loop must be set before the initial value is set.

FOR...NEXT loops may be nested. That is, a FOR...NEXT loop may be
placed within the context of another FOR...NEXT loop. When loops are
nested, each loop must have a unique variable name as its counter. The
NEXT statement for the inside loop must appear before the NEXT statement
for the outside loop. If nested loops have the same end point, a single NEXT
statement may be used for all of them.

The variable(s) in the NEXT statement may be omitted, in which case the
NEXT statement will match the most recent FOR statement. If a NEXT
statement is encountered before its corresponding FOR statement, a
NEXT without FOR errOr meSSage iS iSSued, and eXeCutiOn iS terminated. If
a FOR statement appears without a corresponding NEXT statement, a
FOR Without NEXT errOr iS iSSued, and eXeCutiOn iS terminated.

Nesting
FOR...NEXT
STATEMENTS

Page 10.56

ALPHABETICAL REFERENCE GUIDE

FOR...N EXT Sketernent

Following is an example of a nested FOR...NEXT statement that creates a
multiplication table of the multiples of five thru nine.

Example 2

10 PRINT
20 FOR Z =5 TO 9
30 PRINT Z; "
40 NEXT Z
50 PRINT
60 PRINT " ";STRINGS(20," — ")
70 FOR X =5 TO 9
80 PRINT X; " I" ;
90 FOR Y =5 TO 9
100 PRINT X+Y;
110 NEXT Y
120 PRINT
130 NEXT X
140 END

RUN
5 6

5 I 25 30
6 I 30 36
7 I 35 42
s I 40 4 s
9 I 45 54

7 8 9

35 4 0 45
42 4 8 54
49 5 6 63
56 6 4 72
63 7 2 81

Checkpoint

The first FOR...NEXT statement found in lines 20-40 prints the numbers 5-9
across the top of the table. The nested FOR...NEXT statement is found in
lines 70-130. Within those line numbers is the process for computing the ac­
tual table. If you compare this program to the flowchart illustrated on Page
10.54, you will be able to see where the two loops begin and end.

Nesting is a fairly complicated program structure. If you are having problems
understanding how to do this, refer to the bibliography of this manual for re­
ferences to additional resources.

Page 1 0.57

ALPHABETICAL REFERENCE GUIDE

FRE Function

BRIEF

Format: FRE(0)
FRE(X$)

Action: Returns the number of bytes in memory not currently being used
by BASIC.

Details

The FRE function will return the number of bytes in memory that are not
being used by Z-BASIC. The arguments to FRE are dummy arguments.
FRE(" ") forces some system housekeeping before returning the number
of free bytes.

BE PATIENT: housekeeping may take as long as one and one half minutes.
BASIC will not initiate housekeeping until all free memory has been used.
Therefore, using FRE(" ") periodically will result in shorter delays for each
housekeeping.

Example:

PRINTFRE(0)
14542

Ok

page 10.58

ALPHABETICAL REFERENCE GUIDE

GET Statement

BRIEF

FOrmat: GET 4 < f i l e n u mber> [,< r e c o r d number>]

Purpose: To read a record from a random disk file into a random buffe.

Details

The (file number> in a GET statement is the number under which the file
was opened. If (record number> is omitted, the next record (after the last
GET) is read into the buffer. The largest possible record number is 32767.
See Chapter 6, "File Handling".

After a GET statement, the variables are immediately accessable.

Page 1 0.59

ALPHABETICAL REFERENCE GUIDE

GET/PUT Statement

BRIEF

FOrmat: GET (X l , Yl) — (X2, Y2), a r r a y n a me

F Ormat: PUT (X I , Y I) , ar r ay [, a c t i o n v e r b]

Purpose: To transfer graphic images to and from the screen.

Details

The PUT and GET statements are used to transfer graphic images to and
from the screen. PUT and GET make animation and high-speed object mo­
tion possible in either graphic mode.

The GET statement transfers the screen image bounded by the rectangle
described by specified points into the array. The rectangle is defined the
same way as the rectangle drawn by the LINE statement using the ",B" op­
tion.

The array is simply used as a place to hold the image and can be of any
type except string. It must be dimensioned large enough to hold the entire
image. The contents of the array after a GET will be meaningless when inter­
preted directly (unless the array is of type integer).

The PUT statement transfers the image stored in the array onto the screen.
The specified point is the coordinate of the top left corner of the image. An
Il legal Function call error will result if the image to be transferred is too
large to fit on the screen.

The action verb is used to interact the transferred image with the image al­
ready on the screen. PSET transfers the data onto the screen verbatum.
Other possible action verbs include: PRESET, AND, OR, XOR.

PRESET is the same as PSET except that a negative image (e.g. black on
white) is produced.

AND is used when you want to transfer the image only if an image already
exists under the transferred image.

Page 10.60

ALPHABETICAL REFERENCE GUIDE

GET/PUT Statement

OR is used to superimpose the image onto the existing image.

XOR is a special mode often used for animation. XOR causes the points on
the screen to be inverted where a point exists in the array image. This be­
havior is exactly like the cursor on the screen. XOR has a unique property
that makes it especially useful for animation: when an image is put against
a complex background once twice, the background is restored unchanged.
This allows you to move an object around the screen without obliterating the
background.

The default action mode is XOR.

It is possible to get an image in one mode and put it in another, although
the effect may be quite strange because of the way points are represented
in each mode.

ANIMATION

Animation of an object is usually performed as outlined below:

1. P U T the object(s) on the screen.

2. R e calculate the new position of the object(s).

3. P U T the object(s) on the screen a second time at the old loca­
tion(s) to remove the old image(s).

4. G o to step one, this time putting the object(s) at the new location.

Movement done this way will leave the background unchanged. Flicker can
be cut down by minimizing the time between steps four and one, and by
making sure that there is enough time delay between one and three. If more
than one object is being animated, every object should be processed at
once, one step at a time.

If it is not important to preserve the background, animation can be performed
using the PSET action verb. The idea is to leave a border around the image
when it is first gotten as large or larger than the maximum distance the object
will move. Thus, when an object is moved, this border will effectively erase
any points.

Page 10.61

ALPHABETICAL REFERENCE GUIDE

GET/PUT SIIatemenk

The storage format in the array is as follows:

2 bytes giving X dimension in bits
2 bytes giving Y dimension
The array data itself

The data for each row of pixels is left justified on a byte boundary, so if there
are less than a multiple of eight bits stored, the rest of the byte will be filled
out with zeros. The required array size inbytes is:

4+ INT((X+ 7)/8)*3*Y

WHERE: bits per pixel is 3

X = number of colums to be stored

Y = number of rows to be stored

The bytes per element of an array are:

2 for integer%
4 for single-precision!
8 for double-precision 4

Example:

If you wanted to GET a 10 by 12 image into an integer array the number
of bytes required is 4+ INT((10+ 7)/8)3*12 or 76 bytes. You would then di­
vide the number of bytes by the number of bytes per element. In this case,
76/2. Thus, you would need an integer with at least 38 elements. See pages
8.20-8.22 for further information regarding the calculation of the array size.

It is possible to examine the X and Y dimensions and even the data iteslf
if an integer array is used. The X dimension is in element zero of the array,
and the Y dimension is found in element one. It must be remembered, how­
ever, that integers are stored low byte first, then high byte, but the data is
transferred high byte first (leftmost).

page 10.62

ALPHABETICAL REFERENCE GUIDE

GOSUB...RETURN Statement

BRIEF

FOrmat : GOSU B< l i n e number>

RETURN

Purpose: To branch to and return from a subroutine.

Details

The <line number> in the format of the GOSUB...RETURN statement is the
first line of the subroutine.

A subroutine may be called any number of times in a program, and a sub­
routine may be called from within another subroutine. Such nesting of sub­
routines is limited only by available memory.

The RETURN statement(s) in a subroutine cause BASIC to branch back to
the statement following the most recent GOSUB statement. A subroutine
may contain more than one RETURN statement, should logic dictate a re­
turn at different points in the subroutine. Subroutines may appear anywhere
in the program. It is recommended that the subroutine be readily distinguish­
able from the main program. To prevent inadvertent entry into the sub­
routine, it may be preceded by a STOP, END, or GOTO statement to direct
program control around the subroutine.

Example:

10 GOSUB 40
20 PRINT "BACK FROM SUBROUTINE"
30 END
40 PRINT "SUBROUTINE";
50 PRINT " I N " ;
60 PRINT " PROGRESS"
70 RETURN
RUN
SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE
Ok

Page 10.63

ALPHABETICAL REFERENCE GUIDE

GOTO Statement

BRIEF

FOrmat: G OTO < l i n e n u mber>

Purpose: To branch unconditionally out of the normal program sequence
to a specified line number.

Details

The GOTO statement forces the program to branch unconditionally to the
specified line number and continue execution of the program from that point.
If the line number is an executable statement, that statement and those fol­
lowing are executed. If it is a nonexecutable statement, execution proceeds
at the first executable statement encountered after the line number.

USED WITH IF. • . THEN

Although the GOTO statement is not a decision making statement, it is often
used in conjunction with them. Alone, the GOTO statement will only cause
the program to branch to another segment of the program. But, when used
with a decision maker such as the IF...THEN statement, it becomes the ob­
iect of a conditional branch, that is executed only if the result of the condition
is true.

Checkpoint

To check your understanding of the GOTO statement, consider the following
program:

10 pr i n t " L I N E 1 0 HERE"
20 GOTO 40
30 PRINT " L I NE 30 HERE"
40 PRINT " L I NE 40 HERE"

Your understanding of the GOTO statement is clear if you imagined that a
run of this program would look like this:

RUN
LINE 10 HERE
LINE 40 HERE
01%

Line 30 has become inoperative and was totally ignored by the program be­
cause of the unconditional program branch instruction in line 20.

Page 10.64

ALPHABETICAL REFERENCE GUIDE
HExS Function

BRIEF

Format: HExS(x)

Action: Returns a string which represents the hexadecimal value of the de­
cimal argument evaluated.

Details

The HEX$ function returns the hexadecimal value of a decimal argument.
X is rounded to an integer before HEX$ (X) is evaluated.

Example:

10 INPUT X
20 A$ = HEX' (X)
30 PRINT X "DECIMAL IS " As " HEXADECIMAL"
RUN
? 32
32 DECIMAL IS 20 HEXADECIMAL

Ok

See the OCT$ Function for octal conversion.

Page 10.65

ALPHABETICAL REFERENCE GUIDE

IF Statement

BRIEF

FOrmat: I F < e x p r e s s i on> THEN <statement (s) > i< l i n e number>

[ELSE <statement (s) > i<line number>]

IF <expression> GOTO <line number>

[ELSE <statement (s) > i< line number>]

Purpose: To make a decision regarding program flow based on the result
returnedby an expression.

Details

Conditional branching allows a program to take one or more program paths,
depending on the result of an expression. The IF... THEN statement is one
way to maintain program control when an expression is evaluated as true.
If the result of an expression is true, the THEN or GOTO clause is executed.
THEN may be followed by either a line number for branching, or one or more
statements to be executed. If the result of the expression is false, the THEN
clause is ignored and the ELSE clause if present is executed. Execution
continues with the next executable statement.

GOTO statements are always followed by a line number. If the result of the
expression is false, the GOTO clause is ignored and the ELSE clause, if pre­
sent, is executed. Execution proceeds at the first executable statement en­
countered after the line number.

GOTO

Page 10.66

ALPHABETICAL REFERENCE GUIDE

IF Statement

Example 1:

For an example of how these statements interact, input the example below:

50 REM

10 REM ++~"+++++ QUADRATIC ROOTS +++++++++
20 REM
30 REM FIND THE TWO ROOTS, Xl AND X2, OF A QUADRATIC
40 REM EQUATION GIVEN COEFFICIENTS A,B,C

100 REM INITIALIZE A,B,AND C,
110 PRINT: INPUT "COEFFICIENTS (A,B,C): " ;A,B , C
200 REM CALCULATE ROOTS
210 Xl = (— B+SQR(B "2- 4 " A+C)) / (2 +A)
220 X2 = (— B-SQR(B " 2-4 %A%C))/ (2+A)
300 REM PRINT OUT RESULTS
310 PRINT: PRINT "Xl IS ";Xl:PRINT "X2 IS ";X2:PRINT

If you run this program a few times inserting random numbers for the coeffi­
cients (both negative and positive), you will notice that on many occasions
the program ends with the following error message:

320 END

Illegal Function Call in 210

This happens when the values you enter for A, B, and C can not be calcu­
lated in the real number system. There are no real number values that
equate to the square root of a negative number. Thus if you enter coeffi­
cients of 1,0,1, an error message would be displayed and the program termi­
nated.

To maintain program control no matter what the values of A, B, and C are,
and to keep certain values away from the square root formula, we have in­
serted a data check which cause the program to have two paths to choose.
IF the value of B " 2 — 4*A*C is less than zero THEN the program will branch
to an error message printing routine.

Page 10.67

ALPHA8ETICAL REFERENCE GUIDE

Example 2:

10 REM + ++"+++ " + QUADRATIC ROOTS +++++++++

20 REM
30 REM FIND THE TWO ROOTS, Xl AND X2, OF A QUADRATIC
40 REM EQUATION GIVEN COEFFICIENTS A • B,C
50 REM
100 REM INITIALIZE A,B,AND C,
110 PRINT: INPUT "COEFFICIENTS (A,B,C): " ;A,B,C
150 REM CHECK DATA
160 IF (B " 2) — (4+A+C) <0 THEN 400
200 REM CALCULATE ROOTS
210 Xl = (— B+SQR(B 2 — 4"A+C)) / (2 +A)
220 X2 = (— B-SQR(B 2 - 4 %A+C))/ (2+A)
300 REM PRINT OUT RESULTS
310 PRINT: PRINT "Xl IS "; Xl: PRINT "X2 IS ";X2: PRINT
320 GOTO 999
400 REM PRINT MESSAGE
410 PRINT: PRINT "NO REAL ROOTS.":PRINT
999 END

Line 160 contains the data check. If the value of 8 "2-4 *A*C is less than

zero then the result is said to be true, and the program branches to line 400
printing the message, "NO REAL ROOTS". If the value is greater than zero,
then the program continues execution at line 200. Using conditional branch­
ing keeps the program under your control, no matter what values are input.

IF... THEN... ELSE statements can be nested. The term nesting means to
embed a statement or any block of statements within a larger statement or
block of statements. Nesting is limited only by the maximum length of the
line, 255 characters. The ELSE must be in the same program line as the
IF... THEN clause. In the example below, the statement may appear to be
on two lines but it is still considered one program line if there is no intervening
carriage return.

Example 3:

Nesting

10 IF Y>X THEN PRINT "GREATER" ELSE IF Y(X
THEN PRINT "LESS THAN" ELSE PRINT "EQUAL"

is a legal statement which means if the value of Y is greater than X, then
the first part of this statement is true, and the rest of this statement is ignored.
GREATER will be printed and the program will continue execution at the next
line. If Y is less than X, then print, LEss THAN will be printed. If both of these
statements are false, "EQUAL- will be printed.

Page 10.68

ALPHABETICAL REFERENCE GUIDE

IF Skatemevk

If the statement does not contain the same number of ELSE and THEN
clauses, each ELSE is matched with the closest unmatched THEN.

Example 4:

IF A =B THEN IF B =C THEN PRINT "A=C"
ELSE PRINT "A<>C"

BASIC will look at the first part of this statement (IF A=B). If it is false and
because there is no corresponding ELSE statement, it will move to the next
program line without printing anything. If the first part of the statement is true,
but the second part (IF B = C) is false, then, it will print A<>c because the
ELSE clause of the statement is matched to the closest unmatched THEN.
If both parts of the statement are true then BASIC will print A=c.

Checkpoint

To test your understanding of nested IF...THEN statements, study the ex­
ample below and match the ELSE clauses to the correct IF...THEN state­
ments.

10 INPUT A: I NPUT B: I N PUT C
2 0 IF A = C THEN I F A= B THEN PRINT " A = B A = C "
<operator — typed LINE FEED>

ELSE PRINT "A NOT = B "

<operato r - t y p e d L I NE FEED>
E LSE PRINT "A NOT = C "

3 0 PRINT A, B , C

This nested IF will first test to see if A=C. If A does not equal C, the second
ELSE will be executed. If A does not equal 8, the message A NOT= c will be
printed and execution will be continued in line 30.

If A= C, the first THEN will be executed. This will result in another test. This
time, A will be compared to B. If A does not equal C, the message A No T =B
will be printed, and execution will be continued in line 30.

If you understand how these statements were matched, you may want to
read the next page for the additional technical considerations. If you' re still
a little unclear, don't worry. Nesting is a fairly complex program structure that
may require additional reading. Resources may be found in the bibliography
of this manual.

Page 10.69

ALPHABETICAL REFERENCE GUIDE

mF Statesfeet

TECHNICAL DATA

If an IF...THEN statement is followed by a line number in the direct mode,
an Unde rined1ine number error results unless a statement with the specified
line number was previously entered in the indirect mode.

When using IF to test equality for a value that is the result of a floating point
computation, remember that the internal representation of the value may not
be exact. Therefore, the test should be against the range over which the ac­
curacy of the value may vary. For example, to test a computed variable A
against the value 1.0 use:

IFABS (A — 1.0) <1.0E — 6THEN...

This test is true if the value of A is 1.0 with a relative error of less than
1.0E-6.

Following are three additional examples of using IF... THEN statements:

200 IF I THEN GET¹1, I

This statement gets record number I if I is not zero.

100 IF(I (2 0) AND(1>10) THENDB=1979 — I: GOT0300

110 PRINT "OUT OF RANGE"

In this example, a test determines if I is greater than 10 and less than 20.
If I is in this range, DB is calculated, and execution branches to line 300.
If I is not in this range, execution continues with line 110.

210 IF IOFLAG THEN PRINT AS ELSE LPRINT AS

This statement causes printed output to go either to the terminal or the line
printer, depending on the value of a variable (IOFLAG). If IOFLAG is zero,
output goes to the line printer, otherwise output goes to the terminal.

Complex conditions are explained in Chapter 5, "Logical Operators," Page
5.32.

Page 10.70

ALPHABETICAL REFERENCE GUIDE

INKEY$ Variable

BRIEF

Format: x$ =INKEY$

Purpose: To read a character from the keyboard.

Details

The returned value is a zero, one, or two, character string.

A null string, (zero length) indicates no character is pending at the keyboard.

A one character string will contain the actual character read from the
keyboard.

A two character string indicates a special extended code.

If the INKEY$ variable is in use, no characters are displayed on the screen
and all characters are passed through to the program except for Control-C
which terminates the program.

You must assign the result of INKEY$ to a string variable before using the
character with any BASIC statement or function

Example:

100 'stop program until a key is pressed

110 PRINT "PRESS ANY KEY TO CONTINUE"
120 AS = INKEY$: IF As = "" T HEN 120

Also see INPUT$ function, Page 10.78.

Page 10.71

ALPHABETICAL REFERENCE GUIDE

INP Function

BRIEF

Format: zNp(z)

Purpose: Returns the byte read from port I.

Details

I must be in the range — 32768 to 32767. The INP function is the com­
plementary function to the OUT statement, Page 10.122.

Example:

100 A =INP (255)

Page 10 72

ALPHABETICAL REFERENCE GUIDE

INPUT Statement

BRIEF

FOrmat: I N PUT [;] [< " p rompt st r i n g " > ;] <v a r i a b l e l i st >

Purpose: To allow input from the keyboard during program execution.

Details

Most programs have the following capabilities: get data, process data,
and print results. The INPUT statement is one method of getting data from
the keyboard. When an INPUT statement is encountered, program execu­
tion stops, a prompt string is printed if one has been included, a question
mark is displayed (unless suppressed by a comma) and BASIC waits for
your input of data. After receiving the proper response, program execution

Input
Statements

continues.

A prompt string can be included in an INPUT statement to remind you of the
value the input statement is requesting. This is particularly useful when your
programs use many input statements. Additionally, a prompt string advises
you as to what type of response is appropriate. Following on the next page
is an example of the use of a prompt string. Program 1 is a sample program
using the INPUT statement without a prompt string. Program 2 is a modifica­
tion of Program 1 with the prompt string included.

Prompt
StrIngs

Page 10.73

ALPHABETICAL REFERENCE GUIDE

INPUT Stetement

10 REM """+""+PYTHAGOREAN THEOREM"""""""""""

20 REM
30 REM GIVEN TWO SIDES A AND B OF A RIGHT TRIANGLE,
40 REM FIND THE HYPOTENUSE, C
50 REM
100 INPUT A
110 INPUT B
120 C = SQR(A 2 + B " 2)
130 PRINT "THE HYPOTENUSE IS"; C
140 END

Program 1
INPUT Statement Without Prompt String

When this Program is run it will look like this:

RUN
'? 79
? 53
THE HYPOTENUSE IS95.13149
Ok

10 REM ++++"++PYTHAGOREAN THEOREM+++++++

20 REM
30 REM GIVEN TWO SIDES A AND B OF A RIGHT TRIANGLE,
40 REM FIND THE HYPOTENUSE, C
50 REM
100 INPUT "LENGTH OF SIDE A";A
110 INPUT "LENGTH OF SIDE B";B
120 C = SQR(A 2+B " 2)
130 PRINT "THE HYPOTENUSE IS";C
140 END

Program 2.
INPUT Statement With Prompt String

When the Program is run, it will look like this:

RUN
L ENGTH OF SIDE A'? 7 9
L ENGTH OF SIDE B'? 5 3
THE HYPOTENUSE IS 9 5 . 1 3 149
Ok

page 10.74

ALPHABETICAL REFERENCE GUIDE

INPUT Statement

You will notice that in the format of an INPUT statement, there is an optional
semicolon included immediately following INPUT. In this case, the carriage
return typed by the user to input data does not echo a carriage return/line
feed sequence. This means that the cursor will remain on the same line as
the user's response. A comma may be used instead of a semicolon after
the prompt string to suppress the question mark.

Example:

Semicolons
and
Commas

10 INPUT "ENTER YOUR NAME",NS
will run as

ENTER YOUR NAME

Variable
List

Data entered are assigned to the variable(s) given in the variable list. The
number of data items supplied must be the same as the number of variables
in the list. Data items are separated by commas.

The variable names in the list may be numeric or string variable names (in­
cluding subscripted variables). The type of each data item that is inputted
must agree with the type specified by the variable name. (Strings entered
in response to an input statement need not be surrounded by quotation
marks.)

Responding to INPUT with too many or too few items, or with the wrong type
of value (string instead of numeric etc.) causes the message YRedo rrom
start to be printed. No assignment of input values is made until an accept­
able response is given.

Page 10.75

ALPHABETICAL REFERENCE GUIDE

INPUT Stetemevt

Checkpoint

As a final example of using INPUT statements, we have included another
sample program. This application program calculates mortgage payments.
Enter the program and then study it to see how it works. Then, run it a few
times and take note of the results. Be sure to save the program as you may
want to modify it later.

10 REM »»»»»»»»«»»MORTGAGE PAYMENTS»»»»»" »»»

20 REM
30 REM CALCULATE MONTHLY MORTGAGE PAYMENTS GIVEN THE
40 REM TOTAL COST, DOWN PAYMENT, NUMBER OF YEARS,
50 REM AND YEARLY INTEREST RATE
60 REM
100 REM GET DATA
110 PRINT
120 PRINT "ENTER THE FOLLOWING:"
130 INPUT "TOTAL COST OF HOUSE AND PROPERTY: " ,T

140 INPUT "DOWN PAYMENT: ",D
150 INPUT "NUMBER OF YEARS FOR LOAN: ",NY

1 60 INPUT "YEARLY INTEREST RATE (E.G. 1 6) . " , IY
170 PRINT
180 REM CALCULATE PRINCIPAL
200 P =T — D

220 REM CALCULATE MONTHLY RATE 8 CHANGE K TO DECIMAL
2 30 I M =IY/1200
240 REM CALCULATE TOTAL NUMBER OF PAYMENTS
250 NM =NY»12

300 REM CALCULATE PAYMENTS ETC. 8 REPORT RESULTS
310 PRINT
320 PRINT "YOUR PRINCIPAL IS $";P
330 MP = (P»IM»(1+IM) " NM)/ ((1 + I M) N M — 1)
340 PRINT "THE MONTHLY PAYMENT WILL BE $";MP
350 PRINT "THE TOTAL PAYMENT FOR ";NY;" YEARS WILL BE $";NM»MP
360 PRINT "THE TOTAL INTEREST PAID WILL BE $";NM»MP-P
999 END

Page 10.76

ALPHABETICAL REFERENCE GUIDE

INPUT Stakeneni

When the mortgage payments program is run it should look like this:

RUN

ENTER THE FOLLOWING:
TOTAL COST OF HOUSE AND PROPERTY:
DOWN PAYMENT: 40000
NUMBER OF YEARS FOR LOAN: 30
YEARLY INTEREST RATE (E.G. , 1 6j :

YOUR PRINCIPAL IS 8 80000
THE MONTHLY PAYMENT WILL BE S 1075.806
THE TOTAL PAYMENT FOR 30 YEARS WILL BE S 387290.1
THE TOTAL INTEREST PAID WILL BE 8 307290.1

The formula used to calculate the mortgage program was:

120000

16

PI(1+ I)"
(1+ I)" — 1

which translates into the BASIC assignment statement:

MP=(P*IM* (1+ IM) " NM)/((1+ IM) NM — 1)

where: MP = monthly payment
P = principal
IM = monthly interest rate
NM = number of monthly payments

Page 10.77

ALPHABETICAL REFERENCE GUIDE
INPUT¹ Statement

BRIEF

FOrmat: I N P UT4 <f i le number> , <va r i a b l e l i s t >

Purpose: To read data items from a sequential disk file and assign them
to program variables.

Details

The INPUTS statement is used to read data items from a sequential disk
file and assign them to program variables. The <file number> is the number
used when the file was opened for input. The <variable list> contains the
variable names that will be assigned to the items in the file. (The variable
type must match the type specified by the variable name.) With INPUTS,
no question mark is printed, as with INPUT.

The data items in the file should appear just as they would if data were being
typed in response to an INPUT statement. Numeric values, leading spaces,
carriage returns and line feeds are ignored. The first character encountered
that is not a space, carriage return, or line feed is assumed to be the start
of a number. The number terminates on a space, carriage return, line feed,
or comma.

If BASIC is scanning the sequential data file for a string item, leading spaces,
carriage returns, and line feeds are also ignored. The first character encoun­
tered that is not a space, carriage return, or line feed is assumed to be the
start of a string item. If this first character is a quotation mark ("), the string
item will consist of all characters read between the first quotation mark and
the second.

Thus, a quoted string may not contain a quotation mark as a character. If
the first character of the string is not a quotation mark, the string is an un­
quoted string and will terminate when it reaches a comma, return, or line
feed (or after 255 characters have been read). If end of file is reached when
a numeric or string item is being INPUT, the item is terminated.

See Chapter 6, "File Handling," Page 6.1.

Page 10.78

ALPHABETICAL REFERENCE GUIDE

iNpuTS Function

BRIEF

Format: INPUT®(x, [[¹] Y])

Action: Returns a string of X characters, read from the terminal or from file
number Y.

Details

If the terminal is used for input, no characters will be echoed, and all control
characters are passed through except CTRL-C, which is used to interrupt
the execution of the INPUT$ function.

Example 1:

5 'LIST THE CONTENTS OFA SEQUENTIAL FILE IN

10 OPEN"I" , 1 , " DATA"
20 IF EOF(1) THEN 50
30 PRINT HEX%(ASC(INPUTS(1, ¹1))) ;
40 GOTO 20
50 PRINT: CLOSE
60 END

HEXADECIMAL

Example 1 opens a disk file called DATA (line 10). It then reads one charac­
ter at a time until the end of file (EOF) is reached (line 20). As each character
is read, it is converted into ASCII value and then into its hexadecimal value
and printed as such. The input and conversion is done in line 30.

Example 2:

100 PRINT "TYPE P TO PROCEED OR S TO STOP"
110 Xs =INPUT$(1)
1 20 IF X S="P" THEN 500

1 30 IF X $="S" THEN 700 ELSE 100

Page 10.79

ALPHABETICAL REFERENCE GUIDE

INSTR Function

BRIEF

Format: I NSTR([I,]XS, YS)

Action: Searches for the first occurrence of the string Y$ in X$ and returns
the position at which the match is found.

Details

Optional offset I sets the position for starting the search. I must be in the
range one to 255. If l>LEN(X$), if X$ is null or if Y$ cannot be found, the
INSTR function returns one. If Y$ is null, INSTR returns I or one. X$ and
Y$ may be string variables, string expressions or string literals.

Example:

10 XS = "ABCEDB"
20 Y$
30 PRINT INSTR(X$,Y$);INSTR(4,XQ,Y$)
RUN

2 6
Ok

IF l(= 0 or l>255 is specified, the error message I l l egal Function cal l i n
(l i n e number> will be retUI'lied.

page 10.80

ALPHABETICAL REFERENCE GUIDE

INT Function

BRIEF

Format: INT(x)

Action: The INT function returns the largest integer less than X.

Details

Examples:

PRINTINT(99.89)
99

Oji

PRINT INT(-12. 11)
— 13
Ok

See FIX, Page 10.52, and CINT, Page 10.16, which also return integer
values.

Page 10.81

ALPHABETICAL REFERENCE GUIDE

KEY Statement

BRIEF

FOrmat: KEY <key number>, <string expression>

KEY LIST

KEY ON

KEY OFF

Purpose: To allow any of the twelve special function keys to be assigned
to a 15 byte string which, when the key is pressed, will be input
to BASIC.

Details

The KEY statement allows function keys to be designated "Soft Keys". Any
one or all of the twelve special function keys may be assigned a 15 byte
string which, when the key is depressed, will be inputted to BASIC.

Initially, the Soft Keys are assigned the following values:

F1 — LIST
F2 — RUN
F3 — LOAD"
F4 — SAVE"
F5 — CONT
F6 — PRINT

NOTE: F2, F5, F1 1 and F12 are executed immediately, because a carriage
return is appended at the end.

<key number> is the key number. An expression returning an unsigned
integer in the range one to 12.

<string expression> is the key assignment test, which can be any valid
string expression.

F7 — AUTO
F8 — FOR
F9 — NEXT
F10 — GOSUB
F11 — TRON
F12 — TROFF

KEY QN Ca uses the key values to be displayed on the 25th Line.
10 of the 12 soft keys are displayed. Only the first six
characters of each value are displayed.

Page 10.82

ALPHABETICAL REFERENCE GUIDE

KEY Skatemenk

KEY OFF Eras es the Soft Key display from the 25th line.

KEY LIST List s all 12 Soft Key values on the screen. All 15 charac­
ters of each value are displayed.

<key number>,<string expression> Assigns the
string expression to the Soft Key specified (1 to 12).

KEY

Rules:

1. If t he value returned for <key number> is not in the range one
to 12, an zlle gal Function call error is taken. The previous key
string assignment is retained.

2. Th e key assignment string may be one to15 characters in length.
If the string is longer than 15 characters, the first 15 characters
are assigned.

3. A s s igning a null string (string of length zero) to a Soft Key dis­
ables the function key as a Soft Key.

4. Wh e n a Soft Key is assigned, the INKEY$ function returns one
character of the Soft Key string per invocation. If the Soft Key is
disabled, INKEY$ returns a string of length two. The first charac­
ter is binary zero, the second is the key scan Code.

Page 10.83

ALPHABETICAL REFERENCE GUIDE

KEY StstenenII:

Examples:

50 KEY ON

200 KEY OFF

10KEY1, "MENU" +CHR$(13)

Display the Soft Key on the 25th
Line.

Erase Soft Key display

Assigns the string 'MENU'(car­
riage return> to Soft Key 1. Such
assignments might be used for
rapid data entry. This example
might be used in a program to
select a menu display when en­
tered by the user.

Would erase Soft Key 1.20 KEY 1, ""

The following routine initializes the first five Soft Keys:

1 KEY OFF 'Turn off key display during init.
10 DATA KEY1,KEY2,KEY3,KEY4,KEY5
20 FOR I =l TO 5:READ SOFTKEYS$(I)
30 KEY I ,SOFTKEYS$(I)
40 NEXT I
50 KEY ON 'now display new softkeys.

Following is a practical application of the KEY statement you can use to RUN
the DEMO programs on Pages 8.27-8.30. Input this program before you run
the Demo.

10 KEY OFF
20 KEY 1, "RUN"
30 KEY 2, CHR$(34) + "DEMOI" +CHR$(34) +CHR$(13)
40 KEY 3, CHR$ (34) + "DEMOII" + CHR$ (34) + CHR$ (13)
50 KEY 4, "LIST" +CHR$(13)
60 KEY ON

Page 10.84

ALPHABETICAL REFERENCE GUIDE

KILL Command

BRIEF

FOrmat: KILL <filename>

Purpose: To delete a file from disk.

Details

KILL is used for all types of disk files: program files, random data files, and
sequential data files.

If a KILL Command is given for a file that is currently open, a File already
open error occurs.

Example:

200 KILL " F I L E . BAS"

See also Chapter 6, "File Handling" Page 6.1.

Note: Kill does not assume. BAS extension.

Page 10.85

ALPHABETICAL REFERENCE GUIDE

LEFT$ Function

BRIEF

Format: LEFT$(x$, I)

Action: Returns a string comprised of the leftmost I characters of X$.

Details

The LEFT$ function forms a substring from the left end of a source string.
In reference to the format, I must be in the range zero to 255. If I is greater
than LEN(X$), the entire string (X$) will be returned. If I=O, the null string
(length zero) is returned.

Example:

10 A$ = "BASIC"
20 B$ = LEFT$(A$,3)
30 PRINT B$
RUN
BAS
Ok

Also see "MID$" Page 10.105 and "RIGHT$," Page 10.150.

Page 10.86

ALPHABETICAL REFERENCE GUIDE

LEN Function

BRIEF

Format: LEN(x$)

Action: Returns the number of characters in X$. Non-printing characters
and blanks are counted.

Details

The LEN function returns the length of X$ in characters.

Example:

10 XS = "PORTLAND, OREGON"

20 PRINT LEN(XS)
RUN

16
Ok

Page 10.87

ALPHABETICAL REFERENCE GUIDE

LET Statement

BRIEF

FOrmat: [LET] (variable) =(express i on)

Purpose: To assign the value of an expression to a variable.

Details

The LET statement is optional, i.e., the equal sign is sufficient when assign­
ing an expression to a variable name.

Example:

110 LET D=12

120 LET E=12 " 2

130 LET F=12 " 4

140 LET SUM=D+E+F

is equivalent to

110 D=12
120 E = 12 2
130 F =12 "4

140 SUM=D+E+F

Page 10.88

ALPHABETICAL REFERENCE GUIDE

LINE Statement

BRIEF

FOrmat: L INE [(X1,Yl)] — (X2,Y2) [, [at t i b u t e]] [,b [f]]

Purpose: To permit the drawing of lines in absolute and relative locations
on the screen.

Details

LINE is the most powerful of the graphics statements. It allows a group of
pixels to be controlled with a single statement. A pixel is the smallest point
that can be plotted on the screen.

The simplest form of line is:

LINE — (X2, Y2)

This will draw from the last point to the point (X2, Y2) in the foreground attri­
bute.

We can include a starting point also:

LINE(0,0) — (639,224) 'draw diagonal line down screen
L INE (0 , 100) — (639,100) ' dr a w ba r a c r os s s c r e e n

We can append a color argument to draw the line in green, which is color
two:

LINE (10,10) — (20,20),2 'draw in color 2!

10 CLS
20 LINE — (RND+639,RND+224),RND%7

30 GOTO 20

(Draws lines forever using random attribute.)

The final argument to line is ",b" — box or ",bf" — filled box. The syntax indi­
cates that we can leave out the attribute argument and include the final argu­
ment as follows:

L INE (0 ,0) — (100,100) , , b 'draw box in foreground attribute.

LINE (0,0) — (200,200),2,bf 'filled box attribute 2

Page 10.89

ALPHABETICAL REFERENCE GUIDE

ILlME Statement

The ",b" tells BASIC to draw a rectangle with the points (X1, Y1) and (X2, Y2)
as opposite corners. This avoids giving the four LINE commands:

LINE (X1, Y1) — (X2, Y2)
LINE (X1, Y1) — (X1, Y2)
LINE (X2, Y1) — (X2, Y2)
LINE (X1, Y2) — (X2, Y2)

which perform the equivalent function.

The ",bf" means draw the same rectangle as ",b" but also fill in the interior
points with the selected attribute.

When out of range coordinates are given in the line command, the coordi­
nate which is out of range is given the closest legal value. In other words,
negative values become zero, Y values greater than 224 become 224 and
X values greater than 639 become 639.

In the examples and syntax the coordinate form STEP (Xoffset, Yoffset) is
not shown. However, this form can be used wherever a coordinate is used.
Note that all of the graphic statements and functions update the last point
referenced. In a line statement if the relative form is used on the second co­
ordinate it is relative to the first coordinate.

Example:

10 CLS
20 LINE- (RND+639,RND%224),RND%7,bf

30 GO TO 20

In this example, the LINE statement is used to draw filled boxes at random
locations on the screen. Since the color argument is also randomized, these
boxes will appear in various shades or colors. This example is also a con­
tinuous loop. You will have to press CTRL-C to break program execution.
For more information on this statement, see Chapter 8, "Advanced Color

Graphics".

Page 10.90

ALPHABETICAL REFERENCE GUIDE

LINE INPUT Statement

BRIEF

FOrmat: LINE INPUT [;] [< "prompt string" >;] <string variable>

Purpose: To input an entire line (up to 255 characters) to a string variable,
without the use of delimiters.

Details

The prompt string is a string literal printed at the terminal before input is ac­
cepted. A question mark is not printed unless it is part of the prompt string.
All input from the end of the prompt to the RETURN is assigned to <string
variable>. If a line feed/RETURN sequence (this order only) is encountered,
both characters are echoed. The RETURN is ignored. The line feed is put
into <string variable>, and data input continues.

If the LINE INPUT statement is immediately followed by a semicolon, the
RETURN you type to end the input line does not echo a RETURN/line feed
sequence at the terminal.

A LINE INPUT may be aborted by typing CTRL-C. BASIC will return to com­
mand level and display OK. Typing CONT resumes execution at the LINE
INPUT.

See example, Page10.91, LINE INPUT¹.

Page 10.91

ALPHABETICAL REFERENCE GUIDE

LINE INPUT¹ Statement

BRIEF

FOrmat: LINE INPUT¹<file number>, <string variable>

Purpose: To read an entire line (up to 255 characters), without delimiters,
from a sequential disk data file to a string variable.

Details

A <file number> is the number under which the file was opened. A (string
variable> is the variable name that the line will be assigned. LINE INPUT¹
reads all characters in the sequential file up to a RETURN. Then it skips over
the RETURN/line feed sequence, and the next LINE INPUT¹ reads all char­
acters up to the next RETURN. (If a line feed/RETURN sequence is encoun­
tered, it is preserved.)

The LINE INPUT¹ statement is especially useful if each line of a data file
has been broken into fields, or if a BASIC program saved in ASCII mode
is being read as data by another program.

Example:

10 OPEN "0" , 1 , " L I S T"
20 LINE INPUT "CUSTOMER INFORMATION'! ";Cs
3 0 PRINT ¹ 1 , C S
40 CLOSE 1
5 0 OPEN " I " , 1 , " L I S T "
60 LINE INPUT ¹ 1 , C$
70 PRINT CS
80 CLOSE 1
RUN
CUSTOMER INFORMATION? LINDAJONES 23 4,4 MEMPHIS
LINDA JONES 23 4,4 MEM PHIS
Ok

page 10.92

ALPHABETICAL REFERENCE GUIDE

LIST Command

BRIEF

FOrmat 1 : L I S T [< l i n e number>]

FOrmat 2 : L I ST [< l i n e number> [— [<line number>]]]

Purpose: To list all or part of the program currently in memory at the termi­

I

nal.

Details

BASIC always returns to command level after a LIST command is executed.

Format 1: If <line number> is omitted, the program is listed beginning at
the lowest line number. (Listing is terminated either by the end of the pro­
gram or by typing CTRL-C.) If < line number> is included, only the specified
line will be listed.

Format 2: This format allows the following options:

1. If o n ly the first number is specified, that line and all higher­
numbered lines are listed.

2. I f only the second number is specified, all lines from the begin­
ning of the program through that line are listed.

3. I f both numbers are specified, the entire range is listed.

Page 1 0.93

ALPHABETICAL REFERENCE GUIDE

UST Co&MGAd

Examples:

Format 1:

LIST Lists the program currently in memory.

Lists line 500.LIST 500

Format 2:

LIST 150­ Lists all lines from 150 to the end.

Lists all lines from the lowest number throughLIST-1000

1000.

LIST150-1000 List s l ines 150through1000, inclusive.

Page 10.94

ALPHABETICAL REFERENCE GUIDE
LLIST Command

BRIEF

FOrmat: LLI S T [< l i n e number> [- [< l i ne number>]]]

Purpose: To list all or part of the program currently in memory at the line
printer.

Details

The LLIST command is used to list all or part of a program at the line
printer. LLIST assumes a 255-character wide printer.

BASIC always returns to command level after an LLIST is executed. The
options for LLIST are the same as for LIST.

See the examples for LIST, Page 10.93.

Page 10.95

ALPHABETICAL REFERENCE GUIDE

LOAD Command

BRIEF

Format: LQAD < f ilename> [, R]

Purpose: To load a file from disk into memory.

Details

The <filename) in the LOAD command is the name that was used when
the file was saved. The operating system appends a default filename exten­
sion of . BAS if one was not supplied in the SAVE command. (Refer to Chap­
ter 2, "Files and File Naming" Page 2.12, for information about possible
filename extensions under Z-DOS Operating System.)

ppf LOAD closes all open files and deletes all variables and program lines cur­
rently residing in memory before it loads the designated program.

However, if the "R" option is used with LOAD, the program is run after it is
loaded and all open data files are kept open. Thus, LOAD with the "R" option
may be used to chain several programs (or segments of the same program.)
Information may be passed between the programs using their disk data files.

Example:

LOAD"STRTRK",R

Page 10.96

ALPHABETICAL REFERENCE GUIDE

LOC Function

BRIEF

F Ormat: L O C ((f i l e n umber>)

Action: With random disk files, LOC returns the record number just read
or written from a GET or PUT statement.

Details

If the file was opened but no disk I/O has been performed yet, the LOC func­
tion returns a zero. With sequential files, LOC returns the number of sectors
(128 byte blocks) read from or written to the file since it was opened.

Example:

200 IF LOC (1))50 THEN STOP

Page 10.97

ALPHABETICAL REFERENCE GUIDE

LOCATE Statement

BRIEF

F ormat: LocATE [row], [col] [, [c u rsor]]

Purpose: The LOCATE statement moves the cursor to the specified posi­
tion on the active screen. Optional parameters turn the blinking
cursor on and off.

Details

row

col

Is the screen line number. A numeric expression return­
ing an unsigned integer in the range 1 to 25.

Is the screen column number. A numeric expression re­
turning an unsignedinteger in the range1 to 40.

Is a Boolean value indicating whether the cursor is visi­
ble or not: Zero for off, non-zero for on.

CUI'soI'

The LOCATE Statement moves the cursor to the specified position. Sub­
sequent PRINT statements begin placing characters at this location. Option­
ally it may be used to turn the cursor on or off.

Page 10.98

ALPHABETICAL REFERENCE GUIDE

I OCATE Stetemevt

Rules:

1. An y values entered outside of these ranges will result in an 11­
legal Function Ca11 errOr. PreViOuS ValueS are retained.

2. An y parameter may be omitted. Omitted parameters assume
the old value.

Example:

10 LOCATE 1, 1 Moves to the home position in the upper

30 LOCATE

20 LOCATE, , 1

left hand corner.

Make the blinking cursor visible, position
remains unchanged.

Position and cursor visibility remain un­
changed.

Move to line five, column one, turn cur­40 LOCATE 5, 1, 1

sor on.

page 10.99

ALPHABETICAL REFERENCE GUIDE
LOF Function

BRIEF

Format: LOF(< f i l e number>)

Purpose: Returns the length of the file inbytes.

Details

The LOF function returns the length of the file in bytes. This command is
also used in random files to determine the last record number of the file. LOF
divided by the length of a record is equal to the number of records in the
file.

Example:

10 OPEN "R", 1, "PARTS", 128
20 FIELD ¹1 , 128 AS DESCRY
30 INPUT "ENTER PART¹ TO EXAMINE"; PN
4 0 IF P N < =0 THEN END
50 IF PN > LOF(1)/128 THEN PRINT "BAD REQUEST": GOTO 30
6 0 GET ¹1 , P N
70 PRINT "DESCRIPTION:"; DESCRY
80 GOTO 30

Page 10.100

ALPHABETICAL REFERENCE GUIDE

LOG Function

BRIEF

Format: LoG(x)

Action: Returns the natural logarithm of X. X must be greater than zero.

Details

Example:

PRINT LOG (45/7)
1.860752

Ok

page 10.101

ALPHABETICAL REFERENCE GUIDE

LPOS Function

BRIEF

Format: LFOs(x)

Action: Returns the current position of the line printer print head within the
line printer buffer.

Details

The LPOS function does not necessarily give the physical position of the
print head. X is a dummy argument.

Example:

100 IF LPOS (X))60 THEN LPRINT CHRIS (13)

page 10.102

ALPHABETICAL REFERENCE GUIDE

LPRINT and LPRINT USING Statements

BRIEF

F Ormat: L P RINT [< li st o f expr ess i o n s>]

LPRINT USING <string exp>; <list o f expressions>

Purpose: To print data at the line printer.

Details

The LPRINT statement is the same as PRINT and PRINT USING, except
output goes to the line printer. See Pages 10.130 — 10.135.

LPRINT assumes a 255-character-wide printer.

Page 10.103

ALPHABETICAL REFERENCE GUIDE

LSET and RSET Statements

BRIEF

F Ormat: L S ET <s t r i n g va r i a b l e > = < st r i n g express i o n >

RSET <string variable> = < st r i n g express i o n >

Purpose: To move data from memory to a random file buffer.

Details

If <string expression> requires fewer bytes than were fielded to <string
variable>, LSET left-justifies the string. (Spaces are used to pad the extra
positions.) If the string is too long for the field, characters are dropped from
the right. RSET right-justifies the string. If the characters are too long for the
field, RSET drops characters from the left. Numeric values must be can­
verted to the strings before they are LSET or RSET. See the MKI$, MKS$,
and MKD$ functions, Page 10.107.

Examples:

150 LSETA$ =MKS$ (AMT)
160 LSET DQ=DESCRY

See also Chapter 6, "File Handling," Pages 6.21, 6.22.

LSET or RSET may also be used with a non-fielded string variable to left­
justify or right-justify a string in a given field. For example, the program lines:

110 A$ =SPACE$ (20)
120 RSET A$=N$

right-justify the string N$ in a 20-character field. This can be very useful for
formatting printed output.

Page 10.104

ALPHABETICAL REFERENCE GUIDE

MERGE Command

BRIEF

Format: MERGE <filename>

Purpose: To merge a specified disk file into the program currently in
memory.

Details

<filename> is the name used when the file was saved. (Your operating sys­
tem may append a default filename extension if one was not supplied in the
SAVE command. Refer to Chapter 2, Page 2.12 for information about possi­
ble filename extensions under the Z-DOS Operating System.) The file must
have been saved in ASCII format. (If not, a Bad file mode error occurs.)

If any lines in the disk file have the same line numbers as lines in the program
in memory, the lines from the file on disk will replace the corresponding lines
in memory. (Merging may be thought of as "inserting" the program lines on
disk into the program in memory.)

BASIC always returns to command level after executing a MERGE com­
mand.

Example:

MERGE "NUMBERS"

Page 10.105

ALPHABETICAL REFERENCE GUIDE

MID' Function

BRIEF

Format: MID' (xl . I [, a])

Action: Returns a string of length J from X$ beginning with the Ith charac­
ter.

Details

I must be in the range one to 255. The range of J is from zero to 255. If J
is omitted, or if there are fewer than J characters to the right of the Ith charac­
ter, all rightmost characters beginning with the Ith character are returned.
If I) LEN(X$), or J= 0. MID$ returns a null string.

Example:

10 AII ="GOOD"
20 B$ ="MORNING EVENING AFTERNOON"

30 PRINT A$;MID' (B$,8 • 8)
RUN
GOOD EVENING
Ok

Also see LEFT$, Page 10.85 and RIGHT$, Page 10.150.

If I = O iS SPeCified, the errOr meSSage Illegal Function Call in
(l i nenumber> will be returned.

page 10.106

ALPHABETICAL REFERENCE GUIDE

MID$ Statement

BRIEF

FOrmat: MIDS (<st r i ngexpl>, n[, m]) = <st r i n g exp2>

where n and m are integer expressions and <string exp1> and <string
exp2) are string expressions.

Purpose: To replace a portion of one string with another string.

Details

The characters in <string exp1 >, beginning at position n, are replaced by
the characters in <string exp2>. The optional m refers to the number of
characters from (string exp2) that will be used in the replacement. If m is
omitted, all of <string exp2> is used. However, regardless of whether m is
omitted or included, the replacement of characters never goes beyond the
original length of <stringexp1>.

Example:

10AS ="KANSASCITY, MO"
20 MIDS(AS, 14) ="KS"

30 PRINT AS
RUN
KANSAS CITY, KS
Ok

MID$ is also a function that returns a substring of a given string.

page 10.107

ALPHABETICAL REFERENCE GUIDE

MKI$, MKS$, NIKD$ Functions

BRIEF

Format: MKz$(<i n teger expression>)

MKS$ (<single precision expression>)

MKD$ (<double precision expression>)

Action: Convert numeric values to string values.

Details

Any numeric value that is placed in a random file buffer with an LSET or
RSET statement must be converted to a string. MKI$ converts an integer
to a two-byte string. MKS$ converts a single-precision number to a four-byte
string. MKD$ converts a double-precision number to an eight-byte string.

Example:

90 AMT =K+T
100FIELD41 ,8 ASD$, 20ASN5
110 LSET D$ = MKS$ (AMT)
120 LSET N$ =A$
130 PUT kl

See also CVI, CVS, CVD, Page 10.30 and Chapter 6, "File Handling."

Page 10.108

ALPHABETICAL REFERENCE GUIDE

NAME Command

BRIEF

FOrmat: N AME<old f i l en ame>AS<new f i l e n ame>

Purpose: To change the name of a disk file.

Details

The <old filename> must exist and <new filename> must not exist; other­
wise an error will result. After a NAME command, the file exists on the same
disk, in the same area of disk space, with the new name.

Example:

01%
NAME "ACCTS" as "LEDGER"
Ok

NOTE: NAME does not assume. BAS extension.

page 10.109

ALPHABETICAL REFERENCE GUIDE

NEW Command

BRIEF

Format: NEw

Purpose: To delete the program currently in memory and clear all vari­
ables.

Details

NEW is entered at command level to clear memory, closes all files and turns
trace off before entering a new program. BASIC always returns to command
level after a NEW command is executed.

page 10.110

ALPHABETICAL REFERENCE GUIDE

NULL Statement

BRIEF

FOrmat: NULL <integer expression>

Purpose: To set the number of nulls to be printed at the end of each line.

Details

For 10-character-per-second tape punches, (integer expression> should
be) =three. When tapes are not being punched, (integer expression>
should be zero or one for Teletypes and Teletype-compatible terminal
screens. <integer expression> should be two or three for 30 cps hard copy
printers. The default value is zero. The range is between zero and 255.

Example:

Oj$
NULL 2
Ok
100 INPUT X
200 IF X(50 GOTO 800

Two null characters will be printed after each line.

Page 10.111

ALPHABETICAL REFERENCE GUIDE

OCT$ Function

BRIEF

Format: ocT$(x)

Action: Returns a string which represents the octal value of the decimal
argument.

Details

X is rounded to an integer before OCT$(X) is evaluated.

Example:

PRINTOCT$(24)
30

Ok

See the HEX$ function for hexadecimal conversion, Page 10.64.

page 10.112

ALPHABETICAL REFERENCE GUIDE

ON ERROR GOTO Statement

BRIEF

FOrmat: ON ERROR GOTO <1 inc number>

Purpose: To enable error trapping and specify the first line of the error han­
dling subroutine.

Details

Once error trapping has been enabled all errors detected, including direct
mode errors (e.g., syntax errors), will cause a jump to the specified error
handling subroutine. If <line number> does not exist, an Undefined line
number error results. To disable error trapping, execute an ON ERROR
GOTO O. Subsequent errors will print an error message and halt execution.

An ON ERR0R GOT0 0 statement that appears in an error trapping subroutine
causes BASIC to stop and print the error message for the error that caused
the trap. It is recommended that all error trapping subroutines execute an
ON ERR0R GOT0 0 if an error is encountered for which there is no recovery ac­
tion.

If an error occurs during execution of an error handling subroutine, the
BASIC error message is printed and execution terminates. Error trapping
does not occur within the error handling subroutine.

Example:

10 ON ERROR GOTO 80
20 INPUT "Enter number 1";Nl
3 0 INPUT "Ente r number 2 " ; N 2
40 A =N1/N2
5 0 B= N 1 %N2

60 PRINT A,B
70 GOTO 20
80 I F E RR=11 THEN PRINT"Do not enter zero for number 2!":RESUME 30
90 I F E RR=6 THEN PRINT"Do not enter such large numbers!":RESUME 20
100 PRINT"Error has occured. It is error number:";ERR

Page 10.113

ALPHABETICAL REFERENCE GUIDE

Line 10 is the statement that tells BASIC where to go in the event of an error.
In lines 20 and 30 the input statements ask for two numbers to be entered.
In line 40 the first number (N1) is divided by the second number (N2) and
the result is assigned to variable A. In line 50, the numbers are multiplied
together and the result is assigned to variable B. Both A and B are then
printed on the screen (line 60).

If you input a zero for the second number you will cause an error condition,
and the program goes to line 80. Line 80 says if error number 11 occurs,
which is BASIC's division by zero error (see Appendix A), then print "Do not
enter zero for the number 2!" Line 90 says if error 6 occurs, which is the over­
flow error, then print "Do not enter such large numbers".

Page 10.114

ALPHABETICAL REFERENCE GUIDE

ON...GOSUB and ON...GOTO Statements

BRIEF

FOrmat: ON <express i on> GOTO <lis t o f l i n e numbers>
ON <expression> GOSUB <list or line numbers>

Purpose: To branch to one of several specified line numbers, depending
on the value returned when an expression is evaluated.

Details

The value of <expression> determines which line number in the list will be
used for branching. For example, if the value is three, the third line number
in the list will be the destination of the branch. (If the value is a non-integer,
the fractional portion is rounded.)

If the value of <expression> is zero or greater than the number of items
in the list (but less than or equal to 255), BASIC continues with the next
executable statement. If the value of <expression) is negative or greater
than 255, an Illegal Function Call efrOI'OCCurs.

Example:

100 ON L — 1 GOTO 150, 300, 320, 390

Page 10.115

ALPHABETICAL REFERENCE GUIDE

OPEN Statement

BRIEF

FOrmat: OPEN<" mode" >, <¹ > <f i l e n umber> , < f i l en ame>,

[<reclen>]

Purpose: To allow I/O to a disk file.

Details

A disk file must be opened before any disk I/O operation can be performed
on that file. The OPEN statement allocates a buffer for I/O to the file and
determines the mode of access that will be used with the buffer.

(mode> is a string expression whose only character is one of the following:

0 spec i f ies sequential output mode
I spec i f ies sequential input mode
R spe c ifies random input/output mode

(file number> is an integer expression whose value is between one and
255. The number is then associated with the file for as long as it is open and
is used to refer other disk I/O statements to the file.

(filename> is a string expression containing a name that conforms to your
operating system's rules for disk filenames. You may also need to specify
a device name if the file you are opening is not on the default drive.

<reclen> is an integer expression which, if included, sets the record length
for random files. The default record length is128 bytes.

A file can be opened for sequential input or random access on more than
one file number at a time. A file may be opened for sequential output, how­
ever, on only one file number at a time.

Example:

10 OPEN "I " 2 , " I N VEN"

This program opens a sequential file called "INVEN" on unit two.

Also see "File Handling" (Page 6.1).

Page 10.116

ALPHABETICAL REFERENCE GUIDE

OPEN Statement

BRIEF

FOrmat: OPEN [< d ev>] < f i l en a me>[FOR <mode>] A S < 4 >
<file number> [LEN = < l r e c l >]

Purpose: To establish communication between a physical device and an
I/O buffer in the data pool.

Details

<dev> is optionally part of the filename string and may be one of the follow­
ing:

for Disk
Keyboard — Input Only
Printer — Output Only
Screen — Output Only
RS-232 Communications 1

A: — D:

KYBD:

LPT1:

SCRN:

COM1:

<filename> Is a v a l id string literal or variable optionally containing a
<dev>. If <dev> is omitted, the default disk is assumed.
Refer to "DISK FILES" for naming conventions.

Determines the initial positioning within the file and the ac­
tion to be taken if the file does not exist. The valid modes
and actions taken are:

INPUT — Position to the beginning of an existing file. A
Filenot founderrOriSgiVenifthef i ledOeSnOteXiSt.

OUTPUT — Position to the beginning of the file. If the file
does not exist, one is created.

<mode>

Page 10.117

ALPHABETICAL REFERENCE GUIDE

OPEN Statement

APPEND — Position to the end of the file. If the file does
not exist, one is created.

If the FOR <mode> clause is omitted, the initial position
is at the beginning of the file. If the file is not found, one
is created. This is the random I/O mode. That is, records
may be read or written at will at any position within the file.

<file number> Is an integer expression returning a number in the range
one thru 255. The number is used to associate an I/O buf­
fer with a disk file or device. This association exists until
a CLOSE or CLOSE <file number> statement is exe­
cuted.

Is an integer expression in the range one to 65535. This
value sets the record length to be used for random files
(see the FIELD statement). If omitted, the record length
defaults to 128 byte records.

Irecl

Action:

For each device, the following OPEN modes are allowed:

KYBD:

SCRN:

COM1:

LPT1:

INPUT only.
OUTPUT only.
INPUT, OUTPUT or random only.
OUTPUT only.

Disk files allow all modes.

When a disk file is opened FOR APPEND, the position is initially at the
end of the file and the record number is set to the last record of the file
(LOF(x)/1 28). PRINT, WRITE or PUT will then expand the file. The Program
may position elsewhere in the file with a GET statement. If this is done, the
mode is changed to random and the position moves to the record indicated.

page 10.118

ALPHABETICAL REFERENCE GUIDE

OPEN Statement

Once the position is moved from the end of the file, additional records
may be appended to the file by executing a GET ¹x,LOF(x)/<Irecl> state­
ment. This positions the file pointer at the end of the file in preparation for
appending.

Rules:

1. A ny values entered outside of the ranges given will result in an
Il legal Func t ion Call errOr. The file iS nOt Opened.

2. If t he file is opened as INPUT, attempts to write to the file will
reSult in a BadFile Mode errOr.

3. If t he file is opened as OUTPUT, attempts to read the file will
reSult in a BadFile Mode errOr.

4. A t any one time, it is possible to have a particular disk filename
open under more than one file number. This allows different
modes to be used for different purposes. Or, for program clarity,
to use different file numbers for different modes of access. Each
file number has a different buffer, so several records from the
same file may be kept in memory for quick access.

A file may not be opened FOR OUTPUT, on more than one file
number at a time.

Example:

10 OPEN "PARTS.DAT" AS ¹ 1 ' f o r random I/O on Disk A:

10 OPEN "KYBD:" FOR INPUT AS ¹2

10 OPEN "B:INVENT.DAT" FOR APPEND AS ¹1

page 10.119

ALPHABETICAL REFERENCE GUIDE

OPEN COM Statement

BRIEF

FOrmat: OPEN "DEV: <speed>, <pari t y> , <data>, <stop>"
AS [4] < f i l e nu mber>

Function: OPEN "COM..." allocates a buffer for I/O in the same fashion as
OPEN for disk files.

Details

OPENING A COM FILE

This section describes the BASIC statements required to support RS-232
asynchronous communication with other computer and peripherals.

DEV:

<speed)

Is a valid communications device. The valid device is
COM1:

Is a literal integer specifying the transmit/receive baud
rate. Valid speeds are: 75, 110, 150, 300, 600, 1200,
1800, 2400, 4800, 9600.

Is a one character literal specifying the parity for trans­<parity>
mit and receive as follows:

S SP ACE, Parity bit always transmitted and received
as space (0 bit).

0 OD D, Odd transmit/receiver parity checking.

M MARK, Paritybitalwaystransmittedandreceivedas
mark (1 bit).

E EV EN, E v en transmit/receive parity checking.

N NO NE, No transmit parity, no receive parity checking.

page 10.120

ALPHABETICAL REFERENCE GUIDE

<data> Is a literal integer indicating the number of transmit/receive
data bits. Valid values are: 4,5,6,7, or 8.

Parity is a method by which data is checked to make sure it hasn't changed
during transmission.

When odd parity is used, a parity bit is sent along with each character that
is sent to the I/O device. Before transmission, this bit is set to either one or
zero to ensure that the sum of all of the transmitted bits is an odd number.
If the I/O device receives a byte of data bits and a parity bit that do not all
add up to an odd number, then an error must have occurred during transmis­
sion.

NOTE: Four data bits with no parity is illegal. Also, eight data bits with any
parity is illegal.

<stop> Is a literal integer indicating the number of stop bits.
Valid values are: 1 or 2. If omitted then 75 and 110
bps transmit two stop bits, all other transmit one stop
bit.

Is an integer expression returning a valid file number.
The number is then associated with the file for as long
as it is open and is used to refer other COM I/O state­
ments to the file.

<file number>

Missing parameters invoke the following defaults:

Speed — 300 bps
Parity — Even
Bits — 7

NOTE: A COM device may be opened to only one file number at a time.

page 10.121

ALPHABETICAL REFERENCE GUIDE

OPEN CQM SteIIemevk

Possible Errors:

Any coding errors within the filename string will result in a z11.ege,1 Fi1ename
error. An indication as to which parameter is in error will not be given.

A Device Timeout error will occur if Data Set Ready (DSR) is not detected.
Refer to hardware documentation for proper cabling instructions.

Example:

10 OPEN "COM1: " AS ¹ 1

File one is opened for communication with all defaults. Speed at 300 bps,
even parity, and seven data bits, one stop bit.

20 OPEN "COM1:2400 " A S ¹ 2

File two is opened for communication at 2400 bps. Parity and number of data
bits are defaulted.

10 OPEN "COM1: 1200,N,8" AS ¹ 1

File number one is opened for asynchronous I/O at 1200 bps, no parity is
to be produced or checked, and eight bit bytes will be sent and received.

For more information concerning communication I/O, see Appendix F.

page 10.122

ALPHABETICAL REFERENCE GUIDE

OPTION BASE Statement

BRIEF

FOrmat: OPTION BASE n

where nis1 or0

PURPOSE: To declare the minimum value for array subscripts.

Details

The OPTION BASE statement is used to declare the minimum value for
array subscripts. The default base is 0. This may be changed to 1. The OP­
TION BASE statement must be executed before any DIM statement is exe­
cuted. If an OPTION BASE statement appears after an array has been di­
mensioned, a Duplicate De finit ion error will result. If the statement:

OPTION BASE 1

is executed, the lowest value an array subscript may have is one.

Page 10 123

ALPHABETICAL REFERENCE GUIDE

OUT Statement

BRIEF

Format: OUT1, J
where I is an integer expression in the range — 32768 — 65535.
J is an integer expression in the range zero to 255.

Purpose: To send a byte to a machine output port.

Details

The OUT statement is used to send a byte to a machine output port. The
integer expression I is the port number, and the integer expression J is the
data to be transmitted.

Example:

100 OUT 32, 100

In this example, the value 100 is sent to port 32.

Page 10.124

ALPHABETICAL REFERENCE GUIDE

PAINT Statement

BRIEF

FOrmat: PAINT (Xstart,Ystart)[,paint attribute

[,border attribute]]

Purpose: To fill a graphics figure of the specified border at the specified
border attribute with the fill attribute.

Details

The PAINT statement will fill in an arbitrary graphics figure of the specified
border attribute with the specified fill attribute. The paint attribute will default
to the foreground attribute if not given, and the border attribute defaults to
the paint attribute.

For example, you might want to fill in a circle of attribute one with attribute
two. Visually, this could mean a blue ball with a green border.

PAINT must start on a non-border point, otherwise PAINT will have no ef­
fect.

PAINT can fill any figure, but painting "jagged" edges or very complex fig­
ures may result in an out or Memory error. If this happens, you must use the
CLEAR statement to increase the amount of stack space available.

Page 10.125

ALPHABETICAL REFERENCE GUIDE

PEEK Function

BRIEF

Format: PEEK(I)

Action: Returns the byte (decimal integer in the range zero to 255) read
from memory location I.

Details

I must be in the range — 32768 to 65536. PEEK is the complementary com­
mand to the POKE function on Page 10.127.

Example:

A =PEEK (8 HSAOO)

Page 10.126

ALPHABETICAL REFERENCE GUIDE

POINT Function

BRIEF

Format: PQINT (x, Y)

Function: Allows the user to read the attribute value of a pixel from the
screen.

Details

The POINT function allows you to read the color value of a pixel from the
screen. If the point given is out of range, the value negative one is returned.
Valid returns are any integer between zero and seven.

Example:

10 FOR C =O TO 7
2 0 PSET (10, 10) , C
30 IF POINT(10,10)(>C THEN PRINT

" Black and wh i t e c ompute r ! "
50 NEXT C

10 IF POINT (i , i)< > 0 T HEN PRESET (i , i) EL S E PSET (i , i)
'invert current state of a point

For further information on the POINT function, see Chapter 7.

Page 10.127

ALPHABETICAL REFERENCE GUIDE

Poke Function

BRIEF

Format: poKE I,J
where I and J are integer expressions

Action: Writes a byte into a memory location.

Details

The POKE function will change the contents of a memory location. The in­
teger expression I is the address of the memory location to be changed. The
integer expression J is the value to be placed into memory location I. J must
be in the range 0 to 255. I must be in the range — 32768to 65535.

The complementary function to POKE is PEEK. The argument to PEEK
is an address from which a byte is to be read. See Page 10.124.

POKE and PEEK are useful for efficient data storage, loading assembly lan­
guage subroutines, and passing arguments and results to and from assem­
bly language subroutines.

Example:

10 POKE 34000,1

This example places the value one inmemory location 34000.

WARNING: The POKE function should only be used by experienced users
who know exactly what they are doing. It is possible to damage or destroy
important data located in memory by using this function in the wrong way.

Page 10.128

ALPHABETICAL REFERENCE GUIDE

POS Function

BRIEF

Format: pOs(I)

Action: Returns the current cursor position.

Details

The POS function will return the current cursor position. The leftmost posi­
tion is1. l is a dummy argument.

Example:

IF POS(I) >60 THEN PRINT CHRIS(13)

Page 10.129

ALPHABETICAL REFERENCE GUIDE

PRESET Statement

BRIEF

FOrmat 1: PRESET (Xcoordinate , Y coordinate) [, attr' ute]

FOrmat2: PRESET STEP (X offset, Y offset) [, attri te]

Purpose: To turn off a point on the screen at a specified location.

Details

PRESET has an identical syntax to PSET. The only difference is that if no
third parameter is given, the background color — zero is selected. When a
third argument is given, PRESET is identical to PSET.

Example:

10 FOR I = 0 t o 1 0 0
20 PSET (I , I)
30 NEXT

(draw a diagonal line to (100,100))
40 FOR I = 100 TO 0 STEP — 1
50 PRESET (I , I)
60 NEXT

Notice that in the preceding example is the same example given for PSET
on Page 10.139. The only difference is in line 50;

50 PRESET (I , I)

Notice there is no third parameter given. The PRESET statement causes
all of the specified points to be turned on to the background color. If a color
argument was added to this line, the effect would be the same as using
PSET.

If an out of range coordinate is given to PSET or PRESET, no action is taken
nor is an error given. If an attribute greater than seven is given, this will result
in an illegal function call.

For further information on PRESET, see Chapter 7.

page 10.130

ALPHABETICAL REFERENCE GUIDE

PRINT Statement

BRIEF

FOrmat: PRINT (<List o f Expressions>)

Purpose: To output data at the terminal.

Details

If <list of expressions> is omitted from a PRINT statement, a blank line is
printed. If <list of expressions> is included, the values of the expressions
are printed at the terminal. The expressions in the list may be numeric and/or
string expressions. (Strings must be enclosed in quotation marks.)

PRINT POSITIONS

The position of each printed item is determined by the punctuation used to
separate the items in the list. BASIC divides the line into print zones of 14
spaces each. In the list of expressions, a comma causes the next value to
be printed at the beginning of the next zone. A semicolon causes the next
value to be printed immediately after the last value. Typing one or more
spaces between expressions has the same effect as typing a semicolon.

If a comma or a semicolon terminates the list of expressions, the next PRINT
statement begins printing on the same line, spacing accordingly. If the list
of expressions terminates without a comma or a semicolon, a carriage re­
turn is printed at the end of the line. If the printed line is longer than the termi­
nal width, BASIC goes to the next physical line and continues printing.

Printed numbers are always followed by a space. Positive numbers are pre­
ceded by a space. Negative numbers are preceded by a minus sign. A ques­
tion mark may be used in place of the word PRINT in a PRINT statement.

Example 1:

10 X =5

20 PRINTX+5, X-5 , X+(— 5),X "5
30 END
RUN

10 0
01$

— 25 3125

Page 10.13f

ALPHABETICAL REFERENCE GUIDE

PRINT Sfatemevi

In Example 1, the commas in the PRINT statement cause each value to be
printed at the beginning of the next print zone.

Example 2:

10 INPUT X
20 PRINT X "SQUARED IS" X * 2 »A N D » ;

3 0 PRINT X »CUBED IS» X 3
40 PRINT
50 GOTO 10
RUN
?9
9 SQUARED IS 81 AND 9 CUBED IS 729

? 21
21 SQUARED IS 441 AND 21 CUBED IS 9261

In Example 2, the semicolon at the end of line 20 causes both PRINT state­
ments to be printed on the same line, and line 40 causes a blank line to be
printedbefore the next prompt.

Example 3:

10FORX = 1T05
20 J =J+5
30K =K+10
40? J;K;
50 NEXT X
RUN

5 1 0 10 20 15 30 20 40 25 50
Ok

In Example 3, the semicolons in the PRINT statement cause each value to
be printed immediately after the preceding value. (Don't forget, a number
is always followed by a space and positive numbers are preceded by a
space.) In line 40, a question mark is used instead of the word PRINT.

Single-precision numbers that can be represented with seven or fewer digits
in the unscaled format no less accurately than they can be represented in
the scaled format are output using the unscaled format. For example, 1E-7
is output as .0000001, and 1E-8 is output as 1E-08. Double-precision num­
bers that can be represented with 16 or fewer digits in the unscaled format
no less accurately than they can be represented in the scaled format are
output using the unscaled format. For example, 1D-16 is output as
.0000000000000001, and 1D-17 is output as 1D-17.

Additional
Conaldera­
tlona

Page 10.132

ALPHABETICAL REFERENCE GUIDE

PRINT USING Statement

BRIEF

FOrmat: P R I NTUSING, <st r i n g e x p> ; < l i s t o f ex p r es s i o ns>

Purpose: To print strings or numbers using a specified format.

Details

<list of expressions> is comprised of the string expressions or numeric ex­
pressions that are to be printed, separated by semicolons or commas.
<string exp> is a string literal (or variable) comprised of special formatting
characters. These formatting characters (see below) determine the field and
the format of the printed strings or numbers.

STRING FIE DS

When PRINT USING is used to print strings, one of three formatting charac­
ters may be used to format the string field:

Specifies that only the first character in the given string is
to be printed.

"~n spaces~" Specifies that 2+n characters from the string are to be
printed. If the backslashes are typed with no spaces, two
characters will be printed; with one space, three charac­
ters will be printed, and so on. If the string is longer than
the field, the extra characters are ignored. If the field is
longer than the string, the string will be left-justified in the
field and padded with spaces on the right.

Example:

l0 AS ­ @Hello» . BS ­>bayou"
20 PRINT USING "QQ!";As,B$
30 PRINT USING "Q X Q ~ "; As,B$

Hey
H ello y o u

RUN

page 10.133

ALPHABETICAL REFERENCE GUIDE

PRINT USING Statement

Specifies a variable length string field. When the field is
specified with "&", the string is output exactly as input.

Example:
10 A$ ="LOOK": B$ ="OUT"
20 PRINT USING "!";AS;
30 PRINT USING "8c",'B$
RUN
LOUT
Ok

NUMERIC FIELDS

When PRINT USING is used to print numbers, the following special charac­
ters may be used to format the numeric field:

A number sign is used to represent each digit position.
Digit positions are always filled. If the number to be printed
has fewer digits than positions specified, the number will
be right-justified (precededby spaces) in the field.

A decimal point may be inserted at any position in the field.
If the format string specifies that a digit is to precede the
decimal point, the digit will always be printed (as 0 if neces­
sary). Numbers are rounded as necessary.

Example:

PRINT USING " ¹¹ ¹ ¹ " ; .78
0.78

Ok

PRINT USING "¹¹¹ . ¹ ¹ " ; 9 87 . 654
987.65
Ok

PRINTUSING "¹ ¹ . ¹ ¹ " ; 10.2 ,5 . 3 , 6 6 . 789, .234
10.20 5 . 30 66 . 79 0 . 23
Ok

In the last example, three spaces were inserted at the end of the format
string to separate the printed values on the line.

A plus sign at the beginning or end of the format string will
cause the sign of the number (plus or minus) to be printed
before or after the number.

A minus sign at the end of the format field will cause nega­
tive numbers to be printed with a trailing minus sign.

Page 10.134

ALPHABETICAL REFERENCE GUIDE

PRlNT USING Statement

PRINTUSING "+ ¹ ¹ . ¹ ¹ " ; - 6 8 . 9 5 , 2 . 4 , 5 5 . 6 , ­ .9
— 68. 95 + 2 . 4 0 + 55 . 60 — 0 . 90
Ok

P RINT USING "¹¹ . ¹ ¹ ­ "; — 68. 95, 22. 449, -7 . 01
68. 95- 22 . 45 7 . 01­
Ok

A double asterisk at the beginning of the format string
causes leading spaces in the numeric field to be filled with
asterisks. The " also specifies positions for two more di­
gits.

PRINT USING "++¹.¹ "; 12 . 39, — 0 . 9, 765. 1
"12.4 " - 0 . 9 765 . 1
Ok

$$ A double dollar sign causes a dollar sign to be printed to
the immediate left of the formatted number. The $$
specifies two more digit positions, one of which is the dol­
lar sign. The exponential format can be used with $$.
Negative numbers can also be used.

PRINT USING "SS¹¹¹ . ¹ ¹ " ; 1 4 56. 78
$1456.78
Ok

The ** $ at the beginning of a format string combines the
effects of the above two symbols. Leading spaces will be
asterisk-filled and a dollar sign will be printed before the
number. **$ specifies three more digit positions, one of
which is the dollar sign.

PRINT USING "++S¹¹ . ¹ ¹ " ; 2 . 34
+++ $2.34
Ok

A comma that is to the left of the decimal point in a forrnat­
ting string causes a comma to be printed to the left of every
third digit to the left of the decimal point. A comma that is
at the end of the format string is printed as part of the
string. A comma specifies another digit position. The
comma has no effect if used with exponential (") format.

PRINT USING "¹¹ ¹ ¹ , . ¹ ¹ , " 1 2 34. 5
1,234.50
Ok

PRINT USING "¹¹¹ ¹ . ¹ ¹ , " ; 1234. 5
1234.50,
Ok

Page 10.135

ALPHABETICAL REFERENCE GUIDE

PRINT USING Statement

Four carets (or up-arrows) may be placed after the digit
position characters to specify exponential format. The four
carats allow space for E+xx to be printed. Any decimal
point position may be specified. The significant digits are
left-justified, and the exponent is adjusted. Unless a lead­
ing + or trailing + or — is specified, one digit position will
be used to the left of the decimal point to print a space or
a minus sign.

PRINTUSING»¹ ¹ ¹ ¹ " * A " » . 234 5Q
2. 35E+02

Ok

PRINTUSING».¹ ¹ ¹ ¹ " " " "— »;888888

. 8889E+06
Ok

PRINTUSING»+ ¹ ¹ + + + +» • 123

+ . 12E+03
Ok

An underscore in the format string causes the next char­
acter to be output as a literal character.

PRINT USING " ! ¹ ¹ . ¹ ¹ ! " ; 1 2 . 34
!12 • 34!

You may print the underscore as a literal character itself
by placing " "in the format string.

If the number to be printed is larger than the specified
numeric field, a percent sign is printed in front of the
number. If rounding causes the number to exceed the
field, a percent sign will be printed in front of the rounded
number.

PRINT USING "¹¹ . ¹ ¹ » ; 1 11. 22
$111.22
Ok

PRINT USING " . ¹¹» ; . 999
$1.00
Ok

If the number of digits specified exceeds 24, an 111ega1
Func t i on Ca11 errOr Will reSult.

Page 10.136

ALPHABETICAL REFERENCE GUIDE

PRINT¹ and PRINT¹ USING Statements

BRIEF

FOrmat: PRINTS< filenumber>, [USING <string exp>;] <list of exps>

Purpose: To write data to a sequential disk file.

Details

<file number> is the number used when the file was opened for output.
<string exp> is comprised of formatting characters as described in PRINT
USING. The expressions in <list of expressions> are the numeric and/or
string expressions that will be written to the file.

PRINT¹ does not compress data on the disk. An image of the data is written
to the disk, just as it would be displayed on the terminal screen with a PRINT
statement. For this reason, care should be taken to delimit the data on the
disk so that it will be input correctly from the disk.

In a list of expressions, numeric expressions should be delimited by semico­
lons or commas.

Example:

PRINT41,A,B,C;X ;Y ;Z

(If commas are used as delimiters, the extra blanks that are inserted be­
tween print fields will also be written to disk.)

String expressions must be separated by semicolons in the list. To format
the string expressions correctly on the disk, use explicit delimiters in the list
of expressions.

Example:

AS = " CAMERA": B$ = "93604 - 1" .

Page 10.137

ALPHABETICAL REFERENCE GUIDE

The statement:

PRINT ¹1, A$; B$

would write CAMERA93604-1 to the disk. Because there are no delimiters,
this could not be input as two separate strings. To correct the problem, insert
explicit delimiters into the PRINT¹ statement as follows:

PRINT¹1, A$; ", " ; B$

The image written to disk is:

CAMERA,93604-1

which can be read back into two string variables.

If the strings themselves contain commas, semicolons, significant leading
blanks, carriage returns, or line feeds, write them to disk surrounded by
explicit quotation marks, CHR$(34).

Example:
100 A$ ="FRANK, RICHARD"
110 PRINT ¹1 , CH R$(34) +A$+CHR$(34)

Since the data written to the disk contains a comma, it has been explicitly
surrounded by quotation marks (CHR$(34)). The statement, INPUT ¹1, N$
would read in the complete data item — FRANK, RICHARD.

The PRINT¹ statement may also be used with the USING option to control
the format of the disk file.

Example:

P RINT¹1,USING "$$¹ ¹ ¹ .¹ ¹ , " ; J ; K ; L

Page 10.138

ALPHABETICAL REFERENCE GUIDE

PSET Statement

BRIEF

FOrmat1: PSET (X coordinate, Y coordinate) [,a r ibut e]

FOrmat2: PSET STEP (X offset, Y offset) [,att ibute]

Purpose: To turn on a point at a specified location on the screen.

Details

The first argument to PSET is the coordinate of the point that you wish to
plot. Coordinates always can come in one of two forms:

STEP (X offset, Y offset) or
(absolute X, absolute Y)

The first form is a point relative to the most recent point referenced. The sec­
ond form is more common and directly refers to a point without regard to
the last point referenced.

(10,10) absolute form
STEP (10,0) offset 10 in X and 0 in Y

(0,0) o r i g i n

Page 10 139

ALPHABETICAL REFERENCE GUIDE

PSET Skekemeni

When BASIC scans coordinate values it will allow them to be beyond the
edge of the screen, however values outside the integer range (— 32768 to
32767) will cause an overflow error.

(0,0) is always the upper left hand corner. It may seem strange to start num­
bering Y at the top so that the bottom left corner is (0,224), but this is stan­
dard.

It is not necessary to specify the color argument to PSET. If attribute is omit­
ted then the default value is one, since this is the foreground attribute.

Example:

5 CLS
10 FOR I = 0 t o 1 0 0
20 PSET (I , I)
50 NEXT

(draw a diagonal line to (100,100))
40 FOR I = 100 TO 0 STEP - 1
50 PSET (I , I) , 0
60 NEXT

(clear out the line by setting each pixel to 0)

For more information concerning the PSET statement, see Chapter 7.

page 10.140

ALPHABETICAL REFERENCE GUIDE

PUT Statement

BRIEF

FOrmat: P U T < ¹> < f i l e n umber> [, < r e c o r d number>]

Purpose: To write a record from a randombuffer to a random disk file.

Details

(f ile number> is the number under which the file was OPENed. If (record
number> is omitted, the record will have the next available record number
(after the last PUT). The largest possible record number is 32767. The
smallest record number is 1.

See Pages 6.22 — 6.23.

PRINT¹, PRINT¹ USING, and WRITE¹ may be used to put characters in
the random file buffer before a PUT statement.

In the case of WRITE¹, BASIC pads the buffer with spaces up to the car­
riage return. Any attempt to read or write past the end of the buffer causes
a Fi e l d o v e rf l o w e r rOr.

Page 10.141

ALPHABETICAL REFERENCE GUIDE

RANDOMIZE Statement

BRIEF

FOrmat: RANDOMIZE [<expression>]

Purpose: To reseed the random number generator.

Details

The RANDOMIZE statement is used to reseed the random number
generator. <expression> is used as the random number seed value. If <ex­
pression> is omitted, BASIC suspends program execution and asks for a
value by printing:

Random Number Seed (— 32768 to 32767)?

The value input is used as the random number seed.

If the random number generator is not reseeded, the RND function returns
the same sequence of random numbers each time the program is run. To
change the sequence of random numbers every time the program is run,
place a RANDOMIZE statement at the beginning of the program and change
the argument with each run.

Example:

10 RANDOMIZE
20FORI =1T05
30 PRINT RND;
40 NEXT I
RUN
Random Number Seed (— 32768 to 32767)? 3 (uSer tyPeS3)

. 88598 . 48 4 668 . 58 6 32 8 . 119 42 6 . 709 2 25

Ok

RUN

Random Number Seed (— 32768 to 32767)? 4 (uSer typeS 4 fOr neW SequenCe)
. 803506 . 16 2 462 .92 9 36 4 . 292 44 3 . 322 9 2 1

Ok

RUN

Random Number Seed (— 32768 to 32767)? 3 (Same SequenCe aS firSt run)
. 88598 .48 4 668 .58 6 32 8 . 11 9 4 26 .709225

Ok

Note: These numbers may vary.

Page 10.142

ALPHABETICAL REFERENCE GUIDE

READ Statement

BRIEF

FOrmat: READ <list o f variables>

Purpose: To read values from DATA statements and assign them to vari­
ables. (See DATA, Page 10.31.)

Details

A READ statement must always be used in conjunction with a DATA state­
ment. READ statements assign variables to DATA statement values on a
one-to-one basis. READ statement variables may be numeric or string, and
the values read must agree with the variable types specified. If they do not
agree, a syntax error will result.

A single READ statement may access one or more DATA statements (they
will be accessed in order), or several READ statements may access the
same DATA statement. If the number of variables in <list of variables> ex­
ceeds the number of elements in the DATA statement(s), an out or DATA
message is printed. If the number of variables specified is fewer than the
number of elements in the DATA statement(s), subsequent READ state­
ments will begin reading data at the first unread element. If there are no sub­
sequent READ statements, the extra data is ignored.

To reread DATA statements from the start, use the RESTORE statement
(see RESTORE, Page 10.147).

Page 10.143

ALPHABETICAL REFERENCE GUIDE

REAO Stetemenk

Example 1:

80 FOR I =1 TO 10
90 READ A(I)
100 NEXT I
1 10 DATA 3.08 , 5 . 1 9 , 3 . 1 2 , 3 . 9 8 , 4 . 2 4
1 20 DATA 5.08 , 5 . 5 5 , 4 . 0 0 , 3 . 1 6 , 3 . 3 7

This program segment reads the values from the DATA statements into the
array A. After execution, the value of A(1) will be 3.08, and so on.

Example 2:

10 PRINT "CITY" , "STATE", "ZIP"
20 READ C$,S$,Z
30 DATA "DENVER", "COLORADO", 80211
40 PRINT C$,SQ,Z
Ok
RUN
CITY ZIP
DENVER 80211
Ok

STATE
COLORADO

This program reads string and numeric data from the DATA statement in line
30.

Page 10.144

ALPHABETICAL REFERENCE GUIDE

REM Statement

BRIEF

F Ormat: R EM [(r e mark)]

Purpose: To allow explanatory remarks to be inserted in a program.

Details

REM statements are not executed, but are output exactly as entered when
the program is listed.

REM statements may be branched into (from a GOTO or GOSUB state­
ment), and execution will continue with the first executable statement after
the REM statement.

You may add remarks to the end of a line by preceding the remark with a
single quotation mark instead of REM.

WARNING: Do not use this in a data statement, as it would be considered
legal data.

Example:

120 REM CALCULATE AVERAGE VELOCITY
130 FOR I =1 TO 20
140 SUM= SUM + V (I)

or:

120 FOR I =1 TO 20 'CALCULATE AVERAGE VELOCITY
130 SUM=SUM+V(I)
140 NEXT I

Page 10.145

ALPHABETICAL REFERENCE GUIDE

RENUM Command

BRIEF

FOrmat: RENUM [<new number>] [, <old number>] [, <increment>]

Purpose: To renumber program lines.

Details

The RENUM command is used to automatically renumber program lines.
(new number> is the first line number to be used in the new sequence. The
default is 10. (old number> is the line in the current program where renum­
bering is to begin. The default is the first line of the program. (increment>
is the increment to be used in the new sequence. The default is 10.

RENUM also changes all line number references following GOTO, GOSUB,
THEN, ON...GOTO, ON...GOSUB and ERL statements to reflect the new
line numbers. If a nonexistent line number appears after one of these state­
mentS, the errOr meSSage Undefined Zine xxxxx in yyyyy iS printed. The in­

correct line number reference (xxxxx) is not changed by RENUM, but line
number yyyyy may be changed.

RENUM cannot be used to change the order of program lines (for example,
RENUM 15,30 when the program has three lines numbered 10, 20 and 30)
or to create line numbers greater than 65529. An zxzegnz Funot ion cary

error will result.

Examples:

RENUM

RENUM300,,50

Renumbers the entire program. The first new

line number will be 10. Lines will increment by
10.

Renumbers the entire program. The first new
line number will be 300. Lines will increment
by 50.

Renumbers the lines from 900 up so they
start with line number 1000 and increment by
20.

RENUM 1000, 900, 20

Page 10.146

ALPHABETICAL REFERENCE GUIDE

RESET Command

BRIEF

Format: REsET

Purpose: To close all disk files and write the directory information to a disk
before it is removed from a disk drive.

Details

Always execute a RESET command before removing a disk from a disk
drive. Otherwise, when the diskette is used again, it will not have the current
directory information written on the directory track.

RESET closes all open files on all drives and writes the directory track to
every disk with open files.

Page 10.147

ALPHABETICAL REFERENCE GUIDE

RESTORE Statement

BRIEF

F Ormat: R ESTORE [(l i n e number)]

Purpose: To allow DATA statements to be reread from a specified line.

Details

After a RESTORE statement is executed, the next READ statement acces­
ses the first item in the first DATA statement in the program. If (line
number> is specified, the next READ statement accesses the first item in
the first DATA statement at or following (line number>.

Example:

10 READ A,B, C
20 RESTORE
30 READ D,E,F
40 DATA 57, 68 , 79

Page 10.148

ALPHABETICAL REFERENCE GUIDE

RESUME Statement

BRIEF

Formats: RESUME

RESUME 0

RESUME NEXT

RESUME <1ine number>

Purpose: To continue program execution after an error recovery proce­
dure has been performed.

Details

Any one of the four formats shown above may be used, depending upon
where execution is to resume:

RESUME

or
RESUMEO

Execution resumes at the
statement which caused the
error.

RESUME NEXT Execution resumes at the statement im­
mediately following the one which

caused the error.

Execution resumes at <line number>.

A RESUME statement that is not in an error trap routine causes a REsUME
without error message to be printed.

Example:

RESUME <line number>

10 ON ERROR GOTO 900

900 I F (ERR=230) AND (ERL=90) TH E N P R I NT "TRY
AGAIN": RESUME 80

Page 10.149

ALPHABETICAL REFERENCE GUIDE
RETURN Statement

BRIEF

FOrmat: RETURN <line number>

Purpose: To allow the use of a non-local return for event trapping.

Details

This optional form of RETURN is primarily intended for use with event trap­
ping. The event trap routine may want to go back into the BASIC program
at a fixed line number while still eliminating the GOSUB entry that the trap
created.

Use of the non-local RETURN must be done with care! Any other GOSUB,
WHILE or FOR that was active at the time of the trap will remain active. If
the trap comes out of a subroutine, any attempt to continue loops outside
the subroutine will result in a NExT without F0R error.

See the GOSUB...RETURN statement on Page 10.62 for a discussion
of normal use of RETURN.

page 10.150

ALPHABETICAL REFERENCE GUIDE

RIGHT$ Function

BRIEF

Format: RIGHTS(xS, I)

Action: Returns the right-most I characters of string X$.

Details

The RIGHT$ function will return the right-most I characters of string X$. If
I is greater than or equal to the length of the string X$, the function will return
the entire string. If I =O, the null string (length zero) is returned. I must be
in the range of zero to 255.

Example:

10 As = "DISK BASIC"
20 PRINTRIGHTS (AS, 5)
RUN
BASIC
Ok

Also see the MID$ and LEFT$ functions.

Page 10.'i51

ALPHABETICAL REFERENCE GUIDE

RND Function

BRIEF

Format: RND(x)

Action: Returns a random number between 0 andi.

Details

The RND function returns a random number between 0 and 1. The same
sequence of random numbers is generated each time the program is run
unless the random number generator is reseeded (see RANDOMIZE). How­
ever, X<0 always restarts the same sequence for any given X.

X>0 or X omitted generates the next random number in the sequence. X=O

repeats the last number generated.

Example:

10 FOR I =1 TO 5
20 PRINT INT(RND+100);
30 NEXT I
RUN

24 30 31 51 5
01$

NOTE: The RND function with no argument specified is the same as RND
with a positive argument.

Page 10.152

ALPHABETICAL REFERENCE GUIDE

RUN Command

BRIEF

FOrmat1: RUN [<l i ne number>]

Format 2: RUN(f i l e name> [, R]

Purpose: To execute the program currently in memory, or (format 2) to
load a file from disk into memory, and run it.

Details

The RUN command is used to execute lhe program currently in memory.
If <line number)is specified, execution begins on that line. Otherwise,
execution begins at the lowest line number. BASIC always returns to com­
mand level after a RUN is executed.

In format 2, <filename) is the name used when the file was saved. (Your
operating system may append a default filename extension if one was not
supplied in the SAVE command.)

RUN closes all open files and deletes the current contents of memory before
loading the designated program. However, with the "R" option, all data files
remain open.

Example:

RUN"NEWFIL",R

The BASIC Compiler supports both the RUN and RUN <line number >
forms of the RUN command. The BASIC Compiler does not support the "R"
option with RUN. If you want this feature, use the CHAIN statement.

Page 10.153

ALPHABETICAL REFERENCE GUIDE

SAVE Command

BRIEF

FOrmat: SAVE (f i l e name) [, Al, P]

Purpose: To save a program file on disk.

Details

The SAVE command is used to save a program file on a disk. (filename)
is a quoted string that conforms to your operating system's requirements for
filenames. Your operating system may append a default filename extension
if one was not supplied in the SAVE command. Refer to your Z-DOS Manual
for information about possible filename extensions under the Z-DOS operat­
ing system. If (filename) already exists, the file will be written over.

Use the A option to save the file in ASCII format. Otherwise, BASIC saves
the file in a compressed binary format. ASCII format takes more space on
the disk, but some disk access operations or procedures requires that files
be in ASCII format. For instance, the MERGE command requires an ASCII
format file, and some operating system commands such as LIST may re­
quire an ASCII format file.

Use the P option to protect the file by saving it in an encoded binary format.
When a protected file is later run (or loaded), any attempt to LIST or EDIT
it will fail.

Examples:

SAVE"COM1",A
SAVE"FROG",P

Page 10.154

ALPHABETICAL REFERENCE GUIDE

SCREEN Function

BRIEF

FOrmat: X = SCREEN(row, col [, z])

Function: The SCREEN Function returns the ordinal of the character from
the screen at the specified row (line) and column.

Details

Is a numeric variable receiving the ordinal returned.

Is a valid numeric expression returning an unsigned integer in
the range one to 25.

Is a valid numeric expression returning an unsigned integer in
the range one to 80.

Is a valid numeric expression returning a Boolean result.

row

Action:

The ordinal of the character at the specified coordinates is stored in the
numeric variable. If the optional parameter (z> is given and non-zero, the
color attribute for the character is returned instead.

NOTE: Any values entered outside of these ranges will result in an
Illegal Function Call errOr.

Example:

100 X = SCREEN (10,10) 'If the character at 10,10 is
' A then r e t u r n 6 5 .

110 X = SCREEN (1,1,1) 'Return the color attribute of
'the character in the upper left
' hand corner o f t he s cr e e n .

page 10.155

ALPHABETICAL REFERENCE GUIDE

SCREEN Statement

BRIEF

FOrmat: Screen [graphics,] [reverse video]

Purpose: The SCREEN statement sets the screen attributes.

Details

The SCREEN statement allows you to put H-19 graphic characters on the
video display and also permits the use of reverse video.

Graphics is a numeric expression with the value of zero or one.

Reverse video is a numeric expression with the value of zero or one.

0 — Clears H-19 Graphics mode
1 — Sets H-19 Graphics mode

Reverse Video 0 — C lears H-19 reverse video
1 — Sets H-1 9 reverse video

Graphics

Action:

If all parameters are legal, the new screen mode is stored. If the new screen
mode is the same as the previous mode, nothing is changed.

Rules:

1. A n y values entered outside of these ranges will result in an 11­
legal Function Call errOr. PreViOuS ValueS are retained.

2. Any parameter may omitted. Omitted parameters assume the
old value.

For further information concerning the SCREEN statement, see Chapter 7.

Example:

10 SCREEN 0, 1
20 SCREEN 1
40 SCREEN 1, 1

50 SCREEN ,0

' No graph i cs , r ev e r s e v i d e o o n
'Switch to H-19 graphics mode.
'Switch to H-19 graphics

w ith r e v e r s e v i d e o o n .
'graphics off and reverse video off.

Page 10.156

ALPHABETICAL REFERENCE GUIDE
SGN Function

BRIEF

Format: sGN(x)

Action: Returns the mathematical sign value.

Details

If X)0, SGN(X) returns 1.
If X=O, SGN(X) returns 0.
If X<0, SGN(X) returns — 1.

Example: The statement

ON SGN(X) +2 GOTO 100,200,300

branches to 100 if X is negative, to 200 if X is 0, and to 300 if X is positive.

Page 10.157

ALPHABETICAL REFERENCE GUIDE

SIN Function

BRIEF

Format: s IN(x)

Action: Returns the sine of X in radians.

Details

SIN(X) is caluclated in single precision. CQS(X) =SIN (X+3.1451 59/2).

Example:

PRINT SIN(1. 5)
.9974951

Ojt

Page 10.158

ALPHABETICAL REFERENCE GUIDE

SPACE$ Function

BRIEF

Format: SPACE$(X)

Action: Returns a string of spaces of length X.

Details

The expression X is rounded to an integer and must be in the range 0 to
255.

Example:

10 FOR I = 1 T O 5
20 X$ = SPACE$(I)
30 PRINT XS;I
40 NEXT I
RUN

1
2
3

4
5

Ok

Also see the SPC function on Page 10.159.

Page 10.159

ALPHABETICAL REFERENCE GUIDE

SPC Function

BRIEF

Format: spc(I)

Action: Prints I blanks on the terminal or printer.

Details

The SPC function may only be used with PRINT and LPRINT statements.
I must be in the range — 32768 to 65535. A' is assumed to follow the SPC(l)
function.

Example:

PRINT "OVER" SPC(15) " THERE"
OVER THERE
Ok

Note: When this command is used on the screen, values greater than 80
wrap around to the beginning of the same line rather than going down to the
next line. Thus, SPC(85) is the same as SPC(5).

Also see the SPACE$ function Page 10.158.

NOTE: Negative numbers are treated as zero.

page 10.160

ALPHABETICAL REFERENCE GUIDE

SQR Function

BRIEF

Format: SQR(x)

Action: ReturnsthesquarerootofX. Xmustbe) =0.

Details

The SQR function returns the square root of X. X must be greater than or
equal to 0.

Example:

10 FOR X = 10 TO 25 STEP 5
20 PRINT X, SQR(X)
30 NEXT
RUN

10 3.162278
15 3.872984
20 4.472146
25 5

Ok

Also see "Numeric Functional Operators", Page 5.46.

Page 10.161

ALPHABETICAL REFERENCE GUIDE

STOP Statement

BRIEF

Format: STOP

Purpose: To terminate program execution and return to command level.

Details

STOP statements may be used anywhere in a program to terminate execu­
tion. When a STOP is encountered, the following message is printed:

Break i n n n n nn

Unlike the END statement, the STOP statement does not close files.

BASIC always returns to command level after a STOP is executed. Execu­
tion is resumed by issuing a CONT command (see Page 10.25).

Example:

10 INPUT A,B,C
2 0 K=A " 2+5.3 :L=B " 3 / . 2 6
30 STOP
40 M =C+K+ 100: PRINT M
RUN

1,2,3
B reak i n 3 0
Ok
PRINT L
30.76923

Ok
CONT

115.9
Ok

Page 10.162

ALPHABETICAL REFERENCE GUIDE

STR$ Function

BRIEF

Format: sTR$(x)

Action: Returns a string representation of the value of X.

Details

The STR function is used to convert numbers to a string representation.

Example:

10 INPUT "TYPE A NUMBER";N
20 B$ ="Number ent e red was" + S T R$(N)
30 PRINT B$

This example converts the number that is input to a string so that it can be
attached to the sentence and placed in B$.

The VAL function is the inverse function of STR$.

Page 10.163

ALPHABETICAL REFERENCE GUIDE

STRING$ Function

BRIEF

Formats: s TRINGII(I ,J)
STRING/(I,XS)

Action: Returns a string of length I whose characters all have ASCII code
J or the first character of X$.

Details

The STRING$ function returns a string of length I whose characters all have
ASCII code J or the first character of X$. See Appendix C for ASCII values.

Example:

10 Xs = STRINGS(10,45)
20 PRINT XII "MONTHLY REPORT" XII
RUN

MONTHLY REPORT
Ok

Page 10.164

ALPHABETICAL REFERENCE GUIDE

SWAP Statement

BRIEF

FOrmat: SWAP <variable>, <variable>

Purpose: To exchange the values of two variables.

Details

Any type variable may be swapped (integer, single-precision, double­
precision, string), but the two variables must be of the same type or a Type
mismatch error results.

Example:

10 AS =»ONE»

20 PRINT AS
30 SWAP AS,
40 PRINT AS
Ok
RUN
ONE FOR ALL
ALL FOR ONE
Ok

BS — »ALL» • QS — » FOR
OS BS
BS
OS BS

Page 10.165

ALPHABETICAL REFERENCE GUIDE

SYSTEM Command

BRIEF

Format: svsTEM

Purpose: To exit BASIC and return to the operating system.

Details

The SYSTEM command closes all files, clears all variables, removes all pro­
grams from memory and returns to the operating system. The programs in
memory should be saved prior to typing this command, or they will be lost
if they are not already on the disk.

page 10.166

ALPHABETICAL REFERENCE GUIDE

TAB Function

BRIEF

Format: TAB(I)

Action: Spaces to position I on the terminal.

Details

If the current print position is already beyond space I, TAB goes to that posi­
tion on the next line. Space 1 is the leftmost position, and the rightmost posi­
tion is the width minus one. I must be in the range — 32768 to 65535. TAB
may only be used in PRINT and LPRINT statements.

Example:

10 PRINT "NAME" TAB(25) "AMOUNT" : PRINT
20 READ AS,BS
30 PRINT AS TAB(25) BS
40 DATA "G. T . J ONES", "525 .00 "
RUN
NAME AMOUNT

S25.00G. T . J ONES
Ok

Note: When this command is used on the screen, values greater than 80
wrap around to the beginning of the same line rather than going to the next
line. Thus, TAB(85) is the same as TAB(5).

Page 10.167

ALPHABETICAL REFERENCE GUIDE

TAN Function

BRIEF

Format: TAN(x)

Action: Returns the tangent of X in radians.

Details

TAN(X) is calculated in single-precision. If TAN overflows, the overnow
error message is displayed, machine infinity with the appropriate sign is sup­
plied as the result, and execution continues.

Example:

1 0 Y = / +T A N(X)/2

Page 10.168

ALPHABETICAL REFERENCE GUIDE

TIMES statement

BRIEF

Format: TIME$ = <s t r i ng e x p r> T osetthecurrenttime.
< st r i n g v a r > = T zMEI To ge t t hecurrenttime.

Purpose: The TIME$ statement may be used to set or retrieve the current
time.

Details

(string expr> is a valid string literal or variable.

The current time is returned and assigned to the string variable if TIME$ is
the expression in a LET or PRINT statement.

The current time is stored if TIME$ is the target of a string assignment.

Rules:

1. If < s t r ing expr> is not a valid string, a Type mismatch error will
result.

2. For (s t r ing var>= TIME$, TIME$ returns an 8- character string
in the form "hh:mm:ss", where hh is the hour (00 to 23), mm is
the minutes (00 to 59), and ss is the seconds (00 to 59).

3. Fo r TIME$= <string expr>, <string expr> may be one of the
following forms:

A. "hh" Sets the hour. Minutes and seconds default to

00.

B. "hh:mm:" Sets the hour and minutes. Seconds de­

fault to 00.

C. "hh:mm:ss" Sets the hour, minutes, and seconds.

Page 10.169

ALPHABETICAL REFERENCE GUIDE

llMES Statement

If any Of the ValueS are Out Of range, an I l l e gal Funct ion Call e r rOr iS
issued. The previous time is retained.

Example:

TIMES = "08:00"
Ok
PRINT TIMES
08:00:04
01%

The following program displays the current date and time on the twenty-fifth
line of the screen, and updates the displayed time every minute.

10 KEY OFF:CLS
20 LOCATE 25,5
30 PRINT DATES, TIMES
40 T = T I ME
50 IF T I ME — T) 5 9 T HEN 20
60 GOTO 50

page 10.170

ALPHABETICAL REFERENCE GUIDE

TRON/TROFF Statements

BRIEF

Format: TRQN
TROFF

Purpose: To trace the execution of program statements.

Details

As an aid in debugging, the TRON statement (executed in either the direct
or indirect mode) enables a trace flag that prints each line number of the pro­
gram as it is executed. The numbers appear enclosed in square brackets.
The trace flag is disabled with the TROFF statement (or when a NEW com­
mand is executed).

Example:

10 K =10

20 FOR J =1 TO 2
30 L =K+10
4 0 PRINT J ;K ; L
50 K =K+10
60 NEXT
70 END
TRON
RUN
[10] [20] [30] [40] 1 1 0 2 0
[50][60][30] [40] 2 20 30
[50][60][70]
Ok
TROFF
Ok

page 10.171

ALPHABETICAL REFERENCE GUIDE

USR Function

BRIEF

Format: USR[<d1g1t,>] (x)

Action: Calls the user's assembly language subroutine with the argument
X.

Details

<digit) is in the range zero to 9 and corresponds to the digit supplied with
the DEF USR statement for that routine. If <digit) is omitted, USRO is as­
sumed. See Appendix E, "BASIC Assembly Language Subroutines."

Example:

50 C = USR (B/2)
60 D = USR2(B/2)

These two program lines call "user" programs that have been previously
input to memory by the user.

See the DEF USR statement, Page 10.37

page 10.172

ALPHABETICAL REFERENCE GUIDE

VAL Function

BRIEF

Format: VAL(xS)

Action: Returns the numerical value of string X$.

Details

The VAL function also strips leading blanks, tabs, and line feeds from the
argument string. For example,

VAL(" — 3")

returns — 3.

Example:

10 READ NAME/,CITY',STATES,ZIPS
20 IF VAL(ZIPS)<60000 OR VAL(ZIPS)>60999 THEN
PRINT NAMES TAB(25) "OUT OF STATE"

30 IF VAL(ZI PS)>=60601 AND VAL(ZIPS)(=60699THEN
PRINT NAMES TAB(25) "IN TOWN"

See the STR$ function for numeric to string conversion.

Page 10.173

ALPHABETICAL REFERENCE GUIDE

VARPTR Function

BRIEF

FOrmat 1: V ARPTR((v a r i a b l e name>)

Format2: v ARPTR(4(f i l e number>)

Action: Format 1: R e turns the address of the first byte of data identified
with (variable name>.

Format 2: For sequential files, returns the starting address of
the disk I/O buffer assigned to (file number>.

Details

A value must be assigned to (variable name> prior to execution of
VARPTR. Otherwise, an zl legal Function call error results. Any type vari­
able name may be used (numeric, string, array), and the address returned
will be an integer in the range 32767 to — 32768. If a negative address is
returned, add it to 65536 to obtain the actual address.

The VARPTR function is usually used to obtain the address of a variable
or array so it may be passed to an assembly language subroutine. Specify
a function call of the form VARPTR(A(0)) when an array is passed, so that
the lowest-addressed element of the array is returned.

Assign all simple variables before you call VARPTR for an array because
the addresses of the arrays change whenever a new simple variable is as­
signed.

For random files, VARPTR returns the address of the FIELD buffer assigned
to (file number>.

Example:

100 X =USR(VARPTR(Y))

Page 10.174

ALPHABETICAL REFERENCE GUIDE

VARPTR FUnciion

FOrmat: VARPTR(<fi l e name>)

Function: For files, the VARPTR function returns the address of the first
byte of the File Control Block (FCB) for the opened file.

File number is tied to a currently open file. Offsets to information in the FCB
from the address returnedby VARPTR are:

OFF S IZE CO NTENTS
0 1 Mode The mode in which the file was opened:

1 — Input Only
2 — Output Only
4 — Random I/O

16 — Append Only
32 — Internal use
64 — Future use

128 — Internal use

38 FCB Disk File Control Block.
Refer to Z-DOS User's Guide for Contents.

Number of sectors read or written
for sequential access. For random
access, it contains the last record
number + 1 read or written.

39 2 CURLOC

41

42

43 3 ***

1 DEV I CE

1 OR NOFS Num ber of bytes in sector when read or written.

1 NML OF S Numb e r of bytes left in input buffer.

Reserved for future expansion.

Device Number:
0-9- Disks A: thru J:
255 — KYBD:
254 — SCRN:
253 — LPT1:
251 — COM1:

46

Page 10.175

ALPHABETICAL REFERENCE GUIDE

VARPTR FU@ctIIov

47 1 WID T H Device width.

48 1 POS

49

Position in buffer for PRINT.

Internal use during LOAD/SAVE not used for
data files.

1 FLA G S

50 1 OUTP O S Output positionused during tab expansions.

5 1 128 BUFF E R Physical data buffer. Used to transfer
data between Z-DOS and BASIC. Use
this offset to examine data in
sequential I/O mode.

Variable length record size. Default is 128.
Set by length option in OPEN statement.

179 2 VRECL

181 2 PHYR E C Curr ent physical recordnumber.

183 2 LOG R EC Curre nt logical record number.

185 1 ***

186 2 OUTPOS Disk f i les only. Output position for

Future use.

PRINT, INPUT and WRITE.

Actual FIELD data buffer. Size is
determined by length specified
in OPEN statement. VRECL bytes
are transferred between BUFFER
and FIELD on I/O operations. Use
this offset to examine file data
in Random I/O mode.

1 88 (n> FIEL D

Example:

10 OPEN "DATA.FIL" as Pl
20 FCBADR = VARPTR(41) 'FCBADR contains start of FCB.
30 DATADR = FCBADR+ 188 'DATADR contains address of data

40 As = CHRIS(PEEK DATADR) 'AS contains 1st byte in data
b uffe r .

b uffe r .

Page 10.176

ALPHABETICAL REFERENCE GUIDE

WAIT Statement

BRIEF

FOrmat: WAIT (port number>, 1[,J]

where I and J are integer expressions

Purpose: To suspend program execution while monitoring the status of a
machine input port.

Details

The WAIT statement causes execution to be suspended until a specified
machine input port develops a specified bit pattern. The data read at the port
is exclusive OR'ed with the integer expression J, and then AND'ed with I.
If the result is zero, BASIC loops back and reads the data at the port again.
If the result is non-zero, execution continues with the next statement. If J
is omitted, it is assumed to be zero.

It is possible to enter an infinite loop with the WAIT statement, in which case
it will be necessary to manually restart the machine.

Example:

100 WAIT 32, 2

page 10.177

ALPHABETICAL REFERENCE GUIDE

WHILE... WEND Statement

BRIEF

FOrmat: W HILE <expression>

[<loop statements>]

WEND

Purpose: To execute a series of statements in a loop as long as a given
condition is true.

Details

If <expression) is not zero (i.e., true), <loop statements> are executed
until the WEND statement is encountered. BASIC then returns to the WHILE
statement and checks <expression). If it is still true, the process is re­
peated. If it is not true, execution resumes with the statement following the
WEND statement.

WHILE/WEND loops may be nested to any level. Each WEND will match
the most recent WHILE. An unmatched WHILE statement causes a wHILE
without wEND error, and an unmatched WEND statement causes a wEND
without WHILE errOr.

Example:

90 'BUBBLE SORT ARRAY AS
100 FLIPS =1 'FORCE ONE PASS THRU LOOP

110 WHILE FLIPS
1 15 F L I P S=O

120 FOR I = 1 TO 10 - 1
130 IF AS(I) >As(I+1) THEN

140 NEXT I
150 WEND

S WAP As(I) , A S (I + 1) : F L I PS=1

Page 10.178

ALPHABETICAL REFERENCE GUIDE

WIDTH Statement

BRIEF

FOrmat: WI DTH <LPRINT><integer expression>

Purpose: To set the printed line width in number of characters for the line
printer.

Details

WIDTH LPRINT sets the line width at the line printer.

<integer expression> must have a value in the range one to 225. The only
valid width for the terminal is 80 characters.

If <integer expression> is 255, the line width is "infinite," that is, BASIC
never inserts a carriage return. However, the position of the cursor or the
print head, as given by the POS or LPOS function, returns to zero after posi­
tion 255.

Example:

10 LPRINT "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
RUN
Ok
WIDTH LPRINT 18
Ok
RUN
Ok

This is what will appear on the printer.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQR
STUVWXYZ

Page 10.179

ALPHABETICAL REFERENCE GUIDE

WRITE Statement

BRIEF

F Ormat: WRITE [(l i s t o f e x p r e s s i o n s)]

Purpose: To output data at the terminal.

Details

If (list of expressions> is omitted, a blank line is output. If (list of expres­
sions) is included, the values of the expressions are output at the terminal.
The expressions in the list may be numeric and/or string expressions, and
they must be separated by commas.

When the printed items are output, each item will be separated from the last
by a comma. Printed strings will be delimited by quotation marks. After the
last item in the list is printed, BASIC inserts a carriage return/line feed.

WRITE outputs numeric values using the same format as the PRINT state­
ment, Page 10.129.

Example:

10 A =80:B=90: Cs ="THAT'S ALL"

20 WRITE A,B,C$
RUN
8 0, 90 , "THAT'S ALL"
01$

Page 10.180

ALPHABETICAL REFERENCE GUIDE

WRITE ¹ Statement

BRIEF

FOrmat: WRI TES<file number>, <list of expressions>

Purpose: To write data to a sequential file.

Details

<file number> is the number under which the file was OPENedin "0" mode.
The expressions in the list are string or numeric expressions, and they must
be separated by commas or semicolons.

The difference between WRITE¹ and PRINT¹ is that WRITE ¹ inserts
commas between the items as they are written to disk and delimits strings
with quotation marks. Therefore, it is not necessary for the user to put explicit
delimiters in the list. A carriage return/line feed sequence is inserted after
the last item in the list is written to disk.

Example:

AS= "CAMERA" and BS= "93604 — 1" .

The statement:

WRITEkl, AS, BS

writes the following image to disk:

" CAMERA", "93604- 1 "

A subsequent INPUT¹ statement, such as:

INPUT41, AS, BS

would input "CAMERA" to A$ and "93604 — 1" to B$.

page A.1

APPENDIX A

Error Messages

SUMMARY OF ERROR CODES AND ERROR
MESSAGES

Number ~Messs e

NEXT without FOR
A variable in a NEXT statement does not correspond to
any previously executed, unmatched FOR statement vari­
able.

Syntax error
A line is encountered that contains some incorrect se­
quence of characters (such as an unmatched parenthesis,
misspelled command or statement, incorrect punctuation,
etc.).

RETURN without GOSUB
A RETURN statement is encountered for which there is no
previous, unmatched GOSUB statement.

Out of DATA
A READ statement is executed when there are no DATA
statements with unread data remaining in the program.

Illegal function call
A parameter that is out of range is passed to a math or
string function. An FC error may also occur as the result
of:

A. a negative or unreasonably large subscript

B. a negative or zero argument with LOG

C. a negative argument to SQR

D. a negative mantissa with a non-integer exponent

page A.2

APPENDIX A

Error Messages

Number ~Messs e

E. a call to a USR function for which the starting address
has not yet been given

F. an improper argument to MID$, LEFT$, RIGHT$,
INP, OUT, WAIT, PEEK, POKE, TAB, SPC,
STRING$, SPACE$, INSTR, ASC$ FN...() or
ON...GOTO.

Overflow
The result of a calculation is too large to be represented
in BASIC's number format. If overflow occurs, the result is
zero and execution continues without an error.

Out of memory
A program is too large, has too many FOR loops or
GOSUBs, too many variables, or expressions that are too
complicated.

Undefined line number
A line reference in a GOTO, GOSUB, IF...THEN...ELSE,
or DELETE is to a nonexistent line.

Subscript out of range
An array element is referenced either with a subscript that
is outside the dimensions of the array, or with the wrong
number of subscripts.

Duplicate Definition
Two DIM statements are given for the same array, or a
DIM statement is given for an array after the default dimen­
sion of 10 has been established for that array.

10

Page A.3

APPENDIX A

EI"Ir Or Meaaagea

Number ~Messs e

13

12

14

15

Division by zero
A division by zero is encountered in an expression, or the
operation of involution results in zero being raised to a
negative power. Machine infinity with the sign of the
numerator is supplied as the result of the division, or posi­
tive machine infinity is supplied as the result of the involu­
tion, and execution continues.

Illegal direct
A statement that is illegal in direct mode is entered as a
direct mode command.

Type mismatch
A string variable name is assigned a numeric value or vice
versa; a function that expects a numeric argument is given
a string argument or vice versa.

Out of string space
String variables have caused BASIC to exceed the
amount of free memory remaining. BASIC will allocate
string space dynamically, until it runs out of memory.

String too long
An attempt is made to create a string more than 255 char­
acters long.

String formula too complex
A string expression is too long or too complex. The expres­
sion should be broken into smaller expressions.

16

Page A.4

Number ~Massa e

17 Can't continue
An attempt is made to continue a program that:

A. has halted due to an error,

B. has been modified during a break in execution, or

C. does not exist.

18 Undefined user function
A USR function is called before the function definition
(DEF statement) is given.

No RESUME
An error trapping routine is entered but contains no RE­
SUME statement.

19

21

20 RESUME without error
A RESUME statement is encountered before an error
trapping routine is entered.

Unprintable error
An error message is not available for the error condition
which exists. This is usually caused by an error with an un­
defined error code.

Missing operand
An expression contains an operator with no operand fol­
lowing it.

22

Line buffer overflow
An attempt is made to input a line that has too many char­

23

acters.

Page A.5

APPENDIX A

Ef I'OI" M8888988

Number ~Nlessa e

29

27

26

24

25

Device Timeout
An attempt at I/O was made with a device that was not
ready. After a given amount of time, this error message
is produced. Check the device being called in the pro­
gram line.

Device Fault
An attempt at I/O was made with a device that has a
problem. This error message may be caused by any
number of conditions, from using the wrong diskette type
to being out of paper. Check the device being called in
the program line and correct the fault.

FOR without NEXT
A FOR was encountered without a matching NEXT.

Out of paper
If your printer can transmit error conditions via the parallel
lines, this error condition can be detected. Check the print­
er and replace the paper.

WHILE without WEND
A WHILE statement does not have a matching WEND.

WEND without WHILE
A WEND was encountered without a matching WHILE.

30

Disk Errors

FIELD overflow
A FIELD statement is attempting to allocate more bytes
than were specified for the record length of a random file.

50

Page A.6

APPENDIX A

Error Messages

Number ~Messa e

Internal error
An internal malfunction has occurred in BASIC. Report to
Zenith the conditions under which the message appeared.

51

52 Bad file number
A statement or command references a file with a file
number that is not OPEN or is out of the range of file num­
bers specified at initialization.

File not found
A LOAD, KILL or OPEN statement references a file that
does not exist on the current disk.

53

K.4 Bad file mode
An attempt is made to use PUT, or GET, with a sequential
file, to LOAD a random file or to execute an OPEN with a
file mode other than I, 0, or R.

File already open
A sequential output mode OPEN is issued for a file that is
already open, or a KILL is given for a file that is open.

55

Device I/O error
An I/O error has occurred on a device I/O operation. Check
the device being called in the line where the error oc­

57

curred.

File already exists
The filename specified in a NAME statement is identical
to a filename already in use on the disk.

58

Disk full
All disk storage space is in use.

61

Page A.7

APPENDIX A

Number ~Massa e

Input past end
An INPUT statement is executed after all the data in the
file has been INPUT, or for a null (empty) file. To avoid this
error, use the EOF function to detect the end of file.

62

Bad record number
In a PUT or GET statement, the record number is either
greater than the maximum allowed (32767) or equal to

63

zero.

66

67

69

68

An illegal form is used for the filename with LOAD, SAVE,
Bad file name

KILL, or OPEN (e.g., a filename with too many charac­
ters).

Direct statement in file
A direct statement is encountered while LOADing an
ASCII-format file. The LOAD is terminated.

Too many flies
An attempt is made to create a new file (using SAVE or
OPEN) when all 255 diiectory entries are full.

Device Unavailable
An attempt at I/O made with a device that is unavailable
to the system.

Communication buffer overflow
Your program has not properly maintained the communi­
cation buffer and has allowed it to fill up with data.

Disk write protected
An attempt has been made to write to a disk that is write
protected. Check the disk to ensure that it is the correct
disk before you remove the write protect tab.

70

Page A.s

Number ~Massa e

71 Disk not Ready
This may be caused by the disk not being in the drive.
Insert the disk and close the door.

72 Disk Media Error
A fault has been discovered during a read/write opera­
tion, probably caused by a damaged disk.

Advanced feature
An attempt was made to use a feature not available in
this version of BASIC.

73

74 Rename across disks
An attempt was made to rename a disk file specifying
a device other than the one the file is on. Check the
command for disk name continuity.

page B.1

APPENDIX B

Converting Programs to Z-BASIC

BRIEF

If you have programs written in a BASIC other than Zenith BASIC, some
minor adjustments may be necessary before running them with this version.
Following are some specific things to look for when converting BASIC pro­
grams.

Substring

String
Dimension

Concatenation

Details

Replace all statements that are used to declare the length of strings. A state­
ment such as DIM A$(I,J), which dimensions a string array for J elements
of length I, should be converted to the Z-BASIC statement DIM A$(J).

Some BASICs use a comma or ampersand for string concatenation. Each
of these must be changed to a plus sign, which is the operator for Z-BASIC
string concatenation.

Additionally, in this BASIC, the MID$, RIGHT$, and LEFT$ functions are
used to take substrings from strings. Forms such as A$(n) to access the nth
character in A$, or A$(I,J) to take a substring of A$ from position I to J, must
be changed as follows:

Other BASIC Z-BASIC

XQ= MID$(A$,1 , 1)
XS=MIDI (AS, I, J- I + 1)

xi=AS(I)
xl)= AS(I , J)

If the string reference is on the left side of an assignment and X$ is used
to replace characters in A$, convert as follows:

Other BASIC Z-BASIC

M IDI(AS, I , 1) =XS
MID'(AS,I,J — I+1) =XS

AS(I) = xS
AS(I,J) = xS

Page B.2

Some BASICs allow a statement of the form: Multiple
Assignments

10 LET B = C= O

to set B and C equal to zero. Z-BASIC would interpret the second equal sign
as a logical operator and set B equal to minus one (— 1) if C equaled zero.
Instead, convert this statement to two assignment statements:

10 C =O: B =O

Some BASICs use a backslash (4) to separate multiple statements on a Multiple
line. With Z-BASIC, be sure all statements on a line are separated by a colon
(:).

Programs using the MAT functions available in some BASICs must be re­
written using FOR...NEXT loops to execute properly.

Mat
Functions

Page 8.3

APPENDIX B

NEW FEATURES IN Z-BASIC, RELEASE 1.00

The execution of BASIC programs written under previously released ver­
sions of BASIC, may be affected by some of the new features in Z-BASIC.
Before attempting to run such programs, check for the following:

1. N e w reserved words: CALL, CHAIN, COMMON, WHILE, WEND,
WRITE, OPTION BASE, RANDOMIZE, COM, KEY, LOCATE, BEEP,
DATE$, and TIME$.

2. C o nversion from floating point to integer values results in rounding,
as opposed to truncation. This affects not only assignment state­
ments (e.g., I%=2.5 results in l% =3), but also affects function and
statement evaluations (e.g., TAB(4.5) goes to the 5th position, A(1.5)
yields A(2), and X=11.5 MOD 4 yields 0 for X.)

3. T h e body of a FOR...NEXT loop is skipped if the initial value of the
loop times the sign of the step exceeds the final value times the sign
of the step.

4. D i v ision by zero and overflow no longer produce fatal errors.

5. Th e RND function has been changed so that RND with no argument
is the same as RND with a positive argument. The RND function gen­
erates the same sequence of random numbers with each RUN, un­
less RANDOMIZE is used.

6. T h e rules for printing single-precision and double-precision numbers
have been changed.

7. S t r ing space is allocated dynamically, and the first argument in a two­
argument CLEAR statement sets the end of memory. The second ar­
gument sets the amount of stack space.

page B.4

APPENDIX B

8. Res ponding to INPUT with too many or too few items, or with non­
numeric characters instead of digits, causes the message "?Redo
from start" to be printed. If a single variable is requested, a carriage
return may be entered to indicate the default values of 0 for numeric
input or null for string input.

However, if more than one variable is requested, entering a carriage
return will cause the "?Redo from start" message to be printed be­
cause too few items were entered. No assignment of input values is
made until an acceptable response is given.

9. The re are two new field formatting characters for use with PRINT
USING. An ampersand is used for variable length string fields, and
anunderscore signifies a literal character in a format string.

10. I f the expression supplied with the WIDTH statement is 255, BASIC
uses an "infinite" line width, that is, it does not insert carriage returns.
WIDTH LPRINT may be used to set the line width of the line printer.

11. The at sign (@) and underscore are no longer used as editing charac­
ters.

12. V ar iable names are significant up to 40 characters and can contain
embedded reserved words. However, reserved words must now be
delimited by spaces. To maintain compatibility with earlier versions of
BASIC, spaces will be automatically inserted between adjoining re­
served words and variable names. WARNING: This insertion of
spaces may cause the end of a line to be truncated if the line length
is close to 255 characters.

13. BASIC programs may be saved in a protectedbinary format.

Page C.f

APPENDIX C

ASCII Character Codes and Graphic Symbols

OCT = Octal; DEC = Decimal; HEX = Hexadecimal; CHAR = The ASCII
character (or function) represented by the code; KEY = The key pressed
to produce the code; CTRL = The key pressed in conjunction with the CTRL
(Control) key to produce the code; DESCRIPTION= A brief description of

the character/function; SYMBOL = The graphics character normally pro­
duced while in the graphics mode (unless user-defined).

000 0 00
001 1 01
002 2 02
003 3 03
004 4 04
005 5 05
006 6 06
007 7 07
010 8 08

011 9 09
0 12 10 O A

0 13 11 O B V T
014 12 O C FF

016 14 O E SO
017 15 O F SI
020 16 1 0 DLE
021 17 11 DC1

022 18 1 2 DC2
023 19 1 3 DC3

024 20 1 4 DC4
025 21 1 5 NAK

015 13 O D CR RETURN M

HT TAB I
LF L INE J

NUL ... ®
SOH ... A
STX .. . B
ETX .. . C
EOT .. . D
ENQ ... E
ACK .. . F
BEL .. . G
BS BACK H

SPACE

FEED

OCT DEC HEX CHAR KEY CTRLDESCRIPTION

Null, tape feed.
Start of Heading.
Start of text.
End of text.
End of transmission.
Enquiry.
Acknowledge.
Rings Bell.
Backspace; also FEB,
Format Effector
Backspace.
Horizontal Tab.
Line Feed: advances
cursor to next line.
Vertical tab (VTAB).
Form feed to top of
next page.
Carriage Return to
beginning of line.
Shift Out.
Shift In.
Data link escape.
Device control 1: turns
transmitter on (XON).
Device control 2.
Device control 3: turns
transmitter off (XOFF).
Device control 4.
Negative acknowledge:
also ERR (error).
Synchronous idle (SYNC).

T U

R
S

V

K L

N
0
p
Q

026 22 1 6 SYN

page C.2

APPENDIX C

OCT DEC HEX CHAR KEY CTRL DESCRIPTION

027 23

030 24

031 25
032 26
033 27
0 34 2 8
035 29
036 30
037 31
040 32
041 33
042 34
043 35
044 36
045 37
046 38
047 39

050 40
051 41
052 42
053 43
0 54 4 4
055 45
056 46
057 47
060 48
061 49
062 50
063 51
064 52
065 53
066 54
067 55
070 56
071 57
072 58

17

18

28

19
1A
1B
1C
1D
1E
1F
20
21
22
23
24
25
26
27

(
29)
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A

I

+

ETB

CAN

I I
II tl

I I

¹

$ $

& &

/ 0 1 / 0 1

EM
SUB ...
ESC ESC
FS
GS
RS
US
SP

t

]

W X Y Z

A

End of transmission
block.
Cancel (CANCL). Cancels
current escape sequence.
End of medium.
Substitute.
Escape.
File separator.
Group separator.
Record separator.
Unit separator.
Space (Spacebar).
Exclamation point.
Quotation mark.
Number sign.
Dollar sign.
Percent sign.
Ampersand.
Acute accent or
apostrophe.
Open parenthesis.
Close parenthesis.
Asterisk.
Plus sign.
Comma.
Hyphen or minus sign.
Period.
Slash.
Number 0.
Number 1.
Number 2.
Number 3.
Number 4.
Number 5.
Number 6.
Number 7.
Number 8.
Number 9.
Colon.

2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9

Page C.3

APPENDIX C

OCT

073
074
075
076
077
100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135

38
3C
3D
3E
3F
40
41
42
43
44
45
46
47
48
49
4A
48
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
58
5C
5D)

1

S

G H I G H I

0 P 0 P

Q R Q R

T U T U

? I ? @

A 8 A 8

C D E F C D E F

J K L M N J K L M N

V W X Y Z V W X Y Z [

S

DEC HEX CHAR KEY CTRL DESCRIPTION

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

Semicolon.
Less than.
Equal sign.
Greater than.
Question mark.
At sign.
Letter A.
Letter B.
Letter C.
Letter D.
Letter E.
Letter F.
Letter G.
Letter H.
Letter I.
Letter J.
Letter K.
Letter L.
Letter M.
Letter N.
Letter O.
Letter P.
Letter Q.
Letter R.
Letter S.
Letter T.
Letter U.
Letter V.
Letter W.
Letter X.
Letter Y.
Letter Z.
Open brackets.
Reverse slash.
Close brackets.

SYMBOL

)

136 94 SE

4 4 III ll 4
114l l
II 0 II 0 l

C I ' l l
(Up arrow/caret.

Page C.4

SYMBOLOCT DEC HEX CHAR KEY CTRL DESCRIPTION

(I I I I I I I I I ;
I I \ I I t l ;

(I t t i l t ;

137 9 5 5F Underscore. I I I I , '
I I I;

(I t
Ill
It I

140 9 6 60 Grave accent. I t

II I
I It
l l

Letter a.
(
< I I I 'I I I It I141 9 7 6 1 a a

)

I t
I l
I t

Letter b. I ll t)
It I
I It
I t
I I)

142 98 6 2 b b

Letter c.
(
(I I I I I

l t
I t
I t
I t

143 99 6 3 c c

It I

It It

I t
Letter d.144 100 6 4 d d

I t)
I t

Letter e.145 101 65 e e

Page C.5

OCT DEC HEX CHAR KEY CTRL DESCRIPTION SYMBOL

Letter f.1 46 10 2 6 6

)

11111
(

147 103 67 g g Letter g. 11111

(

Letter h.

1
111\ \

1
1)150 104 68 h h

< 1 1 1 1
1 1>

151 105 69 i i

(1 1
(1 1
(1 1 1 1
(1 1 1 1 >
<1 \ 1 1)
(1 1 1 1 i

Letter i.
\ 1 1

152 106 6A j j

(— — — — >
(I I I I)
(I I I I)
(I I I I)
(I I I I)
(I I I I I I I I)
(I I I I)
(I I I I)
(I I I I)
(I I I I)
(

Letter j.

1 1

153 107 6B I < I<
1 1

(lll11Letter k.

(

154 108 6C I I
1111>
1111>
1111>

(111 1 >
1111>

Letter I.

Page C.6

OCT DEC HEX CHAR KEY CTRL DESCRIPTION SYMBOL

155 109 6D m m < li t t
<1 tll
< li t t
<t jil l

Letter m.

(1 • \

156 110 6E n n

<li t
<111
<111Letter n.

157 111 6F o o

t t t t >
1111>
1111>
1111>
t t l l >Letter o.

(
<Ittttttt>
<11111111>
< Il t l t j l I 1 >
<11111111>

i l l l i t >

160 112 70 p p Letter p.

1111>
1111>
1111>
1111>

161 113 71 q q 1111>
(11 1 1>

1111>
1111>

Letter q.

162 114 72 r r

<ltl • tttt>
<tltllll
<tl t t l t
<11111
< tt l t
<lit

Letter r.
<1

(11111111>

163 115 73 s s Letters. (1 1
tl

(11

Page C.7

SYMBOLOCT DEC HEX CHAR KEY CTRL DESCRIPTION

11
(

164 11 6 7 4 t t Letter t. (11 I 11
11
tt
11

(
(

(—­

(I t
(I l l

11

Letter u. (
< Il I I I II I I I >165 117 75 u u

11
11

Letter v. (
(1 11 1 1>166 118 76 v v
(1 1)

• I
11

<tt 11>

Letter w.
11

II I I I
11

1111
Il I

167 11 9 7 7 w w

11
<I

IO>
(

Letter x.
11

(t t170 120 78 x x
t t

<II

Letter y.

«t
<Ot

tt
I •

• I
11

I I

171 121 79 y y

1111>
(tttttttt>

Letter z.172 122 7A z z

Page C.S

OCT DEC HEX CHAR KEY CTRL DESCRIPTION SYMBOL

173 123 7 B Left brace.

<IIIIIIII
<IIIIIIII>

1 74 12 4 7 C Vertical bar (broken).
,

<II
<II
<II

175 125 7D } } Right brace.

176 126 7E Tilde.

177 12 7 7 F DEL D ELETE ... D e lete (rubout).

200- 128-80­
3 77 25 5 F F unassigned.

page D.1

APPENDIX D

Mathematical Functions

DERIVED FUNCTIONS

Functions that are not intrinsic to BASIC may be calculated as follows.

Function

SECANT
COSECANT
COTANGENT
INVERSE SINE
INVERSE COSINE
INVERSESECANT

INVERSE COSECANT

BASIC E uivalent

SEC(X)=1/COS(X)
CSC(X)=1/SIN(X)
COT(X)=1/TAN(X)
ARCSIN(X)= ATN(X/SQR(— X*X+1))
ARCCOS(X)= — ATN(X/SQR(— X'X+1))+1.5708
ARCSEC(X)=ATN(SQR(X*X — 1))

— SGN(SGN(X) — 1)*SGN(X)'3.1416
ARCCSC(X)= ATN(1/SQR(X'X — 1)

— SGN(SGN(X) — 1)*SGN(X)*3.1416

ARCCOT(X)=1.5708 — ATN(X)
SINH(X)= (EXP(X) — EXP(— X))/2
COSH(X)= (EXP(X)+ EXP(— X))/2
TANH(X)= (EXP(X) — EXP(— X))/(EXP(X) + EXP(— X))
SECH(X)=2/(EXP(X)+ EXP(— X))
CSCH(X)=2/ (EXP(X) — EXP(— X))
GOTH(X)= (EXP(X) + EXP(— X))/(EXP(X) — EXP(— X))

ARCSINH(X)= LOG(X+ SQR(X*X+1))

ARCCOSH(X)= LOG(X+ SQR(X*X — 1))

ARCTANH(X)= LOG((1+ X)/(1 — X))/2

ARCSECH(X)= LOG((SQR(— X*X+1)+1)/X)

ARCCSCH(X)= LOG((SGN(X)*SQR(X *X+1)+1)/X)

ARCCOTH(X)= LOG((X+1)/(X — 1))/2

INVERSE COTANGENT
HYPERBOLIC SINE
HYPERBOLIC COSINE
HYPERBOLIC TANGENT
HYPERBOLIC SECANT
HYPERBOLIC COSECANT
HYPERBOLIC COTANGENT
INVERSEHYPERBOLIC
SINE
INVERSEHYPERBOLIC
COSINE
INVERSE HYPERBOLIC
TANGENT
INVERSEHYPERBOLIC
SECANT
INVERSEHYPERBOLIC
COSECANT
INVERSEHYPERBOLIC
COTANGENT

page D.2

page E.1

APPENDIX E
Assembly Language Subroutines

BRIEF

All versions of Zenith BASIC have provisions for interfacing with assembly
language subroutines via the USR function and the CALL statement.

Following is a detailed discussion of assembly language interface, memory
allocation and stack space.

Details

The USR function allows assembly language subroutines to be called in the
same way BASIC Intrinsic functions are called. However, the CALL state­
ment is the recommended way of interfacing 8086 machine language pro­
grams with BASIC. It is compatible with more languages than is the USR
function call, it produces more readable source code, and it can pass multi­
ple arguments.

MEMORY ALLOCATION

Memory space must be set aside for an assembly language subroutine be­
fore it can be loaded. During initialization, enter the highest memory location
minus the amount of memory needed for the assembly language sub­
routine(s) with the ~M: switch.

In addition to the BASIC interpreter code area, Z-BASIC uses up to 64K of
memory beginning at its data (DS) segment.

If, when an assembly language subroutine is called, more stack space is
needed, BASIC's stack can be saved and a new stack set up for use by the
assembly language subroutine. BASIC's stack must be restored, however,
before returning from the subroutine.

page E.2

APPENDIX E

The assembly language subroutine may be loaded into memory by means
of the operating system or the BASIC POKE statement. If the user has the
Zenith Utility Software Package, the routines may be assembled with the
MACRO-86 assembler and linked using the MS-LINK Linker, but not loaded.
To load the program file, the user should observe these guidelines:

1. T he subroutines must not contain any long references.

2. Sk i p over the first 512 bytes of the MS-LINK output file, then read in
the rest of the file.

As we mentioned earlier, the CALL statement is the recommended way of
interfacing 8086 machine language programs with BASIC. It is further
suggested that the old style user-call USR(n) not be used.

FOrmat: CALL <variable name> [(<argument list>)]

<variable name> contains the segment offset that is the starting point in
memory of the subroutine being CALLed.

<argument list> contains the variables or constants, separated by com­
mas, that are to be passed to the routine.

The CALL statement conforms to the INTEL PL/M-86 calling conventions
outlined in Chapter 9 of the INTEL PL/M-86 Compiler Operator's Manual.
BASIC follows the rules described for the MEDIUM case (summarized in the
following discussion).

Invoking the CALL statement causes the following to occur:

CALL
Statement

Invoking
CALL
Statement

1. F o r each parameter in the argument list, the two-byte offset of
the parameter's location within the data segment (DS) is
pushed onto the stack.

2. B A SIC's return address code segment (CS), and offset (IP) are
pushed onto the Stack.

3. C o ntrol is transferred to the user's routine via an 8086 long call
to the segment address given in the last DEF SEG statement
and the offset given in <variable name>.

Page E.3

These actions are illustrated by the two following diagrams, which illustrate
first, the state of the stack at the time of the CALL statement, and second,
the condition of the stack during execution of the called subroutine.

Stack
Diagram 1

high
addresses parameter 0

parameter 1

C Each parameter is a two-byte
POINTER into memory

S t 0 u

a c n t

k

parameter n

return segment addresse

return offset

Stack pointer
(SP reg. contents)

low
addresses

Diagrams
Stack Layout when CALL Statement

Is activated

The user's routine now has control. Parameters may be referenced by mov­
ing the stack pointer (SP) to the base pointer (BP) and adding a positive
offset to (BP).

page E.4

high
addresses parameter 0

parameter 1 Diagram 2

Absent if any parameter is
referenced within a nested
procedure

parameter n

return segment address Absent in local procedure

return offsetC
0

old stack markerS t

n t

e r

local variables

Stack pointer
(SP reg. contents)
New stack marker

Only in reentrant procedure

a c k

This space may be
used dunng pro­
cedure execution

Stack pointer may change
during procedure execution

low
addresses

Diagram 2
Stack Layout During Execution ot

a CALL statement

page E.5

APPENDIX E

coding RuI~~ You must observe the following rules when coding a subroutine:

1. Th e calledroutine maydestroythe SX, BX, CX, DX, Sl, DE, and
BP registers.

2. Th e called program MUST know the number and length of the
parameters passed. References to parameters are positive
offsets added to (BP) (assuming the called routine moved the
current stack pointer into BPI i.e., MOV BP,SP). That is, the lo­
cation of P1 is at8(BP), p2is at6(BP), p3is at4(BP),...etc.

3. The ca l led routine must do a RET (n) (where (n) i s two
times the number of parameters in the argument list) to adjust
the stack to the start of the calling sequence.

4. Val ues are returned to BASIC by including in the argument list
the variable name(s) which will receive the result.

5. If t h e argument is a string, the parameter's offset points to
three-bytes called the "String Descriptor." Byte zero of the
string descriptor contains the length of the string (0 to 255).
Bytes one and two, respectively, are the lower and upper eight­
bits of the string starting address in string space.

NOTE: If the argument is a string literal in the program, the string descriptor
will point to program text. Be careful not to alter or destroy your program this
way. To avoid unpredictable results, add+" " to the string literal in the pro­

gram.

Example:

20 A$ = "BASIC"+" "

This will force the string literal to be copied into string space. Now the string
may be modified without affecting the program.

6. Str i ngs may be altered by user routines, but the length must not
be changed. BASIC cannot correctly manipulate strings if their
lengths are modified by external routines.

page E.6

Example:

Assemble the subroutine.

A: MASM CALL, CALL, CALL;

Version 1.06, Copyright (C) Microsoft Inc. 1981,82

Warning Severe
Error s Er r or s
0 0

The Microsoft MACRO Assembler

Link the subroutine.

A: LINK CALL:

Microsoft Object Linker V1.10
(C) Copyright 1981 by Microsoft Inc.

Warning: No STACK segment

T here was 1 e r r o r d e t e c t e d .

(NOTE: This error is ok. The subroutine does not contain a stack since it
uses Z-BASIC's.)

Convert the subroutine to binary code.

A: EXE2BIN CALL
Exe2bin v e r s i o n 1. 5

Page E.7

This is a listing of the subroutine generated by MASM.

A: TYPE CALL.LST

The Microsoft MACRO Assembler 08-20 — 82 PAGE 1- 1

PAGE ,132
0000

FUNC SEG MENT

ASSUME CS : FUNC

0000
0 000 8 B E C
0 002 8 B 7 6 0 6
0 005 8 B 0 4
0 007 8 B 7 6 0 4
OOOA 03 CO
OOOC 89 04
OOOE CA 0004

START PROC
MOV
MOV
MOV
MOV
ADD
MOV
RET

FAR
BP,SP
SI,6 [BP]
AX,WORD PTR [SI]
SI,4 [BP]
AX,AX
WORD PTR [SI], AX

;Set up f r a me
; SI = po i nt er
; AX = i n t eg e r
;SI = p o i n t e r
;AX = A X + 2

;Save i t

pointe r
to paraml
value
to param2

4

0011
0011

START
FUNC

ENDP
ENDS
END START

The Microsoft MACRO Assembler

Segments and g r o ups :

08-20-82 PAGE Sy mbo l s - 1

N a m e c ombine c l a s sSize a l i gn

FUNC

Symbols:

0011 PARA NONE

N a m e Type Val ue At t r

F PROC 000 0 FUNC Le n gt h =0011START.

Warning Severe
Errors Er r or s
0 0

Page E.S

When calling Z-BASIC, set the/M switch to 32768:

ZBASIC /M:32768

The following is the BASIC program. The value in line 10 is for a 192K Z-100.
For a128K machine, make the value & H1FOO.

10 DEF SEG = 8 H2FOO ' set
20 GOSUB 80
30 Y%%uo= 5
40 MVLT = 8 HO

50 CALL MULT (Y/o, X/o)
60 PRINT X/o
70 END
8 0 OPEN "R" , 1 , " CALL.BI N" , 2
9 0 FIELD ¹ 1 , 2 A S A $
100 FOR X =(tHO TO (LOF(1) + 1)
1 10 GET ¹ 1 , X / 2 + 1
120 Q/ = CVI (A$)
130 M/0 = Q/0 MOD 256
140 L%%uo= INT (Q/o/256)
150 POKE X,M%%d AND LHFF
160 POKE X+ 1, L/o AND LHFF
170 NEXT X
180 RETURN

8 low-b i t s

base of Call/Peak/Poke to 2FOO:0000

STEP 2 ' for next to read every byte

' l oad p r o g r am
'set Y%%u
' set a d d r e s s o f p r o g r am
'call routine
'print result
'done
'Open binary file
'set 2-byte field

' get nex t p a i r o f by t e s
'convert to 16 — bit integer
'split into 8 high and

'poke data into memory

' get n ex t p a ir
l oca t i o n s

Page E.9

APPENDIX E

USR FUNCTION CALLS

Although the CALL statement is the recommended way of calling assembly
language subroutines, the USR function call is still available for compatibility
with previously-written programs.

The format of the USR function call is:Format

UsR[<digi t>] [(a rgument)]

(digit) is from 0 to 9. (digit> specifies which USR routine is being called.
If (digit> is omitted, USRO is assumed.

(argument) is any numeric or string expression. Arguments are discussed
in detail below.

In this implementation of BASIC, a DEF SEG statement must be executed
prior to a USR call to assure that the code segment points to the subroutine
being called. The segment address given in the DEF SEG statement deter­
mines the starting segment of the subroutine.

For each USR function, a corresponding DEF USR statement must have
been executed to define the USR call offset. This offset and the currently
active DEF SEG address determine the starting address of the subroutine.

When the USR function call is made, register [AL) contains a value which
specifies the type of argument that was given. The value in [AL] may be one
of the following:

2 Tw o -byte integer (two's complement)

3 Str i ng

4 Sin gle-precision floating point number

8 Dou ble-precision floating point number

Page E.10

APPENDIX E

If the argument is a number, the [BX] register pair points to the floating point
accumulator (FAC) where the argument is stored:

FAC is the exponent minus 128, and the binary point is to the left of the
most significant bit of the mantissa.

FAC-1 contains the highest seven bits of mantissa with leading 1 sup­
pressed (implied). Bit seven is the sign of the number (O= positive,
1 = negative).

If the argument is n integer:

FAC-2 contains the upper eight bits of the argument.

FAC-3 contains the lower eight bits of the argument.

If the argument is a single-precision floating point number:

FAC-2 contains the middle eight bits of mantissa.

FAC-3 contains the lowest eight bits of mantissa.

If the argument is a double-precision floating point number:

FAC-7 to FAC4 contain four more bytes of mantissa (FAC-7 contains the
lowest eight bits).

If the argument is a string:

the [DXj register pair points to three-bytes called the "string descriptor." Byte
zero of the string descriptor contains the length of the string (0 to 255). Bytes
one and two, respectively, are the lower and upper eight bits of the string
starting address in BASIC's data segment.

NOTE: If the argument is a string literal in the program, the string descriptor
will point to program text. Be careful not to alter or destroy your program this
way. See the CALL statement above.

Usually, the value returned by a USR function is the same type (integer,
string, single-precision, or double-precision) as the argument that was
passed to it.

Page F.f

APPENDIX F

Communication I/O

Since the communication port is opened as a file, all Input/Output state­
ments that are valid for disk files are valid for COM.

COM sequential input statements are the same as those for disk files. They
are: INPUT¹(f i le name>, LINE INPUT ¹(f i le number>, and the INPUTS
function.

COM sequential output statements are the same as those for disk, and are:
PRINT ¹<file number>, and PRINT ¹<file number> USING.

Refer to INPUT and PRINT sections for details of coding syntax and usage.

GET and PUT are only slightly different for COM files, see The GET and PUT
statements for COM files.

THE COM I/O FUNCTIONS

The most difficult aspect of asynchronous communication is being able to
process characters as fast as they are received. At rates above 2400 bps,
it is necessary to suspend character transmission from the host long enough
to "catch up". On some systems, this canbe done by sending XOFF (CTRL­
S) to the host and XON (CTRL-Q) when ready to resume. (Be sure to obtain
this information in the case you need to use this method.)

BASIC provides three functions which help in determining when an "over­
run" condition is eminent. These are:

LOC(x) Returns the number of characters in the input queue waiting
to be read. The input queue can hold 120 characters. If there
are more than 120 characters in the queue, LOC(X) returns
120. Since a string is limited to 255 characters, this practical
limit alleviates the need for the programmer to test for string
size before reading data into it. If fewer than 120 characters
remain in the queue, LOC(X) returns the actual count.

Page F.2

APPENDIX F

LOF(x) Returns the amount of free space in the input queue. That
is, 120 — LOC(x). Use of LOF may be used to detect when
the input queue is getting full. In practicality, LOC is adequate
for this purpose as will be demonstrated in the programming
example.

If true (— 1), indicates Z (1 AH) has been received. Returns
false (0) Z has not been received. If there are no characters
in the inut queue, then the system will wait until a character
is received.

EOF(x)

Possible Errors:

1. Co mmunicat ion Buf fer Overf low If a read iS attemPted after the
input queue is full, (i.e. LOF(x) returns 0).

2. D e v i ce I /0 Error If any of the following line conditions are de­
tected on receive; Overrun Error (OE), Framing Error (FE), or
Break Interrupt (Bl). The error is reset by subsequent inputs but
the character causing the error is lost.

This error message will also be returned if the input queue holds less than
the number of characters requested by the INPUTS function. To avoid this
condition, use the example shown in the following discussion, or poll the
input queue for the number of characters with the LOC(x) function.

10 OPEN "COM1:1200,N,8,2" AS Pl :REM OPEN COM1: CHANNEL
20 GOSUB 100 : P RINT AS :REM READ 10 CHARACTERS FROM COM1: BUFFER
30 GOTO 20 :REM GO INTO A LOOP
100 IF LOC(1) (1 0 T HEN 100 :REM WAIT FOR 10 CHARACTERS IN BUFFER
110 As = INPUTS(10, Pl) :REM READ 10 CHARACTERS
120 RETURN

3. Dev i c e Faul t If Data Set Ready(DSR) is lost during I/O.

Page F.3

APPENDIX F

THE INPUTS FUNCTION FOR COM FILES

The INPUT$ function is preferred over the INPUT and LINE INPUT state­
ments when reading COM files, since all ASCII characters may be signifi­
cant in communications. INPUT is least desirable because input stops when
a comma (,) or RETURN is seen and LINE INPUT terminates when a RE­
TURN is seen.

INPUT$ allows all characters read to be assigned to a string. Recall from
the rules for coding that INPUT$ will return X characters from the ¹Y file.
The following statements then are most efficient for reading a COM file:

10 WHILE LOC (1) <>0
20 A$ = INPUT$(LOC(1) ,4 1)
30
40 . . . P ro c es s d a t a r e t u r n e d i n A $. .
50
60 WEND

The previous sequence of statements read: ".. While there is something in
the input queue, return the number of characters in the queue and store
them in A$. Continue as long as there are characters present in the input
queue.

The GET and PUT Statements for COM Files

F Ormat: GET< f i l e n u mber> , < n b y t e s >

PUT <fi l e number>, <nbytes>

Function: GET and PUT allow fixed length I/O for COM.

<file number> ls an integer expressionreturning a valid file number.

<nbytes> Is an integer expression returning the number of bytes
to be transferred into or out of the file buffer. nbytes can­
not exceed 120.

Because of the low performance associated with telephone line communi­
cation, it is recommended that GET and PUT not be used in such applica­
tions.

Page F.4

APPENDIX F

Communication I/O

Examples:

The following program enables the Z-100 computer to be used as a conven­
tional terminal. Besides full duplex communication with a host, the TTY pro­
gram allows ASCII text to be "down-loaded" to a file. Conversely, a file may
be "up-loaded" (transmitted) to another machine.

In addition to demonstrating the elements of asynchronous communication,
this program should be useful in transferring BASIC programs (Saved with
the A option) and ASCII text to and from the Z-100.

NOTE: This program is set up to communicate with Microsoft's DEC-20, that
is, the use of XON and XOFF. You may want to further modify it for your
environment.

The TTY Program (An exercise in communication IiO).

10 SCREEN 0,0
15 KEY OFF:CLS:CLOSE
20 DEFINT A — Z
25 LOCATE 25,1
3 0 PRINT STRINGS(60, " ")
40 FALSE = 0: TRUE = NOT FALSE
50 MENU = 5 ' When CTRL-E is hit, the menu is displayed
60 XOFF$ =CHR$(19) : XON$=CHR$(17)
100 LOCATE 25,1:PRINT "Async TTY Program, Press CTRL-E to display menu";
105 LOCATE 1,1 :PRINT "Async TTY Program"
110 LINE INPUT "Speed'? " ;SPEEDS
120 COMFIL$ = "COM1: " + SPEED$+ ", N, 8"
130 OPEN COMFIL$ AS ¹1
140 OPEN "SCRN:" FOR OUTPUT AS ¹2
200 PAUSE =FALSE
210 A$ = INKEY$: I F A $=" " T HEN 230

220 IF ASC(A$)= MENU THEN 300 ELSE PRINT ¹ 1 , A $;
230 IF LOC(1)=0 THEN 210
240 IF L OC(1)>82 THEN PAUSE=TRUE: PRINT ¹ 1 , X OFF$;
250 A$ = INPUT$(LOC(1) , ¹ 1)
260 PRINT ¹ 2 , A $; : I F L OC(1)>0 THEN 240
270 IF PAUSE THEN PAUSE=FALSE:PRINT ¹ 1 , XON$;
280 GOTO 210
300 LOCATE 1,1:PRINT STRING$(30," ") : L OCATE 1,1
310 LINE INPUT"FILE? ";DSKFIL$
400 LOCATE 1, 1: PRINT STRINGS(30, " "):LOCATE 1, 1
410 LINE INPUT"(T) r ansmi t (R) e c e i v e , or (E)x i t ' ? " ; T XRX$
415 IF (T XRX+<>"T") AND (TXRX$<>"R") AND (TXRX$<>"E" THEN 400

Page F.5

APPENDIX F

Communication I/O

417 IF TXRX$= "E" THEN 9999

420 IF TXRX$= "T" THEN OPEN DSKFIL$ FOR INPUT AS ¹3:GOTO 1000

430 OPEN DSKFIL$ FOR OUTPUT AS ¹3
440 PRINT ¹ 1 , CHR$(13)
500 IF LOC(1)=0 THEN GOSUB 600
510 IF LOC(1) >82 THEN PAUSE=TRUE: PRINT ¹ 1 , XOFF$;
520 A$ = INPUT$(LOC(1), ¹ 1)
530 PRINT ¹ 3 , A $; : I F L OC(1)>0 THEN 510
540 IF PAUSE THEN PAUSE=FALSE:PRINT ¹ 1 , XON$;
550 GOTO 500
600 FOR I = 1 TO 5000
610 IF LOC (1) (>0 THEN I = 9999
620 NEXT I
630 IF I > 9 99 9 THEN RETURN
640 CLOSE ¹3:CLS:LOCATE 25,10: PRINT "+ Download complete+";
650 GOTO 200
1000 WHILE NOT EOF(3)
1010 A$ = INPUT$(1, ¹ 3)
1 020 PRINT ¹ 1 , A $;
1030 WEND
1040 PRINT ¹ 1 , CHR$(26) ; ' CTRL-Z to make c l o s e f i l e .
1050 CLOSE ¹3:CLS:LOCATE 25,10:PRINT "++ Upload complete
1I •

I

1060 GOTO 200
9999 CLOSE:KEY ON

NOTES ON THE TTY PROGRAMMING EXAMPLE:

Line No. Comments

10 Turns off the graphics mode and clears the reverse video
mode (returns to normal display).

Turns off the soft key display, clears the screen, and
makes sure that all files are closed.

15

Asynchronous implies character I/O as opposed to line or block I/O. There­
fore, all prints (either to the COM file or screen) are terminated with a semi­
colon (;). This retards the RETURN line-feed normally issued at the end of
a PRINT statement.

20 Define all numeric variables as INTEGER.

Clears the 25th line starting at column 1.25-30

Page F.6

APPENDIX F

CommentsLine No.

40

60

50

Define Boolean TRUE and FALSE.

Defines the value of the control key (CTRL-E) that will dis­
play the MENU.

Defines the value for the XON and XOFF characters (11H,
17 Dec and 13H, 19 Dec, respectively).

Prints program-ID and asks for baud rate (speed). Opens
communications to file number one, no parity, eight data

100-130

bits.

This section performs full-duplex I/O between the video
screen and the device connected to the RS-232 connector
as follows:

1. R ead a character from the keyboard into A$. Note
that INKEY$ returns a null string if no character is
waiting.

200-280

2. I f no character is waiting then go see if any characters
are being received. If a character is waiting at the
keyboard then:

3. I f the character was the MENU Key, then the user is
ready to download a file, so go get file name.

4. I f character (A$) is not the MENU key then send it by
writing to the communication file (PRINT ¹1...).

5. A t 230 see if any characters are waiting in COM buf­
fer. If not, then go back and check keyboard.

6. A t 240, if more than 82 characters are waiting then,
set PAUSE flag saying we are suspending input and
send XOFF to host stopping further transmission.

Page F.7

APPENDIX F

CommentsLine No.

7. At 250-260, read and display contents of COM buffer
on screen until empty. Continue to monitor size of
COM buffer (in 240). Suspend transmission if we fall
behind.

8. F inally, resume hose transmission by sending XON
only if suspended by previous XOFF. Repeat pro­
cess until MENU Key struck.

300-310

400-430

Get disk file name we are down-loading to.

Asks if file named is to be transmitted (up-load) or received
(down-loaded). Open the file as number 3.

Sends a RETURN to the host to begin the down-load. This
program assumes that the last command sent to the host
was to begin such a transfer and was missing only the ter­
minating RETURN. If a DEC System is the host, then such
a command might be:

COPY TTY = MANUAL.MEM<CTRL-E>

440

WHERE: The MENU Key (CTRL-E) was struck instead of RETURN.

500

510

520-530

When no more characters are being received (LOC(x) re­
turns 0), then perform a timeout routine (explained later).

Again, if more than 82 characters are waiting, signal a
pause and send XOFF to the host while we catch-up.

Read all characters in COM queue (LOC(x)) and write
them to disk (PRINT P3..) until we are caught up.

If a pause was issued, restart host by sending XON and
clear the pause flag. Continue process until no characters
are received for a predetermined time.

540-550

Page F.S

APPENDIX F

Communication i/0

Line No.

600-650

Comments

This is the time-out subroutine. The FOR loop count was
determined by experimentation. In short, if no character is
received from the host for 17-20 seconds, then transmis­
sion is assumed complete. If any character is received
during this time (line 61 0) then set I well above FOR loop
range to exit loop and then return to caller. If host transmis­
sion is complete, close the disk file and return to being a
terminal.

1000-1060 Tran s mit routine. Until end of disk file do:

Read one character into A$ with INPUT$ statement. Send
character to COM device in 1020. Send a CTRL-Z at end
of file in 1040 to close the receiving devices file. Finally,
in lines 1050 and 1060, close our disk file, print completion
message and go back to conversation mode in line 200.

This line closes the COM file left open and restores the soft
key display.

9999

EVENT TRAPPING

The following are defined as "event specifiers":

COM (n) where n is the number of the COM channel (one or two)

KEY (n) w h ere n is a function KEY Number (one-12). One through
12 are the Soft Keys F1 through F12.

We add the following statements:

ON <event speci fier> GOSUB <line number>

Page F.9

APPENDIX F

Commonication I/O

This sets up an event trap line number for the specified event. A (line
number> of 0 disables trapping for this event.

<event speci f ier> ON
<event speci fier> OFF
<event speci fier> STOP

These statements control the activation/deactivation of event trapping.
When an event is ON, if a non-zero line number is specified for the trap with
an ON statement then everytime BASIC starts a new statement it will check
to see if the specified event has occurred (a function key was struck, a corn
character has come in) and if so, it will perform a GOSUB to the line specified
in the ON statement.

When an event is OFF, no trapping takes place and the event is not remem­
bered even if it takes place.

When an event is "stopped" (it must be turned on first) no trapping can take
place, but if the event happens this is remembered so an immediate trap
will take place when an <event> ON is executed.

When a trap is made for a particular event the trap automatically causes a
"stop" on that event so recursive traps can never take place the "return" from
the trap routine automatically does an ON unless an explicit OFF has been
performed inside the trap routine.

When an error trap takes place this automatically disables all trapping.

Trapping will never take place when BASIC is not executing a program.

Special notes about each type of trap:

KEY Trapping.

No type of trapping is activated when BASIC in direct mode. In particular,
function keys resume their standard expansion meaning during input.

A key that causes a trap is not available for examination with the INPUT or
INKEY$ statements so the trap routine for each key must be different if a
different function is desired.

Page F.10

COM Trapping.

Typically the COM trap routine will read an entire message from the COM
port before returning back. It is not recommended to use the COM trap for
single character messages since at high baud rates the overhead of trap­
ping and reading for each individual character may allow the interrupt buffer
for COM to overflow.

Here is an example of event trapping using the F1 key:

10 KEY(1)ON
20 ON KEY(1) GOSUB 100
30 GOTO 30

100 BEEP: KEY(1)OFF : RETURN

The program will turn on the event trapping and cycle in line 30 until you
press the F1 key. At that point, the program will execute line 20 and go to
the subroutine in line 100 where it will sound the tone, turn the key event
off and return from the subroutine. If you press the F1 key a second time,
nothing will happen because the event trapping has been turned off.

page G.1

APPENDIX G

GIOSSary

A GLOSSARY OF COMMONLY USED COMPUTER
TERMS

Acoustic coupler (Modem) - One of the two types of modems: a device
you can connect between a standard telephone handset and a Computer
to communicate with other Computers. A modem will translate the normal
digital signals of the Computer into tones (and back again) that are trans­
mitted over standard telephone lines. By using an acoustic coupler
modem, you can use any telephone with a standard handset on a tempo­
rary basis and avoid a permanent connection to the telephone lines. See
"Modem" and "Direct-Connect Modem."

Acronym - A word formed from letters found in a name, term, or phrase.
For example, FORTRAN is formed from the words FORmula TRANslator.

Address - The label, name, or number identifying a register, location, or unit
where data is stored. In most cases, address refers to a location in Computer
memory.

Algorithm- A defined set of instructions that will lead to the logical conclu­
sion of a task.

Alpha- The letters of the English alphabet.

Alphanumeric - Letters, numbers, punctuation, and symbols used to repre­
sent information or data.

ALU - Arithmetic Logic Unit. This section of the Computer performs the arith­
metic, logical, and comparative functions of an operation.

ANSI - American National Standards Institute. This organization publishes
standards used by many industries, including the Computer industry. Most
noted are those standards established for Computer languages such as
FORTRAN and COBOL.

Analyst - A person who has been trained to define problems and develop
solutions. In the Computer industry, an analyst will also develop algorithms
for Cc mputer programs.

4

Page G.2

APPENDIX G

GIOSSa~

Application - A system, problem, or task to which a Computer has been
assigned.

Application program - A program or set of programs designed to accom­
plish a specific task like word processing.

Argument - A term used to describe a value in a variable, statement,
command, or element of an array or matrix table.

Array - A series of items arranged in a pattern. In computing, this term
is used to describe a table with one or more dimensions.

Artificial intelligence- A term used to describe the capability of a machine
that can perform functions normally associated with human intelligence:
reasoning, creativity, and self-improvement.

ASCII - American Standard Code for Information Interchange, a code used
by most Computers, including those sold by Heath and Zenith. It is the
industry standard used to transmit information to printers, other Com­
puters, and other peripheral devices. The most notable exception is some
of the IBM equipment which uses an EBCDIC code. See "EBCDIC."

Assemble - To prepare a machine usable code from a symbolic code.

Assembler- A Computer program used to assemble machine code from
symbolic code.

Assembly language - A Computer programming language that is heavily
machine oriented and makes use of mnemonics for instructions, operands,
and pseudo-operations.

Asynchronous - A mode of operation where the next command is started
and stopped by special signals. In communication, the signals are referred
to as start and stop bits.

Backup - 1. A copy preserved as a protection from the destruction of
the original (or processed) data and/or programs. 2. The process of pro­
ducing a backup.

page G.3

APPENDIX G

CI IQSSBPj'

BASIC - Beginner's All-purpose Symbolic Instruction Code. An easily
learned programming language consisting largely of English words and
terms.

Batch processing- An operation where a large amount of similar data
is processed by a Computer with little or no operator supervision. See
"Interactive Processing."

Baud rate - The rate at which information is transmitted serially from
a Computer. Expressed in bits per second.

BCD - Binary Coded Decimal. The method of encoding four bits of Com­
puter memory into a binary representation of one decimal digit (number).

Binary - A numbering system based on two's rather than ten's (decimal).
The individual element (or digit) can have a value of zero or one and
in Computer memory is known as a bit.

Bit - 1. A single binary element or digit. 2. The smallest element in Com­
puter storage capability.

Bit density - A measure of the number of bits recorded in a given area.

Block diagram - 1. A graphic representation of the logical flow of opera­
tions in a Computer program, usually more general than a flow chart.
2. A graphic representation of the hardware configuration of a Computer
system.

Boolean algebra - A symbolic system (algebra) named after its developer,
George Boole. It is concerned with Computer and binary processes and
includes logical operators.

Boot - The process of initializing (or loading) a Computer operating system.
Also referred to as "Booting Up."

Bootstrap - A program used by a Computer to initialize (or load) the operat­
ing system of the Computer.

Branch - To depart from the sequential flow of an operation as the result
of a decision.

Page G.4

APPENDIX G

GIQ338+

Break - The process of interrupting and (temporarily) halting a sequence of
operations, as in a Computer program.

Buffer - An auxiliary storage area for data. Many peripherals have buffers
which are used to temporarily store data which the peripheral will use as time
permits.

Bug - A term that is widely used to describe the cause of a Computer misop­
eration. The "bug" may be either in the hardware design or in the software
(programs) used by the Computer.

Bus - A circuit (line) used to carry data or power between two or more
sources. The S-100 bus, which is used in the Z-100 series Desktop Com­
puter, is composed of one hundred separate bus lines.

Byte - A term used to describe a number of consecutive bits. In microCom­
puters, a byte refers to eight bits and is used to represent one ASCII or
EBCDIC character.

Cable - An assembly of one or more conductors used to transmit power or
data from a source to a destination and, in some cases, vice-versa.

Character - A letter, number, punctuation, operation symbol, or any other
single symbol that a Computer may read, store, or process.

Check (sum) - A method of checking the accuracy of characters transmit­
ted, manipulated, or stored. The check sum is the result of the summation
of all the digits involved.

Chip - The term applied to an integrated circuit that contains many electronic
circuits. It is sometimes called an IC or an IC chip and sometimes refers to
the entire integrated circuit package.

Circuit - A system of electronic elements and connections through which
current flows.

COBOL- COmmon Business Oriented Language. This common high-level
language is used in a wide number of operations, most notably those dealing
with financial transactions.

Page G.5

APPENDIX G

Code- A method of representing data in some form, as in an ASCII or
EBCDIC form.

Column - A character position in a side-by-side relationship as opposed to
a row position which is one above another.

Command - A portion of code that represents an instruction for the Com­
puter.

Communication - The process of transferring information from one point
to another.

Compile - The process of producing machine code or pseudo-operational
code from a higher-level code, or language, such as COBOL or FORTRAN.

Compiler- The program that compiles machine code from a higher-level
code. See "Compile."

Computer - A machine capable of accepting information, processing it by
following a set of instructions, and supplying the results of this process.

CP/M - Control Program for Microcomputers. This is a disk-based operating
system commonly used by many microcomputers. CP/M is a registered
trade mark of Digital Research, Inc.

CPS - Characters Per Second. This term is sometimes used in relating
transmission speed, and is more commonly used in rating a printer's instan­
taneous printing speed.

CPU- Central Processing Unit. The CPU is the brain of a Computer. It is the
circuitry which actually processes the information and controls the storage,
movement, and manipulation of that data. The CPU contains the ALU and
a number of registers for this purpose.

Crash - A term that refers to a Computer or peripheral failure.

CRT - Cathode Ray Tube. This term is used interchangeably with display,
screen, and video monitor. It refers to the television-like screen in a Com­
puter or terminal.

page G.6

APPENDIX G

GI0888+

Cursor - A character, usually an underline or graphics block, used to indi­
cate position on a display screen.

Cylinder - Used to describe the tracks in disk units with multiple read-write
heads, which can be accessed without mechanical movement of the heads.

Daisy wheel printer - A hard copy device that produces images on paper
when a hammer strikes an arm or projection of the print wheel, which
looks somewhat like a daisy. The print quality from such printers is usually
quite high, similar to that of a quality office electric typewnter.

Data - The general term used to describe information that can be process­
ed by a Computer. Although the term is plural, it is commonly used in
a singular form to denote a group of datum.

Data base - A large file of information that is produced, updated, and
manipulated by one or more programs.

Data processing - This term usually refers to the act of processing raw
data, as by the use of a Computer.

Debug - The process of locating and removing any "bugs" in a Computer
system; usually as it applies to software.

Decimal - The numbering system based on ten and comprising the digits
0 through 9.

Delete - To remove or eliminate.

Density - The closeness of space distribution on a storage medium such
as a diskette.

Device - A separate mechanical or electronic unit, such as a printer, disk
drive, terminal, and so on.

Digit - A single element or sign used to convey the idea of quantity, either
by itself or with other numbers of its series.

Digital computer - A Computer in which numbers are used to express
data and instructions.

page G.7

APPENDIX G

Glossary

Direct-connect modem - One of the two types of modems; a device
you can connect between a telephone line and a Computer to communi­
cate with other Computers. A modem will translate the normal digital sig­
nals of the Computer into tones (and back again) that are transmitted
over standard telephone lines. By using a direct-connect modem, you
avoid problems associated with high levels of noise and make a more
permanent connection to the telephone lines. See "Modem" and "Acoustic
Coupler."

Directory - A disk file, listing all of the other files on the diskette and
pertinent information about each file.

Disk - A circular metal plate coated with magnetic material and used to
store large amounts of data. Also called a hard disk. See "Diskette."

Disk drive - A device used to read data from and to write data onto
diskettes.

Diskette - A thin, flexible plastic platter, coated with magnetic material
and enclosed in a plastic jacket. It is used to store data and comes in
two standard sizes: 5-1/4" and 8" in diameter. Also called a "floppy disk,"
"floppy diskette," "flexible disk," or "flexible diskette."

Disk operating system - See "DOS."

Display - The television-like screen used by the Computer to present
information to the operator.

DOS - Disk operating system - A program or programs that provide basic
utility operations and control of a disk based Computer system.

Dot-matrix printer - A hard copy printer that works by forming the printed
character through the selection of wires which strike the paper.

Double density - This term is most often applied to the storage character­
istics of diskettes, and generally refers to the density of the storage of
bits on the diskette surface on each track. It also refers to the density
of the diskette tracks, though this is not the common usage.

page G.S

APPENDIX 6

Glossa@

EBCDIC - Expanded Binary Coded Decimal Interchange Code. This code,
used primarily in IBM equipment, is used to transmit information to
peripheral equipment and other Computers. ASCII code is the Computer in­
dustry's standard and is similar. See "ASCII".

Edit - To change data, a program, or a program line.

Execution - The process which is performed by a Computer according to
instructions.

Field - A set of related characters that make up a piece of data. For instance,
a field of characters spelling a person's first name would be one field in a
person's name and address record in a mail program's data file. See "Rec­
ord" and "File."

File - A collection of related records that are treated as a unit. A file may
contain data or represent a Computer program. A file can exist on diskette
or hard disk. See "Field" and "Record."

Firmware - A Computer program that is part of the physical makeup of the
Computer. See "Software" and "Hardware."

Fixed disk - See "Disk."

Flowchart - A symbolic representation of the logical flow of operations in
a Computer program, usually very detailed.

Formatting - The process of organizing the surface of a diskette or disk to
accept files of data and programs.

FORTRAN - FORmula TRANslator. A popular high-level programming lan­
guage used primarily in scientific applications.

Graphics - This term generally refers to special characters which may be
displayed or printed. In other uses, it indicates that the specified device may
be able to reproduce any type of display, from photographs to line and bar
charts. Often graphics' capabilities are expressed in pixels, or points which
may be lit (number of points per row by number of rows).

Page G.9

APPENDIX G

Hard copy - Typewritten or printed characters on paper, produced by
a peripheral, called a printer.

Hard-sectored - This term applies to diskettes and indicates a type of
diskette that has multiple timing holes which mark sector boundaries as
well as the beginning of a track.

Hardware - The physical Computer and all of its component parts, as
well as any peripherals and inter-connecting cables. See "Firmware" and
"Software."

Hexadecimal - A numbering system based on sixteen and represented
by the digits 0 through 9 and A through F. A single byte of data may
be represented by two hexadecimal digits.

High level language - A programming language which uses symbol and
command statements that an operator can read. Each statement repre­
sents a series of Computer instructions if expressed in machine language.
Examples of high level languages are BASIC, COBOL, and FORTRAN.

Home - This term usually means the upper left-hand corner of the display
screen, and specifically the first displayable character location.

I/O- Input/Output. This term refers to the devices which enter and/or store
data and/or the paths through which such data passes. See "Port."

IC - Integrated Circuit- See "Chip."

Input - 1. Information or data transferred into the Computer. 2. The route
through which such information passes. 3. The devices which supply a
source of input data, such as the keyboard or disk drive.

Instruction - A program step that tells the Computer exactly what to do for
a single operation in a program.

Integer - A whole entity (number). Not a part, fraction, or a number with a
decimal point.

page 6.10

APPENDIX G

Glossary

Interactive processing - An operation where data is processed by a Com­
puter under the supervision of an operator, often requiring many inter­
mediate keyboard entries. See "Batch Processing."

Interface - A device that serves as a common boundary between two other
devices, such as two Computer systems or a Computer and peripheral. See
"RS-232 Interface."

Interference - This is usually termed RF Interference, for Radio Frequency
Interference, and in recent years has come to the attention of the FCC (Fed­
eral Communications Commission). Interference is the presence of un­
wanted signals in an electrical circuit. In radio and television, it causes noise,
static, and picture distortion and disruption. The FCC ruled that Computers
must meet certain standards with regard to the amount of interference they
cause in nearby radios and televisions.

Interpreter - A special program that interprets (usually) the code in a high
level language for use by the Computer. It performs an interpretation each
time an instruction is executed. Usually, this results in slower operation as
compared to a compiled Computer language. However, the process of test­
ing and debugging an interpreted Computer program is much easier and
faster. BASIC is a high level language that is usually found in an interpreter
form.

Interrupt - A temporary suspension of processing by the Computer and pos­
sible override by a high priority routine caused by input from another part
of the Computer or a peripheral.

Jump - A departure from the normal sequential line-by-line flow of a pro­
gram. A jump may be either conditional — based upon the outcome of a test
— or unconditional (i.e., absolute).

Justify - To adjust exactly — the perfect alignment of a margin. Normal text
applications are left justified — that is, the left margin is always aligned. A
feature of many word processors is right justification where the right margin
is also perfectly aligned by adding extra spaces between words or incre­
ments of a space between letters.

Page G.11

APPENDIX G

Glossary

K - The symbol used to equal 1024. Also the abbreviation of kilo, which
stands for 1000. However, in Computers it is the power of two closest to the
number (2" 10); hence, the amount of 1024. As an example, 16K would
equal 16 times 1024, or 16384. See "kilo."

Keyboard - A device used to enter information into a Computer. It is made
up of two or more keys, often grouped as is a typewriter and/or calculator
keyboard.

Keypad - A small keyboard or section of a keyboard containing a group of
10, 12, or 16 keys, generally those used on simple calculators.

Keyword - This is a single word in a high-level language that defines the
primary type of operation to be performed.

Kilo - A prefix meaning one thousand. In Computers, it is abbreviated as
K and also may refer to the power of two closest to a number — 4,096 is
4K. See "K."

Kilobyte -1,024 bytes. See "Byte."

Language - A defined set of characters which, when used alone or in combi­
nations, form a meaningful set of words and symbols. When we are speak­
ing of a Computer language, we mean a set of words and operations, and
the rules governing their usage. Examples of Computer languages are
Machine Language, Assembler Language, BASIC, COBOL, and FOR­
TRAN.

Load - The process of entering information (data or a program) into a Com­
puter from keyboard, diskette, or other source.

M - Abbreviation for Mega. See "Mega."

Machine language - A programming language consisting only of numbers
or symbols that the Computer can understand without translation.

page G.12

APPENDIX G

GI0888@

Main frame - 1. The actual central hardware of a Computer, containing
the Central Processing Unit (CPU). 2. A large, multi-tasking, multi-user
Computer, usually associated with financial and government institutions
and having the ability to process very large amounts of data in a batch
processing mode.

Maintenance - The process of maintaining hardware and software. With
hardware, in addition to corrective maintenance or repair, this also includes
preventive maintenance, or cleaning and adjustment. With software,
maintenance refers to updating critical tables and routines to maintain ac­
countability with established standards (as updating tax tables for Income
and Social Security tax deductions in a payroll program).

Matrix - 1. A rectangular array of datum, usually numeric, subject to
mathematical operations or manipulation. Any table is a matrix. 2. A rectan­
gular array of elements which, when used in combination, may form symbols
and/or characters, as in a dot-matrix printer or video display.

Mega - A term meaning one million. Abbreviated M. When used in Com­
puters, it usually means one thousand K. One Megabyte equals 1,000
Kbytes, or 1,024,000 bytes.

Megabyte -1,024,000 bytes. See "Mega."

Ilemory - A portion of a Computer that is used to store information (either
data or programs). The size of a microcomputer is often determined by the
amount of user memory (measured in Kilobytes) in the system. See "RAM,"
"ROM."

Microcomputer - A term that applies to a small, (usually) desktop Computer
system, complete with hardware, software, and peripherals. See also
"Minicomputer" and "Main Frame."

Minicomputer - A term that applies to medium sized Computer systems.
See "Microcomputer" and "Main Frame."

Mnemonic - A term applying to an abbreviation or acronym that is easy to
remember.

Mode - Method of operation. For instance, BASIC has two modes of opera­
tion: Direct Mode and Indirect Mode.

page G.13

APPENDIX G

GI0888@

Modem - MOdulator DEModulator. A device that converts the digital signals
from a Computer into a form compatible with transmission facilities and vice­
versa. Used most commonly with telephone communications.

Modulo - A mathematical operation resulting in the remainder of a division
operation. 42 modulo 5 = 2 (the remainder of 42 divided by 5).

Monitor - 1. A control program in a Computer. 2. A black and white or color
(CRT) display.

Multi-processing - A term which means doing two or more processes
at the same time. While this usually applies to Computers with more than
one CPU, it sometimes also applies to time-sharing. See "Time Share."

Multi-tasking - Often used synonymously with multi-processing, this term
means doing two or more tasks at the same time. Further, as differing
from multi-programming, which deals with unrelated tasks, multi-tasking
is related and often deals with the same disk files.

Network - A network is the interconnection of a number of points by means
of communications facilities, such as the telephone.

Numeric - Composed of numbers. The value of a number as contrasted to
a character representation.

Octal - A numbering system based on eight and represented by the digits
0 through 7. A single byte of data may be representedby three octal digits.

OS - Operating System - A program or programs that provide basic utility
operations and control of a Computer system.

Operation - A defined action; the action specified by a single Computer in­
struction.

Operator - The person who actually manipulates the Computer controls,
places the diskette into the disk drive, removes printer output, etc.

Output - The results of Computer operations; this may be in the form of dis­
played or printed information, or data stored on, (for example) a diskette.

page G.14

APPENDIX G

GIOSSB+

Parallel - In Computers, this refers to information which is sent as a group,
rather than serially. For instance, the eight bits of a byte are transmitted
simultaneously over eight channels or wires. See "Serial."

Parameter - A specification or value used in an operation or statement.

Parity - Refers to a method used to check the validity of data that is stored,
transmitted, or manipulated. The value of a Parity bit (which is added to the
number of bits which make up one character) will be determined by the de­
sired outcome of the sum of the bits for that character (i.e., to be either an
odd or even number).

Peripheral - A device that is connected to the Computer for the purpose of
supplying input and/or output capability to that Computer. A peripheral is
also not under direct control of the Computer; it may be capable of some
independent operation (self test, etc.).

Port - The path through which data is transferred into and/or out of the Com­
puter.

Precision - The degree of exactness, often based upon the number of sig­
nificant digits in a value.

Printer - A device used to produce Computer output in the form of (type) w rit­
ten or printed characters and symbols on paper. The output of a printe; is
called "hard copy" or a "Computer printout".

Problem - A situation where an unknown exists among a given set of
knowns. The finding of the unknown might be assigned as the objective of
a program or task.

Process - The act of completing or executing an instruction or set of instruc­
tions. It may include compute, assemble, compile, interpret, generate, etc.

Processor - A Computer or its CPU. See "CPU."

Program - A set of Computer instructions which, when followed, will result
in the solution to a problem or the completion of a task.

page G.15

APPENDIX G

G II0888N'7

Program language - Any one of a number of languages created for a
Computer. Examples include BASIC, COBOL, FORTRAN, and Assembly
Language.

Programmer - A person who prepares and writes a Computer program.

Prompt - A symbol, character, or other sign that the Computer is waiting
for some form of operator input. The prompt may request data and be made
up of a query, requesting specific data. In other instances, the prompt may
simply mean that the Computer is finished executing the latest command
and is waiting for new instructions in the form of a command.

Pseudo - A prefix meaning an arbitrary substitution for.

Query - A specific request for data, usually accompanied by an operator
prompt.

RAM - Random Access Memory. Volatile read-write memory in which data
may be written to (stored) or read from (retrieved) directly. See "Random
Access," and "volatile."

Random access - This term refers to the ability to access locations without
regard to sequential position; that is, access may be accomplished by
going directly to the location. On occasion, this is called "direct access."

Read - The process of obtaining data from some source, such as a disk­
ette.

Read/write head - This is a magnetic recording/playback head similar
to those used by tape recorders. The function of the head is to read
(playback) and write (record) information on magnetic material such as
disks or diskettes.

Real time clock - This portion of the Computer maintains a time function
which may be used for making a record of the time used to complete
an application. In many small Computers, this is a function of software,
rather than hardware, and is subject to timing interrupts caused by certain
operations.

Reset - The process of restoring the equipment to its initial state; which
was reached by applying power to the system and turning it on.

page G.16

APPENDIX G

ROM - Read Only Memory. Memory which is similar to RAM, except that
data cannot be written to it. Data can be read from it directly, as in the case
of RAM, but ROM is non-volatile; that is, it will retain the information stored
in it whether power is applied or not. It is most often used for special pro­
grams such as the monitor program in the Z-100 Desktop Computer. See
"Volatile," "RAM," "PROM," "EP ROM," and "EEP ROM."

Routine - A sequence of instructions that carry out a well-defined function.
A program may be called a routine, although programs usually contain many
routines. If a routine is separated from the main body of the program it is
referred to as a "subroutine."

RS-232 interface - A standardized interface adopted by the Electronic
Industries Association (EIA) to ensure uniformity of interfacing signals be­
tween Computers and peripherals. This capability is built into most Com­
puter devices. See "Interface."

Search - The systematic examination of data to locate a specific item.
Searches are characterized by several different methods including sequen­
tial (items are examined in a specific sequence) and binary (ordered data
containing the desired item is repeatedly halved until only the desired item
remains).

Sector - A portion of a disk track. The location of a particular sector on the
disk track is a matter of timing. In a diskette, timing is handled by timing
holes. Diskettes containing only one timing hole are said to be soft-sectored
because the timing is handled by software. Diskettes containing many tim­
ing holes are said to be hard-sectored because the timing is handled by
hardware. See "Track."

Sequential - The order in which things follow, one after the other.

Serial - Refers (as referenced to data in computers) to data that has
been broken down into a component part (character or bit) and handled
in a sequential manner.

page G.17

APPENDIX G
GIossevy

Sign- An indication of whether the value is greater than zero (>0) or
less than zero (<0). The dash or hyphen (-) is used to indicate a negative
(less than zero) value. The absence of the dash or a plus sign (+) indi­
cates a value greater than zero (positive).

Single density - This term is most often applied to the storage characteris­
tics of diskettes, and generally refers to the density of the storage of bits
on the diskette surface on each track. It also refers to the density of the
diskette tracks, though this is not the common usage.

Software - This is a general term that applies to any program (set of
instructions) that may be loaded into a Computer from any source. See
"Firmware" and "Hardware."

Sort - To arrange (or place in order) data according to a pre-defined
set of rules.

Syntax - The rules governing the use of a language.

System - An assembly of components into a whole — A Computer system
is made up of the Computer plus one or more peripheral devices.

Table - A collection of data into a form suitable for easy reference. This
glossary could be called a table.

Task - A job, usually to solve a problem or follow a specific set of instruc­
tions.

Telecommunications - This term refers to the transmission and/or recep­
tion of signals by wire, radio, light beam, telephone, or any other electronic
means.

Terminal - An Input/Output device, usually consisting of keyboard and
display screen. A terminal also may consist of a printer and keyboard;
this is referred to as a "printing terminal." Either type may include a modem
(either acoustic coupler type or the direct-connect type) for remote opera­
tion. Some (usually older models) may also include a paper tape punch
and reader.

Page G.18

APPENDIX G

Glossaiiry

Time share - The process of accomplishing two or more tasks at (appar­
ently) the same time. The Computer will process one task at a time, but
only a small portion before switching to the next. Because a Computer
can process a great amount of data in a very short time, the switching
between tasks is transparent to human observation except when many
tasks are executed at the same time.

Track - The portion of a disk that one read/write head passes over while in
a stationary position. Track density is measured in TPI (Tracks Per Inch).

Utility - A program that accomplishes a specific purpose, usually quite com­
monly needed by a wide range of applications. Most utilities are furnished
free with a Computer system, while some, like sort routines, are sold by vari­
ous vendors.

Variable - This term applies to an assigned memory location (represented
by a symbol or name) where a value is stored by a program. The mainte­
nance of the variable is handled by the program.

Verify - The act of comparing original data against stored data to assure cor­
rectness of the data.

Word processing - The ability to enter, manipulate, correct, delete, and
format text; an application which is widely used in microcomputers. Word
processors are used to write letters; and to prepare documents such as
magazine articles, manuscripts, manuals, and books; to name only a few
of their applications.

Write - The process of recording data on some object, such as display termi­
nal, diskette, or paper.

Page H.1

BI BLOG RAP HY

Instant BASIC, Brown, Jerald R., Dilithium Press, 1978.

BASIC BASIC: An Introduction to Computer Programming in BASIC Lan­
guage, Coan, James S., Hayden Book Co., second edition, 1978.

Programming in BASIC for Personai Computers, Heiserman, David L.,
Prentice Hall, 1981.

Microsoft BASIC, Knecht, Ken, Dilithium Press, 1979.

The BASIC Handbook: An Encyclopedia of the BASIC Computer Language,
Lien, David A., Compusoft Publishing, second edition, 1981.

page H.2

page X.1

INDEX

A
A option, 10.153
ABS function, 10.1
Absolute address, 7.9,8.16
Absolute value, 10.1
Action verb, 8.24,10.59
Adding Data to a Sequential File, 6.14
Addition, 5.22
Advanced graphics, 8.1,8.33
Algebraic expressions, 5.23
ALL option, 10.13,10.23
AND, 5.32-5.35,5.37-5.45,8.25,10.59
Angles, 8.9,8.10
Angle brackets, 2.18
Angle command, 8.17,8.20,10.41
Angles of a Circle, 8.9,8.10,10.17
Angle parameters, 8.9,10.17
Animation, 8.14,8.22,8.23,8.2510.60
Append a P, 4.9,10.153
Append an A, 4.9,10.153
Application program, 1.10
Application

definition of, 1.2
Argument, 5.46,9.11
Arithmetic Functions, 5.46
Arithmetic operations, 3.29
Arithmetic operators, 5.19-5.24
Array, 5.1,5.12-5.18,8.14,8.22,

Array Declarator, 5.12-5.13
Array size formula, 8.23,8.24
Array storage allocation, 5.14
Array Subscript, 5.13,10.39
Array variables, 5.21,10.23,10.39
Array

one dimensional vertical, 5.12
ASC, 5.57,6.7,10.2
ASCII, 4.9,5.30,5.57,6.16,6.26,

7.1,10.2,10.153,10.163

B
BACK SPACE, 2.17,3.6,3.7,3.10
Background color, 8.1,8.3,10.21-10.22
Backslash (~), 5.19,5.20,5.22
Bar graph, 8.8
Base-two, 5.39
BASIC Command Mode, 2.4
BASIC statement, 2.10,2.11
Batch mode, 2.2
BEEP statement, 10.5
Bell, 10.5,10.15
Binary code, 1.4,3.57
Binary file, 4.1
Binary format, 4.9
Binary notation, 3.38
Binary operator, 3.21
Binary-encoded, 4.9
Bit, 5.32
Bit manipulation, 5.38
Bit patterns, 5.38,5.40-5.41,5.57
BLOAD command, 10.6,10.7,10.8
Boot-up, 4.1
Border, 7.2,8.6
Border attribute, 8.12
Boundaries, 8.12,8.20
Box option, 8.6
Braces, 2.18

Branch commands, 1.6
Brief

definition of, 1.1

8.22,10.59,10.121

Assembly language, 1.4,1.5,10.11,10.10
Assembly language programs, 10.10
Assembly language routines, 10.24
Assigned values, 5.1
Assignment and Allocation Statements, 9.3
Asynchronous communication, 2.13,10.118
ATN function, 10.3
Attribute value, 8.1-8.13,10.21-10.22,10.122
AUTO command, 4.5,10.4

Aspect ratio, 8.10,8.9,8.11,10.17,10.171

Page X.2

INDEX

BSAVE, 10.6,10.8
BU%, 6.25
Buffer, 6.6,6.17,6.20,6.21
Bug, 1.8,4.7
Bytes, 5.57,8.24
Bytes free number, 4.1

4.8,10.25,10.161

Compiler, 1.6,1.7,10.14,10.45,10.152
Compressed binary, 4.9,6.2,10.153
Computer languages, 1.4
Conditional Execution Statements, 9.5
Conditional Branching, 10.63,10.64
Cone, 8.11
Conjuction operator, 5.35
Constants, 5.1,5.46-5.48
CONT command, 2.37,5.1,10.25,10.158

Contents of an array, 8.26
Content Organization, 1.2
Control Characters, 2.17
Control Statements, 5.4
Control-C, 2.17
Control-H, 2.17
Control-l, 2.17
Control-O, 2.17
Control-Q, 2.17
Control-S, 2.17
Control-U, 2.17
Conversion functions, 6.27,10.107,10.130
Converting a numeric constant, 3.51-3.53
COS function, 10.26
Creating a Random File, 4.18
Creating a Sequential Data File, 6.7
CSNG function, 5.47,10.28
CSRLIN function, 7.12,7.14,10.29
CTRL-C, 3.4,3.7,3.1 0,8.7,9.6,10.4,10.92
CTRL-E, 3.7,3.9
CTRL-F, 3.7,3.8
CTRL-G, 2.20,2.23
CTRL-L, 3.6-3.8
CTRL-N, 3.7,3.9
CTRL-U, 3.6-3.7,3.10
CTRL-W, 3.7,3.10,7.9
Cursor, 3.1-3.4,3.6,4.7,10.29,10.127
Cursor movement, 3.6,3.7
CVD, 6.26,10.30
CVI, 6.27,10.30

C
Calculator, 2.5
CALL statement, 10.10,10.11,10.24
Capital letters, 2.18,5.31
CAPS, 2.18
Carriage return, 3.3,3.4
CBDL function, 5.47,10.12
Changing a Z — BASIC Program, 3.3
CHAIN Statement, 10.13,10.3,10.23
Character Image display program, 8.27
Character set, 2.7
Checkpoint

definition of, 1.1
CHR$, function, 5.55,7.5,10.2,10.15
CHR$(34), 10.137
CINT function, 10.16
CIRCLE Statement, 8.5,8.9,8.10,8.11,10.17
CLEAR statement, 10.18
CLOSE statement, 6.3,6.4,6.8,10.19
CLS statement, 10.20
Colon, 3.1
COLOR statement, 8.1-8.13,8.19,9.16,10.21,10.22
Comma, 2.19,2.20,6.13,10.129
Command level, 2.4
Command line options

<highest memory location), 2.2,4.2,4.3
Command line with options, 2.1
Commas, 2.28,2.29,5.55,6.13,10.129,10.130
Comments, 2.10,2.11
COMMON statement, 10.13,10.14,10.23
Compatibility, 7.3

Page X.3

INDEX

CVS, 6.27,10.30

0
DATA statements, 8.8,10.31,10.142,10.147
Data type definition statements, 9.3
DATE$ statement, 10.32
Debugging, 1.8,4.7,4.8,10.170
Decimal point, 10.133
Declaring Variable Types,3.7
Default, 2.12
Default aspect ratio, 8.10,10.17
Default attributes, 8.5,8.9
Default drive, 4.1,4.9
Default extension, 2.2,2.15,4.9
DEFDBL statement, 9.3,10.35
DEF type statement, 9.3,10.35
DEF SEG statement, 10.6,10.10,10.36
DEF statement, 9.3
DEF USR statement, 10.171
DEF USRO statements, 10.171
DEFINT, 9.3,10.35
DEFSTR, 9.3,10.35
DELete Key, 3.6,3.7,3.9
Deleting characters, 3.6,3.9
DELETE option, 10.14
DELETE command, 10.38
Delimiters, 2.19,2.20
DEMO I, 8.30,8.31
DEMO II, 8.32,8.33
Details

definition of, 1.1
Device, 2.12,2.13
Device name, 2.12,2.13
Device specification, 2.13,4.9
DIM statements, 5.12-5.15,10.24,10.38,
Dimensions, 5.13,5.17,8.22
Direct Mode, 2.4,2.5,3.2-3.5
Directory pointer, 6.7
Disjunction operator, 3.35,3.37,3.42

9.21,10.28-10.29,10.103

Disk directory, 6.7
Disk I/O, 6.17
Disk sector, 6.6
Display format, 7.1
Displaying graphic images, 10.6,10.8
Division, 5.21,5.22
Division by zero, 5.22
Dollar sign, 5.8,5.54,10.134
Double asterisk, 10.134
Double dollar sign, 10.134
Double-precision, 5.1,5.48-5.53,8.23,

Double-precision constant, 5.48
Double-precision numbers, 5.49
Double-precision variables, 5.10,5.51
Double quotation marks, 5.48
Draw statement, 8.14-8.21,8.23,10.41,10.42
Drive number, 6.7
Drive specification, 4.10
Duplicate definition error, 5.13

E
EDIT command, 3.2,3.3,10.42
Edit Mode, 4.7,10.42
Editing Z-BASIC, 3.1,3.11
Element, 5.1,5.12
Ellipse, 8.9-8.11
ELSE clause, 10.65,10.67-10.68
END statements, 10.43
End-of-data marker, 6.5
EOF function, 10.44
EOF pointer, 6.9
Equivalence, 5.37
Equivalence table, 5.40,5.42
EQV operator, 5.37,5.44
ERASE statement, 10.45
ERASEing, 5.13
ERR and ERL variables, 9.11,10.46
ERROR statement, 10.47,10.48

Page X.4

INDEX

10.108,10.112
Error trapping, 4.7,4.13,6.15,

Event Trapping, 10.148
See also Appendix F

Exceptions to Naming Variables, 5.2
Exclamation point, 5.1
Exclusive OR operator, 5.34
Executable statements, 2.11
Execution error, 5.25,5.26
EXP function, 10.49
Exponentiation, 5.20
Exponentiation Functions, 5.47
Expressions, 5.27
Extension, 2.12,2.14,6.7
Extension. BAS, 2.15,4.6,4.9

Flicker, 8.25
Floating point, 5.49,5.50
Floating Point Division, 5.22
FOR...NEXT statements, 10.53-10.56
Foreground color, 7.10,8.1,8.3,8.4

Formatting printed output, 10.113
Four carats, 10.135
FRE function, 10.57
Free memory, 4.2
Full Screen Editor, 3.1-3.11

Deleting text, 3.6
Inserting text, 3.6
Key assignments, 3.6

Functions, 5.46-5.47,9.8-9.10

8.12,10.21

6.17,6.22

F
Field, 2.19,2.20,2.29,4.17,4.22

Field buffer, 10.173
FIELD statement, 4.20,4.21,4.24,4.25,10.50
FIELD string, 6.21
Field variables, 6.25
Field-structured, 6.17,6.22
File, 2.12
File buffers, 6.6,6.7,6.8
File Control Block, 10.174
File Management Statements, 6.3
File Manipulation Commands, 6.1
File naming conventions, 2.15
File structure, 6.5
Filename, 2.14,2.15,4.6,4.9,

FILES command, 6.1,10.51
Filespec, 2.12
Filling a graphic figure, 8.12,8.13,10.123
FIX function, 10.52
Fixed Point, 5.49
Flag, 5.38

10.59-10.61

G
GET statement, 6.17,6.25,10.58
GET/PUT, statement, 8.14,8.22-8.29,

Getting Records Out of the File, 6.24
GOSUB...RETURN statement, 10.62
GOTO statement, 4.6,4.8,10.63,10.64
Graphic Transfer, 8.22
Graphic Statement, 8.1,8.12,8.13
Graphic Symbols, 7.4
Graphics Macro Language, 8.14,10.41

H
H-19 Graphics mode, 7.1,7.4,10.155
Hex constants, 3.49
HEX$ function, 10.64
High-level language, 1.5
Highest memory location, 2.3
Highlighting, 7.3
Holes, 8.12
HOME key, 3.6-3.8
Horizontal, addressable points, 7.1,7.2

4.10,6.1

Page X.5

INDEX

10.80

10.16,10.80

I
I/O statements, 10.114
IF... THEN statements, 10.65-10.69
I/O buffers, 6.5-6.7
I/O devices, 6.6
I/O statements, 6.3,9.6
Illegal Function Call, 5.13
Image storage procedure, 8.23
Image transfer, 10.59
Immediate mode, 2.4
IMP operator, 5.36,5.43
Inaccuracies, 5.30
Indirect Mode, 4.4
Initialization, 2.2
INKEY$ variable, 10.70
INP function, 10.71
Input buffers, 6.6
INPUT statement, 10.72-10.76
INPUT¹ statement, 6.10-6.13,10.77
INPUT$ function, 10.76
Inputting Z-BASIC Programs, 3.2
Insert Mode, 3.6,3.9
Inserting text, 3.6
Integer constants, 5.49
INSTR function, 10.79
INT function, 8.22,9.21,10.77

Integer, 8.23,10.16,10.52,10.80
Integer Array, 8.26
Integer Division, 5.19,5.20,5.22
Integer value, 5.12
Integer variables, 5.9
Integers, 5.1,5.9,5.48,5.51,

Internal Representation, 5.38,5.40,5.41,6.26
Interpreter, 1.4,1.5,1.6,1.8,1.9,4.1,4.3,

Intrinsic function, 5.46
I/O devices, 10.119

4.4,4.5,4.6

K
KEY statement, 10.81-10.83
Key values, 3.7
Key-pad keys, 3.1
KILL command, 6.1,10.84

L
LEFT$ function, 3.56,10.85
Left-justified, 6.22,6.23,10.103
LEN, 3.54,5.56,10.76,10,86.10.105
LET, 2.5,4.4,10.77,10.87
LET statement, 10.87
Line folding, 3.9
LINE INPUT statement, 10.90
LINE INPUT¹, 6.15,10.91
Line number, 2.6,2.10,2.11,3.1,3.2,

Line-feed, 3.3
LINE statement, 7.2,8.5-8.8,10.88,10.89
LIST command, 3.2,10.92
Listing a BASIC Program to a Line Printer, 4.11
Literal quotes, 6.13
LLIST command, 4.11,10.94
LOAD command, 6.1,10.95
Loading a BASIC Program, 6.1
Loading the BASIC Interpreter, 4.2
LOC function, 6.3,6.4,6.17,10.96
LOCATE statement, 7.12,7.13,10.97,10.98
LOF function, 6.3,6.4,10.99
LOG function, 10.100
Logic error, 4.7
Logical line, 3.3-3.5
Logical operators, 5.32-5.45
Lower case, 3.30
Lower case letters, 5.31,7.4
LPOS function, 10.101,10.178
LPRINT statement, 10.102
LSET statement, 6.18,6.21,6.22,10.103

4.7,4.10,5.23,5.25,6.5,6.25

Page X.6

INDEX

M
Machine independent, 1.5
Machine level, 5.37-5.38
Mathematical functions, 9.8
Matrix Manipulation, 5.16
Memory, 1.5,4.2,4.3,4.6,6.2,6.6
Memory space, 5.8
Memory space requirement, 5.51-5.53
MERGE command, 6.2,10.104,10.153
MERGE option, 10.14
Microprocessor, 1.6
MID$, function, 10.105
MID$, statement, 5.56,10.106
Minus sign, 10.133
MKD$ function, 10.107
MKI$ function, 10.107
MKS$ function, 10.107
Modulo Arithmetic, 5.19
Modulus division, 5.20,5.22
Movement Commands, 8.15-8.19,10.42
Multi-Dimensional Arrays, 5.14
Multiplication, 5.21

Numeric expressions, 5.19,5.20,5.24
Numeric Fields, 10.113
Numeric Functional Operators, 5.47
Numeric value, 5.38
Numeric variables, 5.1,5.5,5.7,5.8,5.52

0
0 mode, 6.14
OCT$ function, 10.111
Octal constants, 5.49
Offset, 10.6-10.8
OK, 2.1,2.4
ON COM statement,10.118,10.120
ON ERROR GOTO statement, 10.112
ON...GOSUB statement, 10.113
OPEN COM statement, 10.118-10.120
OPEN "0" statement, 6.19
OPEN "R", 6.19
OPEN statement, Z — BASIC, 6.4,6.7,6.17,10.114
OPEN statement, Z — BASIC, 10.115-10.120
Opening a File for Random Access, 5.19
Operands, 5.19,5.21,5.22,5.41
Operating system, 6.6
Operators, 5.19-5.47
Optimization, 1.7
OPTION BASE Statement, 5.13-5.15,10.117
Options, 2.2
OR operator, 5.35,5.38,5.41,5.43
Order of precedence, 5.20,5.37
OUT statement, 10.122
Output buffers, 6.6,6.7,6.10
Overflow, 5.22,5.52
Overlay, 10.104

N
N spaces/, 10.132
Name command, 6.2,10.108
Negation, 5.21,5.27
Nested FOR NEXT statement, 10.55,10.56
Nesting of subroutines, 10.62
NEW command, 10.19,10.109,10.170
Non-executable statements, 2.11
NON-I/O Statements, 9.5
Non-local RETURN, 10.149
NOT, 5.32-5.34,5.37
Notation, 2.18
Null statement, 10.110
Number sign, 10.113
Numeric comparison, 5.30
Numeric constants, 5.47-5.49

P
P options, 4.9,6.3,10.153
Packed binary format, 2.16
Pad out, 6.21

page X.7

INDEX

PAINT statement, 8.5,8.12,8.13,10.123
Painting jagged edges, 8.13
Parentheses, 5.19,5.23,5.24,5.25,5.37,5.38
Parity, 10.119
PEEK function, 10.124,10.126
Percent sign, 10.135
Period, 3.2,10.42
Peripheral device, 2.12
Physical Organization, 1 • 1
Physical record, 6.6,6.7
PI, 5.5,8.9,8.10
Pixels, 7.1,7.7,8.22,8.23,

Plotting Coordinates, 7.1-7.14,8.30
Plus sign, 10.133
Pointers, 6.6,6.7,6.21
POINT function, 7.7,7.8,10.125
POKE function, 10.124,10.126
POS function, 7.12,7.14,10.29,10.127
Precedence, 5.20,5.37
Prefix commands, 8.19-8.21
PRESET statement, 7.7,7.11,8.13,8.24,10.128
PRINT ¹, 6.12-6.14,10.136
PRINT CHR$(7), 10.5
Print positions, 10.128,10.132,10.133
PRINT statement, 2.6,2.19,5.25,5.55,6.8,

PRINT USING statement, 10.132,10.135
Print zones, 2.20
PRINT¹ statement, 6.8-6.12
PRINT¹ and PRINT¹ USING, 10.136-10.137
Printing/formatting techniques, 2.19
Printed numbers, 10.133
Problem oriented, 1.5
Program development process, 1.8,1.9
Program line, 3.3-3.4,4.4
Program line format, 4.4
Programming language, 1.4,1.5
Prompt string, 10.72-10.73
Protect option, 4.9,6.3,10.153

10.61,10.125

10.32,10.129-10.130

10.61,10.134-10.135

Q
Question mark, 5.25,10.51,10.130
Quotation marks, 5.54,6.13,10.137

Protected Files, 6.3
PSET statement, 7.7-7.10,8.7,8.24

Punctuation, 2.18,5.31
PUT and GET statements, 8.22,10.59-10.61
PUT Statement, 6.17,6.22,6.25,10.140

R
R" option, 4.10,6.1,6.2,10.95
Radius, 8.9,8.10,10.26
Random access, 6.4,6.16
Random access - buffer, 6.17
Random access files, 6.16-6.29
Random file buffer, 6.17
RANDOMIZE statement, 10.141
READ statement, 10.31,10.142
Recognized characters, 2.14
Record, 6.16,6.17,6.25
Record number, 6.4
Relational expressions, 5.37
Relational Operators, 5.27-5.31
Relative form, 8.7
REM statements, 2.10,2.11,10.144
REMARK statement, 2.10,2.11,10.144

RENUM command, 10.145
RESET command, 6.2,10.146
RESTORE statement, 10.31,10.142,10.147
RESUME statement, 10.148
RETURN command, 10.62,10.90,10.149
RETURN key, 3.4,4.1,4.4
Reverse video, 7.3,10.155
RIGHT$ function, 5.56,10.150
Right-justified, 6.22,10.103

(see also comment)

Page X.S

INDEX

RND function, 10.151
Rotating figures, 8.18
Row, 7.12,10.29
RSET statement, 6.22,10.103
RS-232 communications, 10.115,10.118,App. F
RUN command, 2.6,2.11,4.6,4.10,6.2,10.152
Running a BASIC Program, 4.6

Space Requirements, 5.51,5.52
Special Functions, 9.10
SQR function, 5.46,10.160
Square brackets, 2.18,4.8
Standard Math Functions, 5.47
Starting Z-BASIC, 2.1
Statement, 2.10,2.11
STEP, offset, 7.9,7.11,8.7
Stickman, 8.29
STOP statement, 4.8,10.161
Storage format, 8.22,10.61
Storage and Retrieval of Numeric Data, 6.26
STR$ function, 5.54-5.57,6.26,10.162
String arrays, 5.15
String comparisons, 5.31
String constants, 5.54
String expressions, 5.30,5.54,8.14
String Fields, 10.132
STRING$ function, 10.163
String variables, 5.8,5.54,5.55,5.56,

6.26,10.70,10.90,10.91
Strings, 3.54
Structuring the Random Buffer into Field, 6.20
Subroutine, 10.62
Subscript, 5.12-5.15
Subscript Out of Range, 5.13
Substring, 5.56,8.21
Subtraction operation, 5.21
Subtractions, 5.22
Superimpose the image, 8.25,10.60
SWAP statement, 10.164
Symbols, 5.3,5.31
Syntax, 2.18
Syntax diagrams, 2.18
Syntax errors, 3.4,4.7,5.25
Syntax notation, 2.18
SYSTEM statement, 10.165

S
SAVE command, 6.2,6.3,10.152,10.153
Saving a BASIC Program, 4.9
Scalar Multiplication, 5.17
Scale factor, 8.20,10.41
Screen display format, 7.1
SCREEN function, 7.1,7.2,7.5,10.154
SCREEN statement, 7.1,7.3,7.4,10.155
Sector, 6.6
Semicolon, 2.19,2.20,5.55,6.12,6.13,

10.129,10.130,10.132
Semicolon terminator, 6.12
Sequence of execution statements, 9.4
Sequential buffers, 6.7,6.17
Sequential data files, 6.5-6.15
Sequential input, 10.114
Sequential I/O, 6.17
Set attribute, 8.17
SGN function, 10.156
SIN function, 10.157
Sign-on, 2.1,4.2
Single-precision, 5.1,5.10,5.48
Single-precision constant, 5.48-5.49
Single-precision number, 8.23,10.30,10.107
Single-precision variables, 5.10
Slash (/), 5.22
SPACE$ function, 10.158
SPC function, 10.159

Page X.9

INDEX

T
TAB, 3.6,3.9
TAB function, 10.166
TAB key, 3.9
Tabular data, 2.19,2.20
TAN function, 10.167
Terminator, 6.11,6.12,6.13
TIME$ statement, 10.168-10.169
The Program Development Process, 1.8
Trace flag, 4.8
Translation, 1.6
Transposition of a Matrix, 5.17
Trigonometric Functions, 3.47
TROFF statement, 4.8,10.170
TRON statement, 4.8,10.170
Truncate, 2.14,6.22
Truncation, 2.14
Truth table, 5.32-5.33,5.41,5.42
Truth values, 5.38
Two's complement, 5.40,5.45

W
WAIT statement, 10.176
WEND statement, 10.177
WHILE statement, 10.177
WIDTH statement, 10.178
WRITE statement, 10.179
WRITE¹ statement, 10.180
Writing a BASIC Program, 4.5

Vertical addressable points, 7.1
Vertical Arrays, 5.14
Video board, 8.1
Video RAM chips, 8.1
Video Resolution, 7.1
Video screen, 7.1

X
X axis, 7.1,7.2
XOR, 5.35,5.42,8.25,10.68

U
Unary minus, 5.21
Unary operator, 5.21
Underscore, 10.135
Unquoted strings, 6.13
Updating Sequential Files, 6.14
Using the Z — BASIC manual, 1.3
USR function, 10.171

Y
Y axis, 7.1,7.2

Z
Z-1 00, 2.12,2.20
Z-100 All in One monitor, 7.1
Z-100 keyboard, 3.10-3.11
Z-BASIC command line, 2.1
Z-BASIC graphic capabilities, 7.1
Z-BASIC sign on, 2.1
Z-BASIC OPEN statement, 10.115
Z-BASIC summary program, 8.30-8.33
Z-DOS, 4.1,6.6,6.7
Z-DOS AUTOEXEC. BAT, 2.2
Z-DOS filename conventions, 2.15

V
VAL, 5.56
VAL function, 5.56,6.26,10.172
Valid Colors, 8.1,8.3,10.21
Variable name, 5.1,5.8
Variables, 2.5,2.6,3.4,4.8,5.1-5.18

10.13,10.23,10.168
VARPTR function, 10.173-10.175

