
QOoi QOoi=

Z- asic
(Z-DOS™)

data
systems

NOTICE

end-users, without either express or implied warranties of any kind on an "as is"
This software is licensed (not sold). It is l icensed to sublicensees, including

basis.

The owner and distributors make no express or implied warranties to sublicensees,
including end-users, with regard to this software, including merchantability, fitness
for any purpose or non-infringement of patents, copyrights or other proprietary rights
of others. Neither of them shall have any liability or responsibility to sublicensees,
including end-users, for damages of any kind, including special, indirect or
consequential damages, arising out of or resulting from any program, services or
materials made available hereunder or the use or modification thereof.

Technical consultation is available for any problems you encounter in verifying the
proper operation of these products. Sorry, but we are not able to evaluate or assist in
the debugging of any programs you may develop. For technical assistance, call:

(616) 982-3884 Application Software/SoftStuff Products
(616) 982-3860 Operating System/Language Software/Utilities

Consultation is available from 8:00 AM to 4:30 PM (Eastern Time Zone) on regular
business days.

Zenith Data Systems Corporation
Software Consultation
Hilltop Road
St. Joseph, Michigan 49085

Copyright ~ by Microsoft, 1982, all rights reserved.
Copyright > 1982 Zenith Data Systems Corporation
Z-DOS is a trademark of Zenith Data Systems Corporation

HEATH COMPANY
BENTON HARBOR, MICHIGAN 49022

ZENITH DATA SYSTEMS CORPORAT ION
ST. JOSEPH, MICHIGAN 49085

MH CCCcIIIOOo SOOo Wr ll

Z-Basic
(z-Dos™)

593-0040
CONSISTS OF

MANUAL
595-2825
FLYSHEET
597-2747

Printed in the
United States of America

data
systems

HEATHgÃltN

Volume 1

. X
. XI

Preface .
Major Features of Z-Basic

part I Introduction

Chapter 1 .
Manual Organization .

Physical Organization .
Content Organization
Using the Z-BASIC Manual .

General Overview of Languages .
Interpreters
Compilers
The Program Development Process
Applications Programs

General
Information

. 1.1

. 1.2

. 1.3
1.4

. 1.6
. 1.7
. 1.8
1.10

TABLE OF CONTENTS

Part II BASIC Overview

Program
Entry

Editing
Z-BASIC
Programs

Chapter 2 .
Starting Z-BASIC with the Z-DOS Operating System ..
Modes of Operation .

Direct Mode .
Indirect Mode

Character Set and Reserved Words
Character Set
Reserved Words

Line Format
Files and File Naming.........
Control Characters
Syntax Notation
Delimiters Used in Z-BASIC Printing .

The Comma
The Semicolon .

Chapter 3
The Full Screen Editor .

The Edit Command
Inputting Z-BASIC Programs
Changing a Z-BASIC Program
Syntax Errors
Logical Line Definition and INPUT Statements

The Full Screen Editor — Key Assignments

2.1
..... 2.1

. 2.4
2.5
2.6
2.7
2.7
2.9

2.10
2.12
2.17
2.18

... 2.19

... 2.19
2.20

3.1
... 3.1
... 3.2
... 3.2
... 3.4
... 3.4
... 3.5
.. 3.6

TABLE OF CONTENTS

. 4.1

. 4.1

. 4.4

. 4.6
..... 4.7
.... 4.9

4.10
4.11

Programming in
Z-BASIC

Chapter 4 .
Loading the BASIC Interpreter
Writing a BASIC Program .
Running a BASIC Program
Debugging a BASIC Program .
Saving a BASIC Program .
Loading a BASIC Program
Listing a BASIC Program to a Line Printer

Chapter 5
Variables .

Exceptions to Naming Variables
Common Uses for Variables
Declaring Variable Types

Array Declarator
Array Subscript .
OPTION BASE Statement
Vertical Arrays
Multi-Dimensional Arrays
Matrix Manipulation
Scalar Multiplication
Transposition of a Matrix

Arithmetic Operators and Expressions

Array Variables

Variable Names for Numbers and

. 5.1

. 5.1
for Character Strings ... 5.1

. 5.2

. 53
5.7

5.12
5.12
5.13
5.13
5.14
5.14
5.16
5.17
5.17
5.19
5.19

. 5.27
. 5.32
. 5.46

5.48
5.51

. 5.54

Arithmetic
and String
Operators

Arithmetic Operators
Relational Operators
Logical Operators
Numeric Functional Operators

Numeric Constants and Precisions
Converting Numeric Precisions
String Expressions and Operators

TABLE OF CONTENTS

File
Handling

Sequential Data Files

Plotting
Coordinates

Random Access Files

Chapter 6
File Manipulation and Management

File Manipulation Commands
Protected Files
File Management Statements

Creating a Sequential Data File .
Adding Data to a Sequential Data File

Creating a Random File .
Opening a File for Random Access
Structuring the Random Buffer into Fields ..
Assigning Data to Fields and Writing

the Buffer to the Disk .
Getting Records Out of the File .
Storage and Retrieval of Numeric Data

Chapter 7 .
The Video Screen .

6.1
6.1
6.1
6.3
6.3
6.5
6.7

. 6.14

. 6.16

. 6.18

. 6.19
... 6.20

6.21
6.24
6.26

Screen Statements .
SCREEN Function .

Locating and Activating Pixels
PSET Statement
PRESET Statement

CSRLIN and POS Function .

..... 7.1

..... 7.1
7.3
7.5
7.7

..... 7.9
7.11
7.12
7.14

Changing the Cursor Position

Advanced
Color Graphics

LINE, CIRCLE and PAINT Statements

Chapter 8 .
Using Color Graphics

The Video Board
The COLOR Statement

The LINE Statement
The CIRCLE Statement
The PAINT Statement.

The DRAW Statement .
Movement Commands
GET and PUT Statements

Z-BASIC Summary Program

... 8.1
8.1

... 8.1

... 8.2
8.5

... 8.5
8.9

............ 8. 1 2
8.14

............ 8.14
... 8.15

8.22
8.30

GET, PUT, and DRAW Statements

Chapter 9 .
Commands
Statements

Functions

Data Type Definition Statements
Assignment and Allocation Statements
Control Statements .
Conditional Execution Statements
NON-l/0 Statements
I/O Statements

9.1
..... 9.1

9.3
9.3
9.3
9.4
9.5
9.5
9.6

..... 9.8
9.8
9.9

... 9.10
9.11
9.12

Basic
Language
Summary

Arithmetic Functions
String Functions
Special Functions
Variables
Color and Graphic Statements

Volume 2

Part III Reference Guide

Alphabetical c hapter 10.
Reference
Guide

10.1

Part IV Appendices, Glossary and Index
Appendices ... A.1

... B.1
APPENDIX A: Error Messages
APPENDIX B: Converting Programs to Z-BASIC ...
APPENDIX C: ASCII Character Codes and

H-19 Graphic Symbols
APPENDIX D: Mathematical Functions
APPENDIX E: Assembly Language Subroutines ...
APPENDIX F: Communications I/O .
APPENDIX G: Glossary .
Bibliography .
Index

... C.1

... D.1

... E.1

... F.1

... G.1

... H.1

... X.1

List of Tables

1.1:
2.1:
3.1:
5.1
5.2:
5.3:
5.4:
5.5:
5.6:
5.7:
5.8:
5.9:
5.10
5.11
5.12
5.13
6.1:
6.2:
6.3:
6.4:
6.5:

1.5
2.13
3.7

... 5.11
5.14

... 5.15
520

nterparts . 5.23
5.27
528

... 5.28
. 5.33
. 5.34

5.36
5.40

... 5.47
6.3

..... 6.7

..... 6.8

... 6.17

... 6.18

Comparison BASIC vs. Assembly
Imput and Output Devices
Full Screen Editor Key Values
Precision Declaration on Various Values
Array Storage Allocation
Multi-Dimensional Array Storage Allocation
Order of Precedence .
Algebraic Expressions and Their BASIC Cou
Relational Operators
Negative Meaning of Relational Operators
Negated Structure of Relational Operators
Truth Table .
DeMorgan's Laws
IMP Operator
Bit Pattern Equivalence
Numeric Functions
File Management Statements
Sequential File Statements and Functions
Creating a Sequential File — Program Steps ...
Random File Statements and Functions
Program Steps for Creating a Random File

List of Figures

1.1
3.1
3.2
3.3
3.4
7.1
8.1

. 1.9
3.10
3.11
3.11
3.11

..... 7.2
. 8.9

Program Development Process
Function Keys
Alphanumeric Keys
Keypad
Special Keys
X,Y Coordinates of the Four-Corner Points ...
Angles of a Circle

PREFACE

BASIC is a high-level computer programming language specifically de
signed for use by people with little programming experience, as well as ex
perienced computer programmers. The name stands for Beginner' s
All-purpose Symbolic Instruction Code. As you begin to write and modify
programs or develop your own software, you will appreciate BASIC's fea
tures.

BASIC's program commands and statements use ordinary English words
such as PRINT, LIST, and EDIT. Its numeric calculations resemble elemen
tary algebraic operations. These familiar terms make BASIC easy to learn,
remember, and use.

As a high-level language, BASIC accomplishes many functions with just a
few program statement lines. BASIC is aninteractive language, which per
mits you to enter data and modify programs while they are being developed.

The BASIC interpreter translates your program into machine code that the
computer understands. The interpreter's job includes analyzing your pro
grams, checking for errors, and performing the functions you request. The
BASIC interpreter assists in debugging programs and often pinpoints errors
before the code is stored. The usability factor of BASIC has made it a very
popular microcomputer language.

There are many technical advantages of BASIC. It supports most printers
and disk peripherals. Although various versions and "dialects" of BASIC
exist, one version can usually be adapted to another. Additionally, BASIC
programs are virtually machine independent and will run on most computer
systems with few modifications.

The version of BASIC referenced in this manual is called Z-BASIC.
Z-BASIC has many more commands and features than previous versions
of BASIC. These new commands will assist you in your efforts to create use
ful BASIC programs.

Major Features of Z-BASIC

Z-BASIC has many features that will assist you in creating useful pro
grams. Here are some of the enhanced features provided in this version.

1. Four variable types: Integer (+ 32767), String (up to 255 characters),
Single-Precision Floating Point (7 digits), Double-Precision Floating
Point (1 6 digits).

2. Trace facilities (TRON/TROFF) for easier debugging.

3. Error trapping using the ON ERROR GOTO statement.

4. P EEK and POKE functions to read from and write to any memory
location.

5. Automatic line number generation and renumbering, including auto
matic changing of referenced line numbers.

6. Arrays with up to eight dimensions.

7. Boolean operators OR, AND, NOT, XOR, EQV, and IMP.

8. F o rmatted output using the complete PRINT USING facility, includ
ing asterisk fill, floating dollar sign, scientific notation, trailing sign,
and comma insertion.

9. D i rect access to the 256 I/O ports with the INP and OUT functions.

EDIT command and EDIT mode subcommands.
10. The Full Screen Editor and the extensive program editing facilities via

11. Assembly language subroutine calls (up to 10 per program) are sup
ported.

12. IF /THEN/ELSE and nested IF/THEN/ELSE constructs, and WHILE/
WEND and nested WHILE/WEND constructs.

13. Variable length random and sequential disk files with a complete set
of file manipulation statements: OPEN, CLOSE, GET, PUT, KILL, and
NAME.

14. Event trapping which allows a program to trap the occurrence of a
specific communication event by trapping a specific line number.

15. Advanced graphic techniques including; LINE, CIRCLE, GET, PUT,
and DRAW statements.

16. RS-232 support.

17. T ime and Date setting and retrieval.

page 1.1

GENERAL INFORMATION

Manual Organization
CHAPTER 1

BRIEF

The content of this manual is organized into four convenient parts:

Introduction
BASIC Overview
BASIC Reference Guide
Appendices, Glossary and Index

PART 1.
PART 2.
PART 3.
PART 4.

The information throughout this manual is physically structured according
to the following format:

• Br ief

• De tails

• Ch eckpoint

• Ap p l ication

Brief

Details

PHYSICAL ORGANIZATION

Brief is a short description of the key points covered in the section. It is lo
cated at the beginning of each section. Those of you who are experienced
users can use this section as a concise reminder of the options available,
and then continue reading only if you find it necessary for a clearer under
standing or for specific information. The brief is also valuable to the beginner
to use as a preview of the upcoming information.

Details is an easy-to-follow explanation of all the information covered in the
section. Step-by-step procedures, sample programs, comparisons, and
analogies may be present in this section. This information was specifically
developed with the new user in mind; but if you are experienced, this portion
of the text may clarify a concept or refresh your memory.

Details

page 1.2

GENERAL INFORMATION

CheckpointCheckpoint is the vehicle used to test your comprehension of the material
presented. It may contain information on how to recover from an error that
may have occurred while you were implementing previous instructions or
it may contain a sample program you can input to illustrate how associated
commands are integrated. It can also be a summary of the preceding mate
rial. Checkpoint is designed to summarize and "tie-up-the-loose-ends" and
to test your understanding.

Application is used when necessary to provide additional technical consid
erations or to provide a practical application of the material. Generally, this
section will be a complex extension of what has been covered. This portion
is included with experienced users in mind. However, if you are a beginner,
you may find it useful if you are comfortable with your understanding of the

Application

material.

CONTENT ORGANIZATION

Chapter 1, Page 1.4, gives an informational overview of languages. This
chapter discusses high level languages, interpreters, compilers, and the
program development process.

Chapter 2, Page 2.1, provides general information on entering BASIC pro
grams. In this chapter, you will find information on how to start BASIC, the
modes of operation, the character set and reserved words, how a program
line is formed, control characters, delimiters, and notation used in BASIC.

Chapter 3, Page 3.1, provides all the information necessary to use the
BASIC full screen editor.

Chapter 4, Page 4.1, is an overview of programming in BASIC. This section
does not attempt to teach BASIC programming, but it does provide general
information for getting started.

Chapter 5, Page 5.1, is a thorough discussion of arithmetic and string
operators. In this chapter you will find information on variables, array vari
ables, arithmetic operators and expressions, numeric constants and preci
sions, converting numeric precisions, and finally, string expressions and
operators.

Chapter 6, Page 6.1, "File Handling", discusses file management, sequen
tial-access, and random access disk operations.

page 1.3

GENERAL INFORMATION

Chapter 7, Page 7.1, discusses the graphic capabilities of Z-BASIC, the
video screen, and the plotting of coordinates.

Chapter 8, Page 8.1, provides detailed information on the advanced color
commands of Z-BASIC and how to use the color video display input and out
put commands.

Chapter 9, Page 9.1, lists each command, function, statement, and variable
according to its function within a program. Following that, in Chapter 10, is
the Alphabetical Reference Guide, where each Z-BASIC statement, com
mand, function and variable is referenced in alphabetical order.

Following the Alphabetical Reference Guide are the Appendices, Glossary
and an Index. The Appendices provide specific information on the topics that
follow:

Error Messages
Converting Programs to Z-BASIC
ASCII Character Codes and H-19 Graphic Symbols
Mathematical Functions
BASIC Assembly Language Subroutines
Communication I/O

For specific information pertaining to the operation and capabilities of the
Z-100 Desktop computer, refer to the Z-100 User's Manual. Also within the
Z-100 User's Manual is information relative to the care and handling of disks.

Additionally, there are programming concepts in the User's Manual with
which you may want to familiarize yourself before reading this manual.

For infomation pertaining to the operational characteristics of the Z-DOS
operating system, refer to the Z-DOS documentation.

USING THE Z-BASIC MANUAL

Some features of Z-BASIC are new even to the most experienced user. To
help facilitate easy understanding, we have included many program exam
ples. We suggest that you read the chapters, study the examples and then
input them on your computer to watch the visual effects. Then, if you feel
comfortable with your understanding, try modifying the programs. This way
you will be able to see and take full advantage of Z-BASIC's capabilities.

page 1.4

GENERAL INFORMATION

General Overview of Languages

BRIEF

Programming languages provide a means of communication between com
puters and users.

The computer interprets symbols (binary code) in order to know what in
structions to execute.

Languages interpret and/or compile English terms and mnemonic codes
into binary codes so the computer can understand and execute the instruc
tions.

The program development process involves creating a BASIC source file,
debugging and executing the programs.

Details

The following section explains the need for languages, how they are used
in general, and what interpreters and compilers actually do.

Computer languages are available to provide clear, direct and efficient com
munication between people and computers. As with human languages,
computer languages have their own dialect, grammar, and syntax. There
are hundreds of different computer languages and language dialects that
can be classified into three (sometimes overlapping) categories. They are:
machine language, assembly languages, and high-level languages.
Z-BASIC is a high-level language.

The development of languages was spurred by programmers who wanted
to use previously written and debugged programs developed by others. This
was often very difficult because of differences in notation, levels of precision,
and differences in the way parts of programs were linked together. It became
necessary to develop a library of facilities and routines, as well as the capa
bility of easily linking parts of programs together.

Additionally, there was a demand for the capability of writing programs in
a computer shorthand. Programmers wanted shorter andmore natural nota
tion, which was not available in machine language. Programmers wanted
a language which was more natural, and like English, that would make ex
pressing ideas simpler and more concise.

Why
Languages
Exist

page 1.5

GENERAL INFORMATION

In response to these demands, high-level languages were developed.
A programming language can be defined as the rules for combining a set
of symbols or symbolic expressions into meaningful communication be
tween a person and a computer.

One advantage of using a high-level language is that you do not have to
know machine code to write a program. It is sometimes helpful to know
about such things as memory allocation, addresses, input and output ports,
and how numbers are represented internally, because this knowledge can
help you develop your programs more efficiently. However, it is not neces
sary to understand all of these hardware concepts before you begin learning
a high-level language.

Another advantage is that programs written in high-level languages are, for
the most part, machineindependent. They have the potential to be trans
ferred to another computer using the same language with little modification
of the code.

Most programmming languages have a problem-oriented notation that
makes them easier to learn than machine code. Problem oriented means
the statement of the problem in code is relatively close to the statement of
the problem in English or arithmetic terms. For example, IF A=B+C THEN
100 is much easier to understand than the equivalent equation written in as
sembly language (see the comparison in Table 1.1). This factor makes cod
ing and the understanding of written codes easier.

Advantages
of Using
High-Level
Languages

vs As sembl StatementBASIC Statement

IF A = B+C THEN 100 PUSH PSW
MOV A,B
ADD C
MOV B,A
POP PSW
CMP B
JZ L100

Table 1.1
A comparison between a BASIC Statement and
an equivalent assembly language statement

page 1.6

GENERAL INFORMATION

Interpreters
and
Compilers

A microprocessor can execute only its own machine instructions; it cannot
execute BASIC statements directly. Therefore, before a program can be
executed, some type of translation must occur from the statements con
tained in your BASIC program to the machine language of your micropro
cessor. Compilers and interpreters are two types of programs that perform
this translation. This manual is the documentation for the Z-BASIC interpre
ter; however, the following discussion explains the difference between these
two translation schemes, and explains why and when you would want to use
the compiler.

INTERPRETERS

Generally, aninterpreter translates your BASIC program line by line during
program execution. To execute a BASIC statement, the interpreter must
analyze the statement, check for errors, and then perform the BASIC func
tion requested.

If a statement is executed repeatedly, this interpretive process is repeated
each time the statement is executed.

During interpretation, BASIC programs are stored as a list of numbered
lines. Each line is not available as an absolute memory address. Therefore,
branch commands such as GOTO and GOSUB cause the interpreter to
search for line numbers.

Additionally, the interpreter maintains a list of all variables. When a BASIC
statement refers to a variable, the interpreter searches this list of variables
to find the referenced variable. (Absolute memory addresses are not usually
associated with the variables in interpreted programs.)

page 1.7

GENERAL INFORMATION

COMPILERS
A compiler translates a source program and creates a new file called an ob
ject file. The object file contains code that can be read by the computer. All
translation takes place before run time; no translation of your BASIC source
file occurs during the execution of your program. In addition, absolute mem
ory addresses are associated with variables and with the targets of GOTO
and GOSUB commands, so that lists of variables or of line numbers do not
have to be searched during execution of your program.

Note also that a compiler can be an optimizing compiler. Optimization is a
process by which a program is continually adjusted to achieve the best ob
tainable set of operating conditions. Optimizations such as expression re-or
dering and sub-expression elimination are made to either increase the
speed of execution or to decrease the size of your program.

It is important to remember that you do not need a compiler to develop or
execute BASIC programs. It is defined here so you will know the function
it serves when it is used and its relationship to the interpreter.

page 1.8

GENERAL INFORMATION

THE PROGRAM DEVELOPMENT PROCESS

This discussion of the program development process is keyed to Figure 1.1
which is a flowchart that illustrates the process. You may find it useful to refer
to the Figure when reading this text.

1. Pr o gram development begins with the creation of a BASIC
source file. The best way to create a BASIC source file is with
the editing facilities of BASIC, although you can use any gen
eral purpose text editor.

Once you have written a program, you can use BASIC to debug
the program by running it to check for syntax and program logic
errors. In many instances the BASIC interpreter will "flag" errors
for you with an error message indicating the line number the
error is in and what type of error is present. However there are
instances when the only indication of an error is an unexpected
or undesired result. Correct the errors in your program and then
run the program again.

3. If your program is totally debugged you may wish to compile it.
If you intend to use a BASIC compiler, some additional steps
are required. Refer to a BASIC compiler manual for this infor
mation.

page 1.9

G ENERAL INFORMATION

The flow chart shown below illustrates the development process of a BASIC
program from the creation of the program with the BASIC interpreter through
the process of compilation.

WR ITE BAS IC
PROGRAM

W I TH
INTER PRETER

RUN
PROGRAM

WITH
INTER PRETER

YES
BUGSr

NO

F IN I SHED
.BAS

PROGRAM

WISH TO NO
COMPILE 7

YES

Figure 1.1
The Program Development Process

page 1.10

GENERAL INFORMATION

APPLICATION PROGRAMS

The final topic in the overview of languages is application programs. An ap
plication program performs functions for the user directly. Unlike the previ
ously discussed programs that compile, interpret, or in some way support
other programs, application programs actually perform the work you want
done.

Examples of what application programs can do include: prepare payrolls,
manage inventory, maintain and update records, and track purchasing. The
application program reads and processes data from the system software
and puts it into an easily understood and accessible format.

gnlru

data
systems

HEATH

IMPORTANT NOTICE

Dear Customer,

The following unique features of Z-BASIC version 1.00 need to be noted. The following
may not necessarily be the same or true in future releases of Z-BASIC.

Invalid Device Names

There mav be occasions when a program attempts to access invalid dr ives such as those
with names above drive D (e.g.. E, F. G, and so on). Z-BASIC reads this invalid drive name
and, instead of generating an error message, accesses the last legal drive that the program
or the operator used. It is currently up to the user to ensure that his or her Z-BASIC pro
gram accesses only those drives (e.g.. A, B...) that are available in their system configura
tion.

Filename References

Z-BASIC allows a wide range of allowable fi lenames. Since this feature may not be sup
ported in future releases of Z-BASIC, it is recommended that all file references follow
present Z-DOS conventions as defined in your Z-DOS manual.

Color and Optimized Scrolling

The Z-100 Desktop Computer optimizes the scrolling speed of the screen when color is
not being used in the system. The computer must be told when Z-BASIC will be working
with color on the screen so that it can use the proper scrolling method. Otherwise, the op
timized screen scrolling action will cause the color in the display to be lost under certain
circumstances.

To make sure that your programs are going to operate correctly, place the following l ine
of code near the beginning of each affected program:

10 CLS:COLOR 1,0:PRINT " ":COLOR 7,0:LOCATE 1,1:PRINT " ":LOCATE 1,1

Programming Note

The 25th line of the display may be assessed while in Z-BASIC. The preferred method to
clear (and re-enable) the 25th line is PRINT CHR$(27);"y1";CHR$(27);"x1";

Page 1 of 1
MS-463-1
591-3965

Thank you,

Zenith Data Systems

P-0

Page 2.1

CHAPTER 2 PROGRAM ENTRY

Starting Z-BASIC with the Z-DOS Operating System

BRIEF

Z-BASIC is loaded into memory by typing the command:

A: ZBASIC

The format of the Z-BASIC command line with options is:

ZBASIC [<f il enamel]
[/M: <highest memory location)]

Details

Z-BASIC is loaded and executed by typing ZBASIC in response to the
Z-DOS command line prompt: A: .

After loading, Z-BASIC responds with the following:

Z -BASIC rev . 1 . 0
[Z-DOS/MSDOS version]

Copyright 1982 (C) by Microsoft
Created: 2 0 -AUG-82
x xxxx By tes f r e e
Ok

The ok means that Z-BASIC is ready to accept your commands.

The Z-BASIC operating environment may be altered by specifying options
following Z-BASIC on the command line. It is important to remember that
it is not necessary to specify these options to start using Z-BASIC. The for
mat of the Z-BASIC command line with options is:

ZBASIC [<f ilename>]

[/M:<highest memory location)]

page 2.2

PROGRAM ENTRY

FilenameIf <filename> (the file name of a BASIC program) is present, BASIC
proceeds as if a RUN <filename) command were given after initialization
is complete. A default file extention of .BAS is assumed if none is given.
This allows BASIC programs to automatically run from by putting this form
of the command line in a Z-DOS AUTOEXEC.BAT file. Programs run in
this manner will need to exit via the system in order to allow the next
command from the AUTOEXEC.BAT file to be executed.

There is no longer a need to specify the number of files, maximum record
size or maximum buffer size which were optional specifications in previous
versions of BASIC.

Number of
Flies

In Z-BASIC, disk buffers are allocated dynamically, meaning, the length of
the allocated workspace is automatically determined by how much space
your program requires. Record lengths may range from 1 to 65535 bytes.
The maximum number of files that can be open at one time is 255 files.

Maximum
Record Size

The COM1: device buffer is fixed at 120 bytes. Buffer size

page 2.3

5gpgjpg 7-9 '~ ~<)Q >~q>«~~ gl>8 7-DOS Qpa8l'82 r>II-iig ~:>/808M

The /M:<highest memory location> switch sets the highest memory loca
tion that will be used by BASIC. BASIC will attempt to allocate 64K of mem
ory for the data and stack segments. If machine language subroutines are
to be used with BASIC Programs, use the /M: switch to reserve enough
memory for them.

NOTE: <highest memory location> may be specified in decimal, octal (pre
cededby &0), or hexadecimal (precededby &H).

Examples:

Hlsheet
Memory
Location

A: ZBASIC PAYROLL Use all of memory, load and execute
PAYROLL. BAS.

Use the first 32K of memory.A: ZBASIC /M:32768

page 2.4

Modes of Operation

BRIEF

When BASIC is at the command level, you can use it in either the direct
mode or the indirect mode.

In the direct mode, statements and commands are executed immediately
and the results can be stored for later use. However, the instructions are not
saved.

When BASIC is in the direct mode, statements and commands are not pre
ceded by line numbers.

The direct mode is especially useful for routine mathematical calculations
that do not require a program or to test the use of commands that are un
familiar to you.

The indirect mode is used for running BASIC programs.

In the indirect mode, program lines are preceded by line numbers and are
stored in memory.

Details

When BASIC is initialized, it displays the sign-on information discussed in
the previous section and then types the prompt ok. ok indicates BASIC is
at the command level and is ready to accept commands. At this point, you
can use BASIC in either the direct mode or the indirect mode.

page 2.5

DIRECT MODE

The direct mode is useful for learning BASIC, debugging programs and for
using BASIC as a calculator for quick computations that do not require a
complete program.

Here are some examples of expressions written in the direct mode:

PRINT 4+8
PRINT — 3/6
PRINT — 2+5
P RINT (2-3) + (6 . 5+9 .2)

In the direct mode, also known as theimmediate mode, BASIC statements
and commands are not preceded by line numbers. They are executed when
they are entered (when the RETURN key is pressed).

In the direct mode, results of arithmetic and logical operations may be dis
played immediately or stored for later use, but the instructions themselves
are lost after execution.

Variables are changeable quantities that are represented by a symbol or
name. These variables can be assigned to specific values in the direct mode
as follows:

LET A = I

LET B = 2

LET A = A+ B

PRINT A

LET C = B

PRINT (A"B) +(B+C)
LET C = C+ I

PRINT (A+C) +(B+C)

LET is an optional statement (also covered on Page 10.87) that allows you
to assign specific values to variables. These assignments stay in effect as
long as you are in the direct mode and can be subsequently used in other
expressions as shown in the example above.

page 2.6

PROGRAM ENTRY

In the first PRINT statement on the previous page, "PRINT A", the value for
A is 3. Notice that the statement LET A = A+B means "add the present
values of A and B and assign the sum to A."

The second PRINT statement "PRINT (A *B)+(B C)" equates to 10 be
cause (3*2)+(2"2) =6+ 4 = 10.

The third PRINT statement in the example above equates to 15 because
(3*3)+(2 *3) =9+6 =15. Notice that the statement LET C = C+1 means, in
effect, "increase the stored value of C by 1."

NOTE: Using RUN will set all variables to zero, including those that have
been previously set in the direct mode, and any variables from a previous
run. If you want to execute your program without clearing the variables, use
the GOTO statement in the direct mode.

INDIRECT MODE

The indirect mode is normally used for entering programs that will be run
more than once. Program lines are preceded by line numbers and are stored
in memory. The program stored in memory is executed when you enter the
RUN command. Here is an example of a BASIC program written in the indi
rect mode.

10 LET A = 2

20 LET B =3

30 PRINT A+ B
RUN

5
Ok

You can think of the preceding example as a sequential program that is a
series of immediate mode statements in which each line has been prefaced
by a line number. Such statements are said to be in indirect mode because
the computer defers execution until a RUN command is entered, instead of
executing the program lines immediately.

page 2.7

PROGRAM ENTRY

Character Set and Reserved Words

CHARACTER SET

BRIEF

The BASIC character set is comprised of alphabetic characters, numeric
characters, and special characters.

The alphabetic characters in BASIC can be either capital or lower-case let
ters.

The numeric characters in BASIC are the digits zero through nine.

Reserved words are words that have a special meaning in BASIC including
BASIC commands, statements, functions, and operators.

They may not be used as variable names.

In order for reserved words to be recognized by BASIC, they must be de
limited by spaces or special characters as allowed by syntax.

Details

The following special characters are recognized by BASIC:

Character N a me

Blank space
Semicolon
Equal sign or assignment symbol
Plus symbol
Minus symbol or dash
Asterisk or multiplication sign
Slash or division symbol
Up arrow or exponentiation symbol
Left parenthesis
Right parenthesis
Percent
Number or pound sign

page 2.8

Character Name

DELETE
ESC
TAB

@

?

Dollar sign
Exclamation point
Left bracket
Right bracket
Comma
Period
Single quotation mark (apostrophe)
Double quotes
Colon
Ampersand
Question mark
Lessthan
Greater than
Backslash or integer division symbol
At-sign
Underscore
Left brace
Right brace
Deletes last character typed.
Escapes edit mode subcommands.
Moves print position to the next
tab stop. Tab stops are every
eight columns.
Moves to the next physical line.
Terminates input of a line.

LINE FEED
RETURN

page 2.9

PROGRAM ENTRY

DATE$
DEF
DEFDBL
DEFINT
DEFSNG
DEFSTR
DELETE
DIM
DRAW
EDIT
ELSE
END
EOF
EQV
ERASE
ERL
ERR
ERROR
EXP
FIELD
FILES
FIX
FNxxxxxxxx
FOR
FRE
GET
GOSUB
GOTO

RESERVED WORDS

All of the reserved words recognized by BASIC are listed below:

ABS
AND
ASC
ATN
AUTO
BEEP
BLOAD
BSAVE
CALL
CDBL
CHAIN
CHR$
CINT
CIRCLE
CLEAR
CLOSE
CLS
COLOR
COM
COMMON
CONT
COS
CSNG
CSRLIN
CVD
CVI
CVS
DATA

HEX$
IF
IMP
INKEY$
INPUT
INPUT$
INPUT¹
INP
INSTR
INT
KEY
KILL
LEFT$
LEN
LET
LINE
LIST
LLIST
LOAD
LOC
LOCATE
LOF
LOG
LPOS
LPRINT
LSET
MERGE
MID$

RENUM
RESET
RESTORE
RESUME
RETURN
RIGHT$
RND
RSET
RUN
SAVE
SCREEN
SGN
SIN
SPACE$
SQR
STEP
STOP
STR$
STRING$
SWAP
SYSTEM
TAN
THEN
TIME$
TO
TROFF
TRON
USING

USR
VAL
VARPTR
WAIT
WEND
WHILE
WIDTH
WRITE
WRITE¹
XOR

MKD$
MKI$
MKS$
MOD
NAME
NEW
NEXT
NOT
NULL
OCT$
ON
OPEN
OPTION
OR
OUT
PAINT
PEEK
POINT
POKE
POS
PRESET
PRINT
PRINT¹
PSET
PUT
RANDOMIZE
READ
REM

page 2.10

PROGRAM ENTRY

Line Format

BRIEF

The line format of program lines in BASIC is:

nnnnn BASIC statement[:BASIC statement...]['comment)RETURN

nnnnn indicates the line number which can be from one to five digits.

You may have more than one statement on a line, but each statement must
be separated by a colon.

You can add comments to the end of the line by using the ' (single quote)
or: REM to separate the comment from the rest of the line. The single quote
does not require a preceding colon.

Details

To enter a program line into a BASIC program in the indirect mode, you must
first type a line number, which can be from one to five digits. Line numbers
are used to show the order in which the program lines are stored in memory
and also are used as reference points for branching and editing. Line num
bers must be in the range from 0 to 65529. The line number is followed by
a BASIC statement, which can be a command, statement, function, or vari
able. A statement is a meaningful expression or an instruction in a source
language. Each statement is followed by a RETURN.

Example:

Line

Numbers

Ojs
10 FOR I =1 TO 10
20 PRINT I
30 NEXT I
RUN

1
2
3
4
5
6
7
8
9
10

Ok

page 2.11

PROGRAM ENTRY

LIne Fmmet

Statements In the preceding example, 10, 20, and 30 are line numbers. Each line
number is followed by a BASIC statement that contains instructions for the
program. In this case line 20 is an instruction to print I, which is defined in
line 10 as the numbers between 1 and 10. In line 30, NEXT is part of the
format necessary when any FOR statement is used. See the Alphabetical
Reference Guide, Pages 10.53 — 10.56, for additional information on FOR
... NEXT statements. RUN is the commandused to execute a program.

You can have more than one BASIC statement on a line, but each statement
must be separated from the last statement by a colon, except for the single
quote for a remark at the end of the line. The total number of characters in

Multiple
Statements
on a Line

the line must not exceed 255.

OK
10 FOR I =1 TO 10: PRINT I: NEXT I
RUN

A BASIC statement is either executable or non-executable. Executable
statements are program instructions that tell BASIC what to do during the
execution of a program. In the above example, PRINT I is an executable
statement. Non-executable statements do not cause any program action.

A remark statement or comment is an example of a non-executable state
ment. A comment, which is indicated by a single quote (') or the keyword
REM, preceded by a colon, can be added to the end of any line. Comments
are used to help make the program readable by explaining what is going on
in that line. For example:

Executable
and Non~xecutable
Statements

10 PRINT "ENTER YOUR NAME"; 'Ask user ' s Name
20 INPUT NAMS 'Get response from keyboard

30 PRINT "OK "NAMS 'Print response on display screen
RUN
ENTER YOUR NAME? JOHN DOE
OK JOHN DOE
Ok

Checkpoint

To test your understanding of line format, input the example on Page 2-10.
Note that the line numbers are followed by BASIC statements. After you
input lines 10, 20, and 30, type RUN. If the numbers 1-10 appear on your
screen, you have input the sample correctly. If you receive a syntax error,
check the sample again.

page 2.12

PROGRAM ENTRY

Files and File Naming

BRIEF

A physical file is identified by its file specification, or filespec for short. The
filespec is a string expression which uses the following format:

device:filename.extension (e.g. A: Inventry. BAS)

The device name tells BASIC where to look for the file (which device — e.g.
disk drive). The device name consists of one to four characters, followed by
a colon (:).

The filename tells BASIC which file you are looking for, and may be up to
eight characters long.

The extension usually identifies the file type and may be up to three charac
ters long.

Details

A file is a collection of related information treated as a unit. Information is
stored in a file on a disk. In order to use the information, you must tell BASIC
where the information is and then open the file. Then you may use the file
for input and/or output.

The file is described by its file specification, or filespec, which is a string ex
pression with the following format:

Files

Filespec

device:filename.extension

Device NameThe device name tells BASIC where to look for the file. A device can be inter
nal, such as an inboard disk drive in the Z-100, or it may be a peripheral de
vice (a device that is connected to the computer and controlled by the com
puter). It is through these devices that input to and output from your file is
possible. The specification of the device is optional. If the file you wish to
open is in the default (current) drive, it is not necessary to specify the device
name.

page 2.13

The device name consists of one to four characters followed by a colon (:).
The following device name chart tells what device you use for input and out
put.

Device I/O

KYBD: Keyb oard.

SCRN: Scre en.

LPT1: PRN

Input only

Output only

Output only

Communication Devices

COM1: AUX Input and Output

Storage Devices

A:

B:

C:

D:

Disk Drive¹1

Disk Drive¹2

Disk Drive¹3

Disk Drive¹4

Input and Output

Input and Output

Input and Output

Input and Output

Table 2.1
Input and Output Devices

page 2.14

FILENAME

The filename tells BASIC which file you are looking for. The filename may
consist of two parts, separated by a period (.) in the following format:

name. extension

The name is a character string that is from one to eight characters long. The
extension, which usually indicates the type of file, may be no more than three
characters long. If the extension is longer than three characters, the extra
characters are truncated. Truncation means dropping the extra letters so
that the filename will be in accordance with file naming conventions.

If you input a name that is longer than eight characters and the extension
is not included, BASIC inserts a period after the eighth character and uses
the extra characters (up to the third character) for the extension.

The characters that are recognized and acceptable to BASIC in name and Recognized
Charactersextension are:

A through Z
0 through 9

$ @

Examples of filenames allowed in BASIC are:

01 JAN82.YR
JDL
P ROG RAM3.416
JOY. BAS
@$$®$$.213

page 2.15

PROGRAM ENTRY

The following examples illustrate how BASIC truncates names and exten
sions in accordance with file naming conventions when the names are too
long.

B23335RS3JUTEW will be B23335RS.3JU
DISKETTE. BACKUP will be DISKETTE.BAC

®®WRONGWAY.BAS will cause an error message to be displayed

Checkpoint

In summary, a file is identified by its file specification, which is the device
followed by a filename. A device name can be one to four characters fol
lowed by a colon and can be an input device, output device or both. A
filename must conform to Z-DOS filename conventions; namely, the name
must be from one to eight characters long and the extension can be no
longer than three characters. When a filename is entered that is too long,
BASIC will truncate that name if possible.

A default extension of .BAS is used on LOAD, SAVE, MERGE and RUN
<filename> commands if no "." appears in the filename, and the filename
is less than nine characters long.

Large random files are supported. The maximum logical record number is
32767. If a record size of 256 bytes is specified, then files up to eight mega
bytes can be accessed.

To open a file, you should understand the differences between a random
file and a sequential file, which are summarized in the following paragraphs
and covered in detail in Chapter 6, Page 6.1, "File Handling".

A BASIC program can create and access two types of disk data files: se
quential files and random access files. In sequential files, the data that is
written onto the disk is stored one item after the other, in the same order
it is sent. It is then read back in the same order. Thus, there are limitations
in terms of speed and flexiblity because BASIC has to read through all the
data sequentially, whenever the file is accessed.

One advantage to using sequential files is that there are fewer program
steps involved in opening, reading, or writing a sequential file. Another ad
vantage is, that generally, sequential files require less "overhead" space
than random files.

Sequential
Flies

page 2.16

Random
Files

Random files are stored on the disk in packed binary formats and accessed
in distinct units called records. Each record is numbered, thus allowing the
data to be accessed randomly. Because the data can be accessed any
where on the disk, it is not necessary to read through all the information, as
with sequential files.

For further information on creating and accessing data files, see "File Han
dling," Chapter 6, Page 6.1.

Page 2.17

Control Characters

BRIEF

Format: cTRL, 0

Control characters are keyboard entries that affect the performance of your
terminal and/or the output of the program being executed.

To execute any of the following control characters, you must hold down the
control (CTRL) key and press the appropriate letter.

Details

The following control characters are used by Z-BASIC:

CTRL-C

CTRL-I

CTRL-H

CTRL-G

Interrupts program execution and returns to the BASIC
command level.

Rings the bell at the terminal.

BACK SPACE. Deletes the last character typed.

TAB. Tab stops are every eight columns.

LINE FEED. Subsequent text starts on the next line with
out entering a RETURN.

CTRL-J

CTRL-S Suspends program execution. Any key resumes program
execution after a CTRL-S.

Deletes the line that is currently being typed.CTRL-U

Page 2.18

PROGRAM ENTRY

Syntax Notation

BRIEF

The following notation is used throughout this manual in descriptions of
command and statement syntax. The syntax diagrams in the Alphabetical
Reference Guide are labeled "Format".

Details

[] Square brackets indicate that the enclosed entry is optional.

Angle brackets indicate user-entered data. When the angle brack
ets enclose lower-case text, the user must type in an entry defined
by the text; for example, <filename>. When the angle brackets
enclose upper-case text, the user must press the key named by
the text; for example, <CTRL>.

Braces indicate that the user has a choice between two or more
entries. At least one of the entries enclosed in braces must be cho
sen unless the entries are also enclosed in square brackets.

Ellipses indicate that an entry may be repeated as many times as
needed or desired.

CAPS C a p ital letters indicate portions of the statements or commands
that must be entered, exactly as shown.

The stile indicates either/or. You must use the syntax on either the
right or left side of the stile, but not both.

All other punctuation, such as commas, colons, slash marks, and equal
signs must be entered exactly as shown.

Page 2.19

PROGRAM ENTRY

Delimiters Used in Z-BASIC Printing

BRIEF

Delimiters separate items by marking their ends (limits). Many different de
limiters are used at all levels of the computer system to mark the beginning
and ending of things and to separate items in a series.

The comma is used to print separate expressions in fixed evenly-spaced
locations on the line. The semicolon prints expressions in non-tabular for
mat, placing the expressions at short, fixed distances without regard to how
they line up.

Details

Often the words delimiter and terminator are used interchangeably. In this
section, delimiter will be discussed in relation to printing/formatting tech
niques. In other words, de/imiters are used to separate two adjacent expres
sions, whereas terminators, (discussed in Chapter 6), mark the end of items
of data, including certain conditions that terminate data.

THE COMMA

The comma is used in PRINT statements to separate expressions, and it
causes them to be printed at fixed, evenly-spaced locations along the line.
This is a very useful technique for printing out tabular data. It is also very
useful for printing out several variables with one PRINT statement.

Enter the following characters and observe the results:

Printing
Tabular
Formatted
Data

A = 1 1 1 1
B = 2 2 2 2
C = 3333
D = 4 4 4 4

Ok
PRINT A,B,C,D

1111
Ok

2222 44443333

P RINT -D, - C , - B , - A
-4444 -3333
Ok

-1111-2222

Page 2.20

PROGRAM ENTRY

The exact behavior of the comma in a PRINT statement depends on the
structure of the output line. Each line of print is divided into a certain number
of print zones or fields. The Z-100 has five print zones with 14 characters
per field. Therefore if there are more than five values, they will be printed
on more than one line.

As you can see from the example, on Page 2.19, the comma instructs the
interpreter to print the next number beginning at the left edge of the next print
field. The output is said to be left-justified within each field. It is important
to remember if the number is positive the plus sign is not printed. A blank
is printed in front of all positive numbers.

THE SEMICOLON

Items delimited by the semicolon are not printed in a tabular format (unless
they all happen to be the same length). Instead, the interpreter prints num
bers separated by a semicolon a short, fixed space apart from one another,
without regard for how they line up with values above or below. This is valu
able for getting the maximum number of output values on a line, as shown
by the following example:

P RINT 1;2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 ; 1 0
1 2 3 4 5 6 7 8 9 1 0

Ok

versus

P RINT 1,2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0
1 2 3
6 7 8

Ok.

5
10

Page 3.1

EDITING Z-BASIC PROGRAMS

The Full Screen Editor
CHAPTER 3

BRIEF

The Z-BASIC full screen editor makes it possible to edit program lines any
where on the screen.

With the full screen editor, the EDIT command simply displays the line
specified and positions the cursor under the first digit of the line number.

FOrmat: E DI T < l i ne n u mber>

EDIT.

The full screen editor recognizes special key combinations as well as
numeric and cursor movement key-pad keys. These keys allow moving the
cursor to a location on the screen, inserting characters, and deleting charac
ters as described later in this chapter.

More than one BASIC statement may be placed on a line, but each state
ment on a line must be separated from the last statement by a colon.

A Z-BASIC program line always begins with a line number, ends with a
RETURN, and may contain a maximum of 250 characters.

Details

The time saving benefit of the full screen editor during program development
cannot be over-emphasized. We suggest you enter a sample program and
practice each edit command until it becomes second nature.

In the following discussion of edit commands, the term cursor refers to the
marker (it can be blinking, reverse video, a block, or an underline) that indi
cates the current position on the screen.

The ability to edit anywhere on the screen makes it difficult to provide clear
examples of command usage in printed text. The best way to get a "feel"
for the editing process is to try editing a few lines while you study the edit

Cursor

commands that follow.

page 3.2

EDITING Z-BASIC PROGRAMS

THE EDIT COMMAND

With the full screen editor, the EDIT command simply displays the line
specified and positions the cursor under the first digit of the line number. You
can then modify the line by using the keys described in this chapter.

The format of the EDIT command is:

EDIT (line number)
EDIT

Line number is the program line number of a line existing in the program. Llnenu~ber

If there iS nO SuCh line, an Undefined l ine number errOr meSSage iS diS

played.

A period (.) placed after the EDIT command always gets the last line refer
enced by an EDIT command, LIST command, or error message.

Remember, if you have just entered a line and wish to go back and edit it,
the command EDIT. will enter EDIT at the current line. The line number sym
bol "." always refers to the current line.

INPUTTING Z-BASIC PROGRAMS

Any line of text you type while BASIC is in the direct mode will be processed
by the full screen editor. BASIC is always in direct mode after the prompt
Ok.

Any line of text you type that begins with a numeric character is considered
a program statement and will be processed in one of six ways:

1. A n ew line is added to the program. This occurs if the line number
is legal (range is 0 through 65529) and at least one non-blank
character follows the line number in the line.

Page 3.3

EDITING Z-BASIC PROGRAMS

2. An e x isting line is modified. This occurs if the line number
matches the line number of an existing line in the program. This
line is replaced with text of the newly entered line.

3. An e x isting line is deleted. This occurs if the line number
matches the line number of an existing line and the entered line
contains only a line number.

4. A n error is produced.

5. If you attempt to delete a non-existent line, an Undefined line
numbe r error message is displayed.

6. If p rogram memory is exhausted, and a line is added to the pro
gram, the error out of Memory is displayed and the line is not
added.

You may place more than one BASIC statement on a line, but, separate
each statement on a line from the last with a colon (:).

A BASIC program line always begins with a line number, ends with a
RETURN and may contain a maximum of 250 characters.

It is possible to extend a logical line over more than one physical full screen
by using the line feed key, (CTRL-J). Typing a line feed causes subsequent
text to start on the next full screen without entering a RETURN. When you
finally enter a RETURN, the entire logical line is passed to BASIC for storage
in the program.

Occasionally, BASIC may return to the direct mode with the cursor
positioned on a line containing a message issued by BASIC such as ok.
When this happens, BASIC automatically erases the line. If the line were
not erased and you typed a RETURN, the message would be given to
BASIC and a syntax Error would result. BASIC messages are internally
terminated by HEX 'FF' to distinguish them from user text. This, however,
is transparent to you.

Page 3.4

EDITING Z-BASIC PROGRAMS

CHANGING A Z-BASIC PROGRAM

You can modify existing programs by displaying program lines on the screen
with the LIST statement. You should first list the range of lines to be edited,
(see the LIST statement in the Alphabetical Reference Guide). Then, posi
tion the cursor on the line to be edited, modify the line using the keys de
scribed in this chapter. Then type RETURN to store the modified line in the
program.

NOTE: A program line is not actually modified within the BASIC program
until RETURN is pressed. Therefore, when several lines need alteration, it
is sometimes easier to move around the screen making corrections to sev
eral lines at once, and then, go back to the first line changed and press
RETURN at the beginning of each line. By doing so, you will store the mod
ified line in the program.

It is not necessary to move the cursor to the end of the logical line before
typing the RETURN. The full screen editor remembers where each logical
line ends and transfers the whole line even if the RETURN is typed at the
beginning of the line.

To truncate a line at the current cursor position, type CTRL-E, followed by
a RETURN.

SYNTAX ERRORS

When a syntax error is encountered during program execution, Z-BASIC au
tomatically enters EDIT at the line that caused the error. For example:

10 A =2$12

RUN
Syntax e r r o r i n 10
OR
10 A=2$12

The full screen editor has displayed the line in error and positioned the cur
sor under the digit 1. To correct this error you would move the cursor right
to the dollar sign (0) and change it to a caret " , followed by a RETURN.
The corrected line is now stored in the program.

In this example, storing the line in the program causes all variables to be
lost. If you wanted to examine the contents of some variable before making
the change, you would type CTRL-C to return to the direct mode. The vari
ables would be preserved since no program line was changed, and after you
are satisfied, you can then edit the line and rerun the program.

Page 3.5

EDITING Z-BASIC PROGRAMS

LOGICAL LINE DEFINITION AND INPUT
STATEMENTS

In the direct mode, a logical line always consists of all of the characters on
each of the physical lines which make up the logical line. However, during
the execution of an INPUT or LINE INPUT statement, this definition is mod
ified slightly in order to allow for "forms" input. The logical line is restricted
to characters actually typed or passed over by cursor movement.

I CHR and DELETE only move characters within the logical line. DELETE
will decrease the size of the logical line. I CHR increases the logical line ex
cept when the characters moved will write over non-blank characters on the
end of the logical line.

Page 3.6

EDITING Z-BASIC PROGRAMS

The Full Screen Editor — Key Assignments

BRIEF

The full screen editor uses special keys and special key combinations to per
form the following tasks: moving the cursor, inserting text, and deleting text.

The keys used to move the cursor to a location on the screen are:

Cursor up
Cursor down
Cursor left
Cursor right
HOME key
TAB key (with insert off)

The keys used to insert text are:

I CHR (Insert Mode Toggle)
CTRL-R

The keys used to delete text are:

DELETE key
BACKSPACEkey
CTRL-U (erase line)

CTRL-E (erase to end of line)
CTRL-L (clears the screen)
CTRL-Z (erase to end of page)
D CHR

Page 3.7

EDITING Z-BASIC PROGRAMS

The Full Screen Editor — Key Assignments

Details

The full screen editor recognizes the cursor movement keys located on the
numeric keypad, the back space key, the ESC key, in addition to special key
combinations for moving the cursor to a location on the screen, inserting
characters, or deleting characters. The keys and their values are found in
Table 3.1.

HEX DEC KEY Function

15 21
05 05
OC 12
1A 26
OB 11

CTRL-U
CTRL-E
CTRL-L
CTRL-Z
HOME

15
1E
1F
1C
1D
12
7F
03
OE
06
02
12
7F

21
30
31
28
29
18
127
03
14
06
02
18
127
23
8

FO

I CHR
D CHR
CTRL-C
CTRL-N
CTRL-F
CTRL-8
CTRL-R
DELETE
CTRL-W
BACKSPACE

erase line
erase EOL(end of line)
erase page
erase EOP(end of page)
position cursor in
upper left-hand corner
same as CTRL-U
cul'sol'-Up
cursor-down
cursor-right
cursor-left
enter insert mode
delete character
break
move to EOL
forward word
back word
same as I CHR (insert character)
same as D CHR (delete character)
delete word right of cursor
deletes last character typed

17 8

TABLE 3.1
Full Screen Editor Key Values

Page 3.8

EDITING Z-BASIC PROGRAMS

HOMEMoves the cursor to the upper left hand corner of the screen.

Clears the screen and positions the cursor in the upper left-hand corner of CTRL-L

the screen.

CURSOR UPUp arrow. Moves the cursor up one line.

Down arrow. Moves the cursor one position down.

Left-pointing arrow. Moves the cursor one position left. When the cursor is
advanced beyond the left of the screen, it will be moved to the right side of
the screen on the preceding line. If it is on the top line, it will stop at the left

CURSOR DOWN

CURSOR LEFT

corner.

CURSOR RIGHTRight-pointing arrow. Moves the cursor one position right. When the cursor
is advanced beyond the right of the screen, it will be moved to the left side
of the screen on the next line down. If it is on the bottom line, it will stop at
the right corner.

Depressing the CTRL and F key moves the cursor right to the next word.
The next word is defined as the next character after an intervening blank
to the right of the cursor in the set A..Z or 0..9.

Depressing the CTRL and B keys moves the cursor left to the previous word.
The previous word is defined as the next character after an intervening blank

CTRL-F

CTRL-B

to the/eftof the cursor in the set A..Z or 0..9.

Page 3.9

EDITING Z-BASIC PROGRAMS

GTRL-N Depr essing the CTRL and N key moves the cursor to the end of the logical
line. Characters typed from this position are appended to the line.

cTRL-E Depr essing the CTRL and E key erases to the end of logical line from the
current cursor position. All physical screen lines are erased until the ter
minating RETURN is found.

I CHR Toggles insert mode. If Insert Mode is off, turns it on. If on, then turns it off.

cTRL-R When the insert mode is off, characters typed will replace existing charac
ters on the line.

When the insert mode is on, characters following the cursor are moved to
the right as typed characters are inserted at the current cursor position. After
each keystroke, the cursor moves one position to the right. Line folding is
observed. As characters advance off the right side of the screen they are
inserted from the left on subsequent lines.

When the insert mode is off, depressing the TAB key moves the cursor over
characters until the next tab stop is reached. Tab stops occur every eight
character positions.

When the insert mode is on, depressing the TAB key causes blanks to be
inserted from the current cursor position to the next tab stop. Line folding
is also observed.

Deletes one character immediately to the right of the cursor for each key de
pression. AII characters to the right of the character deleted are moved one
position to the left to fill in the character deleted. If a logical line extends
beyond one physical line, characters on subsequent lines are moved left
one position to fill in the previous space. The character in the first column
of each subsequent line is moved up to the end of the preceding line.

DELETE

OI'

D CHR

Page 3.10

EDITING Z-BASIC PROGRAMS

Causes the last character typed to be deleted, or deletes the character to
the left of the cursor. All characters to the right of the cursor are moved to
the left, one position. Subsequent characters and lines within the current
logical line are moved up as with the DELETE key.

BACKSPACE

FOorcTRL u W h e n typed anywhere in the line, it erases the entire logical line.

Returns to the direct mode, without saving any changes that were made to
the current line being edited.

CTRL-C

Deletes the next word.CTRL-W

The following figures illustrate the Z-100 keyboard. For more, detailed, infor
mation on the keyboard, refer to the Z-100 User's Manual.

Erases to the end of the page.CTRL-Z

0
RESET

D CHR
I CHR

DEL LINE

INS LINE

BREAK ESC XIf
O

BU

8 9 'Oo,' SPACE
/

/

"B Q W E R T Y U l O P 4HELP

LOCK
"' A S D F G H J K L RETUR

o.::::, q--p • Rg • Q BJONM , OOj

FIGURE 3.1
Function Keys

page 3.11

EDITING Z-BASIC PROGRAMS

/

RESET FS D CHR
I CHR

DEL LINE
INS LINE

HOME

/

//

BREAK 8 9SPACE

//

HELP DELETE 4 65

CAPS
LOCK CTRL RETURN 2 3

.,:;:, p - p 2--p o

FIGURE 3.2
Alphanumeric Keys

RESET FS DEL LINE
INS LINE

FS

BREAK

2 . . 3 . 4 ,
+ BACK

SPACE9
/

HELP Q W E R T Y IJ I Q P

A S D F G H J

DELETE

z gxgc v e N M

FIGURE 3.3
Keypad

:E
+

2 8 , 9 7 8 90

6Q W E R T Y U I Q P
[]

A S D F G H J K L

Z X C V B N M

2 3

0

FIGURE 3.4
Special Keys

Page 4.1

CHAPTER 4 PROGRAMMING IN Z-BASIC

Loading the BASIC Interpreter

BRIEF

This section will tell you how to operate Z-BASIC and explain the unique fea
tures of the Z-BASIC programming environment. No attempt will be made
to teach the subject of BASIC programming, but enough information will be
provided so that you should be able to gain some experience using the
Z-BASIC Interpreter.

Details

The Z-BASIC Interpreter, which must be loaded into your computer's mem
ory before you can use it, is an absolute binary file. This means that it is in
a form that can be directly executed by your computer. Before you can per
form the procedures listed below, you must "boot-up" your computer. If you
are unsure of how to do this, refer to your Z-DOS manual.

The Z-DOS filename used to reference the Z-BASIC Interpreter is Z BASIC.
So, to load the Z-BASIC Interpreter into memory, type the following re
sponse to the prompt from Z-DOS:

A: ZBASIC

(Do not type the A:, as this represents the prompt from Z-DOS. Remember
to terminate the line by pressing the RETURN key.)

This assumes that the file Z-BASIC resides on the current default drive. If
the file does not reside on the current default drive, type the drive name and
then the file name. For example, if A is the current default drive and the
Z-BASIC file resides on drive B, you would use the following command to
load Z-BASIC:

A: 8: ZBASIC

Page 4.2

PROGRAMMING IN Z-BASIC

After BASIC is loaded into memory, a sign-on message will be displayed on
your screen. The amount of free memory, as well as the BASIC version
number, will also be displayed (see "Starting Z-BASIC" Page 2.1). Take
note of the amount of free memory, as this will no doubt be an important
issue if you wish to write large, complex programs.

When BASIC is loaded in the manner described above, it will make certain
assumptions about the operating environment. BASIC assumes that:

Workspace will be allocated dynamically
All available memory will be used,
The maximum number of files that can be open at one time is 255.

FilenameIf <filename> (the file name of a BASIC program) is present, BASIC pro
ceeds as if a RUN <filename> command were given after initialization is
complete. A default file extension of . BAS is assumed if none is given. This
allows BASIC programs to be batch run by putting this form of the command
line in a Z-DOS AUTOEXEC. BAT file. Programs run in this manner will need
to exit via the system in order to allow the next command from the
AUTOEXEC. BAT file to be executed.

You can also specify the highest memory location BASIC will use with the
/M: switch. In some cases it is desirable to set the amount of memory to allow
reserved space for assembly language subroutines. If the /M: switch is omit
ted, all available memory will be used.

Page 4.3

PROGRAMMING IN Z-BASIC

NOTE: The highest memory location number can be either decimal, octal
(preceded by &0), or hexadecimal (preceded by &H).

Examples:

A:ZBASIC PAYROLL. BAS

Use all memory load and execute PAYROLL. BAS

A:ZBASIC /M:32768

Use first 32K of memory.

After the BASIC Interpreter has been loaded into memory, a program may
be written.

Page 4.4

PROGRAMMING IN Z-BASIC

Writing a BASIC Program

statement
~ke tword

A BASIC program is composed of lines of statements containing instructions
to BASIC. Each of these program lines begins with a line number (in the Indi
rect Mode), followed by one or more BASIC program statements. These line
numbers indicate the sequence of statement execution, although this se
quence may be changed by certain statements.

The format of a BASIC program line is:

line
number

line
terminator

Program
Line
Formatstatement

text

100 LET

(space)

X = X+1 RETURN

(space)

Every program line constructed in the Indirect Mode must begin with a line
number, which must be an integer within the range 0 — 65529. This BASIC
line number is a label that distinguishes one line from another within a pro
gram. Thus, each line number in the program must be unique.

Each program line in a BASIC program is terminated with a RETURN.

Page 4.5

PROGRAMMING IN Z-BASIC

When numbering program lines, you could use consecutive line numbers
like 1,2,3,4. For example:

1 X = 1

2 Y = 2

3 Z = X+Y
4 END

However, a useful practice is to write line numbers in increments of 10. This
method will allow you to insert additional statements later between existing
program lines.

10 X = 1

20 Y = 2

3 0 Z = X + Y

40 END

Another useful practice is to let BASIC automatically generate line numbers
for you. This is accomplished with the AUTO command. The AUTO com
mand tells BASIC to automatically generate line numbers. For example, if
you type AUTO 100,10, then BASIC will generate line numbers beginning
with line number 100 and incrementing each line by 10. Then all you need
to do is type the BASIC program line after the generated line number. For
more information on using the AUTO command, see the Alphabetic Listing
of Commands in the Reference Guide, Page 10.4 of this manual.

AUTO
Command

Page 4.6

PROGRAMMING IN Z-BASIC

Running a BASIC Program

After a BASIC program has been written, the next step is to execute the pro
gram. This can be accomplished by the RUN command. The following com
mand would tell BASIC to execute the program currently in memory:

RUN

Execution would begin at the lowest line number and continue with the next
lowest number line (unless the sequence of execution was altered with a
statement like the GOTO statement). The RUN command can also specify
the first line number to be executed. For example, the following command
would cause execution to begin with line number 100:

Program
Execution

RUN 100

You can also use the RUN command to execute a BASIC program that is
currently residing on a disk file. For example, assume the file ALBUM.BAS
resides on the current default disk. The following command would be used
to execute ALBUM. BAS:

RUN� "ALBUM"

Note that no drive specification or file name extension was included in the
file name string. In this case, the current default drive and the extension
.BAS are assumed.

Page 4.7

PROGRAMMING IN Z-BASIC

Debugging a BASIC Program

In some cases, a BASIC program will not execute as you expected. This is
usually the result of either a syntax error or a logic error. A syntax error is
much easier to detect because BASIC will not only detect syntax errors for
you, but will also point out the offending program line and invoke the Edit
Mode. A logic error is much harder to detect, but several error trapping state
ments have been provided to make this an easier task.

When BASIC detects a syntax error, it will automatically enter Edit Mode at
the line that caused the error. The full screen editor will automatically list the
line which caused the syntax error and place the cursor at the beginning of
the program line. At this point you can use the full screen editor to correct

Syntax
and
Logical
Errors

the error.

Syntax errors are usually a result of a misspelled keyword or an incorrectly
structured program line. Remember that BASIC requires all reserved words
to be delimited by a space. The easiest way to correct a syntax error is to
refer to the appropriate syntax diagram (format) in the reference guide.

Because of the interactive nature of BASIC, it is very convenient to debug
a BASIC program. Several statements have been provided to help you
debug a BASIC program. But your first step is to find out the nature of the
"bug".

A program "bug" may cause the wrong values to be output, or it may cause
a program to branch to the wrong statement. The results of a calculation may
be wrong or incomprehensible. A program "bug" might cause an error con
dition to be flagged. Often you must discover what the program is doing at
the time of an error before you can determine the problem.

Also keep in mind that, in most cases, it is a bug in your program that is caus
ing a problem. It is highly unlikely that the BASIC Interpreter is at fault.

Page 4.8

PROGRAMMING IN Z-BASIC

Once you have decided what the program is doing, you can take steps to
discover why it is not executing correctly. For example, assume that a pro
gram is branching to a line number that is different from where you want it
to branch. The trace flag has been provided to trace the flow of a program.
To enable the trace, the TRON statement is used, and to disable the trace,
the TROFF statement is used.

The trace flag will print each line number as it is being executed. The line
number will be enclosed in square brackets ([]). It is best to generate a hard
copy listing of the program first so you can follow this listing while the trace
is running.

Trace
Flag

BreakpointsAnother important technique you can use in debugging is to set breakpoints
in a program. You can use the STOP statement to temporarily terminate pro
gram execution, and then enter commands to print the values of various var
iables. You can also assign new values to these variables. Then you can
continue program execution with a CONT command or a Command Mode
GOTO.

Although you can print and change the values assigned to variables, you
must not change the BASIC program after you interrupt execution with a
STOP statement. If you do change the program, all the previously stored
variable values will be lost, and all open files will be closed.

Page 4.9

PROGRAMMING IN Z-BASIC

Saving a BASIC Program

When you have completed a BASIC programming session, you will no doubt
want to save a copy of your most current program on the disk. This is accom
plished with the SAVE command. The general format of the SAVE com
mandis:

SAVE" (filename)"

The <file name> must be a valid Z-DOS file name. If no device specification
is given, the current default drive will be assumed. If no file name extension
is given, the default extension of . BAS will be assumed. For example, if you
wish to save a program called GAME.BAS, you could use the following com
mand:

SAVE" C:GAME. BAS"

Note that this file will be written on drive C. The file name extension of.BAS
could have been omitted, and then it would have been supplied as the de
fault. BASIC will usually save files in a compressed binary format. A program
can optionally be saved in ASCII format, but it will take more disk space to
store it this way. Saving a file in ASCII format will permit you to print the file
on a line printer and also permits you to use the compiler if you desire to
do so. To save a program in ASCII format, append an A to the end of the
file name string. For example:

Options
Available
For
Saving

SAVE"C:GAME",A

This will save the file on drive C in ASCII format with a file name of
GAME.BAS. You can also save a program in a protected format so it can
not be listed or edited. Just append a P to the end of the file name string.
For example:

SAVE"C:GAME",P

This file will be saved in an encoded binary format.

Warning: When this protected file is later run or (loaded), any attempt to
LIST or EDIT this program will fail.

Page 4.10

PROGRAMMING IN Z-BASIC

Loading a BASIC Program

When you begin a BASIC programming session, you may want to load a
program from the disk into memory. This is accomplished with the LOAD
command. The general form of the LOAD command is:

LOAD" (f'ilename>"

For example, if you wanted to load the program PAYROLL.BAS, you could
use the command:

LOAD "PAYROLL"

Note that the file name extension was omitted. BASIC will assume a file
name extension of . BAS. Also note that the drive specification was omitted.
In this case, the current default drive will be assumed.

You may specify the file name using capitals or lower-case letters. The
BASIC interpreter will automatically convert the file name into capital letters.
This applies to all string constants or variables that contain file names.

It is also possible to execute a program with the LOAD command. If you want
to do this, append an R (for RUN) to the end of the file name string. For ex
ample:

LOAD "PAYROLL",R

This form of the LOAD command will load a program into memory and exe
cute it as if a RUN command had been typed. All currently open files will
remain open for use by the program.

Page 4.11

PROGRAMMING IN Z-BASIC

Listing a BASIC Program to a Line Printer

At some point during your programming effort, you may want a hard copy
listing of a BASIC program. A BASIC program is listed to a hard copy device
in much the same manner as it is listed to a console device. Use the LLIST
command.

The general form of the LLIST command is:

LLIST

This will list the current program on the hard copy device. It is also possible
to specify the range of line numbers to be listed. For example, in order to
list a single line, you can use the command:

LLIST100

This will list only the line number 100. A range of line numbers can also be
specified:

LLIST 100 — 500

This will list line numbers 100 through 500, inclusive. The LLIST command
will direct the output to the Z-DOS LST: device. This logical device can be
assigned to several different physical devices. Refer to your Z-DOS manual
for information about this process.

Checkpoint

In summary, the process of creating a BASIC program usually consists of
the following steps:

LOAD Z-BASIC
Enter program lines
Use RUN to execute the program
Debug the program
Save the program
List the program to the printer

1.
2.
3.
4.
5.
6.

To rerun the program at a later time, LOAD the program with the "R" option.

page 4.12

Page 5.1

ARITHMETIC AND STRING OPERATORS

Variables

CHAPTER 5

BRIEF

Variables in BASIC are treated exactly as if they were the value that they
represent. Variable names may not be any of the reserved words (see the
liston Page 2.9). The names may be up to 40 characters.

Variables occur in two distinct types — numeric and string. String variable
names are distinguished by a dollar sign ($) written as the last character.
Numeric variables may be declared as: integers (2 bytes), distinguished by
a percent sign (%); single-precision (4 bytes), distinguished by an exclama
tion point (!); or double-precision (8 bytes), distinguished by a number sign
(¹).

Both numeric and string variables may be used to define arrays. The
maximum number of dimensions for a BASIC array is 255. The maximum
number of elements per dimension is 32766.

Details

VARIABLE NAMES FOR NUMBERS AND FOR
CHARACTER STRINGS

Numeric and string variables are names that are used for assigned values.
A numeric variable always has a number as its value and a string variable
always has a character or string of characters as its value. Variables are
treated by BASIC in much the same way that constants are treated (see
Page 5.48).

Names that you use for variables may consist of letters, numbers, and deci
mal points (or periods). In some instances, symbols that declare the type
of the variable may be used as the last character of the variable name.

Variable Names

Page 5.2

ARITHMETIC AND STRING OPERATORS

For example: "XA", "BILLING", "MARK1" and "QUAD12", are all valid
names.

The names may be of any length from one to 40 characters. If you enter a
variable name that is longer than 40 characters, a syntax error message will

Name Length

occur.

EXCEPTIONS TO NAMING VARIABLES

Variable names must begin with a letter. Invalid names would be:
"17PAGE", "1 STONE" and "12MONTH7DAY".

The names you give to variables may not be any of the reserved words (see Reae~edw«da

"Reserved Words" on Page 2.9), but the names may contain imbedded re
served words. For instance, consider the following two examples:

This would be reported as an error,
however,

10 LOG = .000142

10 ANALOG = .000142 This would be okay since "LOG" is
only a part of the variable name.

Likewise,

Would cause an error,10 ON$ = "Light On"

and

Would not cause an error.10 ONLY = "Light On"

No variable name should begin with FN because commands beginning with
FN are assumed to be user-defined functions (See "DEF FN" on Page
10.33).

Page 5.3

ARITHMETIC AND STRING OPERATORS

Symbols No variable name should end with the symbols that are set aside specifically
for the declaration of variable types unless that variable is intended to be
of that specific type (these types are covered in the section on "Declaring
Variable Types" on Page 5.7).

The symbols used for declaration of variable type may also be considered
reserved because they are used for specific results in the use of variables.
These symbols are:

COMMON USES FOR VARIABLES

Variables have many uses, but four of the most common uses are:

1. Y o u want to process more than one value in the same manner.

2. Yo u want to use the same value several times within the same pro
gram.

3. Yo u want to reserve space.

4. Y o u need to pass the values in one program to another program or
want to retrieve values from a disk.

Examples of each of these four uses might be:

1. I f you were calculating gross profit for each month, you would use the
same formula, but the values would most likely change from month

Processing
Variables
with Differen
Values to month. Consider this formula:

Monthly gross profit = monthly sales
— monthly cost of goods sold.

Page 5.4

ARITHMETIC AND STRING OPERATORS

Vei'Iab)es

You may want to use the variable name "Sales" as the monthly value
of total sales, "Cost" as the monthly cost of the goods that you sold,
and "Gross" as the result, which would be the value of your gross prof
its. You could then shorten the formula to:

Gross = Sales — Cost

"COST", "SALES" and "GROSS" are all considered numeric variables
(note that they do not have a dollar sign, "$", as their last character).

You would then assign each month's values to the variable names in
the formula. When you are using long or complicated formulas this as
signment makes it very easy to process different values without rewrit
ing the formula each time.

2. If you want to write a program that creates a form letter to send out
to your clients, you can use variables to make the letter seem per
sonalized by repeating the name of the person that will receive the
letter in several places.

To do this, you may write the program so that it would insert your
client's name everywhere you want it to appear in the letter. Your letter
might be similar to the letter on the next page.

Repetition
of a Vanable
in Several
Locations
with the same
Value

Page 5.5

ARITHMETIC AND STRING OPERATORS

Dear (client's name):

We have some very interesting and startling
news that we would like to pass on to you
(client's name), that we think you will be
interested in hearing.

We are having our annual sale and we are
offering special discount rates to our good
customers like you, (client's name)...

Well, (client's name) that sums it all up. We
h ope to h ea r f r o m you s o on .

S incere l y ,

P.S. Don't forget (client's name),
o nly t e n more d a y s .

You could let the variable "N$" (pronounced "N-string") equal the value of
the client's name in your program. Wherever "(client's name)" appears in the
above letter, you could tell the program to use the value of N$. N$ is a string
variable (as is designated by the ending dollar sign, "$").

If you were writing a program to solve for the area contained in various
circular shapes, you could set a variable equal to a value that was sev
eral digits long. For example, you could allow the numeric variable "Pl"
to have the value of 3.141592653589887

Using
Variables to
Save Memory
Space

PI = 3.141592653589887

The variable name "PI" is only two characters long. The value of Pl
which is 3.141592653689887 when written in double-precision, con
sists of 17 characters (counting the decimal). If the value of Pl was
needed in 20 separate places in your program, you would save ap
proximately 440 characters by using a numeric variable.

Page 5.6

ARITHMETIC AND STRING OPERATORS

4. If you needed a program to keep track of the names and addresses
of your clients, you could use set up a variable (such as N$ in example
2) for the clients' names, a variable for their street addresses (perhaps
A$), variables for their cities (C$), states (S$), zipcodes (Z$), and a
variable for the clients' phone numbers (P$).

When you have input all six of these client data for each client into
the computer, you could store the data on a disk without typing each
item of data again. The transfer of data from one location to another
or from one variable name to another name is sometimes referred to
as passing values.

An example of this process in English would be to tell the computer:

Start with the value of variable n set to (1), where n is a variable
that counts the number of times that the instructions have been
repeated. For each of my 96 clients do the following instructions.

Let the variable N$ equal the value of my nth client's name

Let the variable A$ equal the value of my nth client's street ad
dress

Let the variable C$ equal the value of my nth client's city

Let the variable S$ equal the value of my nth client's state

Let the variable Z$ equal the value of my nth client's zipcode

Let the variable P$ equal the value of my nth client's phone
number

Write N$, A$, C$, S$, Z$ and P$ to disk

Increment n by 1 (add one to the value of variable n)

If n is equal to 97 then stop

If n is less than 97 then return to the top of this instruction list and
get the new nth client's data

Passing
Values

page 5.7

ARITHMETIC AND STRING OPERATORS

Vet"iebles

This example would reduce the actual handling of each of the items of data
by allowing you to use variables whose values you could change in each
pass. For instance, on each repetition, the variable N$ (and all of the other
variables) would be assigned a different value. Then the value that was as
signed to N$ (along with the values for the other variables) would be written
to the disk in the order defined by the line "Write N$, A$, C$, S$, Z$ and
P$

N

The following is a sample program included to demonstrate how this pro
gram would appear when written in BASIC.

90 OPEN "DATAFILE" FOR OUTPUT AS 41
100 N = 1

110 LINE INPUT "CLIENTS NAME: ";N$
120 LINE INPUT "ADDRESS: ";AS
130 LEEP INPUT "CITY: ";Cs
140 LINE INPUT "STATE: ";S$
150 LI5K I NPUT "Z IPCODE: ";ZS
160 LINE I NPUT "PHONE: ";PE
170'NNITE ¹ I , N E ,AE,UE,HE,ZE,PE
180 N =N+1
1 90 I F N=97 THEN END
200 GOTO 110

DECLARING VARIABLE TYPES

You may assign a type to variable names by using a symbol at the end of
that name. When you make this assignment, you are said to be "declaring"
that variable's type. There are two types of variables that have been men
tioned so far: string and numeric. Numeric variables also may be declared
to be of a specific precision.

Page 5-8

ARITHMETIC AND STRING OPERATORS

VSIf'isbles

Declare string variables by using a dollar sign ($) as the last character of Declaring
the variable name. String

Example:

Variables

EXAMPLES = "This is a literal expression"

In the above example, "EXAMPLE" is the variable name, "$" declares that
the variable name is a string variable, and "This is a literal expression" is
the value that has been assigned the name "EXAMPLE$". The dollar sign
($) tells BASIC that the variable name will be used to represent a string lit

Declaring
Numeric
Variable
Precision

eral.

Numeric variables' names may be declared as integer, single or double-pre
cision. This tells BASIC how precisely it should retain the value you have
assigned to a numeric variable name.

A computation is more precise and accurate when you are using a variable
declared as double-precision. However, there are many instances when it
is better to use less precision. Here are some of the reasons that less preci
sionmight be more desirable:

• High er precision variables occupy more storage space. If
memory space or disk space is critical to an application but
high precision is not, it is wise to declare variables to have
less precision so that they do not take up as much room.

• High er precision numbers take the computer more time to
manipulate in an arithmetic operation. If the speed of a pro
gram that must do several calculations is critical but precision
is not, declaring variables to have less precision will allow the
program to run faster.

Page 5.9

ARITHMETIC AND STRING OPERATORS

Declaring a variable type to be of a specific precision will round off the value
in a known manner if that value exceeds the limitations placed on it by the
precision that is declared. Certain applications you want to use may require
specific limitations to the numeric values that are used by equations. Declar
ing a variable's precision can ensure that a value will be within the specified
limitations. The limitations for each of the precision types are covered below.

Declare integer variables by using a percent sign (%) as the last character
of the variable name.

Example:

Declaring
Integer
Variables

Ag = 2 . 7 3 6

would cause the value of A% to be 3

Cfo = - 99 .34 1

would cause the value of C% to be — 99

INTEGER% = .87654321

would cause the value of INTEGER% to bet

The declaration of a variable as an integer causes the variable's value to
be rounded to the closest integer (whole number) if the value is not already
an integer. In the case of a value of one-half (.5), the value is rounded up
to the next higher integer. In the case of a negative one-half (—.5), the value
is rounded down to the next lower integer. Examples of this would be:

VALUE% = 17 . 5

would cause the value of VALUE% to be 18

DECLINE = - 4 2 . 5

would cause the value of DECLINE% to be — 43

RATE/ = . 5
would cause the value of RATE% to be — 1

A variable that is declared as an integer may not be set to a value that ex
ceeds the range of — 32768 to +32767, or BASIC will report an overflow.

Page 5.10

ARITHMETIC AND STRING OPERATORS

Val"iabIes

DeClare Single-preCiSiOn VariableS by uSing an eXClamatiOn pOint (!) aS the Decl aring
last character of the variable name. Single

Precision
Variables

Q! = 9876543210. 0123456789

would cause the value of Q! to be 9.876544E+09

COUNT! = 123 .456789

would cause the value of COUNT! to be 123.4568

CAR3! = - 1 2 3456789

would cause the value of CAR3! to be — 1.234568E+08

A variable that is declared as single-precision that exceeds seven digits is
rounded to its closest value. Although the seventh digit is displayed, its accu
racy is not dependable. See Pages 5.48 — 5.53

Declare double-precision variables by using a number sign (4) as the last oec iaring
Double
Precision
Variables

character of the variable name.

Example:

DEBIT¹ = 91283764518.28

would cause the value of DEBITS to be 91283764518.28

WORTH¹ = 998877665544332211.998877665544332211

would cause the value of WORTH4i to be 9.988776655443322D+17

DECIMAL¹ = .01234567890123456789

would cause the value of DECIMALS to be 1.234567890123457D — 02

A variable that is declared as double-precision that exceeds 16 digits is
rounded to its closest value. Limitations apply to double-precision variables
the same as they do to double-precision constants on Page 5.50.

On the next page, you will find a table that shows how the three precision
declarations affect given values.

Page 5.11

ARITHMETIC AND STRING OPERATORS

Declared
Integer

Declared
Single
Precision

Declared
Double
Precision

Original
Value

1234567890987654321
— 1234567890987654321

987654321 0.01 23456789
— 9876543210.01 23456789

1234567890.0987654321
— 1234567890.0987654321

987654.321
— 987654.321

32769
— 32769

32768
— 32768

) 987.654321
— 987.654321

299.5
— 299.5

1 23.4567890987654321
— 123.4567890987654321

.5
— 5

.0987654321
 .0987654321

Overflow
Overflow
Overflow
Overflow
Overflow
Overflow
Overflow
Overflow
Overflow
Overflow
Overflow
-32768

988
-988

300
-300

123
— 123

1
— 1

0
0

1.234568E+ 18
— 1.234568E+18

9.876544E+ 09
— 9.876544E+ 09

1.234568E+09
— 1.234568E+09

987654.3
— 987654.3

32769
-32769

32768
-32768

987.6543
— 987.6543

299.5
— 299.5

123.4568
— 123.4568

.5
— 5

9.876543E — 02
— 9.876543E — 02

1.234567890987654D+ 18
— 1.234567890987654D+ 18

9876543210.012346
— 9876543210.012346

1234567890.098765
— 1234567890.098765

987654.321
— 987654.321

32769
-32769

32768
-32768

987.654321
— 987.654321

299.5
— 299.5

123.4567890987654
— 123.4567890987654

.5
 .5

.0987654321
 .0987654321

Table 5.1
Precision Declaration on Various Values

Page 5.12

ARITHMETIC AND STRING OPERATORS

Array Variables

BRIEF

An array is an ordered list of data items. It can be a one-dimensional vertical
array or a table of data items consisting of rows and columns.

These data items may be either string or numeric. Each one is referred to
as an element.

Several sample routines have been provided which can be used to manipu
late arrays. These sample routines can be used to add, multiply, transpose,
and perform other useful operations on numeric arrays.

Details

ARRAY DECLARATOR

An array is an ordered list of data items that may be a one-dimensional verti
cal list or a table of data items consisting of rows and columns. Before an
array is referenced, it should be "declared" by use of an array declarator.
The DIM statement is used to declare and establish the maximum number
of elements in an array. The general form of the DIM statement is:

DIM <name>[((integer expression>)]

where:

(name> is a valid BASIC symbolic name.

The <integer expression> is any valid integer expression which, when
evaluated, will be,r ounded to a positive integer value. This positive integer
value will then become the maximum number of elements associated with
that specific array name. The maximum number of dimensions is 255. The
maximum number of elements per dimension is 32766.

An array can also be declared without the use of the array declarator. When
BASIC encounters a subscripted variable that has not been defined with a
DIM statement, it will assume a maximum subscript of 10. Thus, an array
can be established without the use of the DIM statement.

DIM
Statement

Page 5.13

ARITHMETIC AND STRING OPERATORS

ARRAY SUBSCRIPT

Each element of an array is referenced by an array subscript appended to
the end of the array name. This array subscript is an integer expression
which references a unique element of the array. Consider the following ex
amples:

A (1),DS(I , J , K)
Ql(2)
Zk(55)

Subscript
Errors

Any attempt to reference an array element with a subscript that is negative
Will reSult in an Il l egal Funct ion Cal l e rrOr meSSage. ReferenCeS tO Sub
scripts which are larger than the maximum value established by a DIM state
ment and references which contain too many or too few subscripts will gen
eratea Subscript Out of Range errOrmeSSage.

OPTION BASE STATEMENT

The minimum subscript for an array element is assumed to be 0. The array
declarator A(10) actually establishes an 11-element array, A(0) — A(10). The
OPTION BASE statement can be used to establish the minimum array sub
script value as 0 or 1. The default value is zero. The following example illus
trates the use of the OPTION BASE statement.

Changing
the
Defaults

OPTION BASE 1
DIM A (10)

Duplicate
Definition
Error

This program segment will establish a 10-element array, A(1) — A(10). The
OPTION BASE statement must appear before any DIM statement or before
any subscripted variable is referenced. An attempt to use the OPTION
BASE statement after an array has already been established will result in
a Duplicate Def i n i t i o n error message . This same error message wil l
occur if you declare the same array later in the same program without eras
ing the previous declaration of the array.

Page 5.14

ARITHMETIC AND STRING OPERATORS

Array Variabies

VERTICAL ARRAYS

A vertical array is a 1-dimensional array. You can establish this type of array
by using the DIM statement or by letting BASIC establish the default array
size. Assuming that the default array size of 11 elements has been estab
lished for the array A, Z-BASIC would allocate storage as follows:

Storage
Allocation

Arra element Subscribed variable

A(0)
A(1)
A(2)
A(3)
A(4)
A(5)
A(6)
A(7)
A(8)
A(9)

A(10)

Element ¹1
Element ¹2
Element ¹3
Elelnent ¹4
Element ¹5
Element ¹6
Plement ¹7
Element ¹8
Element ¹9
Element ¹10
Element ¹11

Table 5.2
Array Storage Allocation

The variable A(9) would reference the tenth element of this vertical array.
(Although the OPTION BASE statement could be used to set the minimum
subscript to 1. In this case A(9) would reference the ninth element of the
array.)

MULTI-DIMENSIONAL ARRAYS

A multi-dimensional array is declared in the same manner as a vertical array,
except that both row and column size are declared. For example, to declare
a 3 x 3 array, the following sequence of statements could be used:

OPTION BASE I
DIM A(3,3)

Page 5.15

ARITHMETIC AND STRING OPERATORS

Array Val"IabIes

After this program segment is executed, BASIC would reserve nine storage
locations for the array. (Note that the minimum subscript value was set to
1 with the OPTION BASE statement.)

Column 1

Row1 A(1,1) A (1,2) A (1,3)

2 A(2,1) A(2 ,2) A(2 ,3)

3 A(3, 1) A(3 ,2) A(3 ,3)

Table 5.3
Multi-Dimensional Array Storage Allocation

When you are reading from left to right, note that the second array subscript
varies most rapidly.

String arrays can also be established in the same manner as numeric ar
rays. A string array is declared when the DIM statement is used.

String
Arrays

DIM AS(100)

This statement will establish a 101-element string array. To access an ele
ment of the array, append an array subscript to the end of the variable name.

AS(20) ="A STRING ARRAY"

Page 5.16

ARITHMETIC AND STRING OPERATORS

A~I ay V8VIabIOS

MATRIX MANIPULATION

A collection of subroutines that are very useful for manipulating a matrix are
shown below. The subroutine line numbers in the following example may
have to be changed to be compatible with your program.

Matrix
Input
Subroutines

5000 'SUBROUTINE NAME — MATIN2
5010 'ENTRY Ig = ¹ O F ROWS, J$ = ¹ O F COLUMNS

5020 DIM MAT(1$,Jg)
5030 FOR Kg = 1 TO I g
5040 PRINT "INPUT ROW ¹";KX
5050 FOR Lg, = 1 T O J $
5060 INPUT MAT(K$,L$)
5070 NEXT Lg,Kg
5080 RETURN

The above subroutine will accept data from the terminal and assign this data
to the 2-dimensional array named MAT. Upon entry into this subroutine, the
integer variable l% must contain the number of rows in the matrix and J%
must contain the number of columns.

MATIN3
SIZE OF DIMENSION ¹1
SIZE OF DIMENSION ¹2
SIZE OF DIMENSION ¹3

5000 'SUBROUTINE NAME
5010 'ENTRY Ig
5020 Jg
5030 Kg
5040 DIM MAT (Ig,J$,Kg,)
5050 FOR L$ = 1 TO I g
5060 FOR M$ = 1 TO

5070 FOR NX
5080 READ MAT(LJ,M$,Nf)
5090 NEXT N$,Mg,L$

J$ 1 TO Kg

6000 RETURN

This subroutine listed above is used to read data from DATA statements and
assign this data to the 3-dimensional array named MAT. Upon entry into this
subroutine, the integer variable l% must contain the number of elements for
dimension 1, J% must contain the number of elements for dimension 2, and
K% must contain the number of elements for dimension 3. Also, the data
must be contained in valid DATA statements.

Page 5.17

ARITHMETIC AND STRING OPERATORS

Array Variables

SCALAR MULTIPLICATION

Multiplication
by a Single
Variable

5000 'SUBROUTINE NAME — MATSCALE
5010 'ENTRY IK = SIZE OF DIMENSION ¹1
5020 J$ = SIZE OF DIMENSION ¹2

5030 K$ = SIZE OF DIMENSION ¹3
5040 ' A — ORIGINAL ARRAY
5050 ' X — SCALAR FACTOR
5060 ' B — NEW ARRAY
5070 FOR Lg = 1 TO Kg
5080 FO R Mg = 1 TO Jg
5090 FOR N$ = 1 TO I g
6 000 B(Ng , M $, L $) = A (Ng,M$,Lg)+X
6 010 NEXT N %
6020 NE X T M%
6030 NEXT L$
6040 RETURN

This subroutine will multiply each element in the 3-dimensional array A by
the value assigned to X and produce a new 3-dimensional array B. Upon
entry into this subroutine, l% must contain the size of dimension ¹1,J% must
contain the size of dimension ¹2,K% must contain the size of dimension ¹3,
and X must be assigned the value to multiply by (scalar factor). Both arrays
A and B must also have previously been defined by a DIM statement.

TRANSPOSITION OF A MATRIX

5000 'SUBROUTINE NAME — MATTRANS
5010 'ENTRY Ig = ¹ O F ROWS, Jg = ¹ O F C OLUMNS
5020 'TRANSPOSE A INTO B
5030 FOR K$ = 1 TO I g
5 040 FO R L $ = 1TO J$
5 050 B(L$, K g) = A (K$,L$)
5060 NE X T LX
5070 NEXT K$
5080 RETURN

This subroutine will transpose the 2-dimensional matrix A into the 2-dimen
sional matrix B. Upon entry into the subroutine, l% must contain the number
of rows in A and J% must contain the number of columns in A. The arrays
A and B both must have previously been definedby a DIM statement.

Page 5.18

ARITHMETIC AND STRING OPERATORS

AI"I"8Y V8f'IBbies

5000 'SUBROUTINE NAME — MATADD
5010 ' ENTRY — I X = SIZE OF DIMENSION ¹1

5020 Jg = SIZE OF DIMENSION ¹2

5030 K$ = SIZE OF DIMENSION ¹3
5040 ' ARRAY A+B = C

5050 FOR Lg = 1 TO K$
5 060 FOR M/ = 1 TO J $
5070 FOR Ng = 1 TO I g
5080 C(Ng , M X,L$) = B (Ng,Mg,L$) + A(Ng,M$,L$)
5090 NEXT N$
6000 NEXT M$
6010 NE X T L%
6020 RETURN

Matrix
Addition

This subroutine will add the elements of arrays A and B to produce a new
array C. A, B, and C must have previously been defined by a DIM statement.

Matrix
Multiplication5000 'SUBROUTINE NAME — MATMULT

5010 'ENTRY — ARRAY A MUST BE DIX BY D3X ARRAY
5020 ARRAY B MUST BE D3X BY D2X ARRAY
5030 ARRAY C MUST BE D1% BY D2X ARRAY
5040 FOR Ig = 1 TO D1$
5 050 FO R J $ = 1 TO D2$,
5060 C(1$, ,Jg) = 0

5070 FOR Kg =l TO D3$
5080 C(IJ,J$) =C (1$,J$) +A(1$,Kg) +B(Kg,Jg)
5 090 NEXT K $
6 000 NEXT J X
6 010 NE X T I g ,
6020 RETURN

This subroutine will multiply the 2-dimensional array A by the 2-dimensional
array B and produce C.

Using array variables is an advanced programming technique. If you are
having problems understanding the preceding information, refer to other
BASIC programming resources. See the bibliography at the end of this man
ual.

Page 5.19

ARITHMETIC AND STRING OPERATORS

Arithmetic Operators and Expressions

ARITHMETIC OPERATORS

BRIEF

The arithmetic operators in BASIC are the symbols +, —, /, ~, MOD, *, and
, which stand for addition, subtraction, division, integer division, modulo

arithmetic, multiplication, and exponentiation, respectively.

Integer Division, denoted by a (~) backslash, is an operator that rounds the
operands to the nearest integer within the range of — 32768 to 32767. The
operands are rounded before division is performed, and the answer is
rounded to a whole number as well.

Modulus Division, denoted by the operator MOD, gives the remainder of the
value that is the result of integer division.

Rules of precedence determine the order in which operators are evaluated.

Parentheses can be used to change the order of evaluation by indicating
which operations are to be performed first.

Details

The BASIC arithmetic operators perform common arithmetic operations
such as addition, subtraction, negation, division, multiplication and ex
ponentiation. A numeric expression is any collection of operators and
operands that can be arithmetically evaluated to produce a single numeric
result.

operator

2 + 2 = numeric expression
Xoperandsf

Page 5.20

ARITHMETIC AND STRING OPERATORS

Arithmetic Operators and Expressions

Precedence is a predetermined order in which expressions are evaluated.
The following table demonstrates the order of precedence of BASIC arith
metic operators. The order that the operators are listed in reflects the order
that they would be evaluated in an expression.

~Oerator ~aeration

Precedence

~Exam ie

Expo nentiation
Negation
Multiplication and
Floating-point Division
Integer Division
Modulus Division
Addition and Subtraction

A" B
— B
A*B, A/B

A~B
A MOD B
A+B, A — B

MOD
+

Table 5.4
Order of Precedence

It is important to take note of the order of precedence when you are setting
up numeric expressions because the order in which an expression is evalu
lated can greatly affect the result.

Example:

1 0 PRINT 8+4 2/ 8 + 2
RUN

12
Ok

In this numeric expression, 4 " 2 (four raised to the power of two) is the first
expression that is evaluated, with a result of 16. Since the 16/8 is left of the
8*2, the division is carried out next. The value 16 is divided by 8 and then
multiplied by 2 with a result of 4. Then the 8 is added which makes 12 the
final result.

If the order of precedence was disregarded and the 8, for example, was
added to (4 " 2) first: 24 would be the value divided by 8, which would cause
3 to be rnultipled by 2, yielding an incorrect result of 6.

Page 5.21

ARITHMETIC AND STRING OPERATORS

Exponentlatlon Exponentiation is used to handle very large or very small numbers in an ab
breviated form. Exponentiation means to raise the value of the numeral on
the left of the operator to the power of the numeral on the right. All exponenti
ationis performed from left to right as it appears in the expression.

Negation, the minus sign (—), can function in two different ways. If it is be
tween two numbers, it stands for the subtraction operation, as in PRINT
8 — 5; but if it is in front of a number, it serves to indicate a negative quantity,
as in PRINT — 5. In PRINT 8 — 5, the minus sign is called a binary operator,
because it has two operands (the numbers on either side of it); while in
PRINT — 5, it is called a unary operator because it only has one operand
(the number following it).

Negation

In BASIC, the unary minus is a real operator, not just a piece of the number
it's attached to. The operation is called negation and is the equivalent of mul
tiplying the number by — 1. Thus, the statement PRINT (— 1)*5 is equivalent
to PRINT — 5. Unary operation is also used to demonstrate the relationship
between logical operators as described on Page 5.32.

Multiplications and divisions are then evaluated by BASIC, going from left
to right in the expression. Multiplication is denoted by the (*) asterisk, which
must be included between quantities, unlike mathematics where the symbol

Multlpllcatlons
and
Divisions

can sometimes be omitted.

Page 5.22

ARITHMETIC AND STRING OPERATORS

Floating Point Division is denoted by a slash (/) and is performed in the usual
arithmetic manner. However, a backslash (~) indicates integer division,
which rounds the numbers to integers before division takes place. The quo
tient is also truncated to an integer. The operands must be in the range
— 32768 to 32767.

Example:

Floating
Point
Olvision

10~4 = 2

25.68~6.99 = 3

If a division by zero is encountered during the evaluation of an expression,
the Div1s1on by zero error message is displayed, machine infinity with the
sign of the numerator is supplied as the result of the division, and execution
continues. If the evaluation of an exponentiation results in zero being raised
tO a negatiVe POWer, the D1v1s1on by zero errOr meSSage iS diSPlayed, and
execution continues.

Similarly, if OVerflOW OCCurS, the Over fIow errOr meSSage iS diSplayed, and

Overflow
and
Olvlsion
by zero

execution continues.

Modulus division is denoted by the operator MOD. It gives the integer value
that is the remainder (also known as the modulo) of an integer division ex
pression. The remainder is also expressed as an integer value.

Example:

Modulus
Oivlsion

Ok
10 LET A = 5 MOD 3
20 PRINT A
RUN

2
01T

The result is 2 because 5~3 is 1, with a remainder of 2.

Finally, all additions and subtractions are evaluated, going from left to right. Add i tions
Here are some sample algebraic expressions and their BASIC counterparts: Subtractions

Page 5.23

ARITHMETIC AND STRING OPERATORS

Al ebraicEx ression BASIC Ex ressionSample
Expressions

X

X+2Y

Y
Z

X+ Y *2

X — Y/Z

XY
Z

X*Y/Z

X+Y
Z

(X2) Y

x"'

X(- Y)

(X+ Y)/Z

(X" 2)" Y

X" (Y" Z)

X*(— Y)

Table 5.5
Algebraic Expressions and Their BASIC Counterparts

Two consecutive operators must be separated by parentheses such as in
the case X*(— Y).

Parentheses can be used to change the order of evaluation by indicating
which operation is to be performed first.

Parentheses

Checkpoint

Here are three examples that use parentheses to change the predetermined
order of evaluation. Before you go on to the next page, study these exam
ples to see if you can determine how the interpreter will handle the expres
sions.

A. (8+4) " 2/(8 *2)

B. 8+4 " (2/8 *2)

8+(((4 " 2)/8)*2)

Page 5.24

ARITHMETIC AND STRING OPERATORS

Arithmeticoperatorsaind Expressions

A. (8+4) " 2/(8*2)

12 " 2/(8 *2)

144/(8*2)

Original expression.

Left-most set of parentheses: 8+4 is 12.

Exponentiation: 12 " 2 is 144.

Next set of parentheses: (8*2) is 16.144/16

Division: 144/1 6 is 9.

Original expression.

Expression in parentheses comes first; divi
sion on the left is performed, replacing 2/8
with.25.

B. 8+4 " (2/8 *2)

8+4 " (.25*2)

.25*2 is .5.8 +4 . 5

4" .5 is2.8+2

10 8+2 is10.

Original expression. Notice that nested
parentheses are evaluated from the inside

C. 8+(((4 " 2)/8)*2)

8+ ((16/8)*2)

out.

Inner parentheses are evaluated first: (4 " 2)
becomes 16.

Next set of parentheses: (16/8) is 2.8+ (2*2)

8+4 is 12.12

As you can see from these examples, the location of the parentheses in a
numeric expression affect the result of that expression. Understanding the
rules of precedence and the rules regarding parentheses will help you obtain
the desired results from your programs. However, if you write an expression
improperly or ask the computer to do something it cannot do, you wiil get
error messages (which are discussed on the following pages).

Page 5.25

ARITHMETIC AND STRING OPERATORS

Arithmetic Operators and EXPI"essioos

Syntax errors occur when the BASIC interpreter attempts to translate a
Errors stat e ment that is improperly written. The interpreter will not translate the

statement and will print out a syntax error message.

Example:

You enter: PRNT2+2
BASIC responds: s y n tax e r r o r

A syntax error occurred because PRINT was misspelled.

You enter: PRINT32-/4
BASIC responds: syntax error

A syntax error occurred in this case because the minus to the right of the
32 must be the binary subtraction operator. The / is always binary, and you
cannot have two adjacent binary operators.

You enter: ?(2*(12-4*3)
BASIC responds: syntax error

A syntax error resulted because a parenthesis was omitted. This is a very
common mistake. There must always be an even number of parentheses,
since each left parenthesis must face toward a corresponding right paren
thesis. The question mark causes no problems because Z-BASIC accepts
the? as a shorthand notation of the PRINT statement. A corrected version
of this expression would be as follows:

' ? (2+(12- 4 + 3)) or ' ? 2"(12 - 4 + 3)

Page 5.26

ARITHMETIC AND STRING OPERATORS

Arithmetic Operators and Expressions

Another kind of error you may get is called an execution error. An execution
error occurs when a properly written command tells the computer to do
something it cannot do. Processing stops, and an execution error message
is displayed. Below, we' ve included several examples of execution errors
and the conditions that cause them.

Execution
Errors

PRINT 2+

PRINT 2/0

PRINT (— 3)" .5

Missing the other operand.

Result is mathematically undefined.

Produces a value that cannot be represented
in the number system usedby the interpreter.

Produces a number too large for the interpre
ter to handle. This is called an overflow condi
tion.

PRINT 100 " 999

READX (No data
statement included)

Tries to read a nonexistent item of data.

Page 5.27

ARITHMETIC AND STRING OPERATORS

RELATIONAL OPERATORS

BRIEF

A relational operator tells the interpreter to evaluate and compare the two
expressions on either side of the operators.

Relational operators must always stand between two valid expressions of
the same type, either both numeric or both string.

Usually, the result of the comparison is used to make decisions about pro
gram flow.

The result of the comparison is either true or false, which is why relational
operators are used to form the condition of conditional branches.

Details

Relational operators are symbols used to evaluate and compare two ex
pressions. They stand between two valid expressions, either both numeric
or both string. Following are the relational operators used in BASIC.

~Oerator Rela t ion

Equal to
Less than
Greater than
Less than or equal to
Greater than or equal to
Not equal to

~Exam le

A=B

A(B
A>B
A (= B

A> =B

A(>B

Table 5.6
Relational Operators

Each of the relational operators listed in Table 5.6 can have an opposite or
negative meaning as shown in Table 5.7.

Page 5.28

ARITHMETIC AND STRING OPERATORS

Positive Meanin

Equal to

Negative
Meanings

Less than

Greater than

Not less than and
not greater than

Not greater than and
not equal to

Not less than and
not equal to

Not greater than

Not less than

Not equal to

Less than or equal to

Greater than or equal to

Not equal to

Table 5.7
Negative Meaning of Relational Operatora

NegationAdditionally, expressions that contain relational operators can be written
using a negated structure.

Positive Meanin

Equal to

2! '

Not equal to

Less than

Greater than

Less than or equal to

Not less than

Not greater than

Not less than and
not equal to

Not greater than and
not equal to

Greater than or equal to

Not less than and not
greater than

Not equal to

Table 5.8
Negated Structure of Relational Operators

Page 5.29

ARITHMETIC AND STRING OPERATORS

If you replace a relational operator with its negation, the statement "switches
branches" or takes the opposite course of action. The result of the following
line:

1 00 I F A=B THEN 500

will always be the exact opposite of the result of

100 IF A < N B THEN 500

If the first statement branches to 500, the second continues to the next line.
Conversely, a branch in the second statement will cause the condition to fail
in the first.

A relational operator is often replaced with its negation to save space on the
program line.

Page 5.30

ARITHMETIC AND STRING OPERATORS

Slight inaccuracies can introduce minute differences between expressions
that are theoretically equal. This can cause occasional problems in condi
tional statements.

Example:

Inaccuracies

10 A =99

20 B =SQR (A)
30 C =SQR (A)
4 0 I F B + C=A THEN PRINT "GOOD COMPARISON" ELSE PRINT "NOT

EQUAL"

This program tells BASIC to get the square root of 99, and assign that value
to variable B. Then in line 30, the square root of 99 is assigned to variable
C. Line 40 says if the square root of 99 multiplied by the square root of 99
is equal to 99, then print, "GOOD COMPARISON", if it is not equal to 99 then
print "NOT EQUAL".

When BASIC computes the square root of 99, the result is not 9, it is actually
9.949874. When BASIC multiplies this number by itself, the result is
98.99999. The IF statement in line 40 will always be false, unless you build
a slight margin of error into the comparison. To correct this problem, the fol
lowing program line was added:

50 IF (B"C — A) (0.0001 THEN PRINT "GOOD COMPARISON" ELSE
PRINT "NOT EQUAL"

to allow for a difference of up to .00001 between B*C and A, and still have
them treated as "equal". Another way to avoid this problem is by using inte
gers in your calculations.

A numeric comparison evaluates and compares the values of two numeric
expressions. The result of the comparison of expressions can be either true
(— 1) or false (0).

Arithmetic operations are always performed first when arithmetic operators
are combined with relational operators.

Example:

Numeric
Comparisons

A+B((C — 1) /D

This statement will be true (— 1) if the value of A+B is less than the value
of C — 1 divided by D.

Page 5.31

ARITHMETIC AND STRING OPERATORS

P RINT 8<2; 8 < 1 2
0 — 1

Ok

In this example, the first result is false (0) because 8 is not less than 2; and
the second result is true (— 1) because 8 is less than 12.

String comparisons are made alphabetically. A string is considered less
than another string if it comes before another string alphabetically. Lower
case letters are greater than capital letters. Capital letters are greater than
numbers. Punctuation values are divided, with the symbols:; < =) and
? greater than the numbers 0 — 9, and! " ¹ $ % & ' () * + - and . less than
the numbers 0 — 9. See Appendix C for a complete list of ASCII codes and
their equivalent values.

String comparisons are made by taking one character at a time from each
string and comparing the ASCII code values. These values are compared
and evaluated with relational operators. Each character is compared sepa
rately. If the ASCII codes are the same in both string expressions, then the
strings are said to be equal. If the ASCII code is different, the string with the
lower code is less than the string with the higher code.

If, during string comparison, the end of one string is reached, the shorter
string is said to be smaller. Spaces on either side of either expression are
also counted. AII string constants used in comparison expressions must be
enclosed in quotation marks.

Examples:

String
Comparisons

IIAA II < IIAB II

"FILENAME" = "FILENAME"
II X8 II) llxg ll

ll kg ll) I IKQII

"SMYTH" < " SMYTHE"
BIt < " 9 / 1 2 / 78 " where B$ = "10/12/60"

Thus, string comparisons can be used to test string values or to alphabetize
strings.

Page 5.32

ARITHMETIC AND STRING OPERATORS

LOGICAL OPERATORS

BRIEF

Logical operators are used to connect two or more relations (expressions
that contain relational operators) and return a true or false value, which is
used to make decisions regarding program flow.

The logical operators in BASIC are: NOT, AND, OR, XOR, IMP, and EQV.

Like relational operators, logical operators are governed by rules of prece
dence, unless modified with parentheses.

Logical operators permit you to manipulate the value of a bit, which is a unit
of data in binary notation.

Logical operators are used to perform Boolean operations, which are used
to evaluate binary variables.

Details

Logical operators are used to connect two or more relations and return a
true (— 1) or false (0) value. These values can be evaluated to make deci
sions about program flow. Like relational operators, logical operators are
most often used in conditional statements such as the IF... THEN...ELSE
statement.

Example:

1. I F D< 2 0 0 AND F(4 T HEN 80

2. I F I > 10 O R K (0 T HEN 50

3. I F N O T P THEN 100

The logical operator returns a bitwise result which is either "true" (not zero)
or "false" (zero). In an expression, logical operations are performed after
arithmetic and relational operations. The result of a logical operation is de
termined as shown in Table 5.9. This table is commonly known as a truth
table, which is an enumeration of all possible values of the operands and
their corresponding results. The operators are listed in order of precedence.

page 5.33

ARITHMETIC AND STRING OPERATORS

NOT
X
T
F

NOT X

AND
X

IMP
X

OR X

XOR
X

T T F

T T F

T T F F

T T F F

F

F

XXOR Y

XOR Y

F F

XIMPY

EQV
X
T

XEQVY

T F F

Table 5.9
Truth Table

Page 5.34

ARITHMETIC AND STRING OPERATORS

The NOT operator is the logical complement operator. The role of the NOT
operator is to negate a logical expression. NOT is the only logical operator
that works with one operand. For example the following statement:

NOT

2 00 I F A=B THEN 500

is the logical complement of:

200 I F NOT A =B THEN 500

In another example:

3 00 I F A=B AND C=D THEN 500

is the logical complement of:

3 00 IF NOT (A=B AND C=D) THEN 500

In other words, the second statement will produce the opposite result of the
first statement.

When two NOT operators are applied to the same expression, they cancel
each other out, just as two minus signs cancel each other in arithmetic.
Thus, an easier way to write a statement such as NOT(NOT A= B) is A= B.

Under some circumstances, it can be valuable to use an equivalent expres
sion. Two statements are said to be equivalent if they produce identical re
sults under all different conditions. The following table gives the rules for
equivalent expressions, called De Morgan's Laws.

DE MORGAN'S LAWS
De Morgan s
Laws

If = stands for logical equivalence, and the letters P and Q represent two
logical expressions, then:

1. NOT (P OR Q) = (NOT P) AND (NOT Q)

2. NOT (P AND Q) =— (NOT P) OR (NOT Q)

3. P OR Q =— NOT((NOT P) AND (NOT Q))

4. P AND Q = NOT ((NOT P) OR (NOT Q))

Table 5.10
Oe Morgan's Laws

Page 5.35

ARITHMETIC AND STRING OPERATORS

For example, using DeMorgan's Law, the following program lines can be
converted to a simpler form.

220 IF CS>="A" AND Cs (= "Z" THEN 250
230 IF Cs>="0" AND C$<= "9" THEN 250
240 SY =SY+1

Note that this segment determines whether C$ is a "symbol" (not an al
phabetic or a numeric character), and if it is, adds one to the symbol counter
SY.

Step 1. Use OR to combine lines 220 and 230.

220 IF (CS>= "A" A N D C S < = i' Z")

2 30 (de l e t e d)
240 SY =SY+1

OR (Cs> ="0" AND Cs (= "9") THEN 250

Step 2. Apply De Morgan's Law ¹1 (twice).

220 IF (NOT(C$("A" OR Cs> "Z"))
OR (NOT(C$<"0" OR C s>"9")) THEN 250

240 SY =SY+1

Step 3. Negate the condition in line 220 to "switch branches", which puts
SY = SY+1 on line 220.

220 IF NOT ((NOT(CS<"A" ORCS>"Z"))

2 40 (de l e t e d)
OR (NOT(C$<"0" OR Cs>" 9"))) THENSY=SY+1

Step 4. Apply De Morgan's Law ¹4.

220 IF (CS<"A" OR Cs>"Z") AND
(Cs<"0" OR Cs>"9") THEN SY=SY+1

AND

OR

AND is the conjunction operator which tells the interpreter to compare two
expressions, bit by bit, and return a true value only if every pair of bits is
equivalent. A bit is a single binary digit that is the smallest element in com
puter storage capability. If you look again at the truth table, AND is only true
when both X and Y are true.

OR is the disjunction operator that says either X or Y or both X and Y must
be true in order for the result of the expression to be true. An OR operator
returns a zero only when both X and Y are false.

XOR is the exclusive OR operator that means either X or Y can be true, but
not both of them. If both X and Y are true, or both X and Y are false, the
result will be false.

XOR

Page 5.36

ARITHMETIC AND STRING OPERATORS

AI'ikhmeiic Operatorsend Expressions

IMPIMP is an operator that means if the truth value of X implies the truth value
of Y, then the expression is true. The only time the result is false is when
the first logical expression is true and the second is false. The X assertion
could be false; but as long as the Y assertion is an implication of X, the result
is true. Consider the following program.

10 PRINT "SELECT TEMPERATURE (HOT, WARM, COOL, FRIGID):
20 T$ =INPUTS(1) : PRINT TS:PRINT
2 5 IF T$= "H" OR T S = " W" T HEN T= — 1 ELSE T = O

50 PRINT "SELECT PRECIPITATION (NONE, RAIN, HAIL, SNOW):
40 PS =INPUT$(1):PRINT PS:PRINT:PRINT
4 5 IF P S= "N" OR PS = " R " T HEN P= — 1 ELSE P = 0

50 IF T IMP P THEN PRINT "THAT SOUNDS LOGICAL"
"THAT SOUNDS SILLY"
60 FOR Z =1 TO 800: NEXT Z: GOTO 10

ELSE PRINT

In this program, if the temperature outside is either hot or warm, it is logical
to assume that there could be no precipitation or it may be raining. If it is
cool or frigid, it is logical to assume it may be hailing or snowing. You could
lie and say it was cold outside on a day when it was really hot. Then, if you
said it was snowing on a cold day, that would be a true and logical assertion
based on the first assertion that it was cold. A false or 0 value would only
be returned if the second statement is not implied by the first. The following
table may help you understand how the IMP operator was used in this exam
ple.

~Preci itaticn

NONE — 1
RAIN — 1

HAIL 0
SNOW 0

HOT — 1

WARM — 1

COOL 0
F RIGID 0

X Y X IMP Y

T T
T F
F T
F F

T F

T T

Table 5.11
The IMP Operator

Page 5.37

ARITHMETIC AND STRING OPERATORS

Eav The EQV operator denotes equivalence. As noted in our discussion of De
Morgan's Laws, two logical expressions are said to be equivalent if they pro
duce identical results under all different conditions. If both X and Y are true
or if both X and Y are false, then the result is true.

Example:

NOT (X OR Y) EQV ((NOT X) AND (NOT Y))

Precedence

You should remember that logical operators are governed by a certain order
of precedence. The order, unless modified by parentheses, is: NOT, AND,
OR, XOR, IMP, and EQV. If more than one of the same operator exist in
a given expression, they are evaluated from left to right. In other words two
NOTs are performed first from left to right. This allows you to leave out many
of the parentheses you' ve added to complex logical expressions. However,
you may not want to remove all of the parentheses because they often help
you understand the structure of the expression. You will find the following
set of rules to be a good compromise between the two extremes.

1. N O T has the highest precedence of the logical operators. Therefore,
you can omit the parentheses around NOT clauses and simple rela
tional expressions that follow a NOT:

NOTA = BAND NOTC =D

rather than

(NOT(A= B)) AND (NOT(C= D)).

Remember to always put parentheses around complex expressions
if the NOT applies to the whole expression.

2. Yo u don't need to include parentheses around strings of simple rela
tional expressions that are separated by a series of ANDs or ORs:

A = BAND C =DAND E = G

rather than

(A=BAND C = E) AND E = F.

Page 5.38

ARITHMETIC AND STRING OPERATORS

3. Yo u should always use parentheses to clarify expressions that con
sist of mixed ANDs and ORs.

(A= B AND C = D) OR (E= F AND G = H)

is much clearer than

A=BAND C =DOR E =F AND G =H.

Truth values are interpreted as numbers when they are referenced in a pro
gram. The following discussion will show how numbers are interpreted when
they are supplied as truth values. The statement:

100 IF P THEN 500

means if P is any number other than zero, the program will branch to line
500. This statement forces the numeric value P to be taken as a truth value,
which speeds up program execution. In a statement such as this, the
numeric variable P has only two values. It is either TRUE or FALSE. When
this is the case, P is called a flag.

A flag is a variable that has been assigned a truth value. Flags primarily
transmit information about the workings of the program from one place in
the program to another. A flag "remembers" a certain condition or occur
rence at some point in the program so it can be acted upon at a later point.

Your interpreter uses a — 1 to represent the value TRUE and 0 to represent
the value FALSE, while some BASIC interpreters use 1 to represent the
TRUE value. This is important to remember particularly when we discuss
the internal representation of numbers and bit manipulation.

How Logical Operators Work at Machine Level
To understand how logical operators really work, you must look at the
"machine level" operation of the interpreter. AII forms of computer "data", in
cluding numbers, are stored as bit patterns. Bit patterns are arranged in
groups of eight, called bytes. A byte is equal to eight bits, and each bit is
identified by its position from the right. The logical operators perform simple
logical operations on these bit patterns.

Flags

- t Represents

True

Page 5.39

ARITHMETIC AND STRING OPERATORS

Nlachine
Level
Representation

In this version of BASIC, integer numbers from — 32768 to +32767 are rep
resented by two bytes (16 bits) at the machine level. The positive numbers
0 to 32767 are based on the powers of 2, instead of the powers of 10 in the
decimal number system. In the decimal number system, each position to the
left of the decimal point represents values 10 times greater than those in the
position to the right. Similarly, in base-two or binary notation, each position
represents values twice as great as those in the position to the right.

For example, the number 10101100 means

or
1*128+1 *32+1 *8+1 *4= 172

Page 5.40

ARITHMETIC AND STRING OPERATORS

Two'8
Complement

BASIC uses a system called "two's complement" notation to represent
negative numbers. In this system 01111111 11111111 represents 32,767
and 11111111 11111111 represents — 1, not — 32,767. If you continue,
11111111 11111110 represents — 2. Following is a table of expanded bit
pattern equivalence.

EQUIVALENCE TABLE

Decimal
Equivalent

Two Byte Two Byte
Internal Representation

Decimal
EquivalentInternal Representation

-10

11111111

1111111'1
11'11111'1

11111111

11111111
11111111

11111111

11111111
1'1111'111
'1111111'l

1'111111'1

111'11111

11111111

11111111

11111111
11111111

11111111

11111110

11111101
1'1111100
111'11011

11111010
'1111100'l

1 'l111000

11110111
11110110

1111010'1

11110100

11110011
11110010
11110001
11110000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000001
00000010
00000011
00000100
00000101
00000110
00000111
00001000
00001001
00001010
00001011
00001100
00001101
00001110
00001111

10

11
12
13
14

15

0 1

2 3

4 5

6 7

8 9

- 12

— 13

— 14

- 1 5

— 16

1 0000000 0 0000 0 1 1
10000000 0 0000 0 '10
1 0000000 0 0000 0 0 1
10000000 0 0000 0 00

01111111
01111111

01111111
01'111111

11111100
11'111101

11111110
111'l1111

32,764
32,765
32,766
32,767

-32,765
-32,766
-32,767
-32,768

Table 5.12
Bit Pattern Equivalence

Page 5.41

ARITHMETIC AND STRING OPERATORS

AI'Ikhm8flC OP8rafoi'8 8Ad EXPI'eSSIQrII8

Logical operators work by converting their operands to sixteen bit, signed,
two's complement integers in the range — 32768 to +32767. (If the
operands are not in this range, an error results.) If both operands are sup
plied as 0 or — 1, logical operators return 0 or — 1. The given operation is
performed on these integers in bitwise fashion; i.e., each bit of the result is
determinedby the corresponding bits in the two operands.

When the interpreter encounters an expression such as NOT 14, the com
puter performs logical negation on each bit of the two-byte internal represen
tation of the number 14 according to the truth table for NOT shown on Page
5-33. The truth table is repeated here with 1 and 0 instead of T and F.

NOT

X N O T X
1 0
0 1

The NOT operation simply reverses the truth value of any given bit. Thus,
1 becomes 0 and vice versa. Therefore, 14 becomes NOT14 as follows:

00000000 00001110
11111111 11110001

Internal rep. of 14
Internal rep. of NOT14

The bit pattern equivalence table shows that the second bit pattern will be
interpreted as the number — 15, which is what the interpreter will print if
PRINT NOT14 is entered.

The operators AND and OR work in a similar manner on pairs of operands,
according to the truth tables shown on Page 5.33. The following truth tables
for AND and OR are written with 1 and 0 representing T and F respectively.

AND and OR

X Y
1 1
1 0
0 1
0 0

XOR Y
1
1
1
0

X Y X ANDY
1 1 1
1 0 0
0 1 0
0 0 0

Page 5.42

ARITHMETIC AND STRING OPERATORS

The interpreter evaluates the expression 5 AND 6, for example, by lining up
the bit representations of each number and then applying the AND table to
each corresponding pair of bits:

Internal rep. of 5:
Internal rep. of 6:
Internal rep. of 5 AND 6:

00000000 00000101
00000000 00000110
00000000 00000100

The result is interpreted as the number 4. At your computer the preceding
example will look like this:

PRINT 5 AND 6
4

Ok

The OR operator works the same way with the OR truth table:

Internal rep. of 5:
Internal rep. of 6:
Internal rep. of 5 OR 6:

00000000 00000101
00000000 00000110
00000000 00000111

The result corresponds to the number 7, as shown in the bit pattern equiva
lence table on Page 5.40.

When the interpretor encounters the XOR (exclusive OR) operator, it per
forms an evaluation based on the XOR truth table, repeated here using 0

XOR

and 1 instead of T and F.

X Y
1 1
1 0
0 1
0 0

XXORY
0
1
1
0

Page 5-43

ARITHMETIC AND STRING OPERATORS

The logical statement X XOR Y would appear as:

11 XOR3

Internal rep. of 11 is:
Internal rep. of 3 is:
Internal rep. of11 XOR 3:

00000000 00001011
00000000 00000011
00000000 00001000 (8)

The result corresponds to the number 8, as shown in the bit pattern equiva
lence table on Page 5.40.

When the interpreter encounters an IMP (Implied) operator, it essentially
combines the operations used in a NOT and OR evaluation. The logical
statement X IMP Y is the same as NOT X OR Y. The truth table for an IMP
operator is repeated here using 1 and 0 instead of T and F.

IMP

X IMP Y
1

0
1
1

6 IMP 7

00000000 00000110
11111111 11111001

where 6is:
where NOT6is:

00000000 00000111where 7is:

11111111 1 1 111001
00000000 00000111

where NOT 6 is:
ORed to 7:

11111111 11111111 (- 1)equals

The result is — 1 when the expression is 6 IMP 7.

Page 5.44

ARITHMETIC AND STRING OPERATORS

Finally, when the interpreter encounters EQV, it essentially performs two im- EQV
plication operations. The logical statement X EQV Y is the same as (X = >
Y) AND (Y =) X). Through the law of implication, we arrive at (NOT X OR
Y) AND (NOT Y OR X).

6 EQV7
where 6 is
where NOT6is
where 7 is
where NOT6is
ORedto7

00000000 00000110
11111111 11111001
00000000 00000111
11111111 1 1 111001
00000000 00000111

(— 1)11111111 1 1 111111

and
where 7 is
where NOT 7is
where 6 is
where NOT7is
ORed to 6

00000000 00000111
11111111 11111000
00000000 00000110
11111111 11111000
00000000 00000110

11111111 1 1 111110 (— 2)

and where
NOT6OR 7
is ANDed to
N OT70R 6

equals

11111111 1 1 111111

11111111 1 1 111110

(— 1)

(— 2)

(— 2)11111111 1 1 111110

Thus, it is possible to use logical operators to test bytes for a particular bit
pattern. For instance, the AND operator may be used to "mask" all but one
of the bits of a status byte at a machine I/O port. The OR operator may be
used to "merge" two bytes to create a particular binary value. The following
examples will help demonstrate how the logical operators work.

Page 5.45

ARITHMETIC AND STRING OPERATORS

63 AND 16=16

4OR2 =6

10 OR 10=10

15 AND 14=14

— 1 OR — 2= — 1

63 = binary 111111 and 16 = binary 10000, so 63
AND 16 = 16 (binary 10000)

15 = binary 1111 and 14 = binary 1110, so 15
AND 14 = 14 (binary1110)

4 = binary 100 and 2 = binary 10, so 4 OR 2 =

6 (binary 110)

10 = binary 1010, so 10 OR 10= 10 (binary 1010)

— 1 = binary 1111111111111111 and — 2 = bi

nary 1111111111111110, so — 1 OR — 2 = — 1.

The bit complement of sixteen zeros is sixteen
ones, which is the two's complement representa
tion of — 1.

The two's complement of any integer is the bit
complement plus one.

NOT X= (X+ 1)

Page 5.46

ARITHMETIC AND STRING OPERATORS

Numeric Functional Operators

BRIEF

A function is a predefined process or subprogram that takes one or more
quantities as input and returns a single related quantity as output.

An intrinsic function is one of the functions built into the BASIC interpreter.

The interpreter calls the function and passes arguments to the function. The
function processes the argument and returns the result.

Details

A function is used in an expression to call a predetermined operation that
is to be performed on an operand. BASIC has intrinsic functions that reside
in the system, such as SQR (square root) or SIN (sine). Following is an ex
ample of how functions work: How

Functions
WorkYou enter: PRINT SQR (4)

Computer Prints:

SQR (4)
Argument

4 SQR(X) — — — — — — ->2

Function name

resultargument function

In the above description, the function performs a mathematical operation on
the argument and returns the result. Table 5.13, on the next page, lists the
numeric functions that are intrinsic to Z-BASIC.

Page 5.47

ARITHMETIC AND STRING OPERATORS

Standard Math Functions ResultIntrinsic
Numeric
Functions

SQR(X)

INT(X)

RND(X)

ABS(X)

SGN(X)

CDBL(X)

CINT(X)

CSNG(X)

Square Root of (X)

Nearest integer less than or equal to
(X)

Randomize (X)

Absolute value of (X)

Sign of (X)

Convert (X) to a double precision
number

Convert (X) to an integer by rounding

Convert (X) to a s i ngle precision
number

Truncates decimal part of (X).

Result

Raise e to the power of (X)

Natural logarithm of (X)

Result

FIX(X)

Ex onentiation Functions

EXP(X)

LOG(X)

Trigonometric Functions

SIN(X)

COS(X)

Sine of angle (X), where (X) is in ra
dians

Cosine of angle (X), where (X) is in ra
dians

Tangent of angle (X), where (X) is in
radians

Arctangent (in radians) of (X)

TAN(X)

ATN(X)

Table 5.13
Numeric Functions

Page 5.48

ARITHMETIC AND STRING OPERATORS

Numeric Constants and Precisions

BRIEF

Constants are the actual values BASIC uses during execution.

Constants can be either numeric or string.

A string constant is a sequence of up to 255 alphanumeric characters en
closed in double quotation marks.

Numeric constants can be stored internally as integers, single precision
numbers, or double precision numbers.

Details

Constants are the actual values BASIC uses during execution. There are
two types of constants: string and numeric.

A string constant is a sequence of up to 255 alphanumeric characters en
closed in double quotation marks. Following are examples of string con

String
Constants

stants:

"HELLO"
"$25,000.00"
"Number of Employees"

Page 5.49

ARITHMETIC AND STRING OPERATORS

Numeric
Constants

Numeric constants are positive or negative numbers. Numeric constants in
BASIC cannot contain commas. There are five types of numeric constants:

1. I n teger constants

2. F ixed point
constants

3. F loating point

Whole numbers between — 32768 and
+32767. Integer constants do not have de
cimal points.

Positive or negative real numbers; i.e.,
numbers that contain decimal points.

Positive or negative numbers represented
in exponential form (similar to scientific no
tation). A floating point constant consists of
an optionally signed integer or fixed point
number (the mantissa) followed by the let
ter E and an optionally signed integer (the
exponent). The allowable range for floating
p oint constants is10 to 1 0 +

constants

Examples:

235.988E — 7= . 0000235988
2359E6 = 2359000000

(Double-precision floating point constants use the letter D instead of E.)

Hexadecimal numbers with the prefix & H.

Examples:

4. Hex constants

&H76
&H32F

Octal numbers with the prefix &0 or &.

Examples:

5. Oc tal constants

80347
&1234

Page 5.50

ARITHMETIC AND STRING OPERATORS

Single end
Double
Precision

Fixed and Floating point constants may be either single-precision or double
precision numbers. Single-precision numeric constants are stored with six
digits of precision, and printed with up to seven digits. With double
precision, the numbers are stored with 16 digits of precision and printed with
up to 16 digits.

A single-precision constant is any numeric constant that has:

1. Seven or fewer digits; and/or

2. Exponential form using E; and/or

3. A trailing exclamation point (!).

A double-precision constant is any numeric constant that has:

1. E ight or more digits; and/or

2. Exponential form using D; and/or

3. A trailing number sign (¹).

Examples:

Double-Precision ConstantsSin le-Precision Constants

345692811
— 1.09432D — 06

3489.0¹
7654321.1234

46.8
— 1.09E — 06

3489.0
225!

For more information on integers, and single and double-precision values,
see the following section on converting precisions. Also see "Variables,"
starting on Page 5.1.

Page 5.51

ARITHMETIC AND STRING OPERATORS

Converting Numeric Precisions

BRIEF

Numeric constants may be either integers, single-precision, or double-preci
sion numbers.

Single-precision numbers have up to seven digits.

Double-precision numbers can have up to 16 digits.

Each level of precision has a specific memory space requirement.

Details

Numeric constants may be integer, single-precision, or double-precision
numbers. It is sometimes necessary to extend the precision of a number,
according to what you want to do with that number.

Often it is necessary to change a double-precision number to a single-preci
sion number or to change a single-precision number to an integer (whole
number). Each level of precision requires less space than the level which
precedes it. However, each level is less precise than the level that precedes
it. It is important to remember to use consistent calculations within a pro
gram. It is often risky to mix precisions and maintain accuracy. You can go
from double-precision to single-precision to integer without problems, but
going from integer to single to double may yield an error.

Following is a list of the space requirements for each level of precision for
variables, arrays, and strings.

Space Requirements

VARIABLES:
INTEGER
SINGLE-PRECISION
DOUBLE-PRECISION

BYTES

Page 5.52

ARITHMETIC AND STRING OPERATORS

ARRAYS: BYTES
2 per element
4 per element
8 per element

INTEGER
SINGLE-PRECISION
DOUBLE-PRECISION

STRINGS:

Three bytes overhead plus the present contents of the string.

From the space requirements listing you can see that a single-precision
number takes up twice as much space as an integer does. And a double-pre
cision number takes up twice as much space as a single-precision number.
If your major concern is the conservation of space, you may use an integer.
If your concern is with precise, accurate numbers, then you should use
single or double-precision.

Numeric variable names may declare integer, single, or double-precision 7 ype
values. The type declaration characters for these variable names are as fol
lows:

Integer variable
! Sin g le-precision variable
¹ Do u ble-precision variable

Conversion
Rules

When you are converting a numeric constant from one type to another, keep
the following rules and examples in mind.

If a numeric constant of one type is set equal to a numeric variable
of a different type, the number will be stored as the type declared in
the variable name. (If a string variable is set equal to a numeric value
Or ViCe VerSa, a Type mismatch errOr OCCurS.)

Example:

10 Ag = 23 . 4 2
20 PRINT A$
RUN

23
Ok

Page 5.53

ARITHMETIC AND STRING OPERATORS

2. Dur ing expression evaluation, all of the operands in an arithmetic or
relational operation are converted to the same degree of precision,
i.e., that of the most precise operand. Also, the result of an arithmetic
operation is returned to this degree of precision.

Examples:

10 D¹ = 6¹ /7
20 PRINT D¹
RUN

.8571428571428571
Ok

10 D = 6 ¹ / 7

20 PRINT D
RUN

.8571429
01%

The arithmetic was performed in double
precision, and the result was returned in D¹
as a double-precision value.

The arithmetic was performed in double
precision, and the result returned to D (single
precision variable), was rounded and printed
as a single-precision value.

3. L o gical operators (see Page 5.32) convert their operands to integers
and return an integer result. Operands must be in the range — 32768
to 32767or an over flow error occurs.

4. Wh e n a floating point value is converted to an integer, the fractional
portion is rounded.

Example:

10 Cg = 55 . 8 8
20 PRINT CK
RUN
56

Ok

If a double-precision variable is assigned a single-precision value,
only the first seven rounded digits, of the converted number will be
valid. This is because only seven digits of accuracy were supplied with
the single-precision value. The absolute value of the difference be
tween the printed double-precision number and the original single
precision value will be less than 6.3E-8.

Example:

10 A = 2 . 0 4
2 0 B ¹ = A

30 PRINT A;B¹
RUN
2.039999961853027
2.04

Ok

Page 5.54

ARITHMETIC AND STRING OPERATORS

String Expressions and Operators

BRIEF

A string expression is composed of an operator, constants, variables, and
functions.

A string constant (also known as string literal) is a sequence of characters
up to 255 characters long, bounded by quotation marks.

String functions are commands that allow the manipulation of a string con
stant.

String variable names must have a dollar sign symbol ($) added to the end.

To concatenate two strings means to connect them into one string. The
strings are connected by the concatenation operator, which is a plus sign
(+)

Details

A string expression is formed like a numeric expression with the following
components:

String operator
String constants
String variables
String functions

A string constant is a sequence of up to 255 characters bounded by quota
tion marks.

Example:

String
Constants

You enter:
Computer replies:

PRINT "ABCDEFG123"
ABCDEFG123

Two strings may be joined together by the concatenation operator which is
the plus (+) sign.

Example:

You enter:
Computer replies:

PRINT "ABCD" + "EFGH"
ABCDEFGH

Page 5.55

ARITHMETIC AND STRING OPERATORS

String variable names are formed in exactly the same way that numeric vari
able names are formed, with the additional requirement that the string name
must have the dollar sign symbol ($) added to the end.

You enter:
You enter:
Computer replies:

A$ = "THIS IS A STRING"
PRINT A$
THIS IS A STRING

Mixing
Numeric
And
String
Expressions

PRINT statements can contain numeric expressions or string expressions.
You can also mix numeric and string expressions in a list, separating the
expressions with commas or semicolons. Most versions of BASIC provide
extra spaces when numeric expressions are separated by semicolons.
Strings behave differently.

Example:

A = 1

B = 2

C = 3

A$ = "ONE"
B$ II TWOlI

C$ = "THREE"
PRINT A;B;C
PRINT A$;B$;C$
PRINT A;A$;B;B$;C;C$

RESULT: 1 2 3
ONETWOTHREE

1 ONE 2 TWO 3 T HREE

Both string and numeric expressions behave the same when separated by
commas.

PRINT A,B,C,
PRINT A$,B$,C$

RESULT: 1 2 3
ONE TWO THREE

Notice that the leading blank usually seen in numeric values is reserved for
a possible minus sign.

String functions are used to manipulate a string constant. All string functions
are referenced in detail in the reference guide of this manual. However, we
will discuss a few of them here to give you an idea of how they work.

String
Functions

Page 5.56

ARITHMETIC AND STRING OPERATORS

The MID$ creates a substring from a source string in the following manner:

MID$

You enter:
You enter:
You enter:
Computer replies:

Function name List of ~ar uments

Source Star t ing Number of
String Posi t io n Cha r acters

in substring

ISA

A$ = "THIS IS A STRING"
B$ = MID$(A$,6,4)
PRINT B$

(A$, 6, 4)

LEFT$ and RIGHT$ form substrings from the left end or right end of the
source string. The starting point does not need to be specified for LEFT$
or RIGHT$ because it is implied by the length of the substring.

Example:

As = "ABCDEFG"
PRINT LEPTE(AE,2) ,RTGHTE(AE,2) C om put e r p r i n ts : AB AAAAAA PG
P RINT LEFTY(A$,4),RIGHTS(A$,4) Comp u ter p r ints: ABCD~ h DEF G

NOTE: In this example the ~ represents 2 spaces.

LEN is used to find the length of a string — that is, how many characters the
string has.

VAL and STR$ are used to convert back and forth from a numeric value to
the characters representing that value.

Example:

As 112 11

Bs 113 I I

PRINT AseB$

This creates an error condition called a "type mismatch" because A$ and
B$ are string characters while the multiplication operator works only with
numbers. However, you could use the VAL command to convert the string
to a numeric value. In the following example, the n2n and a3n are converted
to the numeric quantities 2 and 3 by the VAL function before multiplication
is attempted.

PRINT VAL(A$) OVAL(B$)

Page 5.57

ARITHMETIC AND STRING OPERATORS

The STR$ function goes the other way — it converts values numbers to their
string representations.

To understand the last two string-related functions that we will discuss here,
ASC and CHR$, you should recall that data is represented in the computer
with bit patterns that form a binary code. (See "Logical Operators", starting
on Page 5.32 for further information on bit patterns.) The system used to
represent characters is called ASC/I (American Standard Code for Informa
tion Interchange).

In BASIC, only the first 127 ASCII characters are used; therefore, each char
acter is represented electronically by a unique seven-bit code. An ASCII
conversion chart canbe found in Appendix C of this manual.

Bit patterns can be interpreted in many different ways, depending on the
code system you are using. You can interpret these patterns as characters,
or as binary numbers or decimal numbers. The job of converting between
these two interpretations is performed by the ASC and CHR$ functions.

The ASC function returns the decimal equivalent, while CHR$ function does
exactly the opposite. Given a number within a certain range, it produces the
corresponding character.

Again, this is just a summary of how string functions work. Detailed explana
tions for each string function can be found in the Alphabetical Reference
Guide of this manual.

Page 5.58

Page 6.1

CHAPTER 6 FILE HANDLING

File Manipulation and Management

BRIEF

BASIC provides several sets of statements for creating and manipulating
program and data files.

The file manipulation commands are very useful for manipulating program
files. Some of these commands can also be used with data files.

The file management statements are used to open and close files, check
for end-of-file, and to obtain information about the size of a file.

Details

FILE MANIPULATION COMMANDS

This is a review of the commands and statements that are useful for mani
pulating program and data files. These statements and commands are also
discussed in the next two sections of this chapter.

FILES ["<filename)"]

FILEs The F ILES command lists the names of the files that are residing on the cur
rent disk. If the optional <filename) string is included, the names of the files
on any specified disk can be listed.

KILL "filename"

KILL The K ILL command deletes the file from the disk. "Filename" may be a pro
gram file, or a sequential or random access data file. If "filename" is a data
file, it must be closed before it is killed.

LOAD "filename"[,R]

LoAo The L OAD command loads the program from disk into memory. The R op
tion runs the program immediately. LOAD always deletes the current con
tents of memory and closes all files before loading. If R is included, however,
open data files are kept open. Thus, programs can be chained or loaded in
sections and can access the same data files.

Page 6.2

FILE HANDLING

MERGE "filename"

The MERGE command loads the program from disk into memory but does
not delete the current contents of memory. The filename must be saved in
ASCII format. The program line numbers on disk are merged with the line
numbers in memory. If two lines have the same number, only the line from
the disk program is saved. After a MERGE command, the "merged" program
resides in memory, and BASIC returns to Command Mode.

MERGE

NAME "oldfile" AS "newfile"

To change the name of a disk file, execute the NAME Command, NAME N4ME
"oldfile" AS "newfile". NAME may be used with program files, random files,
or sequential files.

RESET

RESET reads the directory information off of a newly inserted disk which you
have exchanged for the disk in the current default drive. RESET does not
close files that were opened on the former default disk. Therefore, use
RESET only after you have closed any open files and replaced the current
default disk.

RESET

R UN "f i l e n ame" [, R]

RUN "filename" loads the program from disk into memory and runs it. RUN RUN
deletes the current contents of memory and closes all files before loading
the program. If the R option is included, however, all open data files are kept
open.

SAVE "filename"[,A]

The SAVE command writes to disk the program that Is currently residing in sAyE
memory. The option writes the program in ASCII format. (Otherwise, BASIC
uses a compressed binary format.)

Page 6.3

PROTECTED FILES

If you wish to save a program in an encoded binary format, use the protect
option with the SAVE command. For example:

SAVE "MYPROG",P

Warning: A program saved this way cannot be listed or edited.

FILE MANAGEMENT STATEMENTS

BASIC provides a full set of I/O statements to be used for disk file manage
ment. These statements are listed in Table 6.1:

Statement Fu nction

OPEN

LOF

EOF

CLOSE

Opens a disk file and assigns a file number to the disk file.

Closes a disk file and de-assigns the file number from the
disk file.

Returns -1 (true) if the end of a file has been reached.

Returns the length of the file in bytes.

Returns the next record to be accessed for a random file and
the total number of sectors or "records" accessed for a se
quential file.

LOC

Table 6.1
File Management Statements

Page 6.4

The OPEN statement is used to assign a file number to a disk file name.
The OPEN statement is also used to define the mode in which the file is to
be used (sequential or random access).

The CLOSE statement performs the opposite function of the OPEN state
ment. It will de-assign the file number from a disk file name.

The EOF function will return — 1 (true) if the end of a sequential file has been
reached. The EOF function can also be used with random files to determine
the last record number.

The LOF function returns the length of the file in bytes. LOF divided by the
length of a record is equal to the number of records in the file.

The LOC function, when used with a random file, will return the next sector
to be accessed. When it is used with a sequential file, it returns the number
of records accessed since the file was opened.

These statements are discussed along with specific examples that utilize
these statements in "Sequential Data Files" (Page 6.5) and "Random Ac
cess Files" (Page 6.16).

Page 6.5

FILE HANDLING

Sequential Data Files

BRIEF

A sequential data file is a file that must be accessed in a sequential order,
starting at the beginning of the data block and proceeding in order until an
end-of-data marker is encountered or the required number of items has
been read.

Sequential files are easier to create than random files, yet they are limited
in terms of speed and flexibility.

The BASIC interpreter communicates with I/O buffers, which are reserved
spaces in memory, maintained by the operating system for holding incoming
or outgoing data.

The data found in a sequential file can be retrieved, formatted, updated and
manipulated in a variety of ways.

Details

Sequential files must be accessed in the same sequential order that they
were written, starting at the beginning of the data block and proceeding in
order until an end-of-data marker is encountered or the required number of
items have been read.

Since the items must be read in order, this kind of data organization is called
sequential. It works fine for applications that process a batch of data in a
certain order, but not so well when you need to access individual items within
a data block. For this, you need a random access file structure (see Page
6.16).

Just as DATA statements are a simpler and more fundamental form of data
organization than arrays, sequential files are a simpler and more fundamen
tal form of storage than random-access files.

Page 6.6

FILE HANDLING

BASIC never "sees" the file of the disk unit. In fact, BASIC never sees any
of the I/O devices attached to the computer. Instead, BASIC sees a buffer,
a reserved space maintained by the operating system for holding incoming
or outgoing data. One buffer might hold data coming in from the keyboard,
another might hold data coming from or going to a particular disk file, and

Buffers

go on.

It doesn't make any difference to the BASIC interpreter how input data gets
into an I/O buffer or what happens to output data once it's placed there; all
the interpreter needs to know about the devices is where the corresponding
buffers are located in memory. Everything else is the responsibility of the
operating system and its various device drivers.

The fixed amount that can be physically written to or read from the disk at
one time is 256 bytes. This fixed amount of data is called a physical record.
The physical record is the same length as a disk sector, 256 bytes, so you
can think of a file buffer full of data as "one sector's worth."

There are two types of file buffers used with sequential files: input buffers
and output buffers. The buffers themselves are identical, but BASIC must
be told whether a given buffer is to be used for input or output.

When BASIC appears to be writing a sequence of data to a disk file, it's really
placing one data item after another in an output buffer. When the output buf
fer is full, Z-DOS writes the entire physical record to the disk, resets a pointer
to the beginning of the buffer, and waits until the buffer fills up again before
it writes another physical record.

Input works in a very similar way. When BASIC appears to get data from
a sequential disk file, Z-DOS is really reading one physical record at a time
from the disk, and placing it in a way that is similar to the way it would read
a DATA statement or a line from the keyboard. When the contents of the
buffer have been exhausted, Z-DOS reads another physical record from the
disk, places it in the input buffer, and so on until it reaches the end of the
file or BASIC stops requesting data items from the buffer.

Output Buffers

Physical Records

Input Buffers

Page 6.7

FILE HANDLING

CREATING A SEQUENTIAL DATA FILE

The statements and functions that are used with sequential files are:

OPEN PRI N T¹ INPUT¹ WRITE¹

PRINT¹ USING LI NE INPUT¹

LOCC LOSE E O F

Table 6.2
Sequential File Statements and Functions

OPEN Statement To create a sequential disk file (or read from one), you must designate a disk
I/O buffer with the OPEN statement. The OPEN statement requires three
items of information: the mode (Input or Output); the number of the disk I/O
buffer; and the file specification, which tells BASIC where to start accessing
the disk, according to the sector pointers maintained in the disk directory.

You must give the extension if there is one, and if necessary, you must also
give the drive number to distinguish between two files that have the same
name. The I/O buffer is specified as 1, 2, or 3. One of the three file buffers
automatically created by the DOS is associated with the specified physical
disk file. The Input or Output mode is also given by one of the designators
"I" or "0". Thus, the statement:

OPEN "0" , 1 , " T EST.ASC"

will designate buffer 1 as an output buffer and tell Z-DOS to associate this
buffer with the physical file it knows as "TEST.ASC". The ASC extension
represents a naming convention for a mixed ASCII data file that contains
both string and numeric data. You can use any extension that you like.

In addition to setting up a buffer, the OPEN statement causes Z-DOS to
reset an essential directory pointer which points to the last physical record
in the file. This pointer, called EOF (end-of-file), is now set to point to the
"zero" record, which is the very beginning of the first record. This indicates
that the file contains no physical records (written disk sectors) yet. Since the
beginning of the file TEST.ASC is now the same as the end of the file as
far as Z-DOS is concerned, any preexisting file by that name disappears.

EOF Pointer

Page 6.8

FILE HANDLING

The program steps listed in Table 6.3 are required to create a sequential Prooedure

file and access the data in the file.

1. O PEN the file in "0" mode. OPEN "0", ¹ 1 , " T EST.ASC"

2. W r ite data to the file PRINT¹1,AIl ,BS,C$

using the PRINT¹ statement.
(WRITE¹ may be used instead.)

CLOSE ¹1

OPEN "I" , ¹ 1 , "TEST. ASC"
3. To access the data in the

file, you must CLOSE the file
and reOPEN it in "I" mode.

INPUT¹1, X$, Y$, Z$4. Use the INPUT¹ statement to
read data from the sequential
file into the program.

Table 6.3
Creating a Sequential Pile — Program Steps

Since we have already discussed the OPEN statement, we will now discuss
the second step, the PRINT¹ statement, which is used to write the data to
the file. If, for example, you have just OPENed a file, you would want BASIC
to supply a string of characters to the output buffer, just as if a string of char
acters were being sent out to be printed on the display. You would use an
expanded version of the PRINT statement called PRINT¹. This works like
the usual PRINT statement, except that you must include the buffer number
immediately following the PRINT keyword.

Suppose, for example, you wanted to write the following set of data items

PRINT ¹

to the disk:

A =1 .1 : B = 2.22 : C = 3.333 : D = 4.444 : E= 5.5555

NOTE: It would probably be most helpful if you try this yourself by opening
a file named TEST.ASC in the immediate mode with the OPEN statement
repeated below.

OPEN "0" , 1 , " T EST.ASC"

Page 6.9

FILE HANDLING

Nothing happens when you write the five data items A,B,C,D,E to the disk,
because you haven't filled the 256-character output buffer. Use the up arrow
to position the cursor under the P in PRINT and then press RETURN to re
peat the PRINT¹ statement, which will enter a few more sets of data into
the buffer.

PRINT 41,A , B , C ,D,E
Ok

CLOSE Eventually, you will hear the disk drive click when you fill the buffer and the
record gets written. If you entered a few more of these PRINT¹ statements,
creating a partially filled buffer, you have to finish the process by entering
the word CLOSE.

This writes the second physical record to the disk, updates the EOF pointer,
and releases buffer ¹1 for something else. CLOSE by itself closes all open
disk files. If you had more than one file open and didn't want to disturb the
others, you would enter CLOSE 1. You should make a habit of always clos
ing files; otherwise, an OPEN statement could result in a File Already open
error message.

The key to understanding the PRINT¹ statement is the fact that it sends the
same set of characters to the disk that the corresponding PRINT statement
would send to the terminal. To see what each of the statements you entered
has written to the disk, enter the corresponding PRINT statement in im
mediate mode and look at the output.

PRINT A,B,C,D,E
1.1 2.22

Ok
3.333 4.444 5.55555

The series of characters you see on the display, including the string of
spaces between each pair of numbers, is exactly what each PRINT¹ state
ment puts on the disk.

Page 6.10

FILE HANDLING

Characters are received from the disk the same way that they are received
from the terminal, except you use INPUTS instead of INPUT. To read data
from the file you created in the preceding example, open the file for input
with the following statement:

INPUT ¹

OPEN "I " , 1 , " T EST.ASC"

This designates l/0 buffer 1 as the sequential input buffer for the file
"TEST.ASC" and resets a Z-DOS pointer to the beginning of the disk file.
This operation is the disk equivalent of a RESTORE to the beginning of a
block of DATA statements.

Now you can read a series of data items from the disk file and assign them
to a series of variables in the same way they would be read from keyboard
input.

The following short program creates a sequential file, "DATA", from informa
tion you input at the terminal:

Sample Program110 OPEN "0" , ¹1 , "DATA"
20 INPUT "NAME";N$
2 5 I F N $="DONE" THEN END
30 INPUT "DEPARTMENT";D$
40 INPUT "DATE HIRED";H$
5 0 PRZNT¹1 N$. ii i . D$. i i i . H$
60 PRINT:GOTO 20
RUN
NAME? MIKE JONES
DEPARTMENT? AUDIO/VISUAL AIDS
D ATE HIRED? 01/12 / 7 2

NAME? MARY SMITH
DEPARTMENT? RESEARCH
D ATE HIRED? 12/03 / 6 5

NAME? ALICE ROGERS
DEPARTMENT? ACCOUNTING
D ATE HIRED? 04 / 2 7 / 7 8

NAME? ROBERT BROWN
DEPARTMENT? MAINTENANCE
D ATE HIRED? 08/16 / 7 8

NAME? DONE
Ok

Program 1
Create a Sequential Data Rle

Page 6.11

FILE HANDLING

Now look at Program 2. It accesses the file "DATA" that was created in Pro
gram 1 and displays the name of everyone hired in 1978:

Sample Program 2 10 OPEN >>I>> ¹1 ' >DATA"
20 INPUT¹ l , NS,DS,HS
30 IF RIGHTS(HS,2)="78" THEN PRINT NS

40 GOTO 20
RUN
ALICE ROGERS
ROBERT BROWN
Input past end in 20
Ok

Program 2
Accessing a Sequential File

Program 2 reads, sequentially, every item in the file. When all the data has
been read, line 20 CauSeS an input past end errOr meSSageS. TO aVOid get
ting this error message, insert line 15, which uses the EOF function to test
for end-of-file:

15 IF EOF (1) T HEN END

and change line 40 to GOTO15.

The word terminator refers to the same thing as the word delimiter. It is a
special character that marks the boundary of a data item, like the commas
used to separate items in DATA statements.

The word terminator is used in this discussion for two reasons. First, it
throws the emphasis on the function of marking the end of an item of data
rather than that of separating two adjacent items and second, it includes cer
tain conditions as terminators as well as the special characters usually re
ferred to as delimiters. For your purposes, a terminator is any condition,
character, or set of characters that will make INPUT¹ conclude that it has
reached the end of the series of characters that represent a given item of
data in a disk file.

Terminator

Page 6.12

FILE HANDLING

There are only two terminators that will always cause INPUT¹ to stop ac
cepting characters as part of a given item of data, and both of these universal
terminators are conditions rather than characters. They are:

1. Th e last character in a file. INPUT¹ will not attempt to read the
last item past the end of a file.

2. Th e 255th character in an item of data. INPUT¹ will not attempt
to read more characters than will fit in a single string.

Essentially, there are three different forms that data can take when stored
in a BASIC sequential file. They are: numeric data, strings that are not en
closed in quotation marks, and strings that are enclosed in quotation marks.

The usual item terminator in all three cases is the comma. With INPUT¹,
however, the set of acceptable item terminators is somewhat different for
each storage type. For numeric data, the usual item terminator is a space,
or set of spaces. For unquoted strings, the usual item terminator is the
comma; and for quoted strings the quotation mark at the end of each string
is the usual terminator.

The differences between the terminators mean that slightly different tech
niques will have to be used to form the PRINT¹ statements used for each
type.

You will recall from our TEST.ASC example that numeric data items are
stored with one or more spaces. The statement, PRINT ¹A,B,C,D,E was
stored as follows:

Numeric Data

PRINT A,B,C,D,E
1.1 2.22

Ok
3.333 4.444 5.55555

This form is an unnecessary waste of room on the disk, because INPUT¹
will accept as little as one space as a valid numeric terminator. Con
sequently, i t i s b e t ter t o u s e t h e s e micolon terminator (PRINT
¹1,A;B;C;D;E) to put just one or two spaces between items. Semicolons be
tween the variables in the PRINT ¹ statement produce a series of charac
ters that is identical to the earlier version as far as INPUT ¹ is concerned,
but takes up less space on the disk.

Page 6.13

FILE HANDLING

A numeric item input will also terminate if a RETURN is encountered.

When you are using PRINT ¹ and INPUT ¹ with unquoted strings, keep in
mind that spaces do not terminate a string read by INPUT¹, which means
you can include spaces as part of the string itself (if placed after the first sig
nificant character). The character you should use to properly end each string

Unquoted Strings

is the comma.

The basic method for using commas is to insert a comma (",") with quotes
into the PRINT ¹ list wherever a comma without quotes should appear in
the disk image. The INPUT¹ will then read back each string as terminated
by its comma. Just as with numeric data, the form PRINT ¹1,A$,",",B,",",C$
should not be used. You should substitute semicolons for commas as vari
able list delimiters so unwanted strings of spaces won't be created in the
disk image.

Another terminator that works with unquoted string data is RETURN. You
don't need a comma to terminate the last item in the PRINT ¹ statement.
The RETURN added to the end by PRINT ¹ will automatically terminate an
unquoted string like C$. This properly ends input of the string when it's read
back later and separates it from whatever might follow it in the file.

Ouoted Strings String expressions are enclosed with quotation marks (") to avoid confusion
when other terminators such as commas are used within the string you are
trying to input as data. When INPUT ¹ encounters a quotation mark as the
first significant character in a string item, it takes this as a direction to include
all the following characters up to the next quotation mark as part of the string.
This allows you to put commas, RETURNS, or any other character you like
into the data string. The single exception is the quotation mark, that ends
it.

Page 6.14

FILE HANDLING

Formatted DataA program that creates a sequential file can also write formatted data to the
disk with the PRINT ¹ USING statement. The PRINT ¹ USING statement
is fully documented in the reference guide. It is mentioned here to advise
you of the capability of formatting the data in your sequential files to the for
mat that you specify. For example, the statement

PRINT¹1, USING" ¹¹ ¹ ¹ . ¹ ¹ , " ; A, B, C, D

could be used to write numeric data to disk without explicit delimiters. The
comma at the end of the format string serves to separate the items in the
disk file.

ADDING DATA TO A SEQUENTIAL DATA FILE

If you have a sequential file residing on disk and later want to add more data
to the end of it, you cannot simply open the file in "0" mode and start writing
data. As soon as you open a sequential file in "0" mode, you destroy its cur
rent contents. You can use the following procedure to add data to an existing
file called "NAMES":

updating

1. OP EN "NAMES" in "I" mode.

2. OP E N a second file called "COPY" in "0" mode.

3. Re a d in the data in "NAMES" and write it to "COPY".

4. CLOSE "NAMES" and KILL it.

5. Wr i te the new information to "COPY".

6. Rename "COPY" as "NAMES" and CLOSE .

7. No w there is a file on disk called "NAMES" that includes all the previ
ous data plus the new data you just added.

Page 6.15

FILE HANDLING

Program 3 illustrates this technique. It can be used to create or add onto
a file called NAMES. This program also illustrates the use of LINE INPUT¹
to read strings with embedded commas from the disk file. Remember, LINE
INPUT¹ will read in characters from the disk until it sees a carriage return
(it does not stop at quotes or commas) or until it has read 255 characters.

10 ON ERROR GOTO 2000
20 OPEN " I " , ¹ 1 , " N AMES"
30 REM IF FILE EXISTS, WRITE IT TO "COPY"
40 OPEN "0" ¹ 2 , " C OPY"
50 IF EOF(1) THEN 90
60 LINE INPUT¹1 ,AS
70 PRINT¹2,AS
80 GOTO 50
90 CLOSE ¹1
100 KILL " NAMES"
110 REM ADD NEW ENTRIES TO FILE
120 INPUT "NAME";NS
1 30 IF N S="" THEN 200 'CARRIAGE RETURN EXITS INPUT LOOP

140 LINE INPUT "ADDRESS? " ;AS
150 LINE INPUT "BIRTHDAY? " ;BS
160 PRINT¹2,NS
170 PRINT¹2,AS
180 PRINT¹2,BS
190 PRINT:GOTO 120
200 CLOSE
205 REM CHANGE FILENAME BACK TO "NAMES"
210 NAME "COPY" AS "NAMES"
215 END
2 000 I F E RR=53 AND ERL =20 THEN OPEN "0" , ¹ 2 , " C OPY":RESUME 120
2010 ON ERROR GOTO 0

Sample Program 3

Program 3
Adding Data to a Sequential File

The errOr trapping rOutine in line 2000 trapS a File not found errOr meS
sage in line 20. If this happens, the statements that copy the file are skipped,
and "COPY" is created as if it were a new file.

Page 6.16

FILE HANDLING
Random Access Files

BRIEF
Random-access files are accessed randomly, which makes it unnecessary
to read through all of the data records to get to a specific data record.

Although creating a random-access file involves more program steps than
a sequential file, the speed, flexibility, and the efficient use of storage space
are distinct advantages.

The fundamental storage unit is called a record. Records are usually num
bered to permit random access.

Random-access storage and retrieval takes place through a buffer.

Details

The biggest advantage to random files is that data can be accessed ran
domly; i.e., anywhere on the disk — it is not necessary to read through all
the information, as with sequential files. This is possible because the infor
mation is stored and accessed in distinct units called records, and each re
cord is numbered.

Creating and accessing random files requires more program steps than se
quential files, but there are advantages to using random files. Random files
require less room on the disk because BASIC stores them in a packed binary
format. (A sequential file is stored as a series of ASCII characters.)

A random-access file is very much like an array: both consist of a collection
of numbered units, any one of which you can immediately access simply by
specifying its number. In the case of random-access files, the numbered
units are much more complex than in the case of arrays. The fundamental
storage unit in an array is the individual array element, which is a single item
of data. The corresponding unit in a random-access file is the record, which
can have several items of data.

Random Files Are Like
Arrays

Page 6.17

FILE HANDLING

Rsndom Access Fiies

Butters Like all forms of disk I/O, random-access storage and retrieval takes place
through a buffer. Just as in the case of sequential I/O, the buffer used in ran
dom-access I/O is a fixed-length section of memory that holds data coming
from or going to the disk in a form that can be handled by the interpreter.
There are, however, some important differences between random-access
and sequential buffers in the way they are used.

First, once you assign a random-access buffer to a file by an OPEN state
ment, you can use it for both input and output. You can use sequential buf
fers for either input or output, but not both.

Second, random-access buffers are not written to or read from the disk auto
matically as sequential buffers are. In random-access files, the buffer and
the disk are accessed by two separate processes. You must explicitly
specify the operations of reading a record into the buffer or writing a record
from the buffer to the disk by means of the GET and PUT keywords.

Finally, the buffer is organized differently in these two forms of disk access.
In a sequential buffer, the arrangement of data is not fixed, but is specified
by delimiters or terminators. That is, sequential buffers are delimiter-struc
tured. By contrast, random-access buffers are field-structured. Each data
item occupies a predefined section of the buffer called a field. Also, external
pointers access these buffer fields rather than internal delimiters.

The statements and functions that are used with random files are:Statements
and
Functions

OPEN FIELD LSET/RSET GET

PUT CLO S E L O C L O F EOF

MKI$ CVI
MKS$ CVS
M KD$ C V D

Table 6.4
Random File Statements and Functions

Page 6.18

CREATING A RANDOM FILE

The program steps in Table 6.5 are required to create a random file.

1. OPEN the file for random-access ("R" mode).
This example specifies a record length of 32
bytes. If the record length is omitted, the de
fault is 128 bytes.

Procedure

OPEN rrRrr ¹] rrF I L E r r 3 2

2. U s e the FIELD statement to allocate space in F I ELD ¹ I , 2 0 As N$,
the randombufferforthe�variables thatwillb 4 As A$, 8 As P$
written to the random file.

LSET N$ =X $
LSET A$ =MKS$(AMT)

LSET P$ = TEL$

Use LSET to move the data into the random
buffer. Numeric values must be made into
strings when placed in the buffer. To do this,
use the "make" functions: MKI$ to make an in
teger value into a string, MKS$ for a single
precision value, and MKD$ for a double-pre
cision value.

4. W r i te the data from the buffer to the disk using PUT ¹ I , GODET
the PUT statement.

Table 6.5
Program Steps for Creating a Random File

Now that you know the statements and functions used in random-access
files an the order in which they are used, we' ll discuss opening a file for ran
dom-access in detail.

Page 6.19

OPENING A FILE FOR RANDOM-ACCESS

As in the case of sequential files, you must associate a particular buffer with
a particular disk file and specify the buffers for both input and output. You
indicate their mode of operation by the single specifier "R". For example, to
open a disk file named "INVNTRY.DAT" for random-access and associate
it with buffer numbers, you would enter:

OPEN "R", ¹ 1 , " I N VNTRY.DAT"

opEN statement Unlike the sequential OPEN "0" statement, this will not automatically kill a
previously existing file with that name. If no such file exists, OPEN "R" will
automatically create one. You cannot use random-access techniques on a
sequential file and vice versa.

In addition, a parameter at the end of the OPEN statement specifies the size
of the buffer in bytes.

Page 6.20

FILE HANDLING

Random Access Fiies

STRUCTURING THE RANDOM BUFFER INTO FIELDS

The record contained in the random-access buffer must be subdivided into
fixed length-fields. Random records are like string records in the sense that
they can be accessed only through string variables. The FIELD statement
divides the characters in the buffer into a certain number of fields, each con
sisting of a specified number of characters and referenced by a string vari
able. The statement has the general form:

FIELD Statement

FIELD BUg, Nlg AS A1$, N2 / A S A2$, .

Where BU% stands for the number of the random-access buffer, N1% for
the number of characters in the first field, A1$ for the string, N2% for the
number of characters in the second field, and so on. Thus, you could imple
ment the field structure for an inventory program as follows:

FIELD¹1, 1 A S F $,30 AS D$, 2 A S Q$, 2 AS R$,4 AS P$

FIELD¹1

Divides the record read from file ¹1 into the five sections that follow:

1ASF$
The first character can be referenced as F$.

30AS D$
The next 30 characters canbe referenced as D$.

2AS Q$
The next 2 characters can be referenced as Q$.

2AS R$
The next 2 characters can be referenced as R$.

4AS P$
The last 4 characters can be referenced as P$.

This statement divides the first 39 characters of buffer ¹1 into five fields,
which can each be referenced separately using their variable names. This
only affects the first 39 characters in the buffer. The rest are left undefined
and are wasted if the record size is more than 39 characters.

Page 6.21

FILE HANDLING

Random ACCGSS FIIea

ASSIGNING DATA TO FIELDS AND WRITING THE
BUFFER TO THE DISK

The FIELD statement sets up a system of pointers into a series of character
locations that permit you to refer to the contents of each field by name.
Therefore, PRINT P$ will print the last four characters in the buffer which
have been assigned to the P$ variable.

For example, in an ordinary string, the statement PRINT A$ instructs BASIC
to consult an internal table of string pointers to reference the particular sec
tion of string space associated with the name A$. The difference between
referencing an ordinary string and referencing a FIELD string is that the lat
ter has a fixed length and that its pointer indicates the section of memory
reserved for buffers rather than the section reserved for strings.

It is for this reason that you cannot use the LET, INPUT, or READ statements
to assign values to field strings, because these statements will not put the
characters into the buffer. To properly store the strings in the buffer, you
must use one of the special buffer assignment keywords LSET or RSET.

The LSET statement instructs BASIC to store the given characters in the
buffer field specified by the given field name, starting at the leftmost end of
the field. For example,

LSET Statement

LSET NAS ="N BENCHLEY"

where NA$ is a name string that has been assigned 16 character positions
and will create the series of characters:

in the first 16 character positions of the buffer. The symbol " denotes a
space character. You don't need to include the six trailing spaces used to
"pad out" the 16 character name. They are automatically supplied by LSET.

Page 6.22

FILE HANDLING

Notice also that LSET begins to assign characters at the first (leftmost) po
sition in the field. This is called "left-justified" within the NA$ field. If the string
assigned to NA$ is shorter than the length of the field, as in this example,
LSET adds spaces on the right. If the string is longer, LSET will chop off or
truncate the excess right-hand characters.

RSET works like LSET except that the string is right-justified in the name RsETstatement
field, if the string is shorter than the field length. Thus, the statement:

RSET NA$ ="N BENCHLEY"

creates the series of characters:

" " " " " " N — "BENCHLEY

However, RSET will not truncate the excess characters on the left. Instead,
it will truncate the excess characters on the right, just as LSET will.

To write a record from a random buffer to a random file, you must use the
PUT statement. A sequence of immediate mode statements is shown below
that will open a random-access file, set up a field structure for your address
records, and place one of these records in the buffer. After which you will
see why the PUT statement is necessary.

PUT Statement

F$ ="ADDRESS.DAT"
Ok

OPEN "R", 41,F$
Ok

FIELD kl , 1 6 A S NA$, 3 3 AS SA$, 1 4 AS CY$, 8 A S SZ$
Ok

LSET NA$ ="N BENCHLEY"
Ok

LSET SA$ ="12 ASHMONT AVE APT 6"
Ok

LSET CY$ ="NEWTON"

Ok

LSET SZ$ "MA 02158"
Ok

Page 6.23

If you continued to place records in the buffer using a series of LSET state
ments, you would overwrite the data in the buffer with different data. In other
words, records are not automatically written to the disk, as in the case of
sequential files. To write the contents of buffer 41 to the disk, you must enter
the statement:

PUT ¹1
Ok

Now you can add more data to your "ADDRESS DAT" file without overwrit
ing the information already in the buffer.

LSET NA$ =" A DUFFY"
Ok

LSET SA$ = "233 AUSTIN DR . "

OR

LSET CY$ ="OAK PARK"

01%

LSET SZ$ = "IL 6 6 6 9 9 "
Ok

PUT ¹1
Ok

LSET NA$ ="J P OPE"
Ok

LSET SA$ =" 3100 BROADWAY"
02

LSET CY$ ="NEW TOWN"

OK

LSET SZ$ = "I L 6 0 6 5 7 "
Ok

PUT ¹1
Ok

CLOSE
Ok

At this point, you have written three address records to the file and closed
it. Next, you will retrieve the three records.

Page 6.24

GETTING RECORDS OUT OF THE FILE

To retrieve records from the file that you have stored, you must perform the GET statement
following steps:

1. Op e n the file for random access (if it is not already open) and set up
field variables with an appropriate FIELD statement.

2. Re ad each record into the buffer with the keyword GET.

3. Pr o cess data in given fields of the record by referencing the corres
ponding field variables.

Using the preceding example, you could retrieve the records from the file
you created by opening the file as follows:

OPEN "R", ¹1 , F$
Ok

FIELD ¹1 , 1 6 A S NA$, 3 3 A S SA$, 1 4 A S CY$, 8 A S S Z$
Ok

GET ¹1
Ok

?NA$;SA$;CY$;SZ$
N BENCHLEY 12 ASHMONT AVE APT 6 NEWTON MA 02158
Ok

GET ¹1
Ok

?NA$;SA$;CY$;SZ$
A DUFFY 233 AUSTIN DR.
Ok

O AK PARK I L 6 6 6 9 9

GET ¹1
Ok

?NA$;SA$;CY$;SZ$
J POPE 3100 BROADWAY
Ok

NEW TOWN IL 60657

CLOSE
Ok

Page 6.25

FILE HANDLING

Random Access FIIes

This example shows that, as each record is brought into buffer ¹1 by the
GET 1 statement, the fields of that record are automatically assigned to the
field variables NA$ and so on simply because pointers into the buffer have
already been set up by the FIELD statement. The practical effect of this is
that the data in each field are immediately accessable through the corres
ponding variable as soon as the record is read into the buffer, without need
ing a separate statement like INPUT ¹ to connect a given item (field) to a
variable name.

Otherwise, this example doesn't seem to differ that much from a series of
reads done on a sequential file. You put in three records in order and got
three records back out again in the same order. This apparent similarity
comes about only because we chose to default to a sequential kind of ac
cess by using incomplete forms of the PUT and GET statements.

The complete form of the PUT statement is PUT BU%,REC%, where BU%
is a buffer number and REC% is the number of a given record. The state
ment PUT 1,23, for instance, means write the current contents of buffer ¹1
to disk as record 23. If you omit the specified record, as in the example you
saw before, the interpreter automatically assumes a record number one
greater than that of the "current record," which is the last record written or

More About PUT

read from the disk.

When you open the file, the default "current record" is zero. A following PUT
without a specific record given will access the "next" record number 1.
Therefore, the three PUT s tatements in t h is example - PUT1 ...
PUT1...PUT1... are by default equivalent to PUT 1,1...PUT 1,2...PUT 1,3
and have therefore stored the three test records as records 1, 2, and 3 in
the file.

The complete GET statement has the very similar form GET BU%,REC%,
where BU% and REC% stand for the buffer number and record number, re
spectively. Just as with the PUT statement, the interpreter will assume a rec
ord number one higher than the last record accessed by GET or PUT if you
leave out the explicit record number of the GET statement. Since you began
the last example by reopening the file, the "current record" at the beginning
defaults to, and the series of statements GET1 ...GET1 ...GET1 was equiva
lent to the three statements GET1,1....GET1,2...GET1,3.

More About GET

Page 6.26

FILE HANDLING

It is often useful to know the last record number in a random-access file. This
number is returned by the LOF, or "last-of-file" function.

The function call LOC(2), for instance, will return the record number of the
last numbered record in the file associated with buffer P2. You can use this
information to terminate a read of the records in the file or to tell you where
to begin adding new records.

STORAGE AND RETRIEVAL OF NUMERIC DATA

Since all random-access storage and retrieval is done through string vari
ables, you cannot store numeric quantities directly in random-access disk
files. They must somehow be converted to string representations before
they can be placed in a field and put on a disk. One way you can do this
is to convert the internal binary representation of the number to a string
(ASCII) representation using the STR$ function before placing it in the buf

LOC Function

LOF Function

Converting Numeric
Quantities

fer.

You would then use the VAL function to convert from the series of characters
back to a binary-encoded numeric quantity when reading the number back
from the disk. However, using this method would be both inefficient and
wasteful; inefficient because it takes time for the interpreter to translate the
series of ASCII characters to binary (and vice versa), and wasteful because
of the fixed-length field in which the ASCII representation must be stored,
regardless of the varying number of ASCII characters into which the numeric
quantity would actually be translated.

Instead of STR$ and VAL, BASIC provides a special set of functions that
allow the bytes that make up a binary number to be directly assigned to a
string variable as if they were characters and, conversely, allows the charac
ters stored in a numeric data field on the disk to be directly read back to
memory as the bytes that make up the internal representation of a number.

This change is performed by the three "make compressed string" functions
MKI$, MKS$, and MKD$. MKI$ converts a two-byte integer to a two-byte
string. MKS$ converts a four-byte single-precision number to a four-byte
string, and MKD$ converts an eight-byte double-precision number to an
eight-byte string.

Iiake String Functions

Page 6.27

FILE HANDLING

Conversion Functions When you are reading numbers back from a random-access file, you must
change them from strings back to numbers before they can be assigned to
numeric variables. This is accomplished by three conversion functions, CVI,
CVS, and CVD. CVI changes a two-byte string into an integer, CVS changes
a four-byte string into a single-precision number, and CVD changes an
eight-byte string into a double-precision number.

The inventory program starting on the next page illustrates random file ac
cess. In this program, the record number is used as the part number, and
it is assumed the inventory will contain no more than 100 different part num
bers. Lines 900-960 initialize the data file by writing CHR$(255) as the first
character of each record. This is used later (line 270 and line 500) to deter
mine whether an entry already exists for that part number.

Lines 130-220 display the different inventory functions that the program per
forms. When you type in the desired function number, line 230 branches to
the appropriate subroutine.

Application

page 6.28

120
125
130
135
140
150
160
170
180
220
225

230
240
250
260
270

"BAD FUNCTION NUMBER":GOTO 130

O PEN"R", ¹ 1 , " I N VEN.DAT" , 3 9
F IELD¹1,1AS F$,30 AS D$, 2 A S Q $, 2 A S R$, 4 A S P$
PRINT:PRINT "FUNCTIONS:":PRINT
P RINT 1 , " I N I T I A L I Z E F I L E "
PRINT 2 , " CREATE A NEW ENTRY"
PRINT 3,"DISPLAY INVENTORY FOR ONE PART"
PRINT 4 , " ADD TO STOCK"
PRINT 5,"SUBTRACT FROM STOCK"
PRINT 6,"DISPLAY ALL ITEMS BELOW REORDER LEVEL"
PRINT:PRINT:INPUT"FUNCTION";FUNCTION
IF (FUNCTION(1) OR (FUNCTION)6) THEN PRINT

ON FUNCTION GOSUB 900, 250, 390, 480, 560, 680
GOTO 220
REM BUILD NEW ENTRY
GOSUB 840
IF ASC(F$) <>255 THEN INPUT"OVERWRITE";A$:

IF A$() " Y " T HEN RETURN
LSET F$ =CHR$(0)
INPUT "DESCRIPTION";DESC$
LSET D$ = DESC$
INPUT "QUANTITY IN STOCK";Qg
LSET Q$ =MKI$(Q%%d)
INPUT "REORDER LEVEL";R%%d
LSET R$ =MKI$ (R/a)
I NPUT "UNIT PRICE" ; P
LSET P$ =MKS$(P)
PUT¹1,PART%%d
RETURN
REM DISPLAY ENTRY
GOSUB 840
IF ASC(F$) = 255 THEN PRINT "NULL ENTRY":RETURN
PRINT USING "PART NUMBER ¹¹¹"; PART /
PRINT D$
PRINT USING "QUANTITY ON HAND ¹ ¹ ¹ ¹ ¹ " ; CVI (Q$)
P RINT USING "REORDER LEVEL ¹ ¹ ¹ ¹ ¹ " ; CVI (R $)
PRINT USING "UNIT PRICE $$¹¹, ¹¹";CVS(P$)
RETURN
REM ADD TO STOCK
GOSUB 840
IF ASC(F$) = 255 THEN PRINT "NULL ENTRY":RETURN
PRINT D$:INPUT "QUANTITY TO ADD";A/

Qg= CVI (Q$) +A/
LSET Q$ = MKI$(Q%%d)
PUT¹1, PARTfp

280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550 RETURN

page 6.29

560 REM REMOVE FROM STOCK
570 GOSUB 840
580 IF ASC(F$)=255 THEN PRINT " NULL ENTRY" :RETURN
590 PRINT D$
600 INPUT "QUANTITY TO SUBTRACT";Sf
610 Qg =CVI(Q$)
620 IF (Qg — Sg)<0 THEN PRINT "ONLY";Qg;" IN STOCK": GOTO

630 Ql = Ql-SX
640 IF Qg= <CVI(R$) THEN PRINT "QUANTITY NOW";Qg;

650 LSET Q$ =MKI$(QX)
660 PUT41,PART/
670 RETURN
680 REM DISPLAY ITEMS BELOW REORDER LEVEL
690 FOR I = 1 TO 1 0 0
710 GETP1, I
720 IF CVI (Q$)< CVI (R$) THEN PRINT D$; " QUANTITY";

CVI(Q$) TAB(50) ; "REORDER LEVEL";CVI(R$)

600

REORDER LEVEL";CVI(R$)

730 NEXT I
740 RETURN
840 INPUT "PART NUMBER";PART/
850 IF (PARTX<1)OR(PART%)100) THEN PRINT "BAD PART NUMBER":

GOTO 840 ELSE GETAE1,PART%:RETURN
890 END
900 REM INITIALIZE FILE
910 INPUT "ARE YOU SURE";B$: I F B $ <) "Y " TH EN RETURN
920 LSET F$ =CHR$(255)
930 FOR I = 1 TO 1 0 0
940 PUT41, I
950 NEXT I
960 RETURN

Sample Inventory Program

page 6.30

Page 7.1

CHAPTER 7 PLOTTING COORDINATES

The Video Screen

BRIEF

The screen display format has 25 lines numbered 1 — 25, and a width of 80
columns numbered 1MO.

The video resolution of the Z-100 is 639 horizontal addressable points, and
225 vertical addressable points.

Vertical points on the screen are associated with the Y axis, and horizontal
points are associated with the X axis.

The screen can be changed to H-19 graphics mode or reverse video, via
the SCREEN statement. (See Page 7.3).

Format: screen [graphics,) [reverse video]

The SCREEN function returns the ASCII value of a character on the screen
at the specified location. (See Page 7.5).

F Ormat: X = SCREEN(row,col [, z] j

Details

The first step in using Z-BASIC graphic capabilities is to understand the
characteristics of the video screen and how to plot coordinates on it.

The Z-100 All-in-One Monitor has a 12-inch diagonal screen. The display
format has 25 lines numbered 1 — 25, and a width of 80 columns numbered
1-80.

Video resolution is the density of the individual pixels (points) on the screen.
The video resolution of the Z-100 is 640 horizontal addressable points, and
224 vertical addressable points. This high resolution permits sharper and
more detailed graphic images to be displayed on the screen.

Page 7.2

PLOTTING COORDINATES

The Video Scl ceo

Vertical points on the screen are associated with the Y axis. Horizontal
points are associated with the X axis. To plot or locate coordinates on the
screen you should first understand the orientation of the coordinates on the
X and Y axis. Point 0,0 is the first point in the top left corner of the screen.
Point 639,0 is the top right point. Point 0,224 is the bottom left point and
639,224 is the bottom left point as illustrated in Figure 7.1.

0,0 639,0

x • • • • • • • • • • • • •) • • • • • • • • • • • • x

639, 2240, 224

FIGURE 7.1
X,Y Coordinates of the Four-Corner Points

We will discuss plotting coordinates throughout this chapter, since many
Z-BASIC statements use the X,Y coordinates as arguments. In particular,
in our discussion of the LINE statement (Chapter 8), we will show you how
to use these four points to draw a border on your screen.

Page 7.3

PLOTTING COORDINATES

The VIdeo SCF'8elttl

SCREEN STATEMENT

The SCREEN statement allows you to put Heath/Zenith H-19 graphic char
acters on the video display and also permits the use of reverse video. H-19
graphics have been included to assure compatibility with software programs
using H-19 graphics.

Reverse video will print black characters on a white background. This is a
convienent feature for highlighting text and other special affects.

F Ormat:Screen [g r a ph i c s ,] [r ev e r s e v i d e o]

Graphics when it appears in the SCREEN statement is a numeric expres
sion with the value of zero or one.

Reverse video is a numeric expression with the value of zero or one.

~Gra hica 0 — Clears H-19 Graphics mode
1 — Sets H-1 9 Graphics mode

0 — Clears H-19 reverse video
1 — Sets H-19 reverse video

Reverse Video

Action: If all parameters are legal, the new screen mode is stored. If the new
screen mode is the same as the previous mode, nothing is changed.

Rules:

1. An y values entered outside of these ranges will result in an
I11e gal Fun c t i on Ca11 E rrOr. PreViOuS ValueS are retained.

2. An y parameter may be omitted. Omitted parameters assume
the previous value.

Example:

10 SCREEN 0, 1
20 SCREEN 1
40 SCREEN 1,1

50 SCREEN ,0

' No graph i cs , r e v e r s e v i d e o o n .
'Switch to H-19 graphics mode.
'Switch to H — 19 graphics

w ith r e v e r s e v i d e o o n .
'graphics off and reverse video off.

Page 7.4

PLOTTING COORDINATES

The Video Scl"eeA

If you are using H-1 9 graphics for the first time, we advise that you draw your
graphic image first on a video layout grid. (You can make one by drawing
a grid with 25 vertical boxes by 80 horizontal boxes.) After you have the
graphics on paper it will be easier to transfer them to the screen.

In H-19 graphic mode, lower case letters are converted to graphic symbols.
Therefore you must refer to the Graphics Symbol Table in Appendix C of
this manual. After you decide which graphic character you want to use, note
it's lower case letter equivalent, and input this letter to BASIC. BASIC will
then convert this letter to the corresponding graphic symbol.

Example:

10 CLS
20 SCREEN 1
30 PRINT " f aac"
40 PRINT "eaad"
50 SCREEN 0

When this program is run, faac will convert to the top half of a small box.
In line 40, eaad will convert to the bottom half of a small box.

If H-19 graphics are in effect while in direct mode, all lowercase alphabetic
characters typed will produce H-19 graphic characters. Therefore, pro
grams using H-19 graphics should clear graphic mode before returning to
command mode, as done in line 50 of the example above.

You can use the locate statement described on Page 7.12 to place the box
in the center of the screen by changing lines 30 and 40 to:

30 LOCATE 12,38:PRINT "faac"
40 LOCATE13,38:PRINT "eaad"

Page 7.5

PLOTTING COORDINATES

The VIdeo SCF'eeA

SCREEN FUNCTION

The SCREEN function returns the ASCII value of the character from the
screen at the specified row (line) and column.

FOrmat: x = SCREEN(row,col [, z])

x is a numeric variable receiving the ASCllvalue returned.

row i s a valid numeric expression returning an unsigned integer in
the range one to 25.

col is a valid numeric expression returning an unsigned integer in
the range one to 80.

z is a v a l id numeric expression returning a Boolean result.

Action:

The ASCII value of the character at the specified coordinates is stored in
the numeric variable. If the optional parameter (z) is given and is not zero,
the number returned, when reduced by modulo 8, is the color attribute of
the character.

Suppose for example the letter 0 was in row one, column one.

10 X = screen (1 , 1)
20 PRINT X
RUN
79
Ok

The number 79 is the ASCII equivalent of the letter O. To verify this, you
could either use the ASCII table in Appendix C, or you could use the CHR$
function in the following manner:

PRINT CHR$(79)
0
Ok

Page 7.6

PLOTTING COORDINATES

The VIdeo ScIIeen

Rule:

1. An y va lues entered outside the range for row (1-25) or the
range fOr COlumn (1-80) Will reSult in an Il l egal Funct ion Cal 1
error.

Examples:

100 X = SCREEN (10,10) 'If the character at 10,10 is
' A then r e t u r n 6 5 .

110 X = SCREEN (1,1 , 1) 'Return the color attribute of
'the character in the upper left
' hand co r ne r o f t he sc r e e n .

10 COLOR 4,7 'Make foreground red and background white

20 CLS: PRINT "H" 'Print H in top left corner

30 X =SCREEN (1,1,1) 'Use SCREEN function to determine attribute of H

40 PRINT X
RUN

100
Ok

This example prints an H in the top left corner of the screen. Then the screen
function is used to determine the attribute of H. To interpret the result you
must use the MOD operator (see Page 5.22) with the number 8, to reduce
the result to one of the valid color numbers as shown below. Four is the color
red.

PRINT 100 MOD 8
4

Ok.

Page 7.7

PLOTTING COORDINATES

Locating and Activating Pixels

BRIEF

Three statements in Z-BASIC that use the X and Y pixel coordinates as ar
guments are POINT, PSET, and PRESET.

The POINT function allows you to read the attribute value of a pixel from
the screen.

Format: PQINT (x, Y)

The PSET statement is used to turn on a point at a specified location on the
screen.

F Ormat 1: P SET (X c o o r d i n a t e , Y coordinate) [,attribute]

FOrmat2: PSET STEP (X offset, Y offset)

The PRESET statement is used to turn off a point on the screen at a
specified location.

FOrmat 1: PRESET (X coordinate, Y coordinate) [,attribute]

FOrmat2: PRESET STEP (X offset, Y offset)

Details

Now that you are familar with the orientation of the coordinates and charac
teristics of the screen you will be able to locate pixels and turn them on or
off.

The POINT function allows the user to read the color value of a pixel from
the screen. The format of the POINT function is:

POINT (X,Y)

If the point given is out of range the value — I is returned. Valid returns are
any integer between 0 and 7.

Page 7.8

PLOTTING COORDINATES

An example of the programming statement that would determine the color
status of your computer follows:

Example:

10 FOR C =O TO 7
20 PSET (10,10) , C
30 IF POINT(10, 10) () C T HEN PRINT

"Black and white computer"

50 NEXT C

You could also use the POINT function to invert the current state of a point,
as shown in the example below:

10 IF POINT (I, I) <>0 THEN PRESET (I, I) ELSE PSET (I , I)
'invert current state of a point

Page 7.9

PLOTTING COORDINATES

PSET STATEMENT

The PSET statement is used to turn on a point at a specified location on the
screen.

F Ormat 1: P SET (X c o o r d i n a t e , Y coordinate) [, attribute]

Format2: PsET sTEP (x offset, Y offset)

The first argument to PSET is the coordinate of the point that you wish to
plot. Format 1 is the absolute form, which means you specify a point without
regard to the last point referenced. An absolute point is the exact address
of a pixel on the screen.

Example:

PSET (10,10)
0,0

In this case PSET would turn on a dot at
the location indicated by the asterick.

+ 10,10

Suppose you had already plotted an absolute coordinate and you wanted
to plot several other points relative to the last point referenced. Instead of
trying to estimate the exact coordinate of your next point, you could use the
second format of the PSET statement. Using the example above, if you
wanted your next point to appear 10 horizontal points from 10,10 (the last
point referenced) you would use format 2, as follows:

PSET STEP (10,0) 'offset 10 in X and 0 in Y

Page 7.10

PLOTTING COORDINATES

This statement tells PSET to offset the point by 10 in X and zero in Y. Thus
your next point would be turned on at the 20,10 address.

Note that when BASIC scans coordinate values it will allow them to be
beyond the edge of the screen, however values outside the integer range
(— 32768 to 32767) will cause an overflow error.

Note that (0,0) is always the upper left hand corner and the bottom left corner
is (0,225). It may seem strange to start numbering Y at the top, but, this is
standard.

The last argument to the PSET statement allows you to specify the color you
want the point to be turned on in. It is not necessary to specify the color argu
ment to PSET. If attribute is omitted then the default value is one, since this
is the foreground attribute. You can use the PSET statement with a color
argument to turn off points by adding a color argument that is the same as
the background color as shown in the example that follows.

Example:

5 OLS
10 FOR I = O t o 10 0
20 PSET (I , I)
30 NEXT

'draw a diagonal line to (100,100)

40 FOR I =100 TO 0 S TEP — 1
50 PSET (I , I) , 0
60 NEXT

'clear out the line by setting each pixel to 0

Page 7.11

PLOTTING COORDINATES

PRESET STATEMENT

PRESET has an identical format to PSET. The only difference is that if no
third parameter is given the background color, zero is selected. When a third
argument is given, PRESET is identical to PSET.

FOrmat 1: PRESET (Xcoordinate , Y coordinate) [,attribute]

FOrmat2: PRESET STEP (X offset, Y offset)

Example:

5 OLs
10 FOR I = O to 1 0 0
2 0 PSET (I , I)
30 NEXT

(draw a diagonal line to (100,100))
40 FOR I =100 TO 0 S TEP — 1
50 PRESET (I , I)
60 NEXT

Notice that this example is the same example given for PSET on Page 7.10.
The only difference is in line 50, where the third parameter is not specified.

The PRESET statement defaults to the background color and causes all of
the specified points to be turned off. If a color argument was added to this
line, the affect would be the same as using PSET.

If an out of range coordinate is given to PSET or PRESET no action is taken
nor is an error given. If an attribute greater than seven is given, this will result
in an illegal function call error message.

Page 7.12

PLOTTING COORDINATES

Changing the Cursor Position

BRIEF

Three statements that affect the cursor are: LOCATE, CSRLIN, and POS.
These statements use rows and columns as their arguments.

The LOCATE statement moves the cursor to the specified position on the
Screen.

FOrmat: L OCATE [row] , [co l] [, [c ur sor]]

The CSRLIN function returns the current line (or Row) position of the cursor.

Format: x = csRLIN

The POS function returns the current column position of the cursor.

Format: Pos(I j

Details

The LOCATE statement moves the cursor to the specified position on the
Screen. The last optional parameter turns the cursor on and off.

FOrmat: L OCATE [row] , [co l] [, [cur sor]]

row Is th e screen line number. A numeric expression returning an
unsigned integer in the range 1 to 25.

Is the screen column number. A numeric expression return
ing an unsigned integer in the range 1 to 80.

col

Page 7.13

PLOTTING COORDINATES

cursor I s a Boolean value indicating whether the cursor is visible or
not, zero for off, non-zero for on.

Action:

The LOCATE statement moves the cursor to the specified position. Sub
sequent PRINT statements begin placing characters at this location.

Rules:

1. An y values entered outside of the row and column ranges will
reSult in an I l l e gal Funct ion Call e r rOr meSSage. PreViOuS
values are retained.

2. An y parameter may be omitted. Omitted parameters assume
the old value.

Example:

10 LOCATE 1,1

30 LOCATE

20 LOCATE , ,1

Moves to the home position in the upper
left hand corner.

Make the cursor visible, position re
mains unchanged.

Position and cursor visibility remain un
changed.

Move to line five, column one, turn cur4 0 LOCATE 5,1 , 1

sor on.

Page 7.14

PLOTTING COORDINATES

CSRLIN AND POS FUNCTION

The CSRLIN function returns the current line (or row) position of the cursor.
The POS function returns to the current column.

Format: x = csRLIN

is a numeric variable receiving the value returned.
The value returned will be in the range 1 to 25.

will return the column location of the cursor. The
value returned will be in the range 1 to 80.

x = POS(l)

Example:

10 Y = CSRLIN 'Record current line.
20 X = POS(I) 'Record current column.
30 LOCATE 24,1 : P RINT "HELLO" 'Print HELLO on the 24th line.

40 LOCATE Y,X 'Restore position to old line, column.

Unlike the coordinates of points, which start at point 0,0, the coordinates of
rows and columns start at position 1,1.

Page 8.1

CHAPTER 8 ADVANCED COLOR GRAPHICS

Using Color Graphics

BRIEF

When using color with any of the advanced graphics statements, you can
specify the attribute to be used. Available colors can be one of the following
eight.

0 Black
1 Blue
2 Green
3 Cyan
4 Red
5 Magenta
6 Yellow
7 White

The color statement is used to select the foreground color and background
color for screen display.

FOrmat: COLOR [Foreground] [, [B ackground]]

Details

THE VIDEO BOARD

The video board can be purchased with or without color capability. The dif
ference between a computer that has color and one that does not is for the
most part in the video RAM chips that contain the information necessary for
producing color. A monochrome video board has 64K of video RAM (Ran
dom Access Memory) and a color video board has at least 96K of video
RAM. It is possible to upgrade a monochrome video board to color.

Note that the use of the extended character set with special H-19 graphic
characters is not considered "graphics".

As mentioned in Chapter 7, the Z-100's video resolution is 640 by 225 (with
the 25th line) — 3 bits per pixel.

Page 8.2

ADVANCED COLOR GRAPHICS

When storing graphics memory with PSET, PRESET or LINE you can select
the "attribute" (color) from one of eight values.

It is fairly simple to produce graphics since a pixel (point) only has a value
of zero or one. A zero pixel is always associated with the color black. A one
pixel can associate with various intensities of white through the first argu
ment to the color statement.

Advanced graphics extend the capabilities to manipulate the graphics mode
bit map provided by the color video card.

The statements we have included in our discussion of advanced graphics
are:

COLOR
LINE
CIRCLE
PAINT

PUT
GET
DRAW

THE COLOR STATEMENT

The format of Color statement is:

COLOR [Foreground] [, Background]]

The Color statement is used to select the foreground colors and background
colors for screen display. If you have a monochrome video board, this state
ment will be only partially effective. Those colors that contain green will dis
play as green. Any other color will display as black. If you have a color video
board but are using a monochrome monitor your colors will appear in shades
of gray. (The Z-100 All-in-One model has a green non-glare screen, thus
your colors will appear in shades of green).

Foreground: = Foreground for character color. An unsigned integer in
the range zero to seven.

Page 8.3

ADVANCED COLOR GRAPHICS

Background: = Background color. An unsigned integer in the range
zero to seven.

Valid Colors

0 Black
1 Blue
2 Green
3 Cyan
4 Red
5 Magenta
6 Yellow
7 White

Refer to first the example shown on Page 7.8 to determine if the computer
you are using has a monochrome or color video board.

Rules:

1. An y values entered outside of the range 0-255 will result in an
Il l egal Function call error. Previous values are retained.

2. For eground color may equal background color. This has the ef
fect of making any character displayed invisible. Changing the
foreground or background color will make the characters visible
again.

3. An y parameter may be omitted. Omitted parameters assume
the old value.

4. T h e COLOR statement may end in a comma (,). For example,
COLOR, 7, leave the background unchanged.

Page 8.4

ADVANCED COLOR GRAPHICS

Example:

10 COLOR 7,0 Sele c t white foreground, and black background.

30 COLOR 6,4 Chan ge foreground to yellow, background to red.

40 COLOR,6 Changes background to yellow, any characters
displayed on the screen are now invisible.

Example:

10 CLS
20 FOR J = O to 7
30 COLOR J,7-J : P R I NT
40 NEXT J

This program will draw eight boxes in the upper left-hand corner of your
screen and will fill them with the eight valid colors. Black is the color of the
last box, however it is not visible on a black background.

Even though there are 8 valid colors, the range of numbers you may use
to specify colors is 0 to 255. If you specify a color larger than 7, BASIC will
use MOD 8 to reduce the number to its true value.

Page 8.5

ADVANCED COLOR GRAPHICS

LINE, CIRCLE and PAINT Statements

BRIEF

Three powerful graphic statements that Z-BASIC uses to create graphic im
ages on the screen are the LINE, CIRCLE, and PAINT statements.

The LINE statement permits the drawing of lines in absolute and relative lo
cations on the screen. It can also be used to make boxes and filled boxes.

Format: L INE [(x l , Y l)] - (x 2 ,Y2) [, [a t t r i b u t e]] [,b [f]]

The CIRCLE statement draws an ellipse with a center and radius as
specified by the arguments.

FOrmat: CIRCLE (X center,Y center),radius

[,attr
i

bute[, s t a r t , e n d [, a s pec t]]]
Cd(g~

The PAINT statement is used to fill graphic figured with the specified PAINT
attribute, until it reaches the specified border attribute.

FOrmat: PAINT (X start,Y start)[,paint attribute
c

[,border attribute]]

L-~W~

Details

THE LINE STATEMENT

LINE is the most powerful of the graphic statements. It allows a group of
pixels to be controlled with a single statement. A pixel is the smallest point
that can be plotted on the screen.

The simplest form of line is:

LINE -(X2, Y2)

This will draw a line from the last point referenced to the point (X2, Y2) in
the foreground attribute. The foreground attribute is the default attribute.

Page 8.6

ADVANCED COLOR GRAPHICS

We can include a starting point also:

LINE (0,0)-(319,199) 'draw diagonal line down screen
L INE (0 , 100) — (319,100) ' d r a w ba r a c r os s s c r e e n

We can append a color argument to draw the line in green, which is color
2:

LINE (10,10)-(20,20),2 'draw in color 2!

10 CLS
20 LINE - (RND+639,RND%224),RND+7
30 GOTO 20 'draw lines forever using random attribute

The final argument to LINE is ",b" — box or ",bf" — filled box. The syntax
indicates we can leave out the attribute argument and include the final argu
ment as follows:

LINE (0,0)-(100,100),,b 'draw box in foreground attribute

or the attribute can be included:

LINE (0,0) — (200,200),2,bf 'filled box attribute 2

The ",b" tells Z-BASIC to draw a rectangle with the points (X1,Y1) and
(X2, Y2) as opposite corners. This avoids using four LINE statements:

10 LINE (0 ,0) — (0,224) , 1
2 0 LINE (0 , 2 24) - (6 39 , 224) , 1
3 0 LINE (639 ,224) - (6 39 , 0) , 1
40 LINE (639 ,0) - (0 , 0) , 1

This program uses the four corner points of the screen (as mentioned in
Chapter 7) and forms a border around the screen. Using the box option of
the LINE statement, the equivalent function could be performed with the fol
lowing statement:

10 LINE (0 , 0) — (639, 224), 1, b

The ",bf" means draw the same rectangle as ",b" but also fill in the interior
points with the selected attribute.

Page 8.7

ADVANCED COLOR GRAPHICS

When out of range coordinates are given in the LINE command, the coordi
nate which is out of range is given the closest legal value. Negative values
become zero, Y values greater than 224 become 224 and X values greater
than 639 become 639.

STEP (X offset, Y offset), which is the relative form may be used in any of
the graphic statements that reference absolute points. Note that all of the
graphic statements and functions update the last point referenced. In a line
statement, if the relative form is used on the second coordinate, it is relative
to the first coordinate.

Example:

10 PSET (100,100)
20 LINE STEP (20,20) - STEP (50 ,50)

In this example the PSET statement was used to turn on a point at (100,100).
Then a line was drawn from the last point referenced (100,100). The STEP
offset of (20,20) tells BASIC to begin the line at point (120,120). The STEP
offset of (50,50) tells BASIC to end the line at (170,170).

Example:

10 CLS
20 LINE-(RND+639,RND+224),RND+7,br
30 GOTO 20

In this example, the LINE statement is used to draw filled boxes at random
locations on the screen. Since the color argument is also randomized, these
boxes will appear in various shades or colors. This example is also a con
tinuous loop. You will have to press CTRL-C to break program execution.

Page 8.8

ADVANCED COLOR GRAPHICS

As a final example in our discussion of the LINE statement, we have in
cluded a program that creates a bar graph.

10 CLS
20 Y =200

30 X =50

40 XI = 50
5 0 LINE (0 , 0) - (6 4 0 , 2 15) , 2 , B 'border
6 0 LINE (X - S , Y) - (X - 5, 1 0) ' y ax i s
7 0 LINE (X - 5 , Y) - (6 0 0 , Y) ' x ax i s
80 FOR J = 1 TO 1 0
90 READ PT
100 YPT =100-PT
110 LINE (X ,Y) — (X+20,YPT),1 ,BF
120 X =X+XI
130 NEXT J
140 END
150 DATA 10, 20 , 1 5 , 2 5, 3 0, 2 2, 3 0, 60 , 70 , 85

In this program the screen is cleared, and the variables Y,X, and X1 are in
itialized. Program line 50 is a LINE statement with the box option included
to make a green border around the graph. Program lines 60 and 70 are lines
that form the y and x axis respectively.

Line 80 is the beginning of the FOR... NEXT loop that tells BASIC it will per
form the following function 10 times. Line 90 tells BASIC to read the DATA
statement in line 150 to determine what percent value each bar in the graph
should reflect.

Line 100 determines the height each bar will be. If you were drawing a bar
graph without the assistance of a computer, your zero mark would naturally
start in the lower left corner. However, as we mentioned before, the zero
point on the computer is in the top left corner. Thus it is necessary to change
the point of orientation, which is what line 100 is actually doing.

Line 110 draws filled boxes of different lengths, reflecting the percentages
in the DATA statement. Line 120 sets the distance between each bar of the
graph. Line 130 ends the FOR NEXT loop, and 140 ends the program.

Page 8.9

ADVANCED COLOR GRAPHICS

THE CIRCLE STATEMENT

The CIRCLE statement draws an ellipse with a center and radius as indi
cated by the first of its arguments.

FOrmat: CIRCLE (X center,Y center),radius

[,a t t r i b u te [, s t ar t , en d [, a s pec t)]]

In the format, the X and Y are the coordinates of the center point of the el
lipse. Radius is the distance from the center to the edge of the circle. Attri
bute is an optional argument that determines the color of the circle. The de
fault attribute is the foreground color.

The start, end parameters are angles described in radians where 6.28 is the
total amount of radians in the circle. 6.28 =2*PI. Pl is equal to 3.14159,
which is equal to half of a circle. Figure 8.1 illustrates the angles of a circle.

PI — 90o
2

0
28PI= 360'PI = 180'

-OPI = 240'
2

Figure 8.1.
Angles of a Circle

The start and end angle parameters are radian arguments between 0 and
2* Pl which allow you to specify where drawing of the ellipse will begin and

If the start and/or end angle is negative, the ellipse will be connected
to the center point with a line. The angles will be treated as if they were
positive (Note that this is different than adding 2*PI). The start angle may
be less than the end angle, but neither may be 0 (the equivalent of zero
— a very small number — may be used in its place).

end.

Page 8.10

ADVANCED COLOR GRAPHICS

Example:

10 CIRCLE (100,100) , 50 , 7 ,—.001,— 1.5707

This program line will draw a pie slice as illustrated below. Note that 1.5707
is half of Pl.

The aspect ratio describes the ratio of the X radius to the Y radius. It deter
mines what kind of ellipse is to be drawn. The default aspect ratio is .4375
and will give a visual circle assuming a standard monitor screen aspect ratio
of 7/16.

If the aspect ratio is less than one, then the radius is given in X-pixels. If it
is greater than one, the radius is given in Y-pixels. The standard relative no
tation may be used to specify the center point.

10 CLS
20 CIRCLE (320,110) , 200+RND,7,0 ,2+3 . 14159,RND
30 GOTO 20

This example clears the screen and draws continuous circles on the screen.
The radius is 200 > a random number. The start angle is 0, and the end angle
is 2<PI or 360'. The aspect ratio is a random number from 1-0.

NOTE: Make sure your background color is not 7 before running this pro
gram, otherwise the circles will not be visible.

Example:

10 RAD =5

20 CLS
30 CIRCLE (320,110) ,RAD,7,0 ,2+3 . 14159,

(RND+RND+RND+RND) /4

50 IF RAD>175 THEN END ELSE 30
40 RAD =RAD+7. 5

This example is similar to the one above except instead of a random radius,
the radius is assigned the value of 5 and incremented by 7.5 each time an
ellipse is drawn. When the radius becomes larger than 175, the program
ends.

Page 8.11

ADVANCED COLOR GRAPHICS

Notice in line 30 four RND functions are added together and then divided
by 4 to get an average random number. This helps decrease the variance
of the aspect ratio. More often than not the aspect ratio will be close to .5
since RND is a number between 0 and 1.

For our last example of the CIRCLE statement, this program will draw two
cone shaped figures on the screen.

10 CLS: D =1

20 X = 78 : Y =112

30 RAD = 73 : A S P= . 9

40 AG1 =0

50 AG2 = 2+3.14159
60 C =7

70 CIRCLE (X,Y),RAD,C,AGI,AG2,ASP
80 RAD = RAD- 3 + D
90 X =X+10
100 IF RAD(2 T HEN D= — D:

GOTO 80 ELSE IF RAD)73 AND D = — 1 THEN 120 ELSE 70
110 END

The program begins by clearing the screen and assigning the variable D a
value of 1, X=78, Y =112, radius =73, and the aspect ratio = .9. Angle 1=0

and angle 2=2*PI. The foreground color is number 7 which is white.

Line 70 tells BASIC to draw an ellipse using the previously assigned vari
ables. Line 80 says each time an ellipse is drawn, decrease the radius by
— 3. Decreasing the radius by — 3 means the ellipse will get smaller and
smaller.

Line 90 tells BASIC to increment the value of X by 10 for every ellipse drawn.
If you could connect the center point of each ellipse you would find they form
a straight line.

Line 100 says if the radius is less than two, then D becomes negative. When
— D is multiplied by — 1 and added to RAD, the result is a positive number
and the ellipses begin to get larger as the radius increases.

Line 100 then tells BASIC to continue drawing ellipses until the radius is
larger than 73 and D is equal to — 1.

Page 8.12

ADVANCED COLOR GRAPHICS

THE PAINT STATEMENT

The PAINT statement will fill in any graphic figure with the attribute you
specify until it reaches the specified border attribute of that figure. If no paint
attribute is given, PAINT will default to the foreground attribute. If the border
attribute is not given, it defaults to the PAINT attribute.

FOrmat: PAINT (X start,Y start)[,paint attribute

[,border a t t r i b u t e]]

For examp!e, you might want to fill in a circle of attribute one with attribute
two. Visually, this could mean a green ball with a blue border.

10 CLS
2 0 CIRCLE (320,112) , 100 , 1
3 0 PAINT (300,100) , 2 , 1

This example draws a circle with a center point of (320,112) and a radius
of 100, in the color blue. A point within that circle is selected (300,100). The
circle is then painted with the color green from that point, until it reaches the
blue border.

If the border attribute is not equal to the foreground attribute, (the color the
figure is drawn in) PAINT will never see the border and will fill the entire
screen with the PAINT attribute.

A problem that commonly occurs when using the PAINT statement is "holes"
in the border that permit the PAINT to seep out and place a color inundesira
ble places. You must be sure your coordinates are correct and all of the
points that make up your boundaries are included in your graphic statement.

PAINT must start on a non-border point, otherwise PAINT will have no ef
fect.

Page 8.13

ADVANCED COLOR GRAPHICS

The PAINT statement can be used with other graphic statements.

Example:

1 0 CLS: L INE (0 , 0) - (1 0 0 , 200) , 4 , B
20 PRESET (100,100)
3 0 LINE (200 ,0) - (3 0 0 , 200) , 4 , B
4 0 LINE (100 ,90) - (2 0 0 , 9 0) , 4
50 PRESET (200,100)
60 LINE (100, 110) — (200, 110),4
7 0 PAINT (1 , 1) , 1 , 4

This example will draw two retangular boxes down the screen and a smaller
rectangle in the middle. Then it paints the boxes blue until it gets to the red
border. PRESET is used to turn off a point within the graphic to begin paint
ing from.

PAINT can fill any figure, but painting "jagged" edges or very complex fig
ures may result in an Out of Memory error. If this happens, you must use the
CLEAR statement to increase the amount of stack space available.

Page 8.14

ADVANCED COLOR GRAPHICS

GET, PUT, and DRAW Statements

BRIEF

The DRAW statement combines many of the capabilities of the other
graphic statements into a graphics macro language that permits the drawing
of graphic images on the screen.

FOrmat: D RAW <" str i ng express i on")

After your graphic image is drawn you may want to use the GET, PUT state
ments to transfer the image to and from the screen.

Format: GET (xl , Yl) — (x2, Y2), ar ray name
FOrmat: PUT (Xl, Yl) , array[, action verb]

The GET and PUT statements are also used for computer animation and
for other special effects involving moving objects on the screen.

Details

THE DRAW STATEMENT

The DRAW statement combines most of the capabilities of the other
graphics statements into an easy-to-use object definition language called
Graphics Macro Language ®. A GML command is a single character within
a string, optionally followed by one or more arguments.

F Ormat: D RAW<" st r i n g e xp r ess i o n ")

The DRAW statement can be assigned to a string expression, in the follow
ing manner:

10 AS =" U2L2D2R2"
20 DRAW AS

Page 8.15

ADVANCED COLOR GRAPHICS

If a DRAW statement is assigned in this manner, you could use this move
ment sequence in another place in your program without having to input the
entire DRAW statement.

The DRAW statement, when used with other graphic statements will begin
drawing at the last point referenced. When used with the CIRCLE statement,
it will begin drawing at the center point of the circle.

MOVEMENT COMMANDS

Each of the following movement commands begin movement from the "cur
rent graphics position". This is usually the coordinate of the last graphics
point referenced with another GML command, LINE, or PSET.

U [<n>]
0 [<n>]
L [<n>]
R [<n>]
E [<n>]
H [<n>]
G [<n>]
F [<n>]

Move up (scale factor *N) points
Move down
Move left
Move right
Move diagonally up and right
Move diagonally up and left
Move diagonally down and left
Move diagonally down and right

These commands move one unit if no argument is supplied. The number
of points (n) always follows the command.

Example:

10 CLS
20 LINE (100 ,0) — (100,100) ' d r a w a l i ne
30 BS ="H10"

40 DRAW B$ 'draw a diagonal line up and left 5 points
RUN

Page 8.16

ADVANCED COLOR GRAPHICS

Absolute and Relative Moves

M <X, Y> Move to an absolute or relative address. As in other graphic state
ments, the DRAW statements can be used in absolute and relative forms.
Relativity is indicated in the following manner:

If X is preceded by a "+" or "-", X and Y are added to the current graphics
position, and connected to the current position with a line. Otherwise, a line
is drawn to point X, Y from the current position.

Example:

10 CLS
20 LINE (100 ,0) - (1 0 0 , 100) ' dr a w a l i ne
3Q B$ — »M75 75 UIQ»
40 DRAW BS

U10 = 75, 65 100, 0

75, 75

100, 100

This example tells BASIC to draw a line from (100,0) to (100,100) and from
that point (100,100) draw a line to the absolute address of (75,75) then draw
a line up 10 points (75,65). If you inserted a "+" sign in line 30:

30 BS="M+75,75 U10"

the second line would be added to the current graphic position. The second
line would be drawn from (100,100) to (175,175) and the last point would
be at point (175,165). If you inserted a" — "sign in line 30:

Page 8.17

ADVANCED COLOR GRAPHICS

30 B$= "M — 75,75 U10

BASIC would draw a line similar to the one above except this line would be
in another direction. The second line would be drawn from (100,100) to
(25,175) and the last point would be at point (25,165). The "+" and the "—"
indicate relative starting points.

A[(n>] Set angle n. n may range from zero to three, where zero is zero
degrees, one is 90, two is 180, and three is 270. Figures rotated
90 or 270 degrees are scaled so that they will appear the same
size as with zero or 180 degrees on a monitor screen with the stan
dard aspect ratio of 4/3. In the following example we will demon
strate how the angle command is used to rotate a box to different
positions in relationship to the reference point (100,100).

Example:

10 CLS
20 LINE (100 ,0) - (1 0 0 , 100)
25 LINE (0 , 100) - (1 00 , 100)
30 B$ — "UIQ R5Q DIQ L50n

40 DRAW B$

This example draws a X and Y axis, and using 100,100 as the starting point,
draws a small box just to the right of the reference point as shown below.

Page 8.18

ADVANCED COLOR GRAPHICS

If an angle command AO was added to line 30,

30 B$ ="AO U10 R50 D10 L50"

the box would appear in the same position it was in the previous example,
because zero is the default angle. If A1 was substituted in line 30,

30 B$ ="A1 U10 R50 D10 L50"

the box would be rotated 90 degrees and appear as shown below.

If A2 was substituted in line 30,

30 B$ ="A2 U10 R50 D10 L50"

the box would be rotated 180 degrees and appear as shown below.

Finally, A3 would cause the box to be rotated 270 degrees and appear as
shown below.

Page 8.19

ADVANCED COLOR GRAPHICS

PREFIX COMMANDS

B Move but don't plot any points. The B command permits you to move to
a different location without plotting any points. If you inserted a B in front of
a movement command in line 30:

30 B$ = "BM75,75U10"

The line created by M75,75 would not be drawn.

N Move and return to original position. If the N prefix were added in line 30
you could move back to the original position without specifying the original

(NOT DRAWN)

coordinates.

30 B$ = "NM75,75U10R50"

(ORIGINAL POSITION)

The M75,75 was drawn and the cursor returned to the original position
(100,100) and then moved up ten. R50 (right 50) was included to demon
strate where the next line would be drawn from.

C[<N>] Set the color. Using the same example, C4 was inserted before
the R50 to set that line in the color red.

30 B$ = "NM75,75U10C4R50"

(THIS LINE IS RED)

Note: Remember to place the prefix commands in front of the movement
commands, otherwise you will receive an Illegal function call error message.
For example,

30 8$ = "NM75,75U10RC450"

would yield an error because the color prefix is in the middle of R50.

Page 8.20

ADVANCED COLOR GRAPHICS

As you can see from these examples the angle command rotates the figure
in 90 degree increments using the last point referenced as a starting point.
Remember to change your angle back to the default angle if you wish to con
tinue programming after you practice using this command. BASIC remem
bers the last angle used and this will affect any design that follows.

S(n) Set scale factor. n may range from zero to 255. The
scale command is used to increase or decrease the
size of a figure by the scale factor specified. The
scale factor multiplied by the distances given with
U,D,L,R or relative M commands is used to get the
actual distance traveled.

A scale factor of SO returns the orginal size of the fig
ure. If you wanted the figure to be smaller than its or
ginal size, you would select a size from one-three. S4
will also return the original size, and anything larger
than S4 will return a larger figure.

This program draws A$35 times, each time incre
menting the scale factor by 1.

As with the angle command, the scale command
must also be returned to SO before programming
continues.

Example:

10 CLS
2 0 PSET (0 ,200) , 7
30 AS ="U20R20D20L20"
40 FOR J = l t o 35
50 DRAW "S" +STR$(J)
60 DRAW AS
70 NEXT J

Page 8.21

ADVANCED COLOR GRAPHICS

X <string; > Execute substring (not supported by BASIC com
piler). This command allows you to execute a second
substring from a string, much like GOSUB in BASIC.
You can have one string execute another, which exe
cutes a third, and so on.

Numeric arguments can be constants like "123" or
"variable", where variable is the name of a variable.
(Not supported by BASIC compiler).

Example:

10 CLS
2 0 PSET (20,20 j , 7
30 A$ ="U20R20D20L20"
50 DRAW "S1XA$;S10XA$;S20XA$;S50XA$;S100XA$;"

This program executes the substring A$ in 5 different
sizes.

page 8.22

ADVANCED COLOR GRAPHICS

GET AND PUT STATEMENTS

The GET and PUT statements are used to transfer graphic images to and
from the screen and also make possible animation and high-speed object
motion.

The GET statement transfers the screen image into an array. The image is
contained within the boundaries of a rectangle defined by the specified
points. The rectangle is defined the same way as the rectangle drawn by
the LINE statement using the ",B" option. See Page 8.6.

The array is simply used as a place to hold the image and can be any type
except string. It must be dimensioned large enough to hold the entire image.

The PUT statement transfers the image stored in the array onto the screen.
The specified point is the coordinate of the top left corner of the image. An
Il legal Function call error will result if the image to be transferred is too
large to fit on the screen.

The storage format in an array is as follows:

2 bytes giving X dimension in BITS
2 bytes giving Y dimension
The array data itself

The data for each row of pixels is left justified on a byte boundary, so if there
are less than a multiple of eight bits stored, the rest of the byte will be filled
out with zeros. The formula used to determine required array size in bytes
Is:

4+ INT((X+7)/8)*3*Y

WHERE: bits per pixel is 3

X = number of columns to be stored

Y = number of rows to be stored

Page 8.23

ADVANCED COLOR GRAPHICS

The bytes per element of an array are:

2 for integer%
4 for single-precision!
8 for double-precision ¹

Following is a step-by-step procedure for using the GET PUT statements.

1. C r eate a graphic image using the DRAW statement and or any
of the other graphic statements.

2. Cal culate the size of the array using the formula mentioned on
the preceding page.

3. G ET the image and store it into an array.

4. P UT the image on the screen in a new location.

5. R UN the program to see the image move to the new location.

10 CLS
20 PRINT: PRINT "AB"
3 0 LINE(0 ,0) - (2 0 , 2 0) , 3 , B
4 0 DIM Ak (25)
45 FOR J = 1 TO 200: NEXT
50 GET (0 ,0) — (20,20) ,AP
55 FOR J = 1 TO 200 :NEXT
60 CLS
7 0 PUT (25 , 25) , AP

This program clears the screen, prints a blank line and then prints "AB". In
line 30 a cyan box is drawn, 21 by 21 pixels in size. The value of 21 is used
in the formula, not 20. This is because coordinates start at the 0,0 address.
The rectangle is (line (0,0)-(20,20)) 21 by 21 pixels. In this example both X
and Y are 21.

After the graphic image is drawn, you must determine the size and type of
array it is to be stored in. Arrays can be of three types, integer, single-preci
sion or double-precision. In this program, double-precision is used as indi
cated by the pound sign (¹).

Page 8.24

ADVANCED COLOR GRAPHICS

To determine the size the array should be, use the formula repeated below:

4+ INT((X+ 7)/8)*3*Y

4+ INT((21+7)/8)*3*21 = 193

The result of this calculation indicates you must have an array large enough
to hold 193 bytes. The next question is, how many bytes per element will
be in this array? If you declared the array to be interger, (%) you would com
pute 193/2. If the array were declared single-precision, (!) you would com
pute 193/4. This program declares the array double-precision, (¹) thus you
compute 193/8 which is 24.125.

The result of this division should be rounded up to the next largest whole
number. In this case the array is dimensioned to 25 bytes, (see line 40 on
the previous page).

Line 40 dimensions the array to 25 bytes per element.

Line 45 and 55 are pauses included so that you will have time to see what
is happening.

Line 50 uses the GET statement to get the objects found within the retangu
lar boundaries and records the image in memory.

Line 60 clears the screen. Line 70 GETs the image and places it on the
screen at location (25,25).

ACTION VERBS

The action verb is used to interact the transferred image with the image al
ready on the screen. PSET transfers the data onto the screen verbatum.
Other possible action verbs include: PRESET, AND, OR, XOR.

PRESET is the same as PSET except that a negative image (black on white)
is produced.

Page 8.25

ADVANCED COLOR GRAPHICS

AND is used when you want to transfer the image only if an image already
exists under the transferred image.

OR is used to superimpose the image onto the existing image.

XOR is a special mode often used for animation. XOR causes the points on
the screen to be inverted where a point exists in the array image. This be
havior is exactly like the cursor on the screen. XOR has a unique property
that makes it especially useful for animation: when an image is PUT against
a complex background twice, the background is restored unchanged. This
allows you to move an object around the screen without obliterating the
background.

The default action verb is XOR.

It is possible to GET an image in one mode and put it in another, although
the effect may be quite strange because of the way points are represented
in each mode.

Animation

Animation of an object is usually performed as outlined below:

1. PU T the object(s) on the screen.

2. R e calculate the new position of the object(s).

3. P UT the object(s) on the screen a second time at the old loca
tion(s) to remove the old image(s).

4. Go to step one, this time, PUT the object(s) at the new location.

Movement done this way will leave the background unchanged. Flicker can
be reduced by minimizing the time between steps four and one, and by mak
ing sure that there is enough time delay between one and three. If more than
one object is being animated, every object should be processed at once, one
step at a time.

Page 8.26

ADVANCED COLOR GRAPHICS

If it is not important to preserve the background, animation can be performed
using the PSET action verb. The idea is to leave a border around the image
as large or larger than the maximum distance the object will move. Thus,
when an object is moved, this border will effectively erase any points. This
method may be desirable since only one PUT is required to move an object
(although you must PUT a larger image).

It is possible to examine the X and Y dimensions and even the data itself
if an integer array is used. The X dimension is in element zero of the array,
and the Y dimension is found in element one. Integers are stored low byte
first, then high byte, but the data is transferred high byte first (leftmost) and
then low byte.

The contents of the array after a GET will be meaningless when interpreted
directly unless the array is of type integer and you design a special program
that allows you to examine the contents of an array. We have included such
a program on the next page for the convenience of the experienced user.
For additional information on Arrays see Page 5.13.

page 8.27

ADVANCED COLOR GRAPHICS

10 Character Image display program

20 CLEAR 100

3 0 INPUT«Character : " , C S
35 GOSUB 480'

4 0 INPUT«Color Number < 7 > : « , R
50 IF R< 1 OR R>6

THEN R =7

60 INPUT«Positive or Negative <P>

6 1 IF I S=« « OR IS =«P« OR I S= «p «

Clear some string space

Get the character to be imaged
Sets up binary conversion string table

Get the characters' color

Default color when none specified

Get Image transformation

«1$

THEN I =l

ELSE I =O

6 5 INPUT«Mask 0,1 ,None <None) " , M$
66 IF M$<) «0«AND Mg<>«1«

Default no-transformation

Masking bit for string edit

Default Masking bitTHEN M$ — «« r

80 CLS C lear t h e S c r e en

90 COLOR R
100 DIM POOLS(19),P01$(19),P02$(5)

110 PRINT CS

Set the character's color
Set as i d e s ome ar ra y s p ace

Print the character in the upper
left corner of the screen
C hange colo r t o se v e n

Copy the image of the character into
t he image a r r a y

115 COLOR 7

120 GET(7,8)- (0 ,0) ,POOLS

1 30 IF I =O

THEN PUT(0,0) ,POOR,PRESET:
GET(0,0) — (7,8) ,POOÃ If a negative image was requested,

copy the negative image into the array

Display the images' X and Y coordinates140 PRINT
150 PRINT "Pi x e l s " , " S c an"
1 60 PRINT "Across " , " L i n e s "
170 PRINT POOX(0)/4 ,POOX(1)
180 PRINT

190 PRINT «Bl u e « , «Red«,«Green«
200 PRINT

Display headings for color planes

page 8.28

ADVANCED COLOR GRAPHICS

260 NEXT Y

240 GOS U B 380

250 GOSU B 440

210 FOR Y =2 TO 16 STEP 3
220 X= Y

230 GOSU B 3 00

Set up loop for store/display

Go store image

Edit image

Go display image

Store/display loop-back

Termination of program270 END

2 80 'Subrou t i n e s

Store image into String array290

300 XDEC=P00 %(X):GOSUB 570:P02$(0) =RIGHT$(STRING$(16,48) +BIN$,8)
310 P02$(1)=LEFT$(RIGHT$(STRING$(16, 48) +BIN$, 16), 8)
320 XDEC=P00 $(X+1) : GOSUB 570: P02$(2) =RIGHT$(STRING$(16,48) +BIN$,8)
330 P02$(3) = LEFT$ (RIGHT$ (STRING$ (16, 48) +BIN$, 16) , 8)
340 XDEC=P00 $(X+2) : GOSUB 570: P02$(4) =RIGHT$(STRING$(16,48) +BIN$,8)

350 P02$(5) =LEFT$(RIGHT$(STRING$(16,48) = BIN$,16) , 8)
360 RETURN:' END OF STORE IMAGE SUBROUTINE
370' Edit String array
380 IF M$= " "

390 K=INSTR(P02$(J) ,M$)
4 00 I F K() 0

THEN 420

THEN MID$(P02$(J) ,K , 1) = "

GOTO 390
410 NEXT J
420 RETURN ' End of Edit String subroutine

430 Display String array

440 PRINT P02$(0) ,P02$(1) , P02$(2)
4 50 IF X + 2=16

THEN 470
460 PRINT P02$(3) ,P02$(4) , P02$(5)
470 RETURN ' End of Display String array subroutine

480 B$ (0) = "000"

490 B$(1) = "00 1 "

500 B$(2) ="010 "

510 B$(3) = "0 1 1 "

520 B$(4) ="100"

530 B$(5) = " 10 1 "

540 B$ (6) = "110"

550 B$(7) = " 1 1 1 "

560 RETURN
570 DPC$ =0CT$(XDEC):BIN$ = "" :FOR YCOUNT= 1 TO LEN(DPC$): 'Convert decimal value to binary string
580 Q99 =VAL (MID$(DPC$,YCOUNT,1)) : B I N$ =BIN$+B$(Q99) :NEXT YCOUNT
590 RETURN

Page 8.29

ADVANCED COLOR GRAPHICS

This is a program that draws a little stickman doing acrobatics. He springs
from platform to platform while doing jumping-jacks. Many of the statements
we have discussed in Z-BASIC are used in this program. The program is
documented with remark statements. Study the program carefully, input the
program on your computer, and then try to make some modifications. You
will find that GET and PUT can be used to make very creative graphic dis
plays.

70 PRINT:PRINT:PRINT:

120 PRINT:PRINT:PRINT:

130 FOR I = 1 TO 777 :NEXT I : C LS
1 40 LINE (30 ,45) - (1 00 , 0) , 6 , B
1 50 LINE (55 , 20) - (7 5 , 2 0)
1 60 LINE (80 ,45) - (1 00 , 45)
1 70 LINE (30 ,45) - (5 0 , 4 5)
180 FOR Y =25 TO 0 STEP - 5
190 IF Y MOD 10 = 0 THEN GOSUB
200 NEXT Y
210 FOR Y =O TO -25 STEP — 5
220 IF Y MOD 10 = 0 THEN GOSUB
230 NEXT Y
240 FOR Y =-25 TO 0 STEP 5
250 IF Y MOD 10 = 0 THEN GOSUB
260 NEXT Y
270 FOR Y =O TO 25 STEP 5
280 IF Y MOD 10 = 0 THEN GOSUB
290 NEXT Y
300 GOTO 180
310 PUT(60+Y,ABS(Y)) , A ¹ , X OR
320 FOR I =l T O 7 5 : NEXT I
330 PUT(60+Y,ABS(Y)) , A ¹ , X OR
340 RETURN
350 PUT(60+Y,ABS(Y)) , B ¹ , X OR
360 FOR I =l TO 7 5 : NEXT I
370 PUT(60+Y,ABS(Y)) , B ¹ , X OR
380 RETURN

PRINT"2nd stick figure is s

310 ELSE GOSUB 350

310 ELSE GOSUB 350

310 ELSE GOSUB 350

310 ELSE GOSUB 350

10 DIM A¹ , (16) Set up array for 1st stick figure
2 0 DIM B¹ , (1 6) Set up array for 2nd stick figure
30 CLS Clear t h e S c r e en
4 0 CIRCLE : (5 , 5) , 5 Draw 'head' of stick figure
50 DRAW"bm5,9d2n15nr5d3ng5nf5" Draw 'body' with arms & legs extended
60 GET(0,0) — (10,19),A¹ Store image of 1st figure

PRINT"1st stick figure is set up" ' Print a few blank lines, then the message
80 FOR I = l TO 777 :NEXT I : C LS Pause to say figure is set up, then CLS
9 0 CIRCLE (5 ,5) , 5 Now draw ' head' o f 2 n d f i gur e
100 DRAW"bm5,9d2nm — 5, — 2nm+5, — 2d3nm+2,5nm — 2,5"

110 GET(0,0) — (10,19) ,B¹ Store image of 2nd stick figure

et up" ' Print a few blanks, then message

D raw border o f acr o b a t i c s a r e a
Draw top sp r i n g - b oar d
Draw r i gh t s p r i n g - b o ar d
Draw left spring-board

These lines make figure go left 8 up

These lines make figure go right 8 up

Subroutine to put 2nd figure on screen

These lines make figure go left & down

These lines make figure go right & down
Program will end if CTRL & C is pressed
Subroutine to put 1st figure on screen

Give some time to read message, then CLS

pause for a short time
and then erase 1st figure

Draw ' body' i n a 'jumping jacks' position

pause for a short time
a nd then e r ase 2nd f i gu r e

Page 8.30

ADVANCED COLOR GRAPHICS

Z-BASIC Summary Program

BRIEF

Following is a summary program that uses Z-BASIC graphic commands. It
is designed to demonstrate the ease and flexibilty of Z-BASIC. The program
segments are fairly simple and you should have no problems determining
what is actually going on. If you do have problems, refer to the appropriate
sections in the manual and review statement(s) that are causing confusion.

The program is divided into two parts. DEMO I demonstrates the statements
relative to plotting coordinates. DEMO II demonstrates the commands rela
tive to advanced graphics. Again, it will probably be most helpful if you input
the program, note the visual effect of the program segments, and then try
some modifications of your own.

Details

1 ' ZBASIC Demo I (c)1982 Zenith Data Systems

10 DEFINT I-N:RANDOMIZE TIME/DATE
20 CLS

1K) GOSUB 10000

210 DIM A(150,3)
GOSUB 10000:CLS

BLACK AND LOTS OF WHITE

30 FOR J = 0 TO 7 : PSET (0,0),J: IF POINT (0,0) <'o J THEN

40 FOR J =O TO 7:COLORS(J) =J:NEXT J ' COLORS CONTAINS AVAILABLE COLOR ATTRIB.

50 IF COLOR.COMPUTER =O THEN FOR J =1 TO 7 :COLORS(J) =7:NEXT J

100 CLS:PRINT"This is a demonstration of the PSET command.
.. . " ; : GOSUB 10000

110 CLS:FOR J =1 TO 150: PSET (RND+640,RND+215),COLORS((RND+7) +1):NEXT J
120 LOCATE 8, 10: PRINT"Space ": LOCATE 9, 10: PRINT"The final frontier.

. . "

200 CLS:PRINT"This is a demonstration of the PSET and PRESET commands.":

220 FQR J = 1 TO 15 0 :A (J , 1) =RND+640:A(J,2) = RND+215:A(J , 3) =RND+7+1

230 PSET (A(J , 1) , A (J , 2)) , COLORS(A(J,3)) : N EXT J
240 FOR J = 1 TO 150: PRESET (A(J , 1) , A (J , 2)) , COLORS(0):NEXT J

300 CLS:PRINT"Here is a demonstration of the POINT command w/ PSET.":

COLOR. COMPUTER =O

ELSE NEXT J: COLOR.COMPUTER =1

250 ERASE A

GOSUB 10000:CLS

FOR J = 100 TO 200: PSET (J , 1 0 0) , COLORS(4):
PSET (J,200) ,COLORS(4):
PSET (100,J) , COLORS(4):

PSET (200,J) , COLORS(4): NEXT J

310 FOR K = 1 TO 5 : I F K =1 THEN

320 X =101+ (2+K) : Y =101

page 8.31

ADVANCED COLOR GRAPHICS

330 IF POINT (X ,Y) =COLORS(4) THEN LOCATE K,20:PRINT"I hit the
wall!":GOTO 390
340 PSET (X, Y), COLORS(K): Y = Y+ 1: X =X+1
350 GOTO 330
390 NEXT K:GOSUB 10000
400 CLS:PRINT"Here is a demonstration of the CSRLIN and POS com
mands."
405 GOSUB 10000: CLS
410 CLS: FOR K =l TO 5:ROW =INT(RND+23)+ 1 :COL =INT(79+RND)+1
420 LOCATE ROW,COL:PRINT"+";:

NEWCOL=POS(0) -1 :
PRINT:PRINT"The star is at row";ROW;"and column";NEWCOL

430 GOSUB 10000:CLS:NEXT K
500 CLS
510 PRINT"Would you like to continue on with DEMO II";
520 INPUT A$:AS =LEFT((i(A$,1)
530 IF A$="Y" OR A$="y" THEN RUN"DEMOII"
540 IF A$="n" OR A$="N" THEN CLS:PRINT"Thanks for watching.":END
550 PRINT"Please answer Yes or NO!":GOTO 510
10000 FOR J =l T O 1000 :TEMP.RND=RND:

IF INKEYS=CHRIS(13) THEN RETURN
ELSE NEXT J: RETURN

page 8.32

ADVANCED COLOR GRAPHICS

BLACK AND LOTS OF WHITE

1' ZBASIC Demo II (c)1982 Zenith Data Systems

10 DEFINT I-N:RANDOMIZE TIME/DATE
20 CLS
30 FOR J = 0 TO 7 : PS E T (0,0) , J : I F P O INT (0 , 0) () J THE N

ELSE NEXT J: COLOR.COMPUTER =1

50 IF COLOR.COMPUTER =O THEN FOR J =l TO 7:COLORS(J): = 7:NEXT J :

100 CLS:PRINT"This is an example of the COLOR command."
110 IF COLOR.COMPUTER =O THEN

120 GOSUB 10000:CLS:BG =7 : FOR J =O TO 7:COLOR COLORS(J),COLORS(BG)

130 PRINT "This line is in color ¹";COLORS(J)
;"with a background color ¹";COLORS(BG):

BG =BG- 1: NEXT J: GOSUB 10000

40 FOR J =O TO 7:COLORS(J) =J:NEXT J ' COLORS CONTAINS AVAILABLE COLOR ATTRIB.

COLOR.COMPUTER =O

PRINT"Sorry, this isn't very clear on a black and white system."

210 CLS:
200 CLS:PRINT"The following are examples of the four LINE usages.":GOSUB 10000

FOR J = l TO 10 : L I N E (RND+640,RND+215),COLORS(RND+7):NEXT J:GOSUB 10000

LINE (RND+640,RND+215)- (RND+640,RND+215),COLORS(RND+7):NEXT J:
220 CLS:FOR J = l T O 1 0 :

GOSUB 10000
230 CLS

FOR J = 1 TO 10 : L INE (RND+640,RND+215)- (RND+640,RND+215),COLORS(RND+7),B:
NEXT J:GOSUB 10000

240 CLS
FOR J = 1 TO 10 : L INE (RND+640,RND+215)- (RND+640,RND+215),COLORS(RND+7),BF:
NEXT J:GOSUB 10000

300 CLS:PRINT"The following are examples of the four CIRCLE usages.":

310 CLS: CIRCLE (320, 110), 100, COLORS(RND+6) +1: GOSUB 10000
320 CLS:CIRCLE (320,110) , 100 ,COLORS(RND+6) +1, -2+3 . 14 159 , - RND+2+3:GOSUB 10000

330 CLS:CIRCLE (320,110),100,COLORS(RND+6) +1, , , 1:GOSUB 10000
340 CLS:CIRCLE (320,110) , 100 ,COLORS(RND+6) +1, -2%3.14158, - RND+2+3.1 , . 1 : GOSUB 10000

GOSUB 10000

page 8.33

ADVANCED COLOR GRAPHICS

400 CLS:PRINT"The following are examples of GET and PUT":GOSUB 10000
405 DIM Hg(13),EQ(13),L$(13),0$(13):'Dimension the arrays used for GET 8 PUT
4 10 CLS:PRINT"H":GET(2,1) - (6 , 7) , H $: ' G e t H
4 15 CLS:PRINT"e" :GET(2,1) - (6 , 7) , E $: ' G e t e
420 CLS:PRINT"1":GET(2,1)-(6,7),L$:' Get 1
425 CLS:PRINT"o":GET(2,1)-(6,7),0$:' Get o
430 CLS:FOR Z = l TO 1 5 : ' Print Hello (slanted) 15 times

435 X =RND%600:Y=RND+200
440 CLS:PUT(X, Y),Hg: PUT(X+7, Y+2) ,E$: PUT(X+14, Y+4) ,Lg
445 PUT(X+21, Y+6), L$: PUT(X+28, Y+8) ,0$
450 GOSUB 10000: NEXT Z
500 CLS:PRINT"The following are examples of the PAINT command.":GOSUB 10000
510 CLS: CIRCLE (320,110),50,COLORS(7):PAINT (320,110),COLORS(5),COLORS(7):

520 CLS: L INE (100 ,100) - (2 00 ,200) ,COLORS(7),B:

530 CLS:LINE (0 , 0) - (6 0 0 , 20) , COLORS(7),B :L INE - (5 9 0 , 20) , COLORS(0):

GOSUB 10000

PAINT (101,101) ,COLORS(2),COLORS(7):GOSUB 10000

LINE (590,20) - (5 90 ,200) ,COLORS(7):L INE(600,20) - (6 00 , 200) ,COLORS(7):
LINE (0, 200)- (600, 215), COLORS(7), B: LINE (599, 200)- (590, 200), COLORS(0)

LINE (1 ,201) - (1 0 , 200) ,COLORS(0):L INE (300 ,20) - (3 09 , 2 0) , COLORS(0)
540 LINE (0 , 200) - (3 00 , 20) , COLORS(7):L INE (10 , 200) - (3 10 , 20) , COLORS(7):

550 PAINT (1,1),COLORS(5),COLORS(7):GOSUB 10000

600 CLS:PRINT"Following is an example of the DRAW statement":GOSUB 10000
610 DRAW"AOSOBM 320,112" 'Sets pointer to normal

620 DOR= 40' S i z e o f d o o r
630 ROOFS="ESOR120F50"
640 LSIDES="BL100U65XROOF5;" ' Left side of house

650 DRAW"BM+100,23D65U20" ' Right side of house

660 DRAW"BM300,200U =DOR;R=DOR;D=DOR;L =DOR;XLSIDE$;"
670 CIRCLE(305,185) , 2 ,7 ' D o o r nob
680 DRAW"BM234,145D14L12U15R12" ' Lef t w in d ow
690 DRAW"BM390,145 D15L12U15R12" ' Righ t w i n d ow
700 DRAW"BM396,110USOL45D25" ' Chimney
710 PRINT "HOME SWEET HOME"
7 20 LINE (0 , 0) - (6 3 9 , 224) , 1 , B ' Bo r d e r
9999 END
10000 FOR J =l TO 1000 :TEMP.RND=RND:

IF INKEYS=CHRIS(13) THEN RETURN
ELSE NEXT J: RETURN

page 8.34

Page 9.1

BASIC LANGUAGE SUMMARY

Commands
g, CHAPTER 9

BRIEF

The command statements used in BASIC are listed below. When entered,
these commands will execute immediately. These commands are often
used in the direct mode. However, with the exception of the CONT com
mand, they may also be used within a program.

Details

KILL

LIST

EDIT

AUTO

FILES

CONT

CLEAR

BSAVE

BLOAD

DELETE

COMMAND DESCRIPTION

Enables automatic line numbering.

Loads machine language programs into memory.

Saves machine language programs to the specified de
vice.

Sets all numeric variables to zero and all string variables
to null.

Continues program execution.

Deletes program lines from memory.

Displays the specified line(s) and positions the cursor at
the first digit of the line number.

Displays the names of the files residing on the disk.

Erases specified disk file.

Displays all or part of the program currently in memory.

Lists all or part of the program in memory on the line
printer.

LLIST

Page 9.2

BASIC LANGUAGE SUMMARY

LOAD

NAME

MERGE

COMMAND DESCRIPTION

Loads a file from the disk into memory.

Merges an ASCII disk program file into the program cur
rently in memory.

Renames a disk file.

Deletes the program currently in memory and clears allNEW

RUN

SAVE

RESET

RENUM

variables.

Renumbers program lines.

Enables you to exchange a new disk for the disk in the
current drive.

Executes the program currently in memory.

Writes to disk the program currently in memory.

Permits you to exit Z-BASIC and return to Z-DOS.SYSTEM

TRON/TROFF Turns trace on and off.

Page 9.3

BASIC LANGUAGE SUMMARY

Statements

BRIEF

The statements available in BASIC can be divided into five functional
groups: Data type definition, Assignment and Allocation, Control, Non I/O,
and I/O. The following list of BASIC statements are arranged by function.

Details

DATA TYPE DEFINITION STATEMENTS

A DEF statement declares that the variable name beginning with a certain
range of letters is of the specified data type. If no data type definition state
ments are encountered, BASIC assumes all variables without declaration
characters are single-precision variables.

DEFDBL

DEFINT

DEFSNG

Declares variable as double-precision.

Declares variable as an integer.

Declares variable as single-precision.

Declares variable as string data type.DEFSTR

ASSIGNMENT AND ALLOCATION STATEMENTS

Assignment and allocation statements are used to assign values to vari
ables and allocate the required storage space.

DIM

ERASE

Sets up the maximum values for array variables and al
locates storage accordingly.

Removes arrays from a program.

Assigns value to a variable.LET

OPTION BASE Specifies minimum value for array subscript.

REM Allows explanatory remarks to be inserted in a program.

Exchanges variable values.SWAP

Page 9.4

BASIC LANGUAGE SUMMARY

tion.

CONTROL STATEMENTS

Two types of control statements are available in Z-BASIC. One type affects
the sequence of execution, and the other type is used for conditional execu

The sequence of execution statements are used to alter the sequence in
which the lines of a program are executed. Normally, execution begins with
the lowest numbered line and continues sequentially, until the highest num
bered line is reached. The sequence of execution statements allow the pro
grammer to execute the lines in any sequence that the program logic dic

Sequence
of
Execution

tates.

END Terminates program execution.

Allows a series of instructions to be performed in a loop
a given number of times.

FOR/NEXT

GOSUB/RETURN Branches to and returns from a subroutine.

GOTO Branches unconditionally to the specified line number.

Enables a trap routine for communications device.ON COM
GOSUB

ON ERROR
GOTO

ON/GOTO
and
ON/GOSUB

ON KEY GOSUB Enables a trap routine for a specified key.

Enables an error trap routine at the specified line

Evaluates an expression and branches to one of sev
eral specified line numbers.

number.

STOP

RETURN

RESUME

command mode.

Returns from an error trap routine.

Returns from subroutine.

Terminates program execution and returns to BASIC

Suspends program execution while monitoring the
status of an input port.

WAIT

Page 9.5

BASIC LANGUAGE SUMMARY

CONDITIONAL EXECUTION STATEMENTS

The conditional execution statements are used to optionally execute a state
ment or series of statements. The statement(s) will be executed if a certain
condition is met.

IF/THEN/ELSE Mak es a decision regarding program flow based on the

Conditional
Execution

result returned by an expression.

WHILE/WEND Exe c utes a series of statements in a loop as long as the
condition is true.

NON-I/O STATEMENTS

CALL Calls an assembly language subroutine.

Loads a program and passes current variables to it.

COMON/OFF Enab les and disables the trapping of communications

CHAIN

DATA

DATE$

DEF FN

DEF SEG

COMMON

activity.

Passes variables to a CHAINed program.

Stores numeric and string constants.

Sets or retrieves the current date.

Defines numeric or string functions.

Defines current segment of memory.

Defines starting address for machine language subDEF USR
routine.

ERROR

KEY

Simulates the occurance of an error.

Allows function keys to be designated "soft keys".

Displays soft key assignments currently in effect.KEY LIST

Page 9.6

BASIC LANGUAGE SUMMARY

St8teMeA48

KEY ON/OFF Tur ns soft key display on or off.

LOCATE Moves the cursor to the specified position on the
screen.

MID$ Replaces a portion of one string with another string.

Sets the number of nulls to be printed at the end of each
line.

NULL

Allocates a buffer for I/O.OPEN COM

RANDOMIZE Rese eds the random number generator.

READ Reads data into specified variables from a DATA state
ment.

Resets DATA pointer so that data may be reread.

Sets or retrieves the current time.

RESTORE

TIME$

I/O STATEMENTS

BEEP Sounds the speaker.

Concludes I/O to a disk file.CLOSE

Clears the screen.CLS

GET

FIELD Defines fields in a random file buffer.

Reads a record from a random disk file into a random
buffer.

Allows input from the keyboard during program execuINPUT
tion.

Reads data items from a sequential file.INPUT¹

Page 9.7

BASIC LANGUAGE SUMMARY

LINE INPUT Allows input of an entire line,(up to 255 characters) to
a string variable without the use of delimiters.

LINE INPUT¹ Read s an entire line from a file.

Prints data on the line printer.LPRINT

LPRINT USING P r i nts data on the printer using the format specified by

OUT

LSET

OPEN

string.

Left-justifies a string in a field.

Allows I/O to a disk file.

Sends a byte to a machine output port.

Displays data on the screen.PRINT

PRINT USING D i splays data using the specified format.

Writes data to a sequential file.PRINT¹

PRINT¹ USING W r i tes data to a sequential file using specified format.

PUT

RSET

WRITE

Writes data from a random file buffer to disk file.

Right-justifies a string in a field.

Outputs data on the screen.

Outputs data to a file.WRITE¹

Page 9.8

BASIC LANGUAGE SUMMARY

Functions

BRIEF

Z-BASIC provides a full set of intrinsic functions for use in your programs.
One group of functions is the arithmetic functions. These functions are refer
enced by a symbolic name. When they are invoked, they return a single
value which can be either an integer or single-precision data type.

Other functions called mathematical functions are not intrinsic to BASIC, but
can be calculated when necessary with the formulas provided in Appendix
D.

Another category of functions is the string functions which allow you to build
strings, manipulate strings, convert strings, and form substrings.

Additionally, there are special functions available for enhanced program
ming flexibility.

Details

ARITHNIETIC FUNCTIONS

ABS

FIX

ATN

EXP

COS

CINT

CDBL

CSNG

Returns the absolute value.

Returns the arctangent.

Converts to double-precision.

Converts to an integer.

Returns the cosine in radians.

Converts to single-precision.

Calculates the exponential value.

Truncates the decimal part of a specified argument.

Returns the largest integer (= the variable.INT

Page 9.9

BASIC LANGUAGE SUMMARY

LOG Returns the natural logrithm.

Returns random number between 0 and 1.RND

SGN

SIN

SQR

Returns the sign (+,- or 0) of X.

Returns the sine in radians.

Returns the square root.

Returns the tangent.TAN

STRING FUNCTIONS

ASC

CHR$

CVI, CVS, CVD

Returns string to ASCII value conversion.

Returns ASCII value to string conversion.

Converts string values to numeric values.

Returns-1 (true) if the end of sequential file is
reached.

EOF

HEX$

INPUT$

LEN

LOC

INSTR

LEFT$

Returns decimal to hexedecimal conversion.

Reads characters from the keyboard.

Searches for substring.

Returns leftmost characters.

Returns length of string.

Returns the record number just read or written from
a GET or PUT statement.

Returns the length of the file in bytes.LOF

Page 9.10

BASIC LANGUAGE SUMMARY

FUACtloAS

STRING FUNCTIONS

MID$

MKI$, MKS$, MKD$ C o nverts numeric values to string values.

OCT$

RIGHT$

SPACE$

STR$

STRING$

Returns a substring of string.

USR

Converts decimal to octal.

Returns right most characters.

Returns string of spaces.

Returns string representation.

Builds string.

Calls Assembly Language Subroutine.

Returns numerical representation of the string.VAL

SPECIAL FUNCTIONS

CSRLIN

INP

FRE

LPOS

PEEK

Returns current line position of the cursor.

Returns the number of bytes in memory that are not
being used by BASIC.

Returns input from port.

Returns the position of the print head.

Reads a byte from the memory address.

Puts a specified byte into memory at a specified locaPOKE

POINT

tion.

Reads the attribute value of a pixel from the screen.

Returns the current cursor position.POS

Page 9.11

BASIC LANGUAGE SUMMARY

Functions

SCREEN

TAB

SPC

Returns ordinal of specified character.

Prints blanks on the terminal or the line printer.

Spaces to a position of the terminal or line printer.

Returns an address value which can be used to locate
where the variable <variable name> is stored in mem
ory.

VARPTR

WIDTH L PRINT S ets the printed line width for the printer.

VARIABLES

ERRandERL Trap s an error by returning an error code and line
number associated with an error.

Reads one character from the keyboard.INK EY$

This provides a summary of the various commands statements, functions,
and variables found in Z-BASIC. They have been listed here to demonstrate
their functional relationship to each other.

In the "Alphabetical Reference Guide", which follows, you will find each
command, statement, function and variable, along with the arguments, and
details of how to use them in your programs. An argument is a variable upon
whose value the value of a function, command or statement depends. The
arguments for Z-BASIC commands are found in the format statements in
the Briefs that precede the commands, statements, etc.

Page 9.12

BASIC LANGUAGE SUMMARY

Color and Graphic Statements

COLOR

GET

PUT

LINE

PSET

PAINT

DRAW

CIRCLE

PRESET

Selects foreground and background color for screen
display.

Draws an ellipse with a center and radius as specified
by the arguments.

Permits the drawing of graphic images on the screen.

Transfers the screen image into an array.

Permits the drawing of lines boxes and filled boxes on
the screen.

Fills graphic figures with the specified paint attribute
until it reaches the specified border attribute.

Turns off a point at a specified location on the screen.

Turns on a point at a specified location on the screen.

Transfers image stored in an array onto the screen.

Changes the screen to H-19 graphics mode or reverse
video.

SCREEN

