
CP/M Plus.M
(CP/M Version 3.0)
Operating System

System Guide

COPYRIGHT

Copyright (C) 1983 Digital Research Inc. All rights reserved. No part of this publication may
be reproduced, transmitted, transcribed, stored in a retrieval s y s tem, or translated into any
language or computer language, in any form or by any means, electronic, mechanical,
magnetic, optical, chemical, manual or otherwise, without the prior written permission of Digital
Research Inc., 60 Garden Court, Box DRI, Monterey, California 93942.

DISCLAIMER

DIGITAL RESEARCH INC. MAKES NO REPRESENTATIONS OR WARRANTIES WITH
RESPECT TO THE CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY
PURPOSE. Further, Digital Research Inc. reserves the right to revise this publication and to
make changes from time to time in the content hereof without obligation of Digital Research Inc.
to notify any person of such revision or changes.

NOTICE TO USER

From time to time changes are made in the filenames and in the files actually included on the
distribution disk. This manual should not be construed as a representation or warranty that such
files or facilities exist on the distribution disk or as part of the materials and programs
distributed. Most distribution disks include a "README.DOC" file. This file explains
variations from the manual which do constitute modification of the manual and the items
included therewith. Be sure to read this file before using the software.

TRADEMARKS

CP/M and Digital Research and its logo are registered trademarks of Digital Research Inc.
CP/M Plus, DDT, LINK-80, RMAC, SID, TEX, and XREF are trademarks of Digital Research
Inc. Altos is a registered trademark of Altos Corporation. IBM is a registered trademark of
International Business Machines. Intel is a registered trademark of Intel Corporation. Microsoft
is a registered trademark of Microsoft Corporation. Zilog and Z80 are registered trademarks of
Zilog Inc.

The CP/M Plus (CP/M Version 3) Operating System System Guide was prepared using the
Digital Research TEX" Text Formatter and printed in the United States of America.

First Edition: January 1983

Foreword

CP/M(R) 3, also marketed as CP/M Plus(R), is a single-console operating system for
8-bit machines that use an Intel~Re 8080, 8085, or Zilog(R) Z80(R) CPU. CP/M 3 is
upward-compatible with its predecessor, CP/M 2, and offers more features and higher
performance than CP/M 2. This manual describes the steps necessary to create or modify a
CP/M 3 Basic Input Output System (BIOS) tailored for a specific hardware environment.

The CP/M Plus (CP/M Version 3) Operating System System Guide (hereafter cited as
CP/M Plus System Guide) assumes you are familiar with systems programming in 8080
assembly language and that you have access to a CP/M 2 system. I t a lso assumes you
understand the target hardware and that you have functioning disk I/O drivers. You should be
familiar with the accompanying CP/M Plus (CP/M Version 3) Operating System User's Guide
(hereafter cited as CP/M Plus User's Guide) describing the operating system utilities. You
should also be familiar with the CP/M Plus (CP/M Version 3) Operating system Programmer's
Guide (hereafter cited as CP/M Plus Programmer's Guide), which describes the system calls use
by the applications programmer to interface with the operating system. The Programmer' s
Utilities Guide for the CP/M Family of Operating Systems (hereafter cited as Programmer's
Utilities Guide) documents the assembling and debugging utilities.

Section 1 of this manual is an overview of the component modules of the CP/M 3

to write an interface module between CP/M 3 and specific hardware. Section 3 contains a
detailed description of these functions and data structures, followed by instructions to assemble
and link the distributed modules with your customized modules. Section 4 describes the
modular organization of the sample CP/M 3 BIOS on your distribution diskette. S ect i on 5
documents the procedure to generate and boot your CP/M 3 system. Section 6 is a sample
debugging session.

operating system. Section 2 provides an overview of the functions and data structures necessary

The appendixes contain tables, and sample BIOS modules you can use, or study and
modify. Appendix A discusses removable media drives. Appendix B discusses automatic
density support. Appendix C describes how CP/M 3 differs from CP/M 2. Appendix D shows
the format of the CPM3.SYS file.

Appendixes E through H are listings of the assembled source code for the four
hardware-independent modules of the sample BIOS. Appendix E is the kernel module to use
when creating a modular BIOS in the form of the distributed sample. Appendix F shows the
System Control Block. Appendix G is a table of equates for the baud rate and mode byte for
character VO. Appendix H contains the macro definitions you can use to generate some of the
CP/M 3 disk data structures. Appendix I lists the assembled source code for the six BIOS
modules that depend on the Altos@ 8000-15 Computer System hardware. It also contains a
sample Submit file to build a BIOS.

Appendixes J and K are tabular summaries of the public entry points and data items in
the modules of the sample BIOS. Finally, Appendix L is a tabular summary of the thirty-three
functions of the CP/M 3 BIOS, complete with entry parameters and returned values.

Table of Contents

I CP/M 3 Operating System Overview

1.1 Introduction to CP/M 3

1.2 CP/M 3 System Components

1.3 Communication Between Modules

1.4 Banked and Nonbanked Systems

1.5 Memory Requirements

1.6 Disk Organization

1.7 Hardware Supported

10

10

1.7.1 Hardware Supported by CP/M 3 Banked System . 11

1.7.2 Hardware Supported by CP/M 3 Nonbanked System 11

1.8 Customizing CP/M 3

1.9 Initial Load (Cold Boot) of CP/M 3

2 CP/M 3 BIOS Overview

2.1 Organization of the BIOS

2.2 System Control Block

2.3 System Initialization

2.4 Character I/O

2.5 Disk I/O

2.6 Memory Selects and Moves

2.7 Clock Support

3 CP/M 3 BIOS Functional Specifications

3.1 System Control Block

3.2 Character VO Data Structures

3.3 B IOS Disk Data Structures

18

19

20

24

15

12

24

17

27

32

34

36

36

3.3.1 Drive Table

3.3.2 Disk Parameter Header

Table of Contents

(continued)

40

44

46

49

51

54

58

64

3.3.3 Disk Parameter Block

3.3.4 Buffer Control Block

3.3.5 Data Structure macro Definitions

3.4 BIOS Subroutine Entry Points

3.4.1 System Initialization Functions

3.4.2 Character I/O Functions

3.4.3 Disk I/O Functions

3.4.4 Memory Select and Move Functions

3.4.5 Clock Support Function

3.5 Banking Considerations

3.6 Assembling and Linking Your BIOS

67

67

69

4 CP/M 3 Sample BIOS Modules

4.3.1 Initial Boot

4.3.2 Character VO Operation

4.3.3 Disk I/O Operation

4.4 Predefined Variables and Subroutines

4.5 BOOT Module

4.6 Character I/O

4.7 Disk I/O

4.1 Functional Summary of BIOS Modules

4.2 Conventions Used in BIOS Modules

4.3 Interactions of Modules

71

73

73

73

74

74

75

77

78

81

81

81

4.7.1 Disk I/O Structure

4.7.2 Drive Table Module (DRVTBL)

Table of Contents

(continued)

4.7.4 Subroutine Entry Points

4.7.5 Error Handling and Recovery

4.7.6 Multiple Sector VO

4.7.3 Extended Disk Parameter Headers (XDPHS) 82

83

84

85

85

86

4.8 MOVE Module

4.9 Linking Modules into the BIOS

5 System Generation

5.1 GENCPM Utility

5.2 Customizing the CPMLDR

5.3 CPMLDR Utility

5.4 Booting CP/M 3

87

98

100

1036 Debugging the BIOS

Appendixes

107

109

A Removable Media Considerations

B Auto-density Support

C Modifying a CP/M 2 BIOS

D CPM3.SYS File Format

E Root Module of Relocatable BIOS for CP/M 3

F System Control Block Definition for CP/M 3 BIOS

G Equates for Mode Byte Fields: MODEBAUD.LIB

H Macro Definitions for CP/M 3 BIOS Data Structures: CPM3.L 133

I ACS 8000-15 BIOS Modules

I.l Boot Loader Module for CP/M 3

I.2 Character I/O Handler for Z80 Chip-based System

I.3 Drive Table

I.4 Z80 DMA Single-density Disk Handler

1.5 Bank and Move Module for CP/M Linked BIOS

I.6 I/O Port Addresses for Z80 Chip-based System

I.7 Sample Submit File for ASC 8000-15 System

J Public Entry Points for CP/M 3 Sample BIOS Modules

K Public Data Items in CP/M 3 Sample BIOS Modules .

L CP/M 3 BIOS Function Summary

115

117

129

137

140

144

131

144

152

153

155

157

159

161

Tables, Figures, and Listings

Tables

1-1.
2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
3-8.
3-9.
3-10.
3-11.
4-1.
4-2.
4-3.
4-4.
4-5.

4-6.

4-7.
4-8.
4-9.
4-10.
4-1 l.
4-12.
5-1.
C- l.
D- l.
D-2.
K-l.
L-l.

CP/M 3 Operating System Memory Requirements
CP/M 3 BIOS Jump Vector
CP/M 3 BIOS Functions
Initialization of Page Zero
CP/M 3 Logical Device Characteristics
BDOS Calls to BIOS in Nonbanked/Banked Systems .
Multiple Sector VO in Nonbanked/Banked Systems.
Reading Two Contiguous Sectors in Banked System.
System Control Block Fields
Disk Parameter Header Fields
Disk Parameter Block Fields
BSH and BLM Values
Maximum EXM Values
BLS and Number of Dir;cto;y Entries
PSH and PHM Values
Buffer Control Block Fields
Functional Organization of BIOS Entry Points
CP/M 3 BIOS Function Jump Table Summary
VO Redirection Bit Vectors in SCB
CP/M 3 BIOS Module Function Summary
Public Symbols in CP/M 3 BIOS
Global Variables in BIOSKRNL.ASM
Public Utility Subroutines in BIOSKRNL.ASM
Public Names in the BIOS Jump Vector

BOOT Module Entry Points

Mode Bits
Baud Rates for serialDevices
Character Device Labels
Fields of Each XDPH
Subroutine Entry Poin
Move Module Entry Points
Sample CP/M 3 System Track Or g anization
CP/M 3 BIOS Functions
CPM3.SYS File Format
Header Record Definition
Public Data Items
BIOS Function Jump Table Summary

7 16

17
18
19
21
22
23
29
37
40
42
42
43
44
45
49
50
54
72
75
76
76
77

78

79
79
80
83
84
86
99
111
115
115
159
161

Tables, Figures, and Listings

(continued)
Figures

1.1.
1-2.
1-3.
1-4.
1-5.
1-6.
1-7.
2-1.
3.1
3.2
3-3.
3-4.
3-5.
4-1.

Listings

General Memory Organization of CP/M 3
Memory Organization for Banked CP/M 3 System
Memory Organization with Bank 1 Enabled
Memory organization in Nonbanked CP/M 3 System
Memory Organization in Banked CP/M 3
Memory Organization in Nonbanked CP/M 3
CP/M 3 System Disk Organization
CP/M 3 System Tracks
Disk Data Structures in a Banked System
Disk Parameter Header Format
Disk Parameter Block Format
ALO and AL1
Buffer Control Block Format
XDPH Format

4 5 6

7 8

9 10

19
35
36
40
43
44
82

3-1.
3-2.
3-3.
E-l.
F-l.
G-l.
H-l.
I- 1 .
I-2.
I-3.
I-4.
I-5.
I-6.
I-7.
J- l.

28
33
34
117
129
131
133
137
140
144
144
152
153
155
157

SCB.ASM File
Sample Character Device Table
Equates for Mode Byte Bit Fields
Root Module of Relocatable BIOS for CP/M 3
System Control Block Definition for CP/M 3 BIOS.
Equates for Mode Byte Fields: MODEBAUD.LIB
Macro Definitions

Boot Loader Module for CP/M 3
Character I/O Handler for Z80 Chip-based System.
Drive Table
Z80 DMA Single-density Disk Handler
Bank and Move Module for CP/M 3 Linked BIOS
VO Port Addresses for Z80 Chip-based System
Sample Submit File for ACS 8000-15 System
Public Entry Points

S ection 1

CP/M 3 Operating System Overview

This section is an overview of the CP/M 3 operating system, with a description of the
system components and how they relate to each other. The section includes a discussion of
memory configurations and supported hardware. The last portion summarizes the creation of a
customized version of the CP/M 3 Basic Input Output System (BIOS).

1.1 Introduction to CP/M 3

CP/M 3 provides an environment for program development and execution on computer
systems that use the Intel 8080, 8085, or Z80 microprocessor chip. CP /M 3 provides rapid
access to data and programs through a file structure that supports dynamic allocation of space for
sequential and random access files.

CP/M 3 supports a maximum of sixteen logical floppy or hard disks with a storage

can configure the number of directory entries and block size to satisfy various user needs.
capacity of up to 512 megabytes each. The maximum file size supported is 32 megabytes. You

CP/M 3 is supplied in two versions. One version supports nonbank-switched memory;

supplies additional facilities for the bank-switched system, including extended command line
editing, password protection of files, and extended error messages.

the second version supports hardware with bank-switched memory capabilities. CP/M 3

The nonbanked system requires 8.5 kilobytes of memory, plus space for your customized
BIOS. It can execute in a minimum of 32 kilobytes of memory.

The bank-switched system requires a minimum of two memory banks with 11 kilobytes
of memory in Bank 0 and 1.5 kilobytes in common memory, plus space for your customized
BIOS. The bank-switched system provides more user memory for application programs.

CP/M 3 resides in the file CPM3.SYS, which is loaded into memory by a system loader
during system initialization. The system loader resides on the first two tracks of the system disk.
CPM3.SYS contains the distributed BDOS and the customized BIOS.

The CP/M 3 operating system is distributed on two single- density, single-sided,

8000-15 microcomputer system with bank-switched memory and two single- density,
single-sided, eight-inch floppy disk drives.

eight-inch floppy disks. Digital Research supplies a sample BIOS that is configured for an Altos

CP/M 3 System Guide1.2 CP/M 3 System Components

1.2 CP/M 3 System Components

The CP/M 3 operating system consists of the following three modules: the Console
Command Processor (CCP), the Basic Disk Operating System (BDOS), and the Basic Input
Output System (BIOS).

The CCP is a program that provides the basic user interface to the facilities of the

TYPE, and USER. The CCP executes in the Transient Program Area (TPA), the region of
memory where all application programs execute. Th e CCP contains the Program Loader
Module, which loads transient (applications) programs from disk into the TPA for execution.

The BDOS is the logical nucleus and file system of CP/M 3. The BDOS provides the
interface between the application program and the physical input/output routines of the BIOS.

The BIOS is a hardware-dependent module that interfaces the BDOS to a particular

of a number of routines that you must configure to support the specific hardware of the target
computer system.

operating system. The CCP supplies six built- in commands: DTR, DIRS, ERASE, RENAME,

hardware environment. The BIOS performs all physical VO in the system. The BIOS consists

The BDOS and the BIOS modules cooperate to provide the CCP and other transient
programs with hardware-independent access to CP/M 3 facilities. Because the BIOS is
configured for different hardware environments and the BDOS remains constant, you can
transfer programs that run under CP/M 3 unchanged to systems with different hardware
configurations.

1.3 Communication Between Modules

The BIOS loads the CCP into the TPA at system cold and warm start. The CCP moves
the Program Loader Module to the top of the TPA and uses the Program Loader Module to load
transient programs.

The BDOS contains a set of functions that the CCP and applications programs call to
perform disk and character input and output operations.

The BIOS contains a Jump Table with a set of 33 entry points that the BDOS calls to
perform hardware-dependent primitive functions, such as peripheral device VO. For example,
CONIN is an entry point of the BIOS called by the BDOS to read the next console input
character.

1.3 Communication Between Modules CP/M 3 System Guide

Similarities exist between the BDOS functions and the BIOS functions, particularly for
simple device I/O. For example, when a transient program makes a console output function call
to the BDOS, the BDOS makes a console output call to the BIOS. In the case of disk I/O,
however, this relationship is more complex. The BD OS might make many BIOS function
calls to perform a single BDOS file I/O function. B D OS disk VO is in terms of 128-byte
logical records. BIOS disk I/O is in terms of physical sectors and tracks.

The System Control Block (SCB) is a 100-byte, decimal, CP/M 3 data structure that
resides in the BDOS system component. The BDOS and the BIOS communicate through fields
in the SCB. The SCB contains BDOS flags and data, CCP flags and data, and other system
information, such as console characteristics and the current date and time. You can access some
of the System Control Block fields from the BIOS.

Note that the SCB contains critical system parameters which reflect the current state of
the operating system. If a program modif i es these parameters, the operating system can crash.
See Section 3 of this manual, and the description of BDOS Function 49 in the CP/M Plus
Proqrammer's Guide for more information on the System Control Block.

Page Zero is a region of memory that acts as an interface between transient programs
and the operating system. Page Zero contains critical system parameters, including the entry to
the BDOS and the entry to the BIOS Warm BOOT routine. At system start-up, the BIOS
initializes these two entry points in Page Zero. Al l l inkage between transient programs and the
BDOS is restricted to the indirect linkage through Page Zero. Figure 1-1 illustrates the general
memory organization of CP/M 3.

1.3 Communication Between Modules CP/M 3 System Guide

High memory:

BIOS: Basic I/O System

BIOS base:

BDOS: Basic Disk Operating System

BDOS base:

LOADER: Program Loader Module
Component of CCP

LOADER base:

TPA: Transient Program AreaTPA

CCP: Console Command Processor

0100H:

PAGE ZERO

0000H:

Figure 1-1. General Memory Organization of CP/M 3

Note that all memory regions in CP/M 3 are page aligned, which means that they must
begin on a page boundary. Because a page is defined as 256 (100H) bytes, a page boundary
always begins at a hexadecimal address where the low-order byte of the hex address is zero.

1.4 Banked and Nonbanked Systems

CP/M 3 is supplied in two versions: one for hardware that supports banked memory, and
the other for hardware with a minimum of 32 kilobytes of memory. The systems are called
banked and nonbanked.

Digital Research supplies System Page Relocatable (. SPR) files for both a banked BDOS
and a nonbanked BDOS. A sample banked BIOS is supplied for you to use as an example when
creating a customized BIOS for your set of hardware components.

1.4 Banked and Nonbanked Systems CP/M 3 System Guide

The following figure shows the memory organization for a banked system. Bank 0 and
common memory are for the operating system. Bank 1 is the Transient Program Area, which
contains the Page Zero region of memory. You can use additional banks to enhance operating
system performance.

In banked CP/M 3 systems, CPMLDR, the system loader, loads part of the BDOS into
common memory and part of the BDOS into Bank 0. CPMLDR loads the BIOS in the same
manner.

Figure 1-2 shows the memory organization for the banked version of CP/M 3.

Figure 1-2. Memory organization for Banked CP/M 3 System

Top of memory
Hardware-Dependent Buffer Space

Resident Operating System Modules0 S.
Common

to all banks
TPA

Top of Banked
Memory Banked

0 S.

TPABank-Switched

hhhhHi lhhriH

Page 0

Bank I Bank NBank 0

In this figure, the top region of memory is called common memory. Common memory

resident portion, which resides in common memory, and the banked portion, which resides just
below common memory in Bank 0.

is always enabled and addressable. The operating system is divided into two modules: the

The shaded areas in Figure 1-2 represent the memory available to transient programs.
The clear areas are used by the operating system for disk record buffers and directory hash
tables. The clear area in the common region above the operating system represents

1.4 Banked and Nonbanked Systems

space that can be allocated for data buffers by GENCPM, the CP/M 3 system generation utility.
The size of the buffer area is determined by the specific hardware requirements of the host

CP/M 3 System Guide

microcomputer system.

Bank 0, the system bank, is the bank that is enabled when CP/M 3 is cold started. Bank 1
is the transient program bank.

The transient program bank must be contiguous from location zero to the top of banked
memory. Common memory must also be contiguous. The other banks need not begin at
location zero or have contiguous memory.

Figure 1-3 shows the CP/M 3 memory organization when the TPA bank, Bank 1, is
enabled in a bank-switched system.

Top of memory
Hardware Dependent Buffer Space

Resident Operating System ModulesO.S.

Common
TPA

Top of Banked
Memory

TPA

Low Memory
(0000H)

Bank 1

Figure 1-3. Memory Organization with Bank I Enabled
in Banked System

The operating system switches to Bank 0 or other banks when performing operating
system functions. In general, any bank switching performed by the operating system is
transparent to the calling program.

The memory organization for the nonbanked version of CP/M 3 is much simpler, as shown
in Figure 1-4:

1.4 Banked and Nonbanked Systems CP/M 3 System Guide

Top of memory

0 S.

TPA

Low Memory
(OOOOH)

Figure 1-4. Memory Organization in Nonbanked CP/M 3 System

In the nonbanked version of CP/M 3, memory consists of a single contiguous region
addressable from OOOOH up to a maximum of OFFFFH, or 64K-1. The clear area above the
operating system represents space that can be allocated for data buffers and directory hash tables
by the CP/M 3 system generation utility, GENCPM, or directly allocated by the BIOS. The
minimum size of the buffer area is determined by the specific hardware requirements of the host
microcomputer system. Again, the shaded region represents the space available for transient
programs.

1.5 Memory Requirements

Table 1-1 shows typical sizes of the CP/M 3 operating system
components.

Table 1-1. CP/M 3 Operating System Memory Requirements

CP/M 3 Version N onba nked Banked
C ommon Bank 0

BDOS

BIOS (values vary)
floppy system
hard system

1.5K
2.5K

8.5K 1.5K 11K

2K
3K

.75K
1.5K

The CP/M 3 banked system requires a minimum of two banks (Bank 0 and Bank I) and
can support up to 16 banks of memory. The size of the common region is often 16K, but can be
as small as 4K. Common memory must be large enough to contain the required buffers and the
resident (common) portion of the operating system, which means a 1.5K BDOS and the common
part of your customized BIOS.

1.5 Memory Requirements CP/M 3 System Guide

In a banked environment, CP/M 3 maintains a cache of deblocking buffers and directory
records using a Least Recently Used (LRU) buffering scheme. The LRU buffer is the first to be
reused when the system runs out of buffer space. The BDOS maintains separate buffer pools for
directory and data record caching.

The RSX modules shown in Figure 1-5 are Resident System Extensions (RSX) that are
loaded directly below the operating system when included in an application or utility program.
The Program Loader places the RSX in memory and chains BDOS calls through the RSX entry
point in the RSX.

Figure 1-5 shows the memory organization in a typical bank- switched CP/M 3 system.

LRU DATA BUFFERS

R ES I D ENT BIOS 1K

RESIDENT BDOS 1.5K

COMMON MEMORY

BANKED BDOS 11K

LRU DIRECTORY

VECTORS

BANKED BIOS 3K

ALLOCATION/CHECKSUM

TPA

TPA

Stacked RSX Modules

PROGRAM LOADER LRU DATA BUFFERS

HASHED DIRECTORY

(one per drive)

COPY OF CCP FOR
WARM START

(optional)

TABLES

BUFFERS

TABLES
HASHED DIRECTORY

(one per drive) Optional overlays

TRANSIENT PROGRAM

PAGE ZERO

BANK 1 BANK 2BANK 0

Figure 1-5. Memory Organization in Banked CP/M 3

1.5 Memory Requirements CP/M 3 System Guide

The banked system supports a TPA of 60K or more. The banked portion of the
operating system in Bank 0 requires at least 16K of memory.

In the banked system, the BDOS and the BIOS are separated into two parts: a resident
portion, and a banked portion. The resident BDOS and BIOS are located in common memory.
The banked BDOS and BIOS are located in the operating system bank, referred to as Bank 0 in
this manual.

The TPA extends from 100H in Bank 1 up to the bottom of the resident BDOS in
common memory. The banked BIOS and BDOS reside in Bank 0 with the directory buffers.
Typically, all data buffers reside in common. Data buffers can reside in an alternate bank if the
system has a DMA controller capable of transferring arbitrary blocks of data from one bank to
another. Hashed directory tables (one per drive) can be placed in any bank except Bank 1
(TPA). Hashed directory tables require 4 bytes per directory entry.

Figure 1-6 shows a typical nonbanked system configuration.

Buffers and Hash Tables

BIOS

BOOS

PROGRAM LOADER

Optional overlays

TRANSIENT PROGRAM

BASE PAGE Oh-100h

Figure 1-6. Memory organization in Nonbanked CP/M 3

The nonbanked CP/M 3 system requires 8.5K of memory plus space for the BIOS,
buffers, and hash tables, allowing a TPA size of up to 52K to 54K, depending on the size of the
BIOS and the number of hash tables and buffers you are using.

1.6 Disk Organization

1.6 Disk Organization

Figure 1-7 illustrates the organization of a CP/M 3 system
disk.

CP/M 3 System Guide

Track M

CP/M 3 Data Region

Data Tracks

CP/M 3 Directory Region

Track N

CCP (Optional)

CPMLDRSystem tracks

Cold Boot Loader

Track 0

Figure 1-7. CP/M 3 System Disk Organization

In Figure 1-7, the first N tracks are the system tracks; the remaining tracks, the data

during system cold start and warm start. Al l other CP/M 3 disk access is directed to the data
tracks of the disk. To maintain compatibility with Digital Research products, you should use an
eight-inch, single-density, IBM' 3740 formatted disk with two system tracks.

1.7 Hardware Supported

You can customize the BIOS to match any hardware environment with the following

tracks, are used by CP/M 3 for file storage. Note that the system tracks are used by CP/M 3 only

general characteristics.

10

CP/M 3 System Guide1.7 Hardware Supported

1.7.1 Hardware Supported by CP/M 3 Banked System

o Intel 8080, Intel 8085, or zilog Z80 CPU or equivalent.

o A minimum of two and up to sixteen banks of memory with the top
4K-32K in common memory. Bank 1 must have contiguous memory
from address OOOOH to the base of common memory. A reasonable
configuration consists of two banks of 48K RAM each, with the
top 16K in common memory.

o one to sixteen disk drives of up to 512 megabytes capacity
each.

o Some form of ASCII console device, usually a CRT.
o One to twelve additional character input and or output devices,

such as printers, communications hardware, and plotters.

1.7.2 Hardware Supported by CP/M 3 Nonbanked System

o Intel 8080, Intel 8085, or Zilog Z80 CPU or equivalent.
o A minimum of 32K and up to 64K contiguous memory addressable

from location zero.
o One to sixteen disk drives of up to 512 megabytes capacity

each.
o Some form of ASCII console device, usually a CRT.
o One to twelve additional input and or output devices, usually

including a printer.

Because most CP/M-compatible software is distributed on eight- inch, soft-sectored,
single-density floppy disks, it is recommended that a CP/M 3 hardware configuration include a
minimum of two disk drives, at least one of which is a single-density floppy disk drive.

1.8 Customizing CP/M 3

Digital Research supplies the BDOS files for a banked and a nonbanked version of
CP/M 3. A system generation utility, GENCPM, is provided with CP/M 3 to create a version of
the operating system tailored to your hardware. GENCPM combines the BDOS and your
customized BIOS files to create a CPM3.SYS file, which is loaded into memory at system
start-up. The CPM3.SYS file contains the BDOS and BIOS system components and information
indicating where these modules reside in memory.

11

1.8 Customizing CP/M 3CP/M 3 System Guide

Digital Research supplies a CP/M 3 loader file, CPMLDR, which you can link with your
customized loader BIOS and use to load the CPM3.SYS file into memory. CPMLDR is a small,
self-contained version of CP/M 3 that supports only console output and sequential file input.
Consistent with CP/M 3 organization, it contains two modules: an invariant CPMLDR BDOS,
and a variant CPMLDR-BIOS, which is adapted to match the host microcomputer hardware
environment. The CPMLDR BIOS module can perform cold start initialization of I/O ports and
similar functions. CPMLDR can display a memory map of the CP/M 3 system at start-up. This
is a GENCPM option.

The following steps tell you how to create a new version of CP/M 3 tailored to your
specific hardware.

1) W rit e and assemble a customized BIOS following the specif ications described in
Section 3. This software module must correspond to the exact physical
characteristics of the target system, including memory and port addresses,
peripheral types, and drive characteristics.

2) Use t he system generation utility, GENCPM, to create the CPM3.SYS file
containing the CP/M 3 distributed BDOS and your customized BIOS, as
described in Section 5.

3) W rit e a customized loader BIOS (LDRBIOS) to reside on the system tracks as of

Section 5 gives the instructions for customizing the LDRBIOS and generating
CPMLDR. Li n k your customized LDRBIOS file with the supplied CPMLDR
file.

CPMLDR. CPMLDR loads the CPM3.SYS file into memory from disk.

4) Use t he COPYSYS utility to put CPMLDR on the system tracks of a disk.

5) Test and debug your customized version of CP/M 3.

If you have banked memory, Digital Research recommends that you first use your
customized BIOS to create a nonbanked version of the CP/M 3 operating system. You can leave
your entire BIOS in common memory until you have a working system. Test all your routines
in a nonbanked version of CP/M 3 before you create a banked version.

1.9 Initial Load (Cold Boot) of CP/M 3

CP/M 3 is loaded into memory as follows. Execution is initiated by a four-stage
procedure. The first stage consists of loading into memory a small program, called the Cold
Boot Loader, from the system tracks of the Boot disk. This load operation is typically handled
by a hardware feature associated with system reset. The Cold Boot Loader is usually 128 or 256
bytes in length.

12

1.9 Initial Load (Cold Boot) of CP/M 3 CP/M 3 System Guide

In the second stage, the Cold Boot Loader loads the memory image of the CP/M 3
system loader program, CPMLDR, from the system tracks of a disk into memory and passes
control to it. For a banked system, the Cold Boot Loader loads CPMLDR into Bank 0. A
PROM loader can perform stages one and two.

In the third stage, CPMLDR reads the CPM3.SYS f ile, which contains the BDOS and
customized BIOS, from the the data area of the disk into the memory addresses assigned by
GENCPM. In a banked system, CPMLDR reads the common part of the BDOS and BIOS into
the common part of memory, and reads the banked part of the BDOS and BIOS into the area of
memory below common base in Bank 0. CPMLDR then transfers control to the Cold BOCT
system initialization routine in the BIOS.

For the f inal stage, the BIOS Cold BOOT routine, BIOS Function 0, performs any
remaining necessary hardware initialization, displays the sign-on message, and reads the CCP
from the system tracks or from a CCP.COM file on disk into location IOOH of the TPA. The
Cold BOOT routine transfers control to the CCP, which then displays the system prompt.

Section 2 provides an overview of the organization of the System Control Block and
the data structures and functions in the CP/M 3 BIOS.

End of Section 1

13

Section 2

CP/M 3 BIOS Overview

This section describes the organization of the CP/M 3 BIOS and the BDOS jump
vector. It provides an overview of the System Control Block, followed by a discussion of
system initialization procedures, character I/O, clock support, disk I/O, and memory selects and
moves.

2.1 Organization of the BIOS

The BIOS is the CP/M 3 module that contains all hardware- dependent input and output
routines. To configure CP/M 3 for a particular hardware environment, use the sample BIOS
supplied with this document and adapt it to the specific hardware of the target system.

Alternatively, you can modify an existing CP/M 2.2 BIOS to install CP/M 3 on your
target machine. Note that an unmodified CP/M 2.2 BIOS does not work with the CP/M 3
operating system. See Appendix C for a description of the modifications necessary to convert a
CP/M 2.2 BIOS to a CP/M 3 BIOS.

The BIOS is a set of routines that performs system initialization, character-oriented I/O
to the console and printer devices, and physical sector I/O to the disk devices. The BIOS also
contains routines that manage block moves and memory selects for systems with bank-switched
memory. The BIOS supplies tables that define the layout of the disk devices and allocate buffer
space which the BDOS uses to perform record blocking and deblocking. The BIOS can
maintain the system time and date in the System Control Block.

Table 2-1 describes the entry points into the BIOS from the Cold Start Loader and the
BDOS. Entry to the BIOS is through a jump vector. The jump vector is a set of 33 jump
instructions that pass program control to the individual BIOS subroutines.

You must include all of the entry points in the BIOS jump vector in your BIOS.
However, if your system does not support some of the functions provided for in the BIOS, you
can use empty subroutines for those functions. For example, if your system does not support a
printer, JMP LIST can reference a subroutine consisting of only a RET instruction. Table 2-1
shows the elements of the jump vector.

15

2.1 Organization of the BIOS CP/M 3 System Guide

Instruction
JMP BOOT
JMP WBOOT
JMP CONST
JMP CONIN
JMP CONOUT
JMP LIST
JMP AUXOUT
JMP AUXIN
JMP HOME
JMP SELDSK
JMP SETTRK
JMP SETSEC
JMP SETDMA
JMP READ
JMP WRITE
JMP LISTST
JMP SECTRN
JMP CONOST
JMP AUXIST
JMP AUXOST
JMP DEVTBL
JMP DEVINI
JMP DRVTBL
JMP MULTIO

No.

0 1

2 3

25
26
27
28
29

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

24

7 8

4 5 6

JMP FLUSH

JMP MOVE
JMP TIME
JMP SELMEM
JMP SETBNK
JMP XMOVE

Table 2-1. CP/M 3 BIOS Jump Vector

Description

30
31
32

Each jump address in Table 2-1 corresponds to a particular subroutine that performs a
specific system operation. Note that two entry points are reserved for future versions of CP/M,
and one entry point is provided for OEM subroutines, accessed only by direct BIOS calls using
BDOS Function 50. Table 2-2 shows the five categories of system operations and the function
calls that accomplish these operations.

Perform cold start initialization
Perform warm start initialization
Check for console input character ready
Read Console Character in
Write Console Character out
Write List Character out
Write Auxiliary Output Character
Read Auxiliary Input Character
Move to Track 00 on Selected Disk
Select Disk Drive
Set Track Number
Set Sector Number
Set DMA Address
Read Specified Sector
Write Specified Sector
Return List Status
Translate Logical to Physical Sector
Return Output Status of Console

Return Input Status of Aux. Port
Return Output Status of Aux. Port
Return Address of Char. VO Table
Initialize Char. VO Devices
Return Address of Disk Drive Table
Set Number of Logically Consecutive
sectors to be read or written
Force Physical Buffer Flushing for
user-supported deblocking
Memory to Memory Move
Time Set/Get signal
Select Bank of memory
Specify Bank for DMA Operation
Set Bank When a Buffer is in a Bank
other than 0 or 1
Reserved for System Implementor
Reserved for Future Use
Reserved for Future Use

JMP USERF
JMP RESERV1
JMP RESERV2

16

2.1 Organization of the BIOS CP/M 3 System Guide

Table 2-2. CP/M 3 BIOS Functions

Operation Fu n ct ion

System Initialization
BOOT, WBOOT, DEVTBL, DEVINI, DRVTBL

Character I/O CONST, CONIN, CONOUT, LIST, AUXOUT, AUXIN,

LISTST, CONOST, AUXIST, AUXOST

Disk I/O
HOME, SELDSK, SETTRK, SETSEC, SETDMA,
READ, WRITE, SECTRN, MULTIO, FLUSH

Memory Selects and Moves
MOVE, SELMEM, SETBNK, XMOVE

Clock Support
TIME

You do not need to implement every function in the BIOS jump vector. However, to
operate, the BDOS needs the BOOT, WBOOT, CONST, CONIN, CONOUT, HOME, SELDSK,
SETTRK, SETSEC, SETDMA, READ, WRITE, SECTRN, MULTIO, and FLUSH subroutines.
Implement SELMEM and SETBNK only in a banked environment. You can implement
MULTIO, FLUSH, and TIME as returns with a zero in register A. DEVICE and some other
utilities use the remaining entry points, but it is not necessary to fully implement them in order
to debug and develop the system.

Note: include all routines but make the nonimplemented routines a RET instruction.

2.2 System Control Block

The System Control Block (SCB) is a data structure located in the BDOS. The SCB is

components. The SCB contains system parameters and variables, some of which the BIOS can
reference. The fields of the SCB are named, and definitions of these names are supplied as
public variable and subroutine names in the SCB.ASM file contained on the distribution disk.
See Section 3.1 for a discussion of the System Control Block.

a communications area referenced by the BDOS, the CCP, the BIOS, and other system

17

2.3 System Initialization

2.3 System Initialization

When the BOOT and WBOOT routines of the BIOS get control, they
must initialize two system parameters in Page Zero of memory, as
shown in Table 2-3.

CP/M 3 System Guide

Table 2-3. Initialization of Page Zero

Location

0,1,2

Description

Set to JMP WBOOT (0000H: JMP BIOS+3). Location
1 and 2 must contain the address of WBOOT in
the jump vector.

Set to JMP BDOS, the primary entry point to
CP/M 3 for transient programs. The current
address of the BDOS is maintained in the
variable @MXTPA in the System Control Block.
(See Section 3.1, "System Control Block," and
BIOS Function 1: WBOOT on page 52.)

5,6,7

The BOOT and WBOOT routine must load the CCP into the TPA in Bank I at location
0100H. The CCP can be loaded in two ways. If there is sufficient space on the system tracks,
the CCP can be stored on the system tracks and loaded from there. If you prefer, or if there is
not sufficient space on the system tracks, the BIOS Cold BOOT routine can read the CCP into
memory from the file CCP.COM on disk.

If the CCP is in a COM file, use the BOOT and WBOOT routines to perform any
necessary system initialization, then use the BDOS functions to OPEN and READ the
CCP.COM file into the TPA. In bank- switched systems, the CCP must be read into the TPA in
Bank l.

In bank-switched systems, your Cold BOOT routine can place a copy of the CCP into a
reserved area of an alternate bank after loading the CCP into the TPA in Bank 1. Then the Warm
BOOT routine can copy the CCP into the TPA in Bank 1 from the alternate bank, rather than
reloading the CCP from disk, thus avoiding all disk accesses during warm starts.

There is a 128-byte buffer in the resident portion of the BDOS in a banked system that can
be used by BOOT and WBOOT. The address of this buffer is stored in the SCB variable
@BNKBF. BOOT and WBOOT can use this buffer when copying the CCP to and from the
alternate bank.

The system tracks for CP/M 3 are usually partitioned as shown in the following figure;

18

2.3 System Initialization CP/M 3 System Guide

Cold
Start Ldr

CCP
(optional)CPMLDR

Figure 2-1. CP/M 3 System Tracks

The cold start procedure is designed so you need to initialize the system tracks only
once. This is possible because the system tracks contain the system loader and need not change
when you change the CP/M 3 operating system. The Cold Start Loader loads CPMLDR into a
constant memory location that is chosen when the system is configured. However, CPMLDR
loads the BDOS and BIOS system components into memory as specified in the CPM3.SYS file
generated by GENCPM, the system generation utility. Thus, CP/M 3 allows the user to
configure a new system with GENCPM and then run it without having to update the system
tracks of the system disk.

2.4 Character I/O

CP/M 3 assumes that all simple character I/O operations are performed in 8-bit ASCII,
upper- and lowercase, with no parity. An ASCII CRTL-Z (IAH) denotes an end-of-file
condition for an input device.

Table 2-4 lists the characteristics of the logical devices.

Table 2-4. CP/M 3 Logical Device Characteristics

Device

CONIN, CONOUT

Characteristics

LIST

AUXOUT

T h e interactive console that communicates with the
operator, accessed by CONST, CONIN, CONOUT, and
CONOUTST. Typically, the CONSOLE is a device such
as a CRT or teletype, interfaced serially, but it can also be a
memory-mapped video display and keyboard. The console
is an input device and an output device.

The system printer, if it exists on your system. LIST is
usually a hard- copy device such as a printer or
teletypewriter.

The auxiliary character output device, such as a modem.

The auxiliary character input device, such as a modem.AUXIN

19

2.4 Character VO CP/M 3 System Guide

Note that you can define a single peripheral as the LIST, AUXOUT, and AUXIN device
simultaneously. If you assign no peripheral device as the LIST, AUXOUT, or AUXIN device,
the AUXOUT and LIST routines can just return, and the AUXIN routine can return with a 1AH

(CTRL-Z) in register A to indicate an immediate end-of-file.

CP/M 3 supports character device I/O redirection. This means that you can direct a
logical device, such as CONIN or AUXOUT, to one or more physical devices. The DEVICE
utility allows you to reassign devices and display, and to change the current device
configurations, as described in the CP/M Plus User's Guide. The I/O redirection facility is
optional. You should not implement it until the rest of your BIOS is fully functional.

2.5 Disk I/O

The BDOS accomplishes disk VO by making a sequence of calls to the various disk access
subroutines in the BIOS. The subroutines set up the disk number to access, the track and sector
on a particular disk, and the Direct Memory Access (DMA) address and bank involved in the VO
operation. After these parameters are established, the BDOS calls the READ or WRITE
function to perform the actual I/O operation.

Note that the BDOS can make a single call to SELDSK to select a disk drive, follow it
with a number of read or write operations to the selected disk, and then select another drive for

subsequent operations.

CP/M 3 supports multiple sector read or write operations to optimize rotational latency on
block disk transfers. You can implement the multiple sector I/O facility in the BIOS by using
the multisector count passed to the MULTIO entry point. The BDOS calls MULTIO to read or
write up to 128 sectors. For every sector number 1 to n, the BDOS calls SETDMA then calls
READ or WRITE.

Table 2-5 shows the sequence of BIOS calls that the BDOS makes to read or write a

the BDOS makes to the BIOS to read or write multiple contiguous physical sectors in a
nonbanked and banked system.

physical disk sector in a nonbanked and a banked system. Table 2-6 shows the sequence of calls

20

2.5 Disk VO CP/M 3 System Guide

Table 2-5. BDOS Calls to BIOS in Nonbanked and Banked Systems

Call

SETSEC

SELDSK

SETTRK

Nonbanked BDOS

Explanation

Called only when disk is initially
selected or reselected.

Called for every read or write of a
physical sector.

Called for every read or write of a
physical sector.

Called for every read or write of a
physical sector.

SETDMA

READ, WRITE Calle d for every read or write of a
physical sector.

Banked BDOS

SELDSK

SETSEC

SETTRK

SETDMA

Called only when disk is initially
selected or reselected.

Called for every read or write of a
physical sector.

Called for every read or write of a
physical sector.

Called for every read or write of a
physical sector.

Called for every read or write of a
physical sector.

SETBNK

READ, WRITE Calle d for every read or write of a
physical sector.

21

2.5 Disk VO CP/M 3 System Guide

Table 2-6. Multiple Sector I/O in Nonbanked and Banked Systems

Call

Nonbanked BDOS

Explanation

Called only when disk is initially selected or reselected.SELDSK

MULTIO

SETSEC

SETTRK

Called to inform the BIOS that the next n calls to disk READ or
disk WRITE require a transfer of n contiguous physical sectors
to contiguous memory.

Called for every read or write of a physical sector.

Called for every read or write of a physical sector.

Called for every read or write of a physical sector.

Called for every read or write of a physical sector.

SETDMA

READ, WRITE

Banked BDOS

SELDSK Called only when disk is initially selected or reselected.

MULTIO

SETSEC

SETTRK

SETDMA

Called to inform the BIOS that the next n calls to disk READ or
disk WRITE require a transfer of n contiguous physical sectors to
contiguous memory.

Called for every read or write of a physical sector.

Called for every read or write of a physical sector.

Called for every read or write of a physical sector.

Called for every read or write of a physical sector.

Called for every read or write of a physical sector.

SETBNK

READ, WRITE

22

2.5 Disk VO CP/M 3 System Guide

Table 2-7 shows the sequence of BDOS calls to read two contiguous physical sectors in
a banked system.

Table 2-7. Reading Two Contiguous Sectors in Banked System

Call Explanation

Called to initially select disk
With a value of 2
For first sector
For first sector

For first sector

For second sector
For second sector

For second sector

SELDSK
MULTIO
SETTRK
SETSEC
SETDMA
SETBNK
READ
SETTRK
SETSEC
SETDMA
SETBNK
READ

The CP/M 3 BDOS performs its own blocking and deblocking of logical 128-byte

physical sectors as specified in the Disk Parameter Block to or from the DMA buffer. The Disk
Parameter Header defines one or more physical sector buffers which the BDOS uses for logical
record blocking and deblocking.

records. Unlike earlier versions of CP/M, the BIOS READ and WRITE routines always transfer

In a banked environment, CP/M 3 maintains a cache of deblocking buf fers and

first to be reused when the system runs out of buffer space. The BDOS maintains separate
buffer pools for directory and data record caching.

directory records using a Least Recently Used (LRU) buffering scheme. The LRU buffer is the

The BIOS contains the data structures to control the data and directory buffers and the
hash tables. You can either assign these buffers and tables yourself in the BIOS, or allow the
GENCPM utility to generate them automatically.

Hash tables greatly speed directory searching. The BDOS can use hash tables to
determine the location of directory entries and therefore reduce the number of disk accesses
required to read a directory entry. The hash table allows the BDOS to directly access the sector
of the directory containing the desired directory entry without having to read the directory
sequentially. By eliminating a sequential read of the directory records, hashing also increases
the percentage of time that the desired directory record is in a buffer, eliminating the need for
any physical disk accesses in these cases. Hash tables and directory caches eliminate many of the
directory accesses required when accessing large files. However, in a nonbanked system, hash
tables increase the size of the operating system.

23

2.5 Disk VO CP/M 3 System Guide

When the BIOS finds an error condition, the READ and WRITE routines should perform
several retries before reporting the error condition to the BDOS. Ten retries are typical. If the
BIOS returns an error condition to the BDOS, the BDOS reports the error to the user in the
following form:

CP/M Error on d: Disk VO

The d: represents the drive specification of the relevant drive.

To provide better diagnostic capabilities for the user, it is often desirable to print a more
explicit error message from the BIOS READ or WRITE routines before the BIOS returns an
error code to the BDOS. The BIOS should interrogate the SCB Error Mode Variable to
determine if it is appropriate to print a message on the console.

2.6 Memory Selects and Moves

Four BIOS functions are provided to perform memory management. The functions are
MOVE, XMOVE, SELMEM, and SETBNK. The XMOVE, SELMEM, and SETBNK memory
management routines are applicable to the BIOS of banked systems.

The BDOS uses the BIOS MOVE routine to perform memory-to-memory block transfers.
In a banked system, the BDOS calls XMOVE to specify the source and destination banks to be
used by the MOVE routine. If you use memory that is not in the common area for data record
buffers, you must implement the XMOVE routine.

The BDOS uses SELMEM when the operating system needs to execute code or access
data in other than the currently selected bank.

The BDOS calls the SETBNK routine prior to calling disk READ or disk WRITE
functions. The SETBNK routine must save its specified bank as the DMA bank. When the
BDOS invokes a disk VO routine, the VO routine should save the current bank number and
select the DMA bank prior to the disk READ or WRITE. After completion of the disk READ or
WRITE, the disk VO routine must reselect the current bank. Note that when the BDOS calls the
disk VO routines, Bank 0 is in context (selected).

2.7 Clock Support

If the system has a real-time clock or is capable of keeping time, possibly by counting
interrupts from a counter/timer chip, then the BIOS can maintain the time of day in the System
Control Block and update the time on clock interrupts. BIOS Function 26 is provided for those
systems where the clock is unable to generate an interrupt.

24

2.7 Clock Support CP/M 3 System Guide

The time of day is kept as four fields. @DATE is a binary word containing the number

Control Block contain the hour, minute, and second in Binary Coded Decimal (BCD) format.
of days since 31 December 1977. The bytes @HOUR, @MIN, and @SEC in the System

End of Section 2

25

Section 3

CP/M 3 BIOS Functional Specifications

This section contains a detailed description of the CP/M 3 BIOS The section first
discusses the BIOS data structures and their relationships, including the System Control Block,
the drive table, the Disk Parameter Header, the Disk Parameter Block, the Buffer Control
Blocks, and the character I/O table. The overview of the data structures is followed by a
summary of the functions in the BIOS jump vector. A detailed description of the entry values
and returned values for each jump instruction in the BIOS jump vector follows the summary.
The last part of this section discusses the steps to follow when assembling and linking your
customized BIOS.

3.1 The System Control Block

The System Control Block (SCB) is a data structure located in the BDOS. The SCB
contains flags and data used by the CCP, the BDOS, the BIOS, and other system components.
The BIOS can access specif ic data in the System Control Block through the public variables
defined in the SCB.ASM file, which is supplied on the distribution disk.

Declare the variable names you want to reference in the SCB as externals in your
BIOS.ASM source file. Then link your BIOS with the SCB.REL module.

In the SCB.ASM file, the high-order byte of the various SCB addresses is defined as
OFEH. The linker marks absolute external equates as page relocatable when generating a System
Page Relocatable (SPR) format file. GENCPM recognizes page relocatable addresses of
OFExxH as references to the System Control Block in the BDOS. GENCPM changes these
addresses to point to the actual SCB in the BDOS when it is relocating the system.

Do not perform assembly-time arithmetic on any references to the external labels of the
SCB. The result of the arithmetic could alter the page value to something other than OFEH.

Listing 3-1 shows the SCB.ASM file. The listing shows the f ield names of the System
Control Block. A @ before a name indicates that it is a data item. A? preceding a name
indicates that it is the label of an instruction. I n the l isting, r/w means Read-Write, and r/o
means Read-Only. The BIOS can modify a Read- Write variable, but must not modify a
Read-Only variable. Table 3-1 describes each item in the System Control Block in detail.

27

CP/M 3 System Guide3.1 System Control Block

scb$base eq u OF EOOH

@CIVEC equ
@COVEC equ
@AIVEC equ
@AOVEC equ
@LOVEC equ
@BNKBF equ

@CRDMA equ
@CRDSK equ
@VINFO equ
@RES EL equ
@FX equ
@USRCD equ
@MLTIO equ
@ERMDE equ
@ERDSK equ
@MEDIA equ
@BFLGS equ
@ DATE e q u
@ HOUR e q u
@MIN equ
@SEC equ
? ERJMP e q u
@MXTPA equ

title 'System Control Block Definition for CP/M3 BIOS'

public @civec, @covec, @aivec, @aovec, @lovec, @bnkbf
public @crdma, @crdsk, @vinfo, @resel, @fx, @usrcd
public @mltio, @ermde, @erdsk, @media, @bflgs
public @date, @hour, @min, @sec,?erjmp, @mxtpa

; Base of the SCB

; Console Input Redirection Vector (word, r/w)
; Console Output Redirection Vector (word, r/w)
; Auxiliary Input Redirection Vector (word, r/w)
; Auxiliary Output Redirection Vector (word, r/w)
; List Output Redirection Vector (word, r/w)
; Address of 128 Byte Buffer for Banked BIOS
; (word, r/o)
; Current DMA Address (word, r/o)
; Current Disk (byte, r/o)
; BDOS Variable "INFO" (word, r/o)
; FCB Flag (byte, r/o)
; BDOS Function for Error Messages (byte, r/o)
; Current User Code (byte, r/o)
; Current Multisector Count (byte,r/w)
; BDOS Error Mode (byte, r/o)
; BDOS Error Disk (byte, r/o)
; Set by BIOS to indicate open door (byte,r/w)
; BDOS Message Size Flag (bytes/o)
; Date in Days Since 1 Jan 78 (word, r/w)
; Hour in BCD (byte, r/w)
; Minute in BCD (byte, r/w)
; Second in BCD (byte, r/w)
; BDOS Error Message Jump (3 bytes, r/w)
; Top of User TPA; (address at 6,7)(word, r/o)

scb$base+22h
scb$base+24h
scb$base+26h
scb$base+28h
scb$base+2Ah
scb$base+35h

scb$base+3Ch
scb$base+3Eh
scb$base+3Fh
scb$base+41h
scb$base+43h
scb$base+44h
scb$base+4Ah
scb$base+4Bh
scb$base+51h
scb$base+54h
scb$base+57h
scb$base+58h
scb$base+5Ah
scb$base+5Bh
scb$base+5Ch
scb$base+5Fh
scb$base+62h
end

Listing 3-1. SCB.ASM File

28

CP/M 3 System Guide3.1 System Control Block

The following table describes in detail each of the fields of
the System Control Block.

Table 3-1. System Control Block Fields

Field M e aning

@CIVEC, @COVEC, @AIVEC, @AOVEC, @LOVEC (Read-Write
Variable)

These fields are the 16 bit VO redirection vectors for the five logical devices:
console input, console output, auxiliary input, auxiliary output, and the list
device. (See Section 3.4.2, "Character I/O Functions.")

@BNKBF (Read-Only Variable)

@BNKBF contains the address of a 128 byte buffer in the resident portion of the
BDOS in a banked system. This buffer is available for use during BOOT and
WBOOT only. You can use it to transfer a copy of the CCP from an image in an
alternate bank if the system does not support interbank moves.

@CRDMA, @FX, @USRCD, @ERDSK (Read-Only Variable)

These variables contain the current DMA address, the BDOS function number,
the current user code, and the disk code of the drive on which the last error
occurred. They can be displayed when a BDOS error is intercepted by the
BIOS. See?ERJMP.

@CRDSK (Read-Only Variable)

@CRDSK is the current default drive, set by BDOS Function 14.

@VINFO, @RESEL (Read-Only Variable)

If @RESEL is equal to OFFH then @VINFO contains the address of a valid
FCB. If @RESEL is not equal to OFFH, then @VINFO is undefined. You can
use @VINFO to display the filespec when the BIOS intercepts a BDOS error.

29

CP/M 3 System Guide3.1 System Control Block

Table 3-1. (continued)

Field M ea n ing

@MLTIO (R ead-Write Variable)

@MLTIO contains the current multisector count. The BIOS can change the
multisector count directly, or through BDOS Function 44. The value of the
multisector count can range from 1 to 128.

@ERMDE (Read-Only Variable)

@ERMDE contains the current BDOS error mode. OFFH indicates the BDOS is
returning error codes to the application program without displaying any error
messages. OFEH indicates the BDOS is both displaying and returning errors.
Any other value indicates the BDOS is displaying errors without notifying the
application program.

@MEDIA (Read-Write Variable)

@MEDIA is global system flag indicating that a drive door has been opened.
The BIOS routine that detects the open drive door sets this flag to OFFH. The
BIOS routine also sets the MEDIA byte in the Disk Parameter Header
associated with the open-door drive to OFFH.

@BFLGS (Read-Only Variable)

The BDOS in CP/M 3 produces two kinds of error messages: short error
messages and extended error messages. Short error messages display
one or two lines of text. Long error messages display a third line of text
containing the filename, filetype, and BDOS Function Number involved in the
error.

In banked systems, GENCPM sets this flag in the System Control Block to
indicate whether the BIOS displays short or extended error messages. Your error
message handler should check this byte in the System Control Block. If the high­
order bit, bit 7, is set to 0, the BDOS displays short error messages. if the high­
order bit is set to 1, the BDOS displays the extended three-line error messages.

30

CP/M 3 System Guide3.1 System Control Block

Table 3-1. (continued)

Field M e a ning

@BFLGS (continued)

For example, the BDOS displays the following error message if the BIOS returns
an error from READ and the BDOS is displaying long error messages.

CP/M Error on d: Disk VO
BDOS Function = nn F i le = filename.typ

In the above error message, Function nn and filename.typ represent BDOS
function number and file specification involved, respectively.

@DATE (Read-Write Variable)

The number of days since 31 December 1977, expressed as a 16-bit unsigned
integer, low byte first. A real-time clock interrupt can update the @DATE field
to indicate the current date.

@HOUR, @MIN, @SEC (Read-Write Variable)

These 2-digit Binary Coded Decimal (BCD) fields indicate the current hour,
minute, and second if updated by a real-time clock interrupt.

?ERJMP (Read-Write Code Label)

The BDOS calls the error message subroutine through this jump instruction.
Register C contains an error code as follows:

1 Permanent Error
2 Read Only Disk
3 Read Only File
4 Select Error
7 P assword Error
8 F i le Exists
9 ? in Filename

Error code 1 above results in the BDOS message Disk I/O.

31

CP/M 3 System Guide3.1 System Control Block

Table 3-1. (continued)

Field Me a ning

?ERJMP (continued)

The?ERJMP vector allows the BIOS to intercept the BDOS error messages so
you can display them in a foreign language. Note that this vector is not branched
to if the application program is expecting return codes on physical errors. Refer to
the CP/M Plus Programmer's Guide for more information.

?ERJMP is set to point to the default (English) error message routine contained in
the BDOS. The BOOT routine can modify the address at?ERJMP+L to point to
an alternate message routine. Your error message handler can refer to @FX,
@VINFO (if @RESEL is equal to OFFH), @CRDMA, @CRDSK, and
@USRCD to print additional error information. Your error handler should return
to the BDOS with a RET instruction after printing the appropriate message.

@MXTPA (Read-Only Variable)

@MXTPA contains the address of the current BDOS entry point. This is also the
address of the top of the TPA. The BOOT and WBOOT routines of the BIOS
must use this address to initialize the BDOS entry JMP instruction at location

005H, during system initialization. Each time a RSX is loaded, @MXTPA is
adjusted by the system to reflect the change in the available User Memory (TPA).

3.2 Character I/O Data Structures

TheBIOS data structure CHRTBL is a character table describing the physical VO devices.
CHRTBL contains 6-byte physical device names and the characteristics of each physical device.
These characteristics include a mode byte, and the current baud rate, if any, of the device. The
DEVICE utility references the physical devices through the names and attributes contained in
your CHRTBL. DEVICE can also display the physical names and characteristics in your
CHRTBL.

The mode byte specifies whether the device is an input or output device, whether it has a
selectable baud rate, whether it is a serial device, and if XON/XOFF protocol is enabled.

32

3.2 Character I/O Data Structures CP/M 3 System Guide

Listing 3-2 shows a sample character device table that the
DEVICE utility uses to set and display I/O direction.

; sample character device table

chrtbl db 'CRT ; console VDT
db mbinout+mb$serial+mb$soft$baud
db baud$9600

db 'LPT ; system serial printer
db mb$output+mb$serial+mb$soft$baud+mb$xon
db baud$9600

db 'TI810 ' ; alternate printer
db mb$output+mb$serial+mb$soft$baud
db baud$9600

db 'MODEM ' ; 300 baud modem port
db mbinout+mb$serial+mb$soft$baud
db baud$300

db 'VAX ; interface to VAX 11/780
db mbinout+mb$serial+mb$soft$baud
db baud$9600

db 'DIABLO' Diablo 630 daisy wheel printer
db mb$output+mb$serial+mb$soft$baud+mbxonxoff
db baud$1200

db 'CEN
db mb$output
db baud$none

; Centronics type parallel printer

db 0

Listing 3-2. Sample Character Device Table

; table terminator

Listing 3-3 shows the equates for the fields contained in the sample character device
table. Many systems do not support all of these baud rates.

33

3.2 Character I/O Data Structures CP/M 3 System Guide

; equates for mode byte fields

mb$input
mb$output
mbinout
mb$soft$baud
mb$serial
mbxonxoff

equates
baud$none

baud$50
baud$75
baud$110
baud$134
baud$150
baud$300
baud$600
baud$1200
baud$1800
baud$2400
baud$3600
baud$4800
baud$7200
baud$9600
baud$19200

equ 0000$0001b
equ 0000$0010b
equ mb$input+mb$output
equ 0000$0100b
equ 0000$1000b
equ 0001$0000b

equ 0

equ 1
equ 2
equ 3
equ 4
equ 5
equ 6
equ 7
equ 8
equ 9
equ 10
equ 11
equ 12
equ 13
equ 14
equ 15

; device may do input
; device may do output
; dev may do both
; software selectable baud rates
; device may use protocol
; XON/XOFF protocol

; no baud rate
; associated with device
; 50 baud
; 75 baud
; 110 baud
; 134.5 baud
; 150 baud
; 300 baud
; 600 baud
; 1200 baud
; 1800 baud
; 2400 baud
; 3600 baud
; 4800 baud
; 7200 baud
; 9600 baud
; 19.2k baud

for baud rate byte

Listing 3-3. Equates for Mode Byte Bit Fields

3.3 BIOS Disk Data Structures

The BIOS includes tables that describe the particular characteristics of the disk subsystem
used with CP/M 3. This section describes the elements of these tables.

In general, each disk drive has an associated Disk Parameter Header (DPH) that contains
information about the disk drive and provides a scratche>ad area for certain BDOS operations.
One of the elements of this Disk Parameter Header is a pointer to the Disk Parameter Block
(DPB), which contains the actual disk description.

In the banked system, only the Disk Parameter Block must reside in common memory.
The DPHS, checksum vectors, allocation vectors, Buffer Control Blocks, and Directory Buffers
can reside in common memory or Bank 0. The hash tables can reside in common memory or any
bank except Bank 1. The data buffers can reside in banked memory if you implement the
XMOVE function.

34

3.3 BIOS Data Structures CP/M 3 System Guide

Figure 3-1 shows the relationships between the drive table, the Disk Parameter
Header, and the Data and Directory Buffer Control Block fields and their respective data
structures and buffers.

Drive Table (addresses of DPHs)

0 1 2 3 4 15

Checksum Vector

Allocation Vector

Hash Table

Disk Parameter Header

XLT
D IR DTA

MF D PB C SV AL V BCB BCB HASH BK

BCB HEAD BCB HEAD

Buffer Control Block (BCB) BCB
Buff
addr Link Buff

addr Link

Directory Buffer Data Buffer

BCB BCB
Buff
addr Link Buff

addr Link

Directory Buffer Data Buffer

BCB BCB

ooooh
addr oooohaddr

Directory Buffer Data Buffer

Banked SystemFigure 3-1. Disk Data Structures in a

35

3.3 BIOS Data Structures CP/M 3 System Guide

3.3.1 Drive Table

The drive table consists of 16 words containing the addresses of the Disk Parameter
Headers for each logical drive name, A through P, and takes the general form:

drivetable dw dpho
d w d p h l
d w d p h2

d w d p h f

If a logical drive does not exist in your system, the corresponding entry in the drive table
must be zero.

The GENCPM uti l ity accesses the drive table to locate the various disk parameter data
structures, so that it can determine which system configuration to use, and optionally allocate the
various buffers itself. You must supply a drive table if you want GENCPM to do this allocation.
If certain addresses in the Disk Parameter Headers referenced by this drive table are set to

OFFFEH, GENCPM allocates the appropriate data structures and updates the DPH. You can
supply the drive table even if you have performed your own memory allocation. See the BIOS
DRVTBL function described in Section 3.4.1.

3.3.2 Disk Parameter Header

In Figure 3-2, which shows the format of the Disk Parameter Header, b refers to bits.

XLT MF DPB CSV ALV DIRBCB DTABCB HASH H BANK.-0­

72b Bb 16b 16b 16b 16b 16b 16b Bb16b

Figure 3-2. Disk Parameter Header Format

Table 3-2 describes the fields of the Disk Parameter Header.

36

3.3 BIOS Data Structures CP/M 3 System Guide

Table 3-2. Disk Parameter Header Fields

Field Comments

XLT

-0­

Set the XLT field to the address of the logical to hysical sector translation
table. If there is no sector translation and the logical and physical sector
numbers are the same, set XLT to 0000H. Disk drives with identical
sector skew factors can share the same translation table.

XLT is the value passed to SECTRN in registers DE. Usually the
translation table consists of one byte per physical sector. Generally, it is
advisable to keep the number of physical sectors per logical track to a
reasonable value to prevent the translation table from becoming too large.
In the case of disks with multiple heads, you can compute the head
number from the track address rather than the sector address.

These 72 bits (9 bytes) of zeroes are the scratch area the BDOS uses to
maintain various parameters associated with the drive.

MF is the Media Flag. The BDOS resets MF to zero when the drive is
logged in. The BIOS can set this flag and @MEDIA in the SCB to OFFH
if it detects that a drive door has been opened. If the flag is set to OFFH,
the BDOS checks for a media change prior to performing the next BDOS
file operation on that drive. If the BDOS determines that the drive
contains a new volume, the BDOS performs a login on that drive, and
resets the MF flag to OOH. Note that the BDOS checks this flag only
when a system call is made, and not during an operation. Usually, this flag
is used only by systems that support door-open interrupts.

MF

Set the DPB f ield to the address of a Disk Parameter Block that describes
the characteristics of the disk drive. Several Disk Parameter Headers can
address the same Disk Parameter Block if their drive characteristics are
identical. (The Disk Parameter Block is described in Section 3.3.3.)

DPB

37

3.3 BIOS Data Structures CP/M 3 System Guide

Table 3-2. (continued)

Field Comments

CSV CSV is the address of a scratchpad area used to detect changed disks.
This address must be different for each removable media Disk Parameter
Header. There must be one byte for every 4 directory entries (or 128
bytes of directory). In other words, length(CSV) = (DRM/4)+1. (See
Table 3-3 for an explanation of the DRM field.) If the drive is
permanently mounted, set the CKS variable in the DPB to 8000H and set
CSV to 0000H. This way, no storage is reserved for a checksum vector.
The checksum vector may be located in common memory or in Bank 0.
Set CSV to OFFFEH for GENCPM to set up the checksum vector.

ALV is the address of the scratchpad area called the allocation vector,
which the BDOS uses to keep disk storage allocation information.
This area must be unique for each drive.

The allocation vector usually requires 2 bits for each block on the drive.
Thus, length(ALV) = (DSM/4) + 2. (See Table 3-3 for an explanation of
the DSM field.) In the nonbanked version of CP/M 3, you can optionally
specify that GENCPM reserve only one bit in the allocation vector per
block on the drive. In this case, length(ALV) = (DSM/8) +

The GENCPM option to use single-bit allocation vectors is provided in
the nonbanked version of CP/M 3 because additional memory is required
by the double-bit allocation vector. This option applies to all drives on
the system.

With double-bit allocation vectors, CP/M 3 automatically frees, at every
system warm start, all file blocks that are not permanently recorded in the
directory. Note that file space allocated to a f ile is not permanently
recorded in a directory unless the file is closed. Therefore, the allocation
vectors in memory can indicate that space is allocated although directory
records indicate that space is free for allocation. With single-bit allocation
vectors, CP/M 3 requires that a drive be r e set before this space can be
reclaimed. Because it increases performance, CP/M 3 does not reset disks
at system warm start. Thus, with single-bit allocation vectors, if you do
not reset the disk system, DIR and SHOW can report an inaccurate
amount of free space. With single-bit

ALV

38

3.3 BIOS Data Structures CP/M 3 System Guide

Table 3-2. (continued)

Field I Comments

ALV
(continued)

allocation vectors, the user must type a CTRL-C at the system prompt to
reset the disk system to ensure accurate reporting of free space. Set
ALV to OFFFEH for GENCPM to automatically assign space for the
allocation vector, single- or double-bit, during system generation. In the
nonbanked system, GENCPM prompts for the type of allocation vector. In
the banked system, the allocation vector is always double-bit and can
reside in common memory or Bank 0. When GENCPM automatically
assigns space for the allocation vector (ALV = OFFFEH), i t places the
allocation vector in Bank 0.

DIRBCB Set D IRBCB to the address of a single directory Buffer Control Block
(BCB) in an unbanked system. Set DIRBCB to the address of a BCB list
head in a banked system.

Set DIRBCB to OFFFEH for GENCPM to set up the DIRBCB field. The
BDOS uses directory buffers for all accesses of the disk directory.
Several DPHs can refer to the same directory BCB or BCB list head; or,
each DPH can reference an independent BCB or BCB list head.
Section 3.3.4 describes the format of the Buffer Control Block.

DTABCB Se t DTABCB to the address of a single data BCB in an unbanked system.
Set DTABCB to the address of a data BCB list head in a banked
system.

Set DTABCB to OFFFEH for GENCPM to set up the DTABCB f i e ld .
The BDOS uses data buffers to hold physical sectors so that it can block
and deblock logical 128-byte records. If the physical record size of the
media associated with a DPH is 128 bytes, you can set the DTABCB field
of the DPH to OFFFFH, because in this case, the BDOS does not use a
data buffer.

HASH HA SH c ontains the address of the optional directory hashing table
associated with a DPH. Set HASH to OFFFFH to disable directory
hashing.

39

3.3 BIOS Data Structures CP/M 3 System Guide

Table 3-2. (continued)

Field Comments

Set RASH to OFFFEH to make directory hashing on the drive a
GENCPM option. Each DPH using hashing must reference a unique hash
table. I f a hash table is supplied, it must be 4*(DRM+I) bytes long,
where DRM is one less than the length of the directory. In other words,
the hash table m u st contain four bytes for each directory entry of the
disk.

HASH
(continued)

HBANK Set HBANK to the bank number of the hash table. HBANK is not used in
unbanked systems and should be set to zero. The hash tables can be
contained in the system bank, common memory, or any alternate bank
except Bank 1, because hash tables cannot be located in the Transient
Program Area. GENCPM automatically sets HBANK when HASH is set
to OFFFEH.

3.3.3 Disk Parameter Block

Figure 3-3 shows the format of the Disk Parameter Block, where b refers to bits.

SPT BS H BLM EXM DSM DRM ALO A L1 CKS OFF PSH PHM

16b 8b 8b 8b 16b 16b 8b Bb 16b 16b 8b Bb

Figure 3-3. Disk Parameter Block Format

Table 3-3 describes the fields of the Disk Parameter Block.

Table 3-3. Disk Parameter Block Fields

Field Comments

SPT

BSH

Set SPT to the total number of 128-byte logical records per track.

Data allocation block shift factor. The value of BSH is determined by the
data block allocation size.

Block mask. The value of BLM is determined by the data block allocation
size.

BLM

40

3.3 BIOS Data Structures CP/M 3 System Guide

Table 3-3. (continued)
CommentsField

EXM

DSM

Extent mask determined by the data block allocation size and the number
of disk blocks.

Determines the total storage capacity of the disk drive. DSM is one less
than the total number of blocks on the drive.

Total number of directory entries minus one that can be stored on this
drive. The directory requires 32 bytes per entry.

DRM

ALO, AL1 D e t e rmine reserved directory blocks. See Figure 3-4 for more

PSH

OFF

CKS

information.

The size of the directory check vector, @DRM/4)+1. Set bit 15 of CKS to
1 if the drive is permanently mounted. Set CKS to 8000H to indicate
that the drive is permanently mounted and directory checksumming is not
required.

Note: full directory checksumming is required on removable media to
support the automatic login feature of CP/M 3.

The number of reserved tracks at the beginning of the logical disk. OFF is
the track on which the directory starts.

Specifies the physical record shift factor.

Specifies the physical record mask.PHM

CP/M allocates disk space in a unit called a block. Blocks are also called allocation
units, or clusters. BLS is the number of bytes in a block. The block size can be 1024, 2048,
4096, 8192, or 16384 (decimal) bytes.

A large block size decreases the size of the allocation vectors but can result in wasted
disk space. A smaller block size increases the size of the allocation vectors because there are
more blocks on the same size disk.

There is a restriction on the block size. If the block size is 1024, there cannot be more
than 255 blocks present on a logical drive. In other words, if the disk is larger than 256K, it is
necessary to use at least 2048 byte blocks.

The value of BLS is not a field in the Disk Parameter Block; rather, it is derived from
the values of BSH and BLM as given in Table 3-4.

41

3.3 BIOS Data Structures CP/M 3 System Guide

Table 3 -4 . BSH and BLM Values

BLS

1,024
2,048
4,096
8,192

16,384

BSH BLM

7 15

31
63
127

The block mask, BLM, equals one less than the number of 128- byte records in an
allocation unit, (BLS/128 — I), or (2**BSH)-1.

The value of the Block Shift Factor, BSH, is determined by the data block allocation
size. The Block Shift Factor (BSH) equals the logarithm base two of the block size in 128-byte
records, or LOG2 (BLS/128), where LOG2 represents the binary logarithm function.

The value of EXM depends upon both the BLS and whether the DSM value is less
than 256 or greater than 255, as shown in Table 3-5.

Table 3-5. Maximum EXK Values

BLS EXM values

DSM(256 DSM>255

1,024
2, 048
4, 096
8,192

16, 384

0 1 3
N/A
0
1
3
77 15

The value of EXM is one less than the maximum number of 16K extents per FCB.

Set EXM to zero if you want media compatibility with an extended CP/M 1.4 system.
This only applies to double-density CP/M 1.4 systems, with disk sizes greater than 256K bytes.
It is preferable to copy double-density 1.4 disks to single-density, then reformat them and
recreate them with the CP/M 3 system, because CP/M 3 uses directory entries more effectively
than CP/M 1.4.

DSM is one less than the total number of blocks on the drive. DSM must be less than
or equal to 7FFFH. If the disk uses 1024 byte blocks (BSH=3, BLM =7), DSM must be less than
or equal to OOFFH. The product BLS*(DSM+I) is the total number of bytes the drive holds and
must be within the capacity of the physical disk. It does not include the reserved operating
system tracks.

42

3.3 BIOS Data Structures CP/M 3 System Guide

The DRM entry is one less than the total number of 32-byte directory entries, and is a
16-bit value. DRM must be less than or equal to (BLS/32 * 16) — 1. DRM determines the values
of ALO and ALI. The two fields ALO and ALI can together be considered a string of 16 bits, as
shown in Figure 3-4.

AL1ALO

00 0 1 02 03 04 05 06 07 06 09 1 0 11 12 13 14 15

Figure 3-4. ALO and ALI

Position 00 corresponds to the high-order bit of the byte labeled ALO, and position 15
corresponds to the low-order bit of the byte labeled ALI. Each bit position reserves a data block
for a number of directory entries, thus allowing a maximum of 16 data blocks to be assigned for
directory entries. Bits are assigned starting at 00 and filled to the right until position 15.
ALO and ALI overlay the first two bytes of the allocation vector for the associated drive.
Table 3-6 shows DRM maximums for the various block sizes.

Table 3-6. BLS and Number of Directory Entries

Directory Entries M aximu m D R M

32 * reserved blocks
64 * reserved blocks
128 * reserved blocks
256 * reserved blocks
512 * reserved blocks

BLS

1,024
2,048
4,096
8,192
16,384

If DRM = 127 (128 directory entries), and BLS = 1024, there are 32 directory entries

resulting in the values ALO = OFOH and AL1 = OOH. The maximum directory allocation is 16

blocks where the block size is determined by BSH and BLM.

511
1,023
2,047
4,095
8,191

per block, requiring 4 reserved blocks. In this case, the 4 high-order bits of ALO are set,

The OFF field determines the number of tracks that are skipped at the beginning of the
physical disk. I t can be used as a mechanism for skipping reserved operating system tracks,
which on system disks contain the Cold Boot Loader, CPMLDR, and possibly the CCP. I t i s
also used to partition a large disk into smaller segmented sections.

43

3.3 BIOS Data Structures CP/M 3 System Guide

PSH and PHM determine the physical sector size of the disk. All disk I/O is in terms of
the physical sector size. Set PSH and PSM to zero if the BIOS is blocking and deblocking
instead of the BDOS.

PSH specifies the physical record shift factor, ranging from 0 to 5, corresponding to
physical record sizes of 128, 256, 512, 1K, 2K, or 4K bytes. I t i s equal to the logarithm base
two of the physical record size divided by 128, or LOG2(sector-size/128). See Table 3-7 for
PSH values.

PHM specifies the physical record mask, ranging from 0 to 31, corresponding to physical
record sizes of 128, 256, 512, 1K, 2K, or 4K bytes. It is equal to one less than the sector size
divided by 128, or, (sector-size/128)-1. See Table 3-7 for PHM values.

Table 3-7. PSH and PHN Values

Sector
size PSH PHM

128
256
512

1,024
2,048
4,096

0 1

3
7
15
31

3.3.4 Buffer Control Block

A Buffer Control Block (BCB) locates physical record buffers for the BDOS. The
BDOS uses the BCB to manage the physical record buffers during processing. More than one
Disk Parameter Header can specify the same BCB. The GENCPM utility can create the Buffer
Control Block.

Note that the BANK and LINK fields of the Buffer Control Block are present only in the
banked system. Therefore, the Buffer Control Block is twelve bytes long in the nonbanked
system, and fifteen bytes long in the banked system. Note also that only the DRV, BUFFAD,
BANK, and LINK fields need to contain initial values. In Figure 3-5, which shows the form of
the Buffer Control Block, b refers to bits.

REC¹ WFLG 00 TRACK SECTOR BUFFAD BANK LINKDRV

24b Bb BI3 16b 16b 16b BI3 16bBb

Figure 3-5. Buffer Control Block Format

44

3.3 BIOS Data Structures CP/M 3 System Guide

Table 3-8 describes the fields of each Buffer Control Block.

Table 3-8. Buffer Control Block Fields

Field Comment

DRV

REC¹

WFLG

Identifies the disk drive associated with the record contained in the buffer
located at address BUFFAD. If you do not use GENCPM to allocate
buffers, you must set the DRV field to OFFH.

Identifies the record position of the current contents of the buffer located
at address BUFFAD. REC¹ consists of the absolute sector number of the
record where the first record of the directory is zero.

Set by the BDOS to OFFH to indicate that the buffer contains new data
that has not yet been written to disk. When the data is written, the BDOS
sets the WFLG to zero to indicate the buffer is no longer dirty.

Scratch byte used by BDOS.00

TRACK Cont a ins the physical track location of the contents of the buffer.

SECTOR Co n tains the physical sector location of the contents of the buffer.

BUFFAD Specifies the address of the buffer associated with this BCB.

BANK Conta ins the bank number of the buffer associated with this BCB. This
field is only present in banked systems.

LINK Contai ns the address of the next BCB in a linked list, or zero if this is the
last BCB in the linked list. The LINK field is present only in banked
systems.

The BDOS distinguishes between two kinds of buffers: data buffers referenced by
DTABCB, and directory buffers referenced by DIRBCB. In a banked system, the DIRBCB and
DTABCB fields of a Disk Parameter Header each contain the address of a BCB list head rather
than the address of an actual BCB. A BCB list head is a word containing the address of the first
BCB in a linked list. If several DPHs reference the same BCB list, they must reference the same
BCB list head. Each BCB has a LINK field that contains the address of the next BCB in the list,
or zero if it is the last BCB.

45

3.3 BIOS Data Structures CP/M 3 System Guide

In banked systems, the one-byte BANK field indicates the bank in which the data buffers
are located. The BANK field of directory BCBs must be zero because directory buffers must be
located in Bank 0, usually below the banked BDOS module, or in common memory. The
BANK field is for systems that support direct memory-to-memory transfers from one bank to
another. (See the BIOS XMOVE entry point in section 3.4.4.)

The BCD data structures in a banked system must reside in Bank 0 or in common memory.
The buffers of data BCBs can be located in any bank except Bank I (the Transient Program
Area).

For banked systems that do not support interbank block moves through XMOVE, the
BANK field must be set to 0 and the data buffers must reside in common memory. The
directory buffers can be in Bank 0 even if the system does not support bank-to-bank moves.

In the nonbanked system, the DPH, DIRBCB, and DTABCB can point to the same BCB if
the DPH defines a fixed media device. For devices with removable media, the DPH DIRBCB
and the DPH DTABCB must reference different BCBS. In banked systems, the DPH DIRBCB
and DTABCB must point to separate list heads.

In general, you can enhance the performance of CP/M 3 by allocating more BCBS, but the
enhancement reduces the amount of TPA memory in nonbanked systems.

If you set the DPH DIRBCB or the DPH DTABCB fields to OFFFEH, the GENCPM

BCBS. This allows you to write device drivers without regard to buffer requirements.

3.3.5 Data Structure Macro Definitions

Several macro definitions are supplied with CP/M 3 to simplify the creation of some of the

utility creates BCBS, allocates physical record buffers, and sets these f ields to the address of the

data structures in the BIOS. These macros are defined in the library file CPM3.LIB on the
distribution disk.

To reference these macros in your BIOS, include the following statement:

M ACLIB C P M 3

46

3.3 BIOS Data Structures CP/M 3 System Guide

DTBL Macro

Use the DTBL macro to generate the drive table, DRVTBL. I t has one parameter, a list
of the DPHs in your system. The list is enclosed in angle brackets.

The form of the DTBL macro call is
label: DTBL <DP H A ,DPHB,...,DPHP>

where DPHA is the address of the DPH for drive A, DPHB is the address of the DPH for drive
B, up to drive P. For example,

DRVTBL: DTBL <ACS H DO,FDSDOP'DSD I>

This example generates the drive table for a three-drive system. The DTBL macro always
generates a sixteen-word table, even if you supply fewer DPH names. T h e unused entries are
set to zero to indicate the corresponding drives do not exist.

DPH Macro

The DPH macro routine generates a Disk Parameter Header (DPH) . It requires two
parameters: the address of the skew table for this drive, and the address of the Disk Parameter
Block (DPB) . Two parameters are optional: the maximum size of the checksum vector, and
the maximum size of the allocation vector. I f you omit the maximum size of the checksum
vector and the maximum size of the allocation vector from the DPH macro invocation, the
corresponding fields of the Disk Parameter Header are set to OFFFEH so that GENCPM
automatically allocates the vectors.

The form of the DPH macro call is

label: DPH ?tr ans,?dpb,[?csize],[?asizel

where:
?trans

?dpb
?csize

is the address of the translation vector for this
drive;
is the address of the DPB for this drive;

is the maximum size in bytes of the checksum
vector;
is the maximum size in bytes of the allocation?asize
vector.

The following example, which includes all four parameters, shows a typical DPH
macro invocation for a standard single-density disk drive:

FDSDO: DPH SK E W 6,DPB$SD,16,31

47

3.3 BIOS Data Structures CP/M 3 System Guide

SKEW Macro

The SKEW macro generates a skew table and requires the following parameters: the
number of physical sectors per track, the skew factor, and the first sector number on each track

(usually 0 or I).

The form of the SKEW macro call is
label: SKEW ?sec s,?skf,?fsc

where:
?secs
?skf
?fsc

is the number of physical sectors per track;
is the sector skew factor;
is the first sector number on each track.

The following macro invocation generates the skew table for a standard single-density disk
drive.

S KEW6: SKEW 26, 6 , 1

DPB Macro

The DPB macro generates a Disk Parameter Block specifying the characteristics of a
drive type. It requires six parameters: the physical sector size in bytes, the number of physical
sectors per track, the total number of tracks on the drive, the size of an allocation unit in bytes,
the number of directory entries desired, and the number of system tracks to reserve at the
beginning of the drive. There is an optional seventh parameter that defines the CKS field in the
DPB. If this parameter is missing, CKS is calculated from the directory entries parameter.

The form of the DPB macro call is
label: DPB ?p s ize,?pspt,?trks,?bls,?ndirs,?off[,?ncks]

where:
is the
is the
is the
is the
is the
is the
is the

?psize
?pspt
?trks
?bls
? ndlrs
?off
?ncks

The following example shows the parameters for a standard single-density disk drive:

DPB$SD: DPB 128, 26,77,1024,64,2

physical sector size in bytes;
number of physical sectors per track;
number of tracks on the drive;

allocation unit size in bytes;
number of directory entries;
number of tracks to reserve;
number of checked directory entries.

48

3.3 BIOS Data Structures CP/M 3 System Guide

The DPB macro can be used only when the disk drive is under eight megabytes. DPBs
for larger disk drives must be constructed by hand.

3.4 BIOS Subroutine Entry Points

This section describes the entry parameters, returned values, and exact responsibilities
of each BIOS entry point in the BIOS jump vector. The routines are arranged by function.
Section 3.4.1 describes system initialization. Section 3.4.2 presents the character I/O functions,
followed by Section 3.4.3, discussing the disk I/O functions. Section 3.4.4 discusses the BIOS
memory select and move functions. The last section, 3.4.5, discusses the BIOS clock support
function. Table 3-9 shows the BIOS entry points the BDOS calls to perform each of the four
categories of system functions.

Table 3-9. Functional Organization of BIOS Entry Points

Operation Fu n ct ion

System Initialization
BOOT, WBOOT, DEVTBL, DEVINI, DRVTBL,

Character I/O CONST, CONIN, CONOUT, LIST, AUXOUT, AUXIN,

LISTST, CONOST, AUXIST, AUXOST

Disk I/O
HOME, SELDSK, SETTRK, SETSEC, SETDMA,
READ, WRITE, SECTRN, MULTIO, FLUSH

Memory Selects and Moves
MOVE, XMOVE, SELMEM, SETBNK

Clock Support
TIME

Table 3-10 is a summary showing the CP/M 3 BIOS function numbers, jump
instruction names, and the entry and return parameters of each jump instruction in the table,
arranged according to the BIOS function number.

49

3.4 BIOS Subroutine Entry Points CP/M 3 System Guide

Table 3-10.
No. Function
0 B O OT
I W B O OT
2 C ONST

CP/M 3 BIOS Function Jump Table Sunmary

25

23
24

20
21
22

18

19

17

15

16

10
11
12
13

14 WRITE

LISTST

AUXIST

CONIN
CONOUT
LIST
AUXOUT
AUXIN
HOME
SELDSK

SECTRN

MULTIO
FLUSH

CONOST

AUXOST

DEVTBL
DEVINI
DRVTBL

SETTRK
SETSEC
SETDMA
READ

None

None

Input
None
None
None

C=Deblk Code

None
C=Con Char
C=Char
C=Char
None
None
C=Drive 0-15
E=Init Sel Flag
BC =Track No
BC =Sector No
BC =.DMA
None

None
C=Dev No 0-15
None

HL =Dest Adr
DE =Source Adr
BC =Count
C=Get/Set Flag

C=Mult Sec Cnt
None

26
27
28
29

MOVE

TIME
SELMEM
SETBNK
XMOVE

None

BC =Log Sect No
DE =Trans Tbl Adr
None

None
None
None
None

Output
None
None
A=OFFH if ready
A=OOH if not ready
A=Con Char
None
None
None
A=Char
None
HL =DPH addr
HL =OOOH if invalid dr.
None
None
None
A=OOH if no Err
A=OIH if Non-recov Err
A=OFFH if media changed

A=OOH if no Err
A=OI H if Phys Err
A=02H if Dsk is R/0
A=OFFH if media changed

A=OOH if not ready
A=OFFH if ready
HL =Phys Sect No

A=OOH if not ready
A=OFFH if ready
A=OH if not ready
A=OFFH if ready
A=OOH if not ready
A=OFFH if ready
HL =Chrtbl addr
None
HL =Drv Tbl addr
HL =OFFFFH
HL =OFFFEH
None
A=OOOH if no err
A=OOIH if phys err
A=002H if disk R/0
HL & DE point to next
bytes following MOVE

A=Mern Bank
A=Mern Bank
B=Dest Bank
C=Source Bank

50

3.4 BIOS Subroutine Entry Points CP/M 3 System Guide

Table 3-10. (continued)

No. I Function Inpu t

30 USER F Reserv ed for System lmplementor
31 R E SERV1 Res e rved for Future Use
32 RE S ERV2 Rese rved for Future Use

3.4.1 System Initialization Functions

This section defines the BIOS system initialization routines BOOT, WBOOT,
DEVTBL, DEVINI, and DRVTBL.

BIOS Function 0: BOOT

Get Control from Cold Start Loader
and Initialize System

Entry Parameters: None

R eturned Values: N o n e

The BOOT entry point gets control from the Cold Start Loader in Bank 0 and is
responsible for basic system initialization. Any remaining hardware initialization that is not
done by the boot ROMS, the Cold Boot Loader, or the LDRBIOS should be performed by the
BOOT routine.

The BOOT routine must perform the system initialization outlined in Section 2.3,
"System Initialization." This includes initializing Page Zero jumps and loading the CCP.
BOOT usually prints a sign-on message, but this can be omitted. Control is then transferred to
the CCP in the TPA at 0100H.

To initialize Page Zero, the BOOT routine must place a jump at location 0000H to
BIOS base + 3, the BIOS warm start entry point. The BOOT routine must also place a jump
instruction at location 0005H to the address contained in the System Control Block variable,
@MXTPA.

The BOOT routine must establish its own stack area if it calls any BDOS or BIOS
routines. In a banked system, the stack is in Bank 0 when the Cold BOOT routine is entered.
The stack must be placed in common memory.

51

System Initialization Functions CP/M 3 System Guide

BIOS Function 1: WBOOT

Get Control When a Warm Start Occurs

Entry Parameters: None

R eturned Values: N o n e

The WBOOT entry point is entered when a warm start occurs. A warm start is performed
w henever a user program branches to location 0000H or attempts to return to the CCP. The
WBOOT routine must perform the system initialization outlined in BIOS Function 0, including
initializing Page zero jumps and loading the CCP.

When your WBOOT routine is complete, it must transfer control to the CCP at location
0100H in the TPA.

Note that the CCP does not reset the disk system at warm start. The CCP resets the disk
system when a CTRL-C is pressed following the system prompt.

Note also that the BIOS stack must be in common memory to make BDOS function calls.
Only the BOOT and WBOOT routines can perform BDOS function calls.

If the WBOOT routine is reading the CCP from a file, it must set the multisector VO
count, @MLTIO in the System Control Block, to the number of 128-byte records to be read in
one operation before reading CCP.COM. You can directly set @MLTIO in the SCB, or you can
call BDOS Function 44 to set the multisector count in the SCS.

If blocking/deblocking is done in the BIOS instead of in the BDOS, the WBOOT routine
must discard all pending buffers.

BIOS Function 20: DEVTBL

Return Address of Character I/O Table

Entry Parameters: None

R eturned Values: H L=address of Chrtbl

The DEVTBL and DEVINI entry points allow you to support device assignment with a
flexible, yet completely optional system. It replaces the IOBYTE facility of CP/M 2.2. Note that
the CHRTBL must be in common in banked systems.

52

System Initialization Functions CP/M 3 System Guide

BIOS Function 21: DEVINI

Initialize Character I/O Device

Entry Parameters: C=device number, 0-15

Returned Values: None

The DEVINI routine initializes the physical character device specif ied in register C to
the baud rate contained in the appropriate entry of the CHRTBL. It need only be supplied if VO
redirection has been implemented and is referenced only by the DEVICE utility supplied with
CP/M 3.

BIOS Function 22: DRVTBL

Return Address of Disk Drive Table

Entry Parameters: None

Returned Values: H L =Address of Drive Table of Disk

DPHs Referenced by this DRVTBL.
HL =OFFFFH if no Drive Table; GENCPM does not set up buffers.

Hashing is supported.
HL =OFFFEH if no Drive Table; GENCPM does not set up buffers.

Hashing is not supported.

Parameter Headers (DPH); Hashing can utilized if specified by the

The first instruction of this subroutine must be an LXI H,<address> where <address> is
one of the above returned values. The GENCPM uti l ity accesses the address in this instruction to
locate the drive table and the disk parameter data structures to determine which system
configuration to use.

If you plan to do your own blocking/deblocking, the first instruction of the DRVTBL
routine must be the following:

lxi h , OFFFEh

You must also set the PSH and PSM fields of the associated Disk Parameter Block to zero.

53

Character VO Functions CP/M 3 System Guide

3.4.2 Character I/O Functions

This section defines the CP/M 3 character I/O routines CONST, CONIN, CONOUT,
LIST, AUXOUT, AUXIN, LISTST, CONOST, AUXIST, and AUXOST.

CP/M 3 assumes all simple character I/O operations are performed in eight-bit ASCII,
upper and lowercase, with no parity. ANASCII CTRL-Z (IAH) denotes an end-of-file condition
for an input device.

In CP/M 3, you can direct each of the five logical character devices to any combination of
up to twelve physical devices. Each of the five logical devices has a 16-bit vector in the System
Control Block (SCB) . Each bit of the vector represents a physical device where bit 15
corresponds to device zero, and bit 4 is device eleven. Bits 0 through 3 are reserved for future
system use.

You can use the public names defined in the supplied SCB.ASM file to reference the VO
redirection bit vectors. The names are shown in Table 3-11.

Table 3-11. VO Redirection Bit Vectors in SCB

Name Logical Device

Console Input
Console Output
Auxiliary Input
Auxiliary Output
List Output

@CIVEC
@COVEC
@AIVEC
@AOVEC
@LOVEC

You should send an output character to all of the devices whose corresponding bit is set.
An input character should be read from the first ready device whose corresponding bit is set.

An input status routine should return true if any selected device is ready. An output status
routine should return true only if all selected devices are ready.

54

Character VO Functions CP/M 3 System Guide

BIOS Function 2: CONST

Sample the Status of the Console Input Device

Entry Parameters: None

A=OFFH if a console character
is ready to read

A=OOH if no console character

is ready to read

Returned value:

Read the status of the currently assigned console device and return OFFH in register A if
a character is ready to read, and OOH in register A if no console characters are ready.

B IOS Function 3: C O N IN

Read a Character from the Console

Entry Parameters: None

R eturned Values: A =Console Character

Read the next console character into register A with no parity. If no console character is

ready, wait until a character is available'before returning.

BIOS Function 4: CONOUT

Output Character to Console

Entry Parameters: C =Console Character

R eturned Values: N o n e

Send the character in register C to the console output device. The character is in ASCII
with no parity.

55

Character VO Functions CP/M 3 System Guide

Character I/O FunctionsCP/M 3 System Guide

BIOS Function 5: LIST

Output Character to List Device

Entry Parameters: C =Character

Returned Values: None

Send the character from register C to the listing device. The character is in ASCII with no
parity.

BIOS Function 6: AUXOUT

Output a Character to the Auxil iary Output Device

Entry Parameters: C =Character

Returned Values: None

Send the character from register C to the currently assigned AUXOUT device. The
character is in ASCII with no parity.

BIOS Function 7: AUXIN

Read a Character from the Auxiliary Input Device

Entry Parameters: None

Returned Values: A =Character

Read the next character from the currently assigned AUXIN device into register A with
no parity. A returned ASCII CTRL-Z (IAH) reports an end-of-file.

56

Character VO Functions CP/M 3 System Guide

BIOS Function 15: LISTST

Return the Ready Status of the List Device

Entry Parameters: None

A=OOH if list device is not
ready to accept a character

A=OFFH if l ist device is
ready to accept a character

Returned Values:

The BIOS LISTST function returns the ready status of the list device.

BIOS Function 17: CONOST

Return Output Status of Console

Entry Parameters: None

Returned Values: A =OFFH if ready
A=OOH if not ready

The CONOST routine checks the status of the console. CONOST returns an OFFH if
the console is ready to display another character. This entry point allows for full polled
handshaking communications support.

BIOS Function 18: AUXIST

Return Input Status of Auxi l iary Port

E ntry Parameters: N o n e

Returned Values: A =OFFH if ready
A=OOH if not ready

The AUXIST routine checks the input status of the auxiliary port. This entry point allows
full polled handshaking for communications support using an auxiliary port.

57

Character VO Functions CP/M 3 System Guide

BIOS Function 19: AUXOST

Return Output Status of Auxi l iary Port

Entry Parameters: None

Returned Values: A =OFFH if ready
A=OOH if not ready

The AUXOST routine checks the output status of the auxiliary port. This routine allows
full polled handshaking for communications support using an auxiliary port.

3.4.3 Disk I/O Functions

This section defines the CP/M 3 BIOS disk I/O routines HOME, SELDSK, SETTRK,
SETSEC, SETDMA, READ, WRITE, SECTRN, MULTIO, and FLUSH.

B IOS Function 8: H OME

Select Track 00 of the Specified Drive

Entry Parameters: None

R eturned Values: N o n e

Return the disk head of the currently selected disk to the track 00 position. Usually, you
can translate the HOME call into a call on SETTRK with a parameter of 0.

58
BIOS Function 9: SELDSK

Disk VO Functions CP/M 3 System Guide

Select the Specified Disk Drive

Entry Parameters: C=Disk Drive (0-15)
E=Initial Select Flag

Returned Values: H L =Address of Disk Parameter
Header (DPH) if drive exists

HL =OOOOH if drive does not exist

Select the disk drive specified in register C for further operations, where register C
contains 0 for drive A, 1 for drive B, and so on to 15 for drive P. On each disk select, SELDSK
must return in HL the base address of a 25-byte area called the Disk Parameter Header. If there
is an attempt to select a nonexistent drive, SELDSK returns HL =OOOOH as an error indicator.

On entry to SELDSK, you can determine if it is the first time the specified disk is
selected. Bit 0, the least significant bit in register E, is set to 0 if the drive has not been
previously selected. This information is of interest in systems that read configuration
information from the disk to set up a dynamic disk definition table.

When the BDOS calls SELDSK with bit 0 in register E set to 1, SELDSK must return
the same Disk Parameter Header address as it returned on the initial call to the drive. SELDSK
can only return a OOH indicating an unsuccessful select on the initial select call.

SELDSK must return the address of the Disk Parameter Header on each call. Postpone
the actual physical disk select operation until a READ or WRITE is performed, unless I/O is
required for automatic density sensing.

BIOS Function 10: SETTRK

Set Specified Track Number

Entry Parameters: BC =Track Number

Returned Values: None

Register BC contains the track number for a subsequent disk access on the currently
selected drive. Normally, the track number is saved until the next READ or WRITE occurs.

59

Disk VO Functions CP/M 3 System Guide

BIOS Function 11: SETSEC

Set Specified Sector Number

Entry Parameters: BC=Sector Number

Returned Values: N one

Register BC contains the sector number for the subsequent disk access on the currently
selected drive. This number is the value returned by SECTRN. Usually, you delay actual
sector selection until a READ or WRITE operation occurs.

BIOS Function 12: SETDMA

Set Address for Subsequent Disk VO

Entry Parameters: BC=Direct Memory

Access Address

Returned Values: N one

Register BC contains the DMA (Direct Memory Access) address for the subsequent READ
or WRITE operation. For example, if B = OOH and C = 80H when the BDOS calls SETDMA,
then the subsequent read operation reads its data starting at 80H, or the subsequent write
operation gets its data from 80H, until the next call to SETDMA occurs.

60

Disk VO Functions CP/M 3 System Guide

BIOS Function 13: READ

Read a Sector from the Specified Drive

Entry Parameters: N one

A=OOOH if no errors occurred
A=001H if nonrecoverable error

condition occurred
A=OFFH if media has changed

Returned Values:

Assume the BDOS has selected the drive, set the track, set the sector, and specified the
DMA address. The READ subroutine attempts to read one sector based upon these parameters,
then returns one of the error codes in register A as described above.

If the value in register A is 0, then CP/M 3 assumes that the disk operation completed
properly. If an error occurs, the BIOS should attempt several retries to see if the error is
recoverable before returning the error code.

If an error occurs in a system that supports automatic density selection, the system
should verify the density of the drive. If the density has changed, return a OFFH in the
accumulator. This causes the BDOS to terminate the current operation and relog in the disk.

BIOS Function 14: WRITE

Write a Sector to the Specified Disk

Entry Parameters: C=Deblocking Codes

A=OOH if no error occurred
A=001H if physical error occurred
A=002H if disk is Read-Only
A=OFFH if media has changed

Returned Values:

Write the data from the currently selected DMA address t o the currently selected
drive, track, and sector. Upon each call to WRITE, the BDOS provides the following
information in register C:

0 = deferred write
1 = nondeferred write
2 = deferred write to the first sector of a new data block

61

Disk VO Functions CP/M 3 System Guide

This information is provided for those BIOS implementations that do blocking/deblocking in
the BIOS instead of the BDOS.

As in READ, the BIOS should attempt several retries before reporting an error.

If an error occurs in a system that supports automatic density selection, the system should
verify the density of the drive. If the density has changed, return a OFFH in the accumulator.
This causes the BDOS to terminate the current operation and relog in the disk.

BIOS Function 16: SECTRN

Translate Sector Number Given Translate Table

Entry Parameters: BC=Logical Sector Number
DE =Translate Table Address

Returned Values: H L =Physical Sector Number

SECTRN performs logical sequential sector address to physical sector translation to

factor of 6, where six physical sectors are skipped between each logical read operation. This
skew factor allows enough time between sectors for most programs on a slow system to process
their buffers without missing the next sector. In computer systems that use fast processors,
memory, and disk subsystems, you can change the skew factor to improve overall response.
Typically, most disk systems perform well with a skew of every other physical sector. You
should maintain support of single-density, IBM 3740 compatible disks using a skew factor of 6
in your CP/M 3 system to allow information transfer to and from other CP/M users.

improve the overall response of CP/M 3. Digital Research ships standard CP/M disk with a skew

SECTRN receives a logical sector number in BC, and a translate table address in DE. The
logical sector number is relative to zero. The translate table address is obtained from the Disk
Parameter Block for the currently selected disk. The sector number is used as an index into the
translate table, with the resulting physical sector number returned in HL. For standard,
single-density, eight- inch disk systems, the tables and indexing code are provided in the sample
BIOS and need not be changed.

Certain drive types either do not need skewing or perform the skewing externally from
the system software. In this case, the skew table address in the DPH can be set to zero, and the
SECTRN routine can check for the zero in DE and return with the physical sector set to the
logical sector.

62

Disk VO Functions CP/M 3 System Guide

BIOS Function 23: M U L TIO

Set Count of Consecutive Sectors for READ or WRITE

Entry Parameters: C=Multisector Count

Returned Values: N one

To transfer logically consecutive disk sectors to or from contiguous memory locations,
the BDOS issues a MULTIO call, followed by a series of READ or WRITE calls. This allows
the BIOS to transfer multiple sectors in a single disk operation. The maximum value of the
sector count is dependent on the physical sector size, ranging from 128 with 128-byte sectors, to
4 with 4096-byte sectors. Thus, the BIOS can transfer up to 16K directly to or from the TPA
with a single operation.

The BIOS can directly transfer all of the specified sectors to or from the DMA buffer in
one operation and then count down the remaining calls to READ or WRITE.

If the disk format uses a skew table to minimize rotational latency when single records
are transferred, it is more diff icult to optimize transfer time for multisector transfers. One
way of util izing the multisector count with a skewed disk format is to place the sector numbers
and associated DMA addresses into a table until either the residual multisector count reaches
zero, or the track number changes. Then you can sort the saved requests by physical sector to
allow all of the required sectors on the track to be read in one rotation. Each sector must be
transferred to or from its proper DMA address.

When an error occurs during a multisector transfer, you can either reset the multiple
sector counters in the BIOS and return the error immediately, or you can save the error status
and return it to the BDOS on the last READ or WRITE call of the MULTIO operation.

63

Disk VO Functions CP/M 3 System Guide

BIOS Function 24: FLUSH

Force Physical Buffer Flushing for User-supported Deblocking

Entry Parameters: N one

Returned Values: A =OOH if no error occurred

A=002H if disk is Read-Only
A=001H if physical error occurred

The flush buffers entry point allows the system to force physical sector buffer flushing
when your BIOS is performing its own record blocking and deblocking.

The BDOS calls the FLUSH routine to ensure that no dirty buffers remain in memory.
The BIOS should immediately write any buffers that contain unwritten data.

Normally, the FLUSH function is superfluous, because the BDOS supports
blocking/deblocking internally. It is required, however, for those systems that support
blocking/deblocking in the BIOS, as many CP/M 2.2 systems do.

Note: if you do not implement FLUSH, the routine must return a zero in register A. You can
accomplish this with the following instructions:

xra a
ret

3.4.4 Memory Select and Move Functions

This section defines the memory management functions MOVE, XMOVE, SELMEM,
and SETBNK.

64

Memory Select and Move Functions CP/M 3 System Guide

B IOS Function 25: M O V E

Memory-to-Memory Block Move

Entry Parameters: H L =Destination address
DE =Source address

BC=Count

Returned Values: H L and D E must point to
next bytes following move operation

The BDOS calls the MOVE routine to perform memory to memory block moves to
allow use of the Z80 LDIR instruction or special DMA hardware, if available. Note that the
arguments in HL and DE are reversed from the Z80 machine instruction, necessitating the use
of XCHG instructions on either side of the LDIR. The BDOS uses this routine for all large
memory copy operations. On return, the HL and DE registers are expected to point to the next
bytes following the move.

Usually, the BDOS expects MOVE to transfer data within the currently selected bank or
common memory. However, if the BDOS calls the XMOVE entry point before calling MOVE,
the MOVE routine must perform an interbank transfer.

65

Memory Select and Move Functions CP/M 3 System Guide

BIOS Function 27: SELMEM

Select Memory Bank

Entry Parameters: A =Memory Bank

Returned Values; N one

The SELMEM entry point is only present in banked systems. The banked version of the
CP/M 3 BDOS calls SELMEM to select the current memory bank for further instruction
execution or buffer references. You must preserve or restore all registers other than the
accumulator, A, upon exit.

BIOS Function 28: SETBNK

Specify Bank for DMA Operation

Entry Parameters: A =Memory Bank

Returned Values: N one

SETBNK only occurs in the banked version of CP/M 3. SETBNK specifies the bank that
the subsequent disk READ or WRITE routine must use for memory transfers. The BDOS
always makes a call to SETBNK to identify the DMA bank before performing a READ or
WRITE call. Note that the BDOS does not reference banks other than 0 or 1 unless another
bank is specified by the BANK field of a Data Buffer Control Block (BCB).

BIOS Function 29: XMOVE

Set Banks for Following MOVE

Entry Parameters: B=destination bank
C=source bank

Returned Values: N one

XMOVE is provided for banked systems that support memory-to- memory DMA transfers
over the entire extended address range. Systems with this feature can have their data buffers
located in an

66

Memory Select and Move Functions

alternate bank instead of in common memory, as is usually required. An XMOVE call affects
only the following MOVE call. All subsequent MOVE calls apply to the memory selected by
the latest call to SELMEM. A f ter a call to the XMOVE function, the following call to the
MOVE function is not more than 128 bytes of data. If you do not implement XMOVE, the first
instruction must be a RET instruction.

3.4.5 Clock Support Function

This section defines the clock support function TIME.

CP/M 3 System Guide

BIOS Function 26: TIME

Get and Set Time

Entry Parameters: C=Time Get/Set Flag

Returned values: N one

The BDOS calls the TIME function to indicate to the BIOS whether it has just set the
Time and Date fields in the SCB, or whether the BDOS is about to get the Time and Date from
the SCB. On entry to the TIME function, a zero in register C indicates that the BIOS should
update the Time and Date fields in the SCB. A OFFH in register C indicates that the BDOS has
just set the Time and Date in the SCB and the BIOS should update its clock. Upon exit, you
must restore register pairs HL and DE to their entry values.

This entry point is for systems that must interrogate the clock to determine the time.
Systems in which the clock is capable of generating an interrupt should use an interrupt service
routine to set the Time and Date fields on a regular basis.

3.5 Banking Considerations

This section discusses considerations for separating your BIOS into resident and banked
modules. You can place part of your customized BIOS in common memory, and part of it in
Bank 0. However, the following data structures and routines must remain in common memory:

o the BIOS stack
o the BIOS jump vector
o Disk Parameter Blocks
o memory management routines
o the CHRTBL data structure
o al l character VO routines
o portions of the disk VO routines

67

3.5 Banking Considerations CP/M 3 System Guide

You can place portions of the disk VO routines in the system bank, Bank 0. In a banked
environment, if the disk VO hardware supports DMA transfers to and from banks other than the
currently selected bank, the disk I/O drivers can reside in Bank 0. If the system has a DMA
controller that supports block moves from memory to memory between banks, CP/M 3 also
allows you to place the blocking and deblocking buffers in any bank other than Bank 1, instead
of common memory.

If your disk controller supports data transfers only into the currently selected bank, then
the code that initiates and performs a data transfer must reside in common memory. In this case,
the disk VO transfer routines must select the DMA bank, perform the transfer, then reselect Bank
0. The routine in common memory performs the following procedure:

I) Selects the DMA bank that SETBNK saved.
2) Performs physical I/O.
3) Reselects Bank 0.
4) Returns to the calling READ or WRITE routine in Bank 0.

Note that Bank 0 is in context (selected) when the BDOS calls the system initialization
functions BOOT and DRVTBL; the disk I/O routines HOME, SELDSK, SETTRK, SETSEC,
SETDMA, READ, WRITE, SECTRN, MULTIO, and FLUSH; and the memory management
routines KMOVE and SETBNK.

Bank 0 or Bank 1 is in context when the BDOS calls the system initialization routines
WBOOT, DEVTBL, and DEVINI; the character I/O routines CONST, CONIN, CONOUT,
LIST, AUXOUT, AUXIN, LISTST, CONOST, AUXIST, and AUXOST, the memory select
and move routines MOVE and SELMEM, and the clock support routine TIME.

You can place a portion of the character I/O routines in Bank 0 if you place the following
procedure in common memory.

I) Swap stacks to a local stack in common.
2) Save the current bank.
3) Select Bank 0.
4) Call the appropriate character I/O routine.
5) Reselect the saved bank.
6) Restore the stack.

68

3.6 Assembling and Linking Your BIOS CP/M 3 System Guide

3.6 Assembling and Linking Your BIOS

This section assumes you have developed a BIOS3.ASM or BNKBIOS3.ASM file

Assembler RMAC to assemble the BIOS. Use the Digital Research Linker LINK-8 OTM to
create the BIOS3.SPR and BNKBIOS3.SPR files. The SPR files are part of the input to the
GENCPM program.

appropriate to your specific hardware environment. Use the Digital Research Relocatable Macro

In a banked environment, your CP/M 3 BIOS can consist of two segments: a banked
segment and a common segment. This allows you to minimize common memory usage to
maximize the size of the TPA. To prepare a banked BIOS, place code and data that must reside
in common in the CSEG segment, and code and data that can reside in the system bank in the
DSEG segment. When you link the BIOS, LINK-80 creates the BNKBIOS3.SPR file with all
the CSEG code and data first, then the DSEG code and data.

After assembling the BIOS with RMAC, link your BNKBIOS using LINK-80 with the
[B] option. The [B] option aligns the DSEG on a page boundary, and places the length of the
CSEG into the BNKBIOS3.SPR header page.

Use the following procedure to prepare a BIOS3.SPR or BNKBIOS3.SPR file from
your customized BIOS.

I) A ss emble your BIOS3.ASM or BNKBIOS3.ASM file with the relocatable
assembler RMAC.COM to produce a relocatable file of type REL. Assemble
SCB.ASM to produce the relocatable file SCB.REL.

Assembling the Nonbanked BIOS:

A>RMAC BIOS3

Assembling the Banked BIOS:

A>RMAC BNKBIOS3

2) L i n k the BIOS3.REL or BNKBIOS3.REL file and the SCB.REL file with

with LINK causes the output of a System Page Relocatable (SPR) file.

Linking the Nonbanked BIOS:

A>LINK BIOS3[OS]=BIOS3,SCB

Linking the Banked BIOS:

A>LINK BNKBIOS3[B] =BNKBIOS3.SCB

LINK-80 to produce the BIOS3.SPR or BNKBIOS3.SPR file. The [OS] option

69

3.6 Assembling and Linking Your BIOS CP/M 3 System Guide

The preceding examples show command lines for linking a banked and nonbanked BIOS.
In these examples, the BIOS3.REL and BNKBIOS3.REL are the files of your assembled

BIOS. SCB.REL contains the definitions of the System Control Block variables. The [B]
option implies the [OS] option.

End of Section 3

70

Section 4

CP/M 3 Sample BIOS Modules

This section discusses the modular organization of the example CP/M 3 BIOS on your
distribution disk. For previous CP/M operating systems, it was necessary to generate all
input/output drivers from a single assembler source file. Such a file is difficult to maintain
when the BIOS supports several peripherals. As a result, Digital Research is distributing the
BIOS for CP/M 3 in several small modules.

The organization of the BIOS into separate modules allows you to write or modify any
VO driver independently of the other modules. For example, you can easily add another disk I/O
driver for a new controller with minimum impact on the other parts of the BIOS.

4.1 Functional Sumary of BIOS Modules

The modules of the BIOS are BIOSKRNL.ASM, SCB.ASM, BOOT.ASM,
MOVE.ASM, CHARIO.ASM, DRVTBL.ASM, and a disk I/O module for each supported disk
controller in the configuration.

BIOSKRNL.ASM is the kernel, root, or supervisor module of the BIOS. The
SCB.ASM module contains references to locations in the System Control Block. You can
customize the other modules to support any hardware configuration. To customize your system,
add or modify external modules other than the kernel and the SCE.ASM module.

Digital Research supplies the BIOSKRNL.ASM module. This module is the fixed,
invariant portion of the BIOS, aiid the interface from the BDOS to all BIOS functions. I t i s
supplied in source form for reference only, and you should not modify it except for the equate
statement described in the following paragraph.

You must be sure the equate statement (banked equ true) at the start of the
BIOSKRNL.ASM source file is correct for your system configuration. Digital Research
distributes the BIOSKRNL.ASM file for a banked system. If you are creating a BIOS for a
nonbanked system, change the equate statement to the following:

banked equ false

and reassemble with RMAC. This is the only change you should make to the BIOSKRNL.ASM
file.

Table 4-1 summarizes the modules in the CP/M 3 BIOS.

71

4.1 Functional Summary of BIOS Modules CP/M 3 System Guide

Table 4-1. CP/M 3 BIOS Module Function Summary

Module Fun c t ion

BIOSKRNL.ASM

Performs basic system initialization, and dispatches character and disk I/O.

SCB.ASM module

Contains the public definitions of the various fields in the System Control Block.
The BIOS can reference the public variables.

BOOT.ASM module

Performs system initialization other than character and disk VO. BOOT loads the
CCP for cold starts and reloads it for warm starts. CHARIO.ASM module

Performs all character device initialization, input, output, and status polling.
CHARIO contains the character device characteristics table.

DRVTBL.ASM module

Points to the data structures for each configured disk drive. The drive table
determines which physical disk unit is associated with which logical drive.
The data structure for each disk drive is called
an Extended Disk Parameter Header (XDPH).

Disk VO modules

Initialize disk controllers and execute READ and WRITE code for disk
controllers. You must provide an XDPH for each supported unit, and a separate
disk VO module for each controller in the system. To add another disk controller
for which a prewritten module exists, add its XDPH names to the DRVTBL and
link in the new module.

72

4.1 Functional Summary of BIOS Modules CP/M 3 System Guide

Table 4-1. (continued)

Module Fu n ct ion

MOVE.ASM module

Performs memory-to-memory moves and bank selects.

4.2 Conventions Used in BIOS Modules

The Digital Research RMAC relocating assembler and LINK-80 linkage editor allow a
module to reference a symbol contained in another module by name. This is called an external
reference. The Microsoft relocatable object module format that RMAC and LINK use allows
six-character names for externally defined symbols. External names must be declared PUBLIC
in the module in which they are defined. The external names must be declared EXTRN in any
modules that reference them.

The modular BIOS defines a number of external names for specific purposes. Some of
these are defined as public in the root module, BIOSKRNL.ASM. Others are declared external
in the root and must be defined by the system implementor. Section 4.4 contains a table
summarizing all predefined external symbols used by the modular BIOS.

External names can refer to either code or data. Al l predefined external names in the
modular BIOS prefixed with a @ character refer to data items. All external names prefixed
with a? character refer to a code label. To prevent conflicts with future extensions, user-defined
external names should not contain these characters.

4.3 Interactions of Modules

The root module of the BIOS, BIOSKRNL.ASM, handles all BDOS calls, performs
interfacing functions, and simplifies the individual modules you need to create.

4.3.1 Initial Boot

BIOSKRNL.ASM initializes all configured devices in the following order:

I) BIOSKRNL calls?CINIT in the CHARIO module for each of the
16 character devices and initializes the devices.

2) BIOSKRNL invokes the INIT entry point of each XDPH in the
FD1797SD module.

73

4.3 Interactions of Modules CP/M 3 System Guide

3)BIOSKRNL calls the?INIT entry of the BOOT module to
initialize other system hardware, such as memory
controllers, interrupts, and clocks. It prints a sign-on
message specific to the system, if desired.

4) BIOSKRNL calls?LDCCP in the BOOT module to load the CCP
into the TPA.

5) The BIOSKRNL module sets up Page Zero of the TPA with the
appropriate jump vectors, and passes control to the CCP.

4.3.2 Character I/O Operation

The CHARIO module performs all physical character I/O. This module contains both the
character device table (@CTBL) and the routines for character input, output, initialization, and
status polling. The character device table, @CTBL, contains the ASCII name of each device,
mode information, and the current baud rate of serial devices.

To support logical to physical redirection of character devices, CP/M 3 supplies a 16-bit
assignment vector for each logical device. The bits in these vectors correspond to the physical
devices. The character VO interface routines in BIOSKRNL handle all device assignment,
calling the appropriate character I/O routines with the correct device number. The BIOSKRNL
module also handles XON/XOFF processing on output devices where it is enabled.

You can use the DEVICE utility to assign several physical devices to a logical device.
The BIOSKRNL root module polls the assigned physical devices, and either reads a character
from the first ready input device that is selected, or sends the character to all of the selected
output devices as they become ready.

4.3.3 Disk I/O Operation

The BIOSKRNL module handles all BIOS calls associated with disk VO. It initializes
global variables with the parameters for each operation, then invokes the READ or WRITE
routine for a particular controller. The SELDSK routine in the BIOSKRNL calls the LOGIN
routine for a controller when the BDOS initiates a drive login. This allows disk density or media
type to be automatically determined.

The DRVTBL module contains the sixteen-word drive table, @DTBL. The order of the
entries in @DTBL determines the logical to physical drive assignment. Each word in @DTBL
contains the address of a DPH, which is part of an XDPH, as shown in Table 4-10. The word
contains a zero if the drive does not exist. The XDPH contains the addresses of the INIT,
LOGIN, READ, and WRITE entry points of the I/O driver for a particular controller. When the
actual drivers are called, globally accessible variables contain the various parameters of the
operation, such as the track and sector.

74

4.4 Predefined Variables and Subroutines CP/M 3 system Guide

4.4 Predefined Variables and Subroutines

The modules of the BIOS define public variables which other modules can reference.
Table 4-2 contains a summary of each public symbol and the module that defines it.

Table 4-2. Public Symbols in CP/M 3 BIOS

Function and Use
Defined
in ModuleSymbol

@ADRV
@CBNK
@CNT
@CTBL
@DBNK
@DMA
@DTBL
@RDRV
@SECT
@TRK
?BANK
?Ci
?CINIT
?CIST
?CO
?COST
? INIT
?LDCCP
?MOVE
? PDEC
?PDERR
?PMSG
?RLCCP
?XMOVE
?TIME

BIOSKRNL
BIOSKRNL
BIOSKRNL
CHARIO
BIOSKRNL
BIOSKRNL
DRVTBL
BIOSKRNL
BIOSKRNL
BIOSKRNL
MOVE
CHARIO
CHARIO
CHARIO
CHARIO
CHARIO
BOOT
BOOT
MOVE
BIOSKRNL
BIOSKRNL
BIOSKRNL
BOOT
MOVE
BOOT

Byte, Absolute drive code
Byte, Current CPU bank
Byte, Multisector count
Table, Character device table
Byte, Bank for disk I/O
Word, DMA address
Table, Drive table
Byte, Relative drive code (UNIT)
Word, Sector address
Word, Track number
Bank select
Character device input
Character device initialization
Character device input status
Character device output
Character device output status
General initialization
Load CCP for cold start

Move memory to memory
Print decimal number
Print BIOS disk error header

Print message
Reload CCP for warm start
Set banks for extended move
Set or Get time

The System Control Block defines public variables that other modules can reference.

@LOVEC are referenced by BIOSKR,-NL.ASM. The variable @BNKBF can be used by
?LDCCP and?RLCCP to implement interbank block moves. The public variable names
@ERMDE, @FX, @RESEL, @VINFO, @CRDSK, @USRCD, and @CRDf4A are used for
error routines which intercept BDOS errors. The publics @DATE, @HOUR, @MIN, and
@SEC can be updated by an interrupt-driven real-time clock. @MXTPA contains the current
BDOS entry point.

The System Control Block variables @CIVEC, @COVEC, @AIVEC, @AOVEC, and

Disk VO operation parameters are passed in the following global variables, as shown in
Table 4-3.

75

4.4 Predefined Variables and Subroutines CP/M 3 system Guide

Table 4-3. Global Variables in BIOSKRNL.ASM

Variable Meaning

@ADRV

@TRK

@SECT

@RDRV

Byte; contains the absolute drive code (0 through F for A through P) that
CP/M is referencing for READ and WRITE operations. The SELDSK
routine in the BIOSKRNL module obtains this value from the BDOS and
places it in @DRV. The absolute drive code is used to print error
messages.

Byte; contains the relative drive code for READ and WRITE operations.
The relative drive code is the UNIT number of the controller in a given
disk I/O module. BIO SKRNL obtains the unit number from the XDPH.
This is the actual drive code a driver should send to the controller.

Word; contains the starting track for READ and WRITE.

Word; contains the starting sector for READ and WRITE.

Word; contains the starting disk transfer address.@DMA

@DBNK Byte; c ontains the bank of the DMA buffer.

@CNT

@CBNK Byte; co n tains the current bank for code execution.

Byte; contains the physical sector count for the operations that follow.

Several utility subroutines are defined in the BIOSKRNL.ASM module, as shown in
Table 4-4.

Table 4-4. Public Utility Subroutines in BIOSKRNL.ASK

utility I

?PMSG

meaning

Print string starting at <HL>, stop at null (0).

Print binary number in decimal from HL.?PDEC

?PDERR Print d isk error message header using current disk parameters:
<CR><LF>BIOS Error on d:, T- nn, S-nn.

76

4.4 Predefined Variables and Subroutines CP/M 3 system Guide

All BIOS entry points in the jump vector are declared as public for general reference by
other BIOS modules, as shown in Table 4-5.

Table 4-5. Public Names in the BIOS Jump Vector

Public Name Function

Cold boot entry
Warm boot entry
Console input status
Console input
Console output
List output
Auxiliary output
Auxiliary input
Home disk drive
Select disk drive
Set track

Set sector
Set DMA address
Read record
Write record
List status
Translate sector
Console output status
Auxiliary input status
Auxiliary output status
Return character device table address
Initialize character device
Return disk drive table address
Set multiple sector count
Flush deblocking buffers (not implemented)
Move memory block
Signal set or get time from clock
Set bank for further execution

Set bank for DMA
Set banks for next move

?BOOT
?WBOOT
?CONST
?CONIN
?CONO
? LIST
?AUXO
?AUXI
?HOME
?SLDSK
?ST12RK
?STSEC
?STDMA
?READ
? WRITE
? LISTS
?SCTRN
?CONOS
?AUXIS
?AUXOS
?DVTBL
? DEVIN
?DRTBL
? MLTIO
?FLUSH
?MOV
?TIM
?BNKSL
?STBNK
?XMOV

4.5 BOOT Module

The BOOT module performs general system initialization, and loads and reloads the
CCP. Table 4-6 shows the entry points of the BOOT module.

77

4.5 BOOT Module CP/M 3 System Guide

Table 4-6. BOOT Module Entry Points

Module Meaning

? INIT

?LDCCP

The BIOSKRNL module calls?INIT during cold start to perform
hardware initialization other than character and disk VO. Typically, this
hardware can include time-of-day clocks, interrupt systems, and special
I/O ports used for bank selection.

BIOSKRNL calls?LDCCP during cold start to load the CCP into the
TPA. The CCP can be loaded either from the system tracks of the boot
device or from a file, at the discretion of the system implementor. In a
banked system, you can place a copy of the CCP in a reserved area of
another bank to increase the performance of the?RLCCP routine.

BIOSKRNL calls?RLCCP during warm start to reload the CCP into the
TPA. In a banked system, the CCP can be copied from an alternate bank
to eliminate any disk access. Otherwise, the CCP should be loaded from
either the system tracks of the boot device or from a file.

?RLCCP

4.6 Character I/O

The CHARIO module handles all character device interfacing. The CHARIO module
contains the character device definition table @CTBL, the character input routine?CI , the
character output routine?CO, the character input status routine?CIST, the character output
s tatus routine?COST, and the character device initialization routine?CINIT .

The BIOS root module, BIOSKRNL.ASM, handles all character I/O redirection. Th is
module determines the appropriate devices to perform operations and executes the actual
operation by calling?CI,?CO,?CIST, and?COST with the proper device number(s).

@CTBL is the external name for the structure CHRTBL described in Section 3 of this
manual. @CTBL contains an 8-byte entry for each physical device def-ined by this BIOS. The
table is terminated by a zero byte after the last entry.

The first field of the character device table, @CTBL, is the 6- byte device name. This
device name should be all upper-case, left- justified, and padded with ASCII spaces (20H).

78

4.6 Character VO CP/M 3 System Guide

The second field of @CTBL is 1 byte containing bits that Indicate the type of device
and its current mode, as shown in Table 4-7.

Table 4-7. Mode Bits

MeaningMode Bits

00000001
00000010
00000011

00000100

Input device (such as a keyboard)
output device (such as a printer)
Input/output device (such as a terminal
or modem)
Device has software-selectable baud
rates
Device may use XON protocol
XON/XOFF protocol enabled

00001000
00010000

The third field of @CTBL is 1 byte and contains the current baud rate for serial
devices. The high-order nibble of this field is reserved for future use and should be set to zero.
The low-order four bits contain the current baud rate as shown in Table 4-8. Many systems do
not support all of these baud rates.

Table 4-8. Baud Rat e s for Serial Devices

Decimal Baud RateBinary

0 1

2 3

4 5 6

7 8

9 10

0000
0001
0010
0011
010 0
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

none
50
75
110
134. 5
150
300
600
1200
1800
2400
3600
4800
7200
9600
19200

11
12
13
14
15

Table 4-9 shows the entry points to the routines in the CHARIO module. The
BIOSKRNL module calls these routines to perform machine-dependent character I/O.

79

4.6 Character VO CP/M 3 System Guide

Table 4-9. Character Device Labels

Label Me a ning

?Ci C h aracter Device Input

?CI is called with a device number in register B. It should wait for the
next available input character, then return the character in register A. The
character should be in 8-bit ASCII with no parity.

?CO C haracter Device Output

?CO is called with a device number in register B and a character in
register C. It should wait until the device is ready to accept another
character and then send the character. The character is in 8-bit ASCII wi th
no parity.

?CIST Character Device Input Status

?CIST is called with a device number in register B. It should return with
register A set to zero if the device specified has no input character ready;
and should return with A set to OFFH if the device specified has an input
character ready to be read.

?COST Character Device Output Status

?COST is called with a device number in register B. It should return with
register A set to zero if the device specified cannot accept a character
immediately, and should return with A set to OFFH if the device is ready
to accept a character.

?CINIT Character Device Initialization

?CINIT is called for each of the 16 character devices, and initializes the
devices. Register C contains the device number. The?CINIT routine
initializes the physical character device specified in register C to the baud
rate contained in the appropriate entry of the CHRTBL. You only need to
supply this routine if I/O redirection has been implemented. It is
referenced only by the DEVICE utility supplied with CP/M 3.

80

4.7 Disk VO CP/M 3 System Guide

4.7 Disk I/O

The separation of the disk I/O section of the BIOS into several modules allows you to

manufacturer can supply the code for a controller in object module form, and you can link it into
any existing modular BIOS to function with other controllers in the system.

support each particular disk controller independently from the rest of the system. A

The data structure called the Extended Disk Parameter Header, or XDPH, contains all

particular logical drive using the Drive Table. The XDPH contains the addresses of the READ,
WRITE, initialization, and login routines. The XDPH also contains the relative unit number of
the drive on the controller, the current media type, and the Disk Parameter Header (DPH) that
the BDOS requires. Section 3 of this manual describes the Disk Parameter Header.

the necessary information about a disk drive. BIOSKRNL.ASM locates the XDPH for a

The code to read and write from a particular drive is independent of the actual CP/M
logical drive assignment, and works with the relative unit number of the drive on the controller.
The position of the XDPH entry in the DRVTBL determines the actual CP/M 3 drive code.

4.7.1 Disk I/O Structure

The BIOS requires a DRVTBL module to locate the disk driver. it also requires a disk
module for each controller that is supported.

The drive table module, DRVTBL, contains the addresses of each XDPH defined in the
system. Each XDPH referenced in the DRVTBL must be declared external to link the table with
the actual disk modules.

The XDPHs are the only public entry points in the disk I/O modules. The root module
references the XDPHs to locate the actual I/O driver code to perform sector READS and
WRITES. When the READ and WRITE routines are called, the parameters controlling the
READ or WRITE operation are contained in a series of global variables that are declared public
in the root module.

4.7.2 Drive Table Module (DRVTBL)

The drive table module, DRVTBL, def ines the CP/M absolute drive codes associated
with the physical disks.

The DRVTBL module contains one public label, @DTBL. @DTBL is a 16-word table
containing the addresses of up to 16 XDPH'S. Each XDPH name must be declared external in
the DRVTBL. The f i rst entry corresponds to drive A, and the last to drive P. You must set an
entry to 0 if the corresponding drive is undefined. Selecting an undefined drive causes a BDOS
SELECT error.

81

4.7 Disk VO CP/M 3 System Guide

4.7.3 Extended Disk Parameter Headers (XDPHS)

An Extended Disk Parameter Header (XDPH) consists of a prefix and a regular Disk
Parameter Header as described in Section 3. The label of a XDPH references the start of the
DPH. The fields of the prefix are located at relative offsets from the XDPH label.

The XDPHs for each unit of a controller are the only entry points in a particular disk
drive module. They contain both the DPH for the drive and the addresses of the various action
routines for that drive, including READ, WRITE, and initialization. Figure 4-1 shows the
format of the Extended Disk Parameter Header.

ADDRESS LOW BYTE HIGH BYTE
1578

XDPH-10 addr of sector WRITE

XDPH-8 addr of sector READ

XDPH-6 addr of drive LOGIN

XDPH-4 addr of drive INIT

XDPH-2 unit tYpe

addr of translate table
start of
regular DPHXDPH+0

XDPH+2

XDPH+4

XDPH+6

XDPH+8

XDPH+10 Media Flag

XDPH+12 addr of DPB

XDPH+14 addr of CSV

XDPH+16 addr of ALV

addr of DIRBCBXDPH+18

XDPH+20 addr of DTABCB

XDPH+22 addr of HASH

XDPH+24 hash bank

Figure 4-1. XDPH Format

82

4.7 Disk VO CP/M 3 System Guide

Table 4-10 describes the fields of each Extended Disk Parameter Header.

Table 4-10. Fields of Each XDPH

Field Meaning

WRITE The WR I TE word contains the address of the sector WRITE routine for
the drive.

READ The REA D word contains the address of the sector READ routine for the
drive.

LOGIN The LO G IN word contains the address of the LOGIN routine for the
drive.

INIT

UNIT

The INIT word contains the address of the f irst-time initialization code for
the drive.

The UNIT byte contains the drive code relative to the disk controller.
This is the value placed in @RDRV prior to calling the READ, WRITE,
and LOGIN entry points of the drive.

The TYPE byte is unused by the BIOS root, and is reserved for the driver
to keep the current density or media type to support multiple-format disk
subsystems.

TYPE

regular DPH The remaining fields of the XDPH comprise a standard DPH, as
discussed in Section 3 of this manual.

4.7.4 Subroutine Entry Points

The pointers contained in the XDPH reference the actual code entry points to a disk
driver module. These routines are not declared public. Only the XDPH itself is public. The
BIOS root references the XDPHs only through the @DTBL. Table 4-11 shows the BIOS
subroutine entry points.

83

4.7 Disk VO CP/M 3 System Guide

Table 4-11. Subroutine Entry Points

Entry Point meaning

WRITE

READ

LOGIN

When the WRITE routine is called, the address of the XDPH is passed in
registers DE. The parameters for the WRITE operation are contained in
the public variables @ADRV, @RDRV, @TRK, @SECT, @DMA,
and @DBNK. The WRITE routine should return an error code in register
A. The code 00 means a successful operation, 01 means a permanent error
occurred, and 02 means the drive is write-protected if that feature is
supported.

When the READ routine is called, the address of the XDPH is contained in
registers DE. The parameters for the READ operation are contained in
the public variables @ADRV, @RDRV, @TRK, @SECT, @DMA, and
@DBNK. The READ routine should return an error code in register A. A
code of 00 means a successful operation and 01 means a permanent error
occurred.

The LOGIN routine is called before the BDOS logs into the drive, and
allows the automatic determination of density. The LOGIN routine can
alter the various parameters in the DPH, including the translate table
address (TRANS) and the Disk Parameter Block (DPB) . T h e LOGIN
routine can also set the TYPE byte. On single media type systems, the
LOGIN routine can simply return. When LOGIN is called, the registers
DE point to the XDPH for this drive.

The BOOT entry of the BIOSKRNL module calls each INIT routine
during cold start and prior to any other disk accesses. INIT can perform
any necessary hardware initialization, such as setting up the controller and
interrupt vectors, if any.

INIT

4.7.5 Er ror Handling and Recovery

The READ and WRITE routines should perform several retries of an operation that
produces an error. If the error is related to a seek operation or a record not found condition, the
retry routine can home or restore the drive, and then seek the correct track. The exact sequence
of events is hardware-dependent.

84

4.7 Disk VO CP/M 3 System Guide

When a nonrecoverable error occurst the READ or WRITE routines can print an error
message informing the operator of the details of the error. The BIOSKRNL module supplies a
subroutine,?PDERR, to print a standard BIOS error message header. This routine prints the
following message:

BIOS Err on D: T-nn S-nn

The D: is the selected drive, and T-nn and S-nn display the track and sector number for the
operation. The READ and WRITE routines should print the exact cause of the error after this
message, such as Not Ready, or Write Protect. The driver can then ask the operator if additional
retries are desired, and return an error code to the BDOS if they are not.

However, if the @ERMDE byte in the System Control Block indicates the BDOS is
returning error codes to the application program without printing error messages, the BIOS
should simply return an error without any message.

4.7.6 Multiple Sector I/O

The root module global variable @CNT contains the multisector count. Refer to
Sections 2.5 and 3.4.3 for a discussion of the considerations regarding multirecord I/O.

4.8 MOVE Module

The MOVE Module performs memory-to-memory block moves and controls bank
selection. The?MOVE and?XMOVE entry points correspond directly to the MOVE and
XMOVE jump vector routines documented in Section 3. Table 4-12 shows the entry points for
the MOVE module.

85

4.7 Disk VO CP/M 3 System Guide

4.8 MOVE ModuleCP/M 3 Sytem Guide

Table 4-12. Move Module Entry Points

Entry Point M e aning

?MOVE Memory-to-memory move

?MOVE is called with the source address for the move in register DE, the
destination address in register HL, and the byte count in register BC. If
?XMOVE has been called since the last call to?MOVE, an interbank
move must be performed. On return, registers HL and DE must point to
the next bytes after the MOVE. This routine can use special DMA
hardware for the interbank move capability, and can use the Z80 LDIR
instruction for intrabank moves.

?XMOVE Set banks for one following?MOVE

?XMOVE is called with the destination bank in register B and the source
bank in register C. Interbank moves are only invoked if the DPHs specify
deblocking buffers in alternate banks.?XMOVE only applies to one call
to?MOVE. (Not implemented in the example.)

?BANK Set bank for execution

?BANK is called with the bank address in register A. This bank address
has already been stored in @CBNK for future reference. All registers
except A must be maintained upon return.

4.9 Linking Modules into the BIOS

The following lines are examples of typical link commands to build a modular BIOS
ready for system generation with GENCPK:

LINK BNKBIOS3[b]=BNKBIOS,SCB,BOOT,CHARIOPvIOVE,DRVTBL,<disk-modules>

LINK BIOS3[os]=BIOS,SCB,BOOT,CHARIO,MOVE,DRVTBL,<disk-modules>

End of Section 4

86

Section 5

System Generation

This section describes the use of the GENCPM utility to create a memory image
CPM3.SYS file containing the elements of the CP/M 3 operating system. T h is section also
describes customizing the LDRBIOS portion of the CPMLDR program, and the operation of
CPMLDR to read the CPM3.SYS file into memory. Fina l ly, this section describes the
procedure to follow to boot CP/M 3.

In the nonbanked system, GENCPM creates the CPM3.SYS file from the BDOS3.SPR
and your customized BIOS3.SPR files. In the banked system, GENCPM creates the CPM3.
SYS f i le from the RESBDOS3. SPR f i le, the BNKBDOS3.SPR file, and your customized
BNKBIOS3.SPR file.

If your BIOS contains a segment that can reside in banked memory, GENCPM

just below common memory, and a resident portion which resides in common memory.

GENCPM relocates the system modules, and can allocate physical record buffers,
allocation vectors, checksum vectors, and hash tables as requested in the BIOS data structures.
It also relocates references to the System Control Block, as described on page 27. GENCPM
accepts its command input from a file, GENCPM.DAT, or interactively from the console.

separates the code and data in BNKBIOS3.SPR into a banked portion which resides in Bank 0

5.1 GENCPM Utility

Syntax:

GENCPM I AUTO I AUTO DISPLAY)

Purpose:

GENCPM creates a memory image CPM3.SYS file, containing the CP/M 3 BDOS and
customized BIOS. The GENCPM utility performs late resolution of intermodule references
between system modules. GENCPM can accept its command input interactively from the
console or from a file GENCPM.DAT.

In the nonbanked system, GENCPM creates a CPM3.SYS file from the BDOS3.SPR
and BIOS3.SPR files. In the banked system, GENCPM creates the CPM3.SYS file from the
RESBDOS3.SPR, the BNKBDOS3.SPR and the BNKBIOS3.SPR files. Remember to back up
your CPM3.SYS file before executing GENCPM, because GENCPM deletes any existing
CPM3.SYS file before it generates a new system.

87

5.1 The GENCPM Utility

Input Files:

CP/M 3 System Guide

Banked System Nonbanked System

BNKBIOS3.SPR
RESBDOS3.SPR
BNKBDOS3.SPR

optionally GENCPM.DAT

BIOS3.SPR
BDOS3.SPR

Output File:

CPM3.S YS

optionally GENCPM.DAT

GENCpm determines the location of the system modules in memory and, optionally, the
number of physical record buffers allocated to the system. GENCPM can specify the location
of hash tables requested by the Disk Parameter Headers (DPHS) in the BIOS. GENCPM can
allocate all required disk buffer space and create all the required Buffer Control Blocks (BCBs).
GENCPM can also create checksum vectors and allocation vectors.

GENCPM can get its input from a file GENCPM.DAT. The values in the file replace the
default values of GENCPM. If you enter the AUTO parameter in the command line GENCPM
gets its input from the file GENCPM.DAT and generates a new system displaying only its sign­
on and sign-off messages on the console. If AUTO is specified and a GENCPM.DAT file does
not exist on the current drive, GENCPM reverts to manual generation.

If you enter the AUTO DISPLAY parameter in the command line, GENCPM
automatically generates a new system and displays all questions on the console. I f A U TO
DISPLAY is specified and a GENCPM.DAT file does not exist on the current drive, GENCPM
reverts to manual generation. If GENCPM is running in AUTO mode and an error occurs, it
reverts to manual generation and starts from the beginning.

The GENCPM.DAT file is an ASCII file of variable names and their associated values.
In the'following discussion, a variable name in the GENCPM.DAT file is referred to as a
Question Variable. A line in the GENCPM.DAT file takes the following general form:

Question Variable = value I? I?value <CR><LF>

value = ¹decimal value

or drive letter (A — P)
or Yes,No, Y,orN

or hexadecimal value

88

5.1 The GENCPM Utility CP/M 3 System Guide

You can specify a default value by following a question mark with the appropriate

user for input, then continue automatically. At a?value entry, GENCPM displays the default
value and stops for verification.

value, for example?A or?25 or?Y. The question mark tells GENCPM to stop and prompt the

The following pages display GENCPM questions. The items in parentheses are the
default values. The Question Variable associated with the question is shown below the
explanation of the answers to the questions.

Program Questions:

Use GENCPM.DAT for defaults (Y) ?
Enter Y — GENCPM gets its default values from the file GENCPM.DAT.

Enter N — GENCPM uses the built-in default values.

No Question Variable is associated with this question

Create a new GENCPM.DAT file (N) ?
Enter N — GENCPM does not create a new GENCPM.DAT fil,

Enter Y — After GENCPM generates the new CPM3.SYS file it creates a new
GENCPM.DAT file containing the default values.

Question Variable: CRDATAF

Display Load Table at Cold Boot (Y) ?
Enter Y — On Cold Boot the system displays the load table containing the
filename, filetype, hex starting address, length of system modules, and the TPA
size.

Enter N — System displays only the TPA size on cold boot.

Question Variable: PRTMSG

Number of console columns (¹80) ?
Enter the number of columns (characters-per-line) for your console.

A character in the last column must not force a new line for console editing in
CP/M 3. If your terminal forces a new line automatically, decrement the column
count by one.

Question Variable: PAGWID

89

5.1 The GENCPM Utility

Number of lines per console page (¹24) ?

CP/M 3 System Guide

Enter the number of the lines per screen for your console.

Question Variable: PAGLEN

Backspace echoes erased character (N) ?
Enter N — Backspace (Ctrl-H, 08H) moves back one column and erases the
previous character.

Enter Y — Backspace moves forward one column and displays the previous
character.

Question Variable: BACKSPC

Rubout echoes erased character (Y) ?

Enter Y — Rubout (7FH) moves forward one column and displays the previous
character.

Enter N — Rubout moves back one column and erases the previous character.

Question Variable: RUBOUT

Initial default drive (A:) ?
Enter the drive code the prompt is to display at cold boot.

Question Variable: BOOTDRV

Top page of memory (FF) ?
Enter the page address that is to be the top of the operating system. OFFH is the
top of a 64K system.

Question Variable: MEMTOP

Bank-switched memory (Y) ?
Enter Y — GENCPM uses the banked system files.

Enter N — GENCPM uses the nonbanked system files.

Question Variable: BNKSWT

Common memory base page (CO) ?
This question is displayed only if you answered Y to the previous question. Enter
the page address of the start of common memory.

Question Variable: COMBAS

5.1 The GENCPM Utility CP/M 3 System Guide

Long error messages (Y) ?

This question is displayed only if you answered Y to bank- switched memory.

Enter Y — CP/M 3 error messages contain the BDOS function number and the
name of the file on which the operation was attempted.

Enter N — CP/M 3 error messages do not display the function number or file.

Question Variable: LERROR

Double allocation vectors (Y) ?

This question is displayed only if you answered N to bank- switched memory.
For more information about double allocation vectors, see the definition of the
Disk Parameter Header ALV field in Section 3.

Enter Y — GENCPM creates double-bit allocation vectors for
each drive.

Enter N — GENCPM creates single-bit allocation vectors for each drive.

Question Variable: DBLALV

Accept new system definition (Y) ?

Enter Y GENCPM proceeds to the next set of questions.

Enter N GEN CPM repeats the previous questions and displays your previous
input in the default parentheses. You can modify your answers.

No Question Variable is associated with this question.

Number of memory segments (¹3)?

GENCPM displays this question if you answered Y to bank- switched memory.

Enter the number of memory segments in the system. Do not count common
memory or memory in Bank 1, the TPA bank, as a memory segment. A
maximum of 16 (0 — 15) memory segments are allowed. The memory segments
define to GENCPM the memory available for buffer and hash table allocation.
Do not include the part of Bank 0 that is reserved for the operating system.

Question Variable: NUMSEGS

91

5.1 The GENCPM Utility CP/M 3 System Guide

CP/M 3 Base, size, bank (8E,32,00)
Enter memory segment table:

Base, size, bank (00,8E,OO) ?
Base, size, bank (OO,CO,02) ?
Base, size, bank (OO,CO,03) ?

Enter the base page, the length, and the bank of the memory segment.

Question Variable: MEMSEGO¹ where 0 to F hex

Accept new memory segment table entries (Y) ?
Enter Y GENCPM displays the next group of questions.

Enter N GEN CPM displays the memory segment table definition questions
again.

No Question Variable is associated with this question.

Setting up directory hash tables:
Enable hashing for drive d: (Y)

GENCPM displays this question if there is a Drive Table and if the DPHs for a
given drive have an OFFFEH in the hash table address field of the DPH. The
question is asked for every drive d: defined in the BIOS.

Enter Y — Space is allocated for the Hash Table. The address and bank of the
Hash Table is entered into the DPH.

Enter N — No space is allocated for a Hash Table for that drive.

Question Variable: HASHDRVD where d= drives A-P.

Setting up Blocking/Deblocking buffers:
GENCPM displays the next set of questions if either or both the DTABCB field
or the DIRBCB field contain OFFFEH.

Number of directory buffers for drive d: (¹I) ? 10
This question appears only if you are generating a banked system. Enter the
number of directory buffers to allocate for the specified drive. I n a banked
system, directory buffers are allocated only inside Bank 0. In a nonbanked
system, one directory buffer is allocated above the BIOS.

Question Variable: NDIRRECD where d= drives A-P.

92

5.1 The GENCPM Utility CP/M 3 System Guide

Number of data buffers for drive d: (¹I) ? 1

This question appears only if you are generating a Banked system. Enter the
number of data buffers to allocate for the specified drive. In a banked system,
data buffers can only be allocated outside Bank 1, and in common. You can only
allocate data buffers in alternate banks if your BIOS supports interbank moves.
In a nonbanked system, data buffers are allocated above the BIOS.

Question Variable: NDTARECD where d= drives A-P.

Share buffer(s) with which drive (A:) ?

This question appears only if you answered zero to either of the above questions.
Enter the drive letter (A-P) of the drive with which you want this drive to share
a buffer.

Question Variable: ODIRDRVD for directory records where d= drives A-P.

Question Variable: ODT A DRVD for data records where d drives A-P.

Allocate buffers outside of Commom (N)?

This question appears if the BIOS XMOVE routine is implemented.

Answer Y — GENCPM allocates data buffers outside of common and Bank 0.

Answer N — GENCPM allocates data buffers in common.

Question Variable: ALTBNKSD where d= drives A-P.

Overlay Directory buffer for drive d: (Y) ?

This question appears only if you are generating a nonbanked system.

Enter Y t h is drive shares a directory buffer with another drive.

Enter N GE NCPM allocates an additional directory buffer above the BIOS.

Question Variable: OVLYDIRD where d= drives A-P.

93

5.1 The GENCPM Utility

Overlay Data buffer for drive d: (Y) ?

CP/M 3 System Guide

This question appears only if you are generating a nonbanked system.

Enter Y — this drive shares a data buffer with another drive.

Enter N — GENCPM allocates an additional data buffer above the BIOS.

Question Variable: OVLYDTAD for directory records where d = drives A-P.

Accept new buffer definitions (Y) ?
Enter Y GENCPM creates the CPM3.SYS file and terminates.

Enter N GENCPM redisplays all of the buffer definition questions.

No Question Variable is associated with this question.

Examples:

The following section contains examples of two system generation sessions. If no entry
follows a program question, assume RETURN was entered to select the default value in
parentheses. Entries different from the default appear after the question mark.

EXAMPLE OF CONTENTS OF GENCPM.DAT FILE

combas = c0 <CR>
lerror =? <CR>
numsegs 3 <CR>
memseg00 00,80,00 <CR>
memseg01 Od,b3,02 <CR>
memsegOf ?00,c0,10 <CR>
hashdrva y <CR>
hashdrvd n <CR>
ndirreca 20 <CR>
ndtarecf 10 <CR>

EXAMPLE OF SYSTEM GENERATION WITH BANKED MEMORY

A>GENCPM

CP/M 3.0 System Generation
Copyright (C) 1982, Digital Research

Default entries are shown in (parens).
Default base is Hex, precede entry with ¹ for decimal

94

5.1 The GENCPM Utility CP/M 3 System Guide

Use GENCPM.DAT for defaults (Y) ?
Create a new GENCPM.DAT file (N) ?
Display Load Map at Cold Boot (Y) ?
Number of console columns (¹80) ?
Number of lines in console page (¹24) ?
Backspace echoes erased character (N) ?
Rubout echoes erased character (N) ?
Initial default drive (A:) ?
Top page of memory (FF) ?
Bank switched memory (Y) ?
Common memory base page (CO) ?
Long error messages (Y) ?
Accept new system definition (Y) ?
Setting up Allocation vector for drive A:
Setting up Checksum vector for drive A:
Setting up Allocation vector for drive B:
Setting up Checksum vector for drive B:
Setting up Allocation vector for drive C:
Setting up Checksum vector for drive C:
Setting up Allocation vector for drive D:
Setting up Checksum vector for drive D:

Bank 1 and Common are not included ***

in the memory segment table.

Number of memory segments (¹3)?
CP/M 3 Base, size, bank (8B,35,00)
Enter memory segment table:
Base, size, bank (00,8B,OO) ?
Base, size, bank (OD,B3,02) ?
Base, size, bank (OO,CO,03) ?
CP/M 3 Sys S B OOH 3500H Bank 00
Memseg No. 00 OOOOH BBOOH Bank 00
Memseg No. 01 ODOOH B300H Bank 02
Memseg No. 02 OOOOH COOOH Bank 03
Accept new memory segment table entries (Y) ?
Setting up directory hash tables:
Enable hashing for drive A: (Y) ?
Enable hashing for drive B: (Y) ?
Enable hashing for drive C: (Y) ?
Enable hashing for drive D: (Y) ?

95

5.1 The GENCPM Utility

Setting up Blocking/Deblocking buffers:
The physical record size is 0200H:

Available space in 256 byte pages:
TPA = OOF4H, Bank 0 = OOBBH, Other banks = 0166H

Number of directory buffers for drive A: (¹32) ?

TPA = OOF4H, Bank 0 = 0049H, Other banks = 0166H

CP/M 3 System Guide

Available space in 256 byte pages:

Number of data buffers for drive A: (¹2) ?
Allocate buffers outside of Common (N) ?

Available space in 256 byte pages:
TPA = OOFOH, Bank 0 = 0049H, Other banks = 0166H

Number of directory buffers for drive B; (¹32) ?

TPA = OOFOH, Bank 0 = 0007H, Other banks = 0166H
Available space in 256 byte pages:

Number of data buffers for drive B: (¹0) ?
Share buffer(s) with which drive (A:) ?

The physical record size is 0080H:
Available space in 256 byte pages:
TPA = OOFOH, Bank 0 = 0007H, Other banks = 0166H

Number of directory buffers for drive C: (410) ?

TPA = OOFOH, Bank 0 = 0001H, Other banks = 0166H

Number of directory buffers for drive D: (¹0) ?
Share buffer(s) with which drive (C:) ?

Available space in 256 byte pages:

Available space in 256 byte pages:
TPA = OOFOH, Bank 0 = 0001H, Other banks = 0166H

Accept new buffer definitions (Y) ?
BNKBIOS3 SPR F600H 0600H
BNKBIOS3 SPR BIOOH OFOOH
RESBDOS3 SPR FOOOH 0600H
BNKBDOS3 SPR 8700H 2AOOH

*** CP/M 3.0 SYSTEM GENERATION DONE

In the preceding example GENCPM displays the resident portion of
BNKBIOS3.SPR first, followed by the banked portion.

96

5.1 The GENCPM Utility CP/M 3 System Guide

EXAMPLE OF SYSTEM GENERATION WITH NONBANKED MEMORY

A>GENCPM
CP/M 3.0 System Generation
Copyright (C) 1982, Digital Research
Default entries are shown in (parens).
Default base is Hex, precede entry with fo r decimal
Use GENCPM.DAT for defaults (Y) ?
Create a new GENCPM.DAT file (N) ?
Display Load Map at Cold Boot (Y) ?
Number of console columns (¹80) ?
Number of lines in console page (¹24) ?
Backspace echoes erased character (N) ?
Rubout echoes erased character (N) ?
Initial default drive (A:) ?
Top page of memory (FF) ?
Bank switched memory (Y) ? N
Double allocation vectors (Y) ?
Accept new system definition (Y) ?
Setting up Blocking/Deblocking buffers:
The physical record size is 020OH:

Available space in 256 byte pages:
TPA = OOD8H
Directory buffer required
and allocated for drive A:

Available space in 256 byte pages:
TPA = OOD5H

Available space in 256 byte pages:
TPA = OOD5H

Overlay Data buffer for drive A: (Y) ?

Overlay Directory buffer for drive B: (Y) ?
Share buffer(s) with which drive (A:) ?

Available space in 256 byte pages:
TPA = OOD5H

97

5.1 The GENCPM Utility CP/M 3 System Guide

Overlay Data buffer for drive B: (Y) ?
Share buffer(s) with which drive (A:) ?

The physical record size is OOBOH:

Available space in 256 byte pages:
TPA = 0005H

Overlay Directory buffer for drive C: (Y) ?
Share buffer(s) with which drive (A:) ?

Available space in 256 byte pages:
TPA = OOD5H

Overlay Directory buffer for drive D: (Y) ?
Share buffer(s) with which drive (C;) ?

Available space in 256 byte pages:
TPA = OOD5H

Accept new buffer definitions (Y) ?

BIOS3 SPR F300H OBOOH
BDOS3 SPR D600H 1DOOH

*** CP/M 3.0 SYSTEM GENERATION DONE

A>

5.2 Customizing the CPMLDR

The CPMLDR resides on the system tracks of a CP/M 3 system disk, and loads the
CPM3.SYS file into memory to cold start the system. CPMLDR contains the LDRBDOS
supplied by Digital Research, and must contain your customized LDRBIOS.

The system tracks for CP/M 3 contain the customized Cold Start Loader, CPMLDR with
the customized LDRBIOS, and possibly the CCP.

The COPYSYS utility places the Cold Start Loader, the CPMLDR, and optionally the
CCP on the system tracks, as shown in Table 5-1.

98

5.2 Customizing the CPMLDR CP/M 3 System Guide

Table 5-1. Sample CP/M 3 System Track Organization

Track Sector Page Me m ory Address CP/M 3 Module Name

00 0 1
00 02 00

Boot Address
0100H

Cold Start Loader
CPMLDR

and

00 21 09
00 22 10

OA80H
OBOOH

LDRB DOS
LDRBIOS

00 26 12
0 1 0 1 12

andODOOH
OD80H

1AOOH0 1 26 25

Typically the Cold Start Loader is loaded into memory from Track 0, Sector 1 of the
system tracks when the reset button is depressed. The Cold Start Loader then loads CPMLDR
from the system tracks into memory.

CCP

Alternatively, if you are starting from an existing CP/M 2 system, you can run
CPMLDR.COM as a transient program. CP/M 2 loads CPMLDR.COM into memory at location
100H. CPMLDR then reads the CPM3.SYS file from User 0 on drive A and loads it into
memory.

Use the following procedure to create a customized CPMLDR.COM file, including
your customized LDRBIOS:

I) Pr epare a LDRBIOS.ASM file.

2) A s semble the LDRBIOS file with RMAC to produce a LDRBIOS.REL file.

3) L i n k the supplied CPMLDR.REL file with the LDRBIOS.REL file you created to
produce a CPMLDR.COM file.

A>LINK CP f4LDR [LIOO] =CPNLDR 8.DRB IOS

Replace the address 100 with the load address to which your boot loader loads
CPMLDR.COM. You must include a bias of 100H bytes for buffer space when
you determine the load address.

99

5.2 Customizing the CPMLDR CP/M 3 System Guide

The CPMLDR requires a customized LDRBIOS to perform disk input and console output.
The LDRBIOS is essentially a nonbanked BIOS. The LDRBIOS has the same JMP vector as the
regular CP/M 3 BIOS. The LDRBIOS is called only to perform disk reads (READ) from one
drive, console output (CONOUT) for sign-on messages, and minimal system initialization.

The CPMLDR calls the BOOT entry point at the beginning of the LDRBIOS to allow it to

CPMLDR instead of loading and branching to the CCP, as a BIOS normally does. Note that
interrupts are not disabled when the LDRBIOS BOOT routine is called.

perform any necessary hardware initialization. The BOOT entry point should return to

Test your LDRBIOS completely to ensure that it properly performs console character
output and disk reads. Check that the proper tracks and sectors are addressed on all reads and
that data is transferred to the proper memory locations.

You should assemble the LDRBIOS.ASM file with a relocatable origin of 0000H.

LDRBIOS.REL file with the CPMLDR.REL file supplied by Digital Research to create a
CPMLDR.COM .file. Use the L option in LINK to specify the load origin (address) to which the
boot loader on track 0 sector 1 loads the CPMLDR.COM file.

Assemble the LDRBIOS with RMAC to produce a LDRBIOS.REL file. Link the

Unnecessary BIOS functions can be deleted from the LDRBIOS to conserve space. There
is one absolute restriction on the length of the LDRBIOS; it cannot extend above the base of the
banked portion of CP/M 3. (GENCPM lists the base address of CP/M 3 in its load map.) If you
plan to boot CP/M 3 from standard, single-density, eight-inch floppy disks, your CPMLDR must
not be longer than 1980H to place the CPMLDR.COM file on two system tracks with the boot
sector. If the CCP resides on the system tracks with the Cold Start Loader and CPMLDR, the
combined lengths must not exceed 1980H.

5.3 CPKLDR Utility

Syntax:

CPMLDR

Purpose:

CPMLDR loads the CP/M 3 system file CPM3.SYS into Bank 0 and transfers control to
the BOOT routine in the customized BIOS. You can specify in GENCPM for CPMLDR to
display a load table containing the names and addresses of the system modules.

The CPM3.SYS file contains the CP/M 3 BDOS and customized BIOS. The file

help debug the BIOS. A $B in the default File Control Block (FCB) causes CPMLDR to
execute a RST 7 (SID breakpoint) just before jumping to the CP/M 3 Cold Boot BIOS entry
point.

CPM3.SYS must be on drive A in USER 0. You can execute CPMLDR under SID or DDT to

100

5.3 CPMLDR Utility

Input File:

CP/M 3 System Guide

CPM3.SYS

Examples:

A>CPM LDR
CP/M V3.0 Loader
Copyright (C) 1982, Digital Research

BNKBIOS3 SPR F600H OAOOH
BNKBIOS3 SPR BBOOH 0500H
RESBDOS3 SPR F100H 0500H
BNKBDOS3 SPR 9AOOH 2100H

60K TPA
A>

In the preceding example, CPMLDR displays its name and version number, the Digital
Research copyright message, and a four-column load table containing the filename, filetype, hex
starting address, and length of the system modules. CPMLDR completes its sign-on message by
indicating the size of the Transient Program Area (TPA) in kilobytes. The CCP then displays
the system prompt, A>.

5.4 Booting CP/M 3

The CP/M 3 cold start operation loads the CCP, BDOS, and BIOS modules into their
proper locations in memory and passes control to the cold start entry point (BIOS Function 0:
BOOT) in the BIOS. Typically, a PROM-based loader initiates a cold start by loading sector 0
on track I of the system tracks into memory and jumping to it. This first sector contains the Cold
Start Loader. The Cold Start Loader loads the CPMLDR.COM program into memory and jumps
to it. CPMLDR loads the CPM3.SYS file into memory and jumps to the +BIOS cold start entry
point.

101

5.4 Booting CP/M 3 CP/M 3 System Guide

To boot the CP/M 3 system, use the following procedure:

I) Crea te the CPM3.SYS file.

2) Copy the CPM3.SYS file to the boot drive.

3) Crea te a CPMLDR.COM for your machine.

4) Plac e the CPMLDR.COM file on your system tracks using SYSGEN with CP/M
2 or COPYSYS with CP/M 3. The boot loader must place the CPMLDR.Com file
at the address at which it originated. If CPMLDR has been linked to load at
100H, you can run CPMLDR under CP/M 2.

The COPYSYS utility handles initialization of the system tracks. The source of
COPYSYS is included with the standard CP/M 3 system because you need to customize
COPYSYS to support nonstandard system disk formats. COPYSYS copies the Cold Start
Loader, the CPMLDR.COM file, and optionally the CCP to the system tracks. Refer to the
COPYSYS.ASM source file on the distribution disk.

End of Section 5

102

Section 6

Debugging the BIOS

This section describes a sample debugging session for a nonbanked CP/M 3 BIOS. You
m ust create and debug your nonbanked system first, then bring up the banked system. Not e
that your system probably displays addresses that differ from the addresses in the following
example.

You can use SID, Digital Research' s Symbolic Debugger Program, running under
CP/M 2.2, to help debug your customized BIOS. The following steps outline a sample
debugging session.

I) De t ermine the amount of memory available to CP/M 3 when the debugger and
CP/M 2.2 are in memory. To do this, load the debugger under CP/M 2.2 and list
the jump instruction at location 0005H. In the following example of a 64K
system, C500 is the base address of the debugger, and also the maximum top of
memory that you can specify in GENCPM for your customized CP/M 3 system.

A>SID
CP/M 3 SID — Version 3.0
¹L5
0005 JMP C500

2) Ru n ning under CP/M 2.2, use GENCPM to generate a CPM3.SYS file, which
specifies a top of memory that is less than the base address of the debugger, as
determined by the previous step. Allow at least 256K bytes for a patch area. In
this example, you can specify C3 to GENCPM as the top of memory for your
CP/M 3 system.

A>GENCPM

Top page of memory (FF)? C3

3) N o w you have created a system small enough to debug under SID. Use SID to
load the CPMLDR.COM file, as shown in the

103

6 Debugging the BIOS CP/M 3 System Guide

following example:

A>SID CP14LDR.COM
CP/M 3 SID — Version 3.0
NEXT MSZE PC END
OE80 OEBO 0100 D4FF

4) Use the I command in SID, as shown in the next example, to place the characters
$B into locations 005DH and 005EH of the default FCB based at 005CH. The $B
causes CPMLDR.COM to break after loading the CPM3.SYS file into memory.

¹I$B

Transfer control to CPMLDR using the G command:5)

¹G

At this point, the screen clears and the following information appears:

CP/M V3.0 LOADER
Copyright (c) 1982, Digital Research

BIOS3 SPR AAOO OBOO
BDOS3 SPR 8BOO 1FOO

34K TPA

01A9

6) W ith t he CP/M 3 system in the proper location, you can set passpoints in your
BIOS. Use the L command with the address specified as the beginning of the
BIOS by the CPMLDR load table as shown in step 5 above. This L command
causes SID to display the BIOS jump vector which begins at that address. The
jump vector indicates the beginning address of each subroutine in the table. For
example, the first jump instruction in the example below is to the Cold Boot
subroutine.

¹LAAOO

104

6 Debugging the BIOS CP/M 3 System Guide

The output from your BIOS might look like this:

JMP AA68
JMP AA8E
JMP ABA4
JMP ABAF
JMP ABCA

7) N o w set a passpoint in the Cold BOOT routine. Use the P command with an
address to set a passpoint at that address.

¹PAA68

8) Co n t inue with the CPMLDR.COM program by entering the G command,
followed by the address of Cold Boot, the first entry in the BIOS jump vector.

¹GAAOO

9) In response to the G command, the CPMLDR transfers control to the CP/M 3
operating system. If you set a passpoint in the Cold BOOT routine, the program
stops executing, control transfers to SID, and you can begin tracing the BOOT
routine.

10) When you know the BOOT routine is functioning correctly, enter passpoints for
the other routines you want to trace, and begin tracing step by step to determine
the location of problems.

Refer to the Digital Research Symbolic Instruction Debugger User's Guide (SID) in the
Programmer's Utilities Guide for the CP/M Family of Operating Systems for a discussion of all
the SID commands.

End of Section 6

105

Appendix A

Removable Media Considerations

All disk drives under CP/M 3 are classified as either permanent or removable. In
general, removable drives support media changes; permanent drives do not. Setting the
high-order bit in the CKS field in a drive's Disk Parameter Block (DPB) marks the drive as a
permanent drive.

The BDOS file system distinguishes between permanent and removable drives. If a
drive is permanent, the BDOS always accepts the contents of physical record buffers as valid. In
addition, it also accepts the results of hash table searches on the drive.

On removable drives, the status of physical record buffers is more complicated.
Because of the potential for media change, the BDOS must discard directory buffers before
performing most directory related BDOS function calls. This is required because the BDOS
detects media changes by reading directory records. When it reads a directory record, the BDOS
computes a checksum for the record, and compares the checksum to the currently stored value in
the drive's checksum vector . I f the checksum values do not match, the BDOS assumes the
media has changed. Thus, the BDOS can only detect a media change by an actual directory
READ operation.

A similar situation occurs with directory hashing on removable drives. Because the
directory hash table is a memory-resident table, the BDOS must verify all unsuccessful hash
table searches on removable drives by accessing the directory.

The net result of these actions is that there is a significant performance penalty

provided by classifying a drive as removable is not total. Media changes are only detected
during directory operations. If the media is changed on a drive during BDOS WRITE
operations, the new disk can be damaged.

associated with removable drives as compared to permanent drives. In addition, the protection

The BIOS media flag facility gives you another option for supporting drives with

an interrupt when the drive door is opened. If your hardware provides this support, you can
improve the handling of removable media by implementing the following procedure:

removable media. However, to use this option, the disk controller must be capable of generating

I) M a rk the drive as a permanent drive and set the DPB CKS parameter to th'e total
number of directory entries, divided by four. For example, set the CKS field for
a disk with 96 directory entries to 8018H.

107

A Removable Media Considerations CP/M 3 System Guide

2) Imple ment an interrupt service routine that sets the @MEDIA flag in the System
Control Block and the DPH MEDIA byte for the drive that signaled the door
open condition.

By using the media flag facility, you gain the performance advantage associated with
permanent drives on drives that support removable media. The BDOS checks the System
Control Block @MEDIA flag on entry for all disk-related function calls. If the flag has not been
set, it implies that no disks on the system have been changed. If the flag is set, the BDOS checks
the DPH MEDIA flag of each currently logged-in disk. If the DPH MEDIA flag of a drive is
set, the BDOS reads the entire directory on the drive to determine whether the drive has had a
media change before performing any other operations on the drive. In addition, it temporarily
classifies any permanent disk with the DPH MEDIA flag set as a removable drive. Thus, the
BDOS discards all directory physical record buffers when a drive door is opened to force all
directory READ operations to access the disk.

To summarize, using the BIOS MEDIA flag with removable drives offers two important
benefits. First, because a removable drive can be classified as permanent, performance is
enhanced. Second, because the BDOS immediately checks the entire directory before
performing any disk-related function an the drive if the drive's DPH MEDIA flag is set, disk
integrity is enhanced.

End of Appendix A

108

Apendix B

Auto-density Support

AUto-density support refers to the capability of CP/M 3 to support different types of

double-sided disks in both single-density and double-density formats. Auto-density support
requires that the BIOS be able to determine the current density when SELDSK is called and to
subsequently be able to detect a change in disk format when the READ or WRITE routines are
called.

media on a single drive. For example, some floppy-disk drives accept single-sided and

To support multiple disk formats, the drivers BIOS driver must include a Disk
Parameter Block (DPB) for each type of disk or include code to generate the proper DPB
parameters dynamically. In addition, the BIOS driver must determine the proper format of the
disk when the SELDSK entry point is called with register E bit 0 equal to 0 (initial SELDSK
calls). If the BIOS driver cannot determine the format, it can return OOOOH in register pair HL
to indicate the select was not successful. Otherwise, it must update the Disk Parameter Header
(DPH) to address a DPB that describes the current media, and return the address of the DPH to
the BDOS.

Note: all subsequent SELDSK calls with register E bit 0 equal to 1, the BIOS driver must
continue to return the address of the DPH returned in the initial SELDSK call. The value OOOOH
is only a legal return value for initial SELDSK calls.

After a driver's SELDSK routine has determined the format of a disk, the driver' s
READ and WRITE routines assume this is the correct format until an error is detected. If an
error is detected and the driver determines that the media has been changed to another format, it
must return the value OFFH in register A and set the media flag in the System Control Block.
This signals the BDOS that the media has changed and the next BIOS call to the drive will be an
initial SELDSK call. Do not modify the drivers DPH or DPB until the initial SELDSK call is
made. Note that the BDOS can detect a change in media and will make an initial SELDSK call,
even though the BIOS READ and WRITE routines have not detected a disk format change.
However, the SELDSK routine must always determine the format on initial calls.

A drive's Disk Parameter Header (DPH) has associated with it several uninitialized
data areas: the allocation vector, the checksum vector, the directory hash table, and physical
record buffers. The size of these areas is determined by DPB parameters. If space for these areas
is explicitly allocated in the BIOS, the DPB that requires the most space determines the amount
of memory to allocate. If the BIOS defers the allocation of these areas to GENCPM, the DPH
must be initialized to the DPB with the largest space requirements. If one DPB is not largest in
all of the above categories, a false one must be constructed so that GENCPM allocates sufficient
space for each data area.

End of Appendix B

109

Appendix C

Modifing a CP/M 2 BIOS

If you are modifying an existing CP/M 2.2 BIOS, you must note the following changes.

o The BIOS jump vector is expanded from 17 entry points in CP/M 2.2 to 33 entry points
in CP/M 3. You must implement the necessary additional routines.

o The Disk Parameter Header and Disk Parameter Block data structures are expanded.

See Section 3 of this manual, "CP/M 3 BIOS Functional Specifications," for details of
the BIOS data structures and subroutines. The following table shows all CP/M 3 BIOS functions
with the changes necessary to support CP/M 3.

Table C-1. CP/M 3 BIOS Functions

Function Mean i ng

BIOS Function 00: BOOT

The address for the JMP at location 5 must
be obtained from @MXTPA in the System
Control Block.

BIOS Function 01: WBOOT

The address for the JMP at location 5 must
be obtained from @MXTPA in the System
Control Block. The CCP can be reloaded
from a file.

BIOS Function 02: CONST

Can be implemented unchanged.

BIOS Function 03: CONIN

Can be implemented unchanged. Do not mask
the high-order bit.

111

Appendix C: Modifying a CP/M 2 BIOS CP/M 3 System Guide

Table C-1. (continued)

Function Mea n ing

BIOS Function 04: CONOUT

Can be implemented unchanged.

BIOS Function 05: LIST

Can be implemented unchanged.

BIOS Function 06: AUXOUT

Called PUNCH in CP/M 2. Can be implemented unchanged.

BIOS Function 07: AUXIN

Called READER in CP/M 2. Can be implemented unchanged. Do not mask the
high-order bit.

BIOS Function 08: HOME

No change.

BIOS Function 09: SELDSK

Can not return a select error when SELDSK is called with bit 0 in register E
equal to 1.

BIOS Function 10: SETTRK

No change.

BIOS Function 11: SETSEC

Sectors are physical sectors, not logical 128-byte sectors.

BIOS Function 12: SETDMA

Now called for every READ or WRITE operation. The DMA buffer can now be
greater than 128 bytes.

112

Appendix C: Modifying a CP/M 2 BIOS CP/M 3 System Guide

Table C-1. (continued)
Function mea n ing

BIOS Function 13: READ

READ operations are in terms of physical sectors. READ can return a OFFH
error code if it detects that the disk format has changed.

BIOS Function 14: WRITE

WRITE operations are in terms of physical sectors. If wr ite detects that the
disk is Read-Only, it can return error code 2. WRITE can return a OFFH
error code if it detects that the disk format has changed.

BIOS Function 15: LISTST

Can be implemented unchanged.

BIOS Function 16: SECTRN

Sectors are physical sectors, not logical 128-byte sectors.

The following is a list of new BIOS functions:

BIOS Function 17: CONOST

BIOS Function 18: AUXIST

BIOS Function 19: AUXOST

BIOS Function 20: DEVTBL

BIOS Function 21: DEVINI

BIOS Function 22; DRVTBL

BIOS Function 23: MULTIO

BIOS Function 24: FLUSH

BIOS Function 25: MOVE

BIOS Function 26: TIME

113

Appendix C: Modifying a CP/M 2 BIOS CP/M 3 System Guide

CP/M 3 System Guide C Modifying a CP/M 2 BIOS
BIOS Function 27: SELMEM

BIOS Function 28: SETBNK

BIOS Function 29: XMOVE

BIOS Function 30: USERF

BIOS Function 31: RESERV1

BIOS Function 32: RESERV2

End of Appendix C

114

Appendix D
CPM3.SYS File Format

Table D-1. CPH3.SYS File Format

Record

0 1

Contents
Header Record (128 bytes)
Print Record (128 bytes)
CP/M 3 operating system in reverse order, top down.2-n

Table D-2. Header Record Definition

ContentsByte
0 Top page plus one, at which the resident

portion of CP/M 3 is to be loaded top down.
Length in pages (256 bytes) of the resident
portion of CP/M 3.
Top page plus one, at which the banked portion
of CP/M 3 is to be loaded top down.
Length in pages (256 bytes) of the banked
portion of CP/M 3.
Address of CP/M 3 Cold Boot entry point.
Reserved.
Copyright Message.
Reserved.
Serial Number.
Reserved.

4-5
6-15
16-51
52
53-58
59-127

The Print Record is the CP/M 3 Load Table in ASCII, terminated by a dollar sign ($).

End of Appendix D

115

116

Appendix E
Root Module of Relocatable BIOS for CP/M 3

All the listings in Appendixes E through I are assembled with, the cP/M Relocating

used with . listings are output from the XREF program. The assembly sources are on your
distribution disk as ASM files.

Macro Assembler, and cross-referenced XREF, an assembly language cross-reference program

I title 'Root module of relocatable BIOS for CP/M 3.0'

; version 1.0 15 Sept 82
2 3

FFFF
00004 5 6 7 8

t rue equ - I
false e q u not true

banked equ trueFFFF

9 10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

cr
If
bell
ctlQ
ctlS

extrn ? init
extrn ? Idccp,?rlccp

cseg

000d
OOOA
0007
0011
0013

0100 = ccp equ 0 100h ; CCP gets loaded the TPA

Copyright (C), 1982
Digital Research, Inc

P.O. Box 579
Pacific Grove, CA 93950

This is the invariant portion of the modular BIOS and is
distributed as source for informational purposes only.
All desired modifications should be performed by
adding or changing externally defined modules.
This allows producing "standard" I/O modules that
can be combined to support a particular system
configuration.

equ 13
equ 10
equ 7
equ 'Q'-'@'
equ 'S'-'@'

; variables in system data page

extrn @covec,@civec,@aovec.@aivec,@lovec; I/O redirection vectors
extrn @mxtpa ; addr of system entry point
extrn @bnkbf ; 128 byte scratch buffer

; initialization

; general initialization and signon

; GENCPM puts CSEG stuff in common memory

; load & reload CCP for BOOT & WBOOT

Appendix E: Root Module of Relocatable BIOS CP/M 3 System Guide

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
58
89
90
91
92
93
94
95
96
97
98
99
100
101

0006
0009
OOOC
OOOF
0012
0015

0 000 C3 0 000 ?boot: j m p
0003 C36 COO?wboot. jmp

C37701 ?const. jmp
C39201 ?conin: jmp
C30AOO ? cono: jmp
C3E600 ?list: jmp
C3EOOO ?auxo: jmp
C 39801 ?auxi: j m p

0018 C36EOO?home: jmp

; clock

maclib modebaud

; BIOS Jump vector

extrn ? time

; general utility routines

public ? pmsg,? pdec
public?pderr

; user defined character I/O routines

extrn 7ci,?co,?cist,?cost
extrn ? cinlt
extrn @ctbl

boot
wboot

support

' All

; External names for BIOS entry points

public ?? boot,? w boot,? const,? con in,? cono,? I ist,? aux o,?au xi
public ? home,? sldsk,? sttrk,? stsec,? stdma,7read,? write
public ?lists,?sctrn
public ?conos,? auxis,? auxos,?dvtbl,?devin,?drtbl
public 7mltio,?flush,?mov,7tim,?bnks1,7stbnk,?xmov

; disk communication data items

extrn @dtbl ; table of pointers to XDPHs
public @adrv,@rdrv,@trk,@sect ; parameters for disk I/O
public @dma,@dbnk,@cnt

; memory control

public @cbnk
extrn ? xmove,?move
extrn ?bank

; siqnal time operation

BIOS routines are invoked by calling these
entry points.

; initial entry on cold start
; reentry on program exit, warm start

; return console input Status
; return console input character
; send console output character

; send list output character
; send auxilliary output character
; return auxilliary input character

; print message, print number from 0 to 65535
; print BIOS disk error message header

; define mode bits

; each take device in
; (re)initialize device in <C>
; physical character device table

; current bank
; select move bank, and block move

; select CPU bank

const
conin
conout
list
auxout
auxin

home ; met disks to logical home

Appendix E: Root Module of Relocatable BIOS CP/M 3 System Guide

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

001B
001E
0021
0024
0027
002A

C33FOO ? sldsk
C37100 ?sttrk:
C37700 ? stsec: jmp
C37000 ?stdma: jmp
C39400 ?read
C3AAOO? write

0011

0000
0003

0042
0045
0048

002d
0030

004B
004E
0051
0054
0057
OOSa
0050
0060

OOOE

0033
0036
0039
003C
003F

0017
0018
OOIC
0021
0022
0023
0029
002D

0005
OOOA

C5
5E235623
7B B2CA3600
E5
EB
2B2B7E32EE
7932EDOO
2B

C30600 ?drtbl:
C3CBOO?mltio
C3CFOO? flush

C31201 ?lists:
C38900 ? sctrn:

CDOOOO call? in it

Jmp
C30000 ?tim: jmp
C32502 ?bnksl: jmp
C38500 ? stbnk: jmp
C30000 ?xmov:jmp
C30000 jmp 0
C30000 jmp 0
C30000 jmp 0

C30601 ?conos

C30COI ?auxoS: jmp
C3d200 ?dvtbl: jmp
C30000 ?dev in

310200 Ixi
OEOF mvi

c$init$1oop:
CSCDOOOOC I push
OdF20500 dcr

boot:

d$init$1oop:

Jmp
Jmp

Jmp

jmp
jmp
jmp

Jmp
jmp

Jmp
Jmp

Jmp
Jmp

dseg

; BOOT

0100102100 Ixi b , 16*256+0 ! I xi h,@dtbl

seldek
settrk
setsec
setdma
read
write

sp,boot$ stack
c,15 ; in it i a l ize all 16 character devices

b! call?cinit ! pop b
c! jp c$init$1oop

; this part can be banked

Initial entry point for SyStem startup.

; select disk drive, return disk parm info
; Set disk track
; set disk sector
; set disk I/O memory address
; read physical block(s)
; write physical block(s)

listat ; return list device Status
sectrn ; translate logical to physical sector

; reserved for system implementor

; reserved for future expansion

; reserved for future expansion

; return console output status
; return aux input status
; return aux output status
; return address of device def table

; change baud rate of device

conost
auxibt
auxost
devtbl
?cinit

getdrv ; r e turn address of disk drive table
multio ; Set multiple record count for disk I/O
flush ; flush BIOS maintained disk caching

?move ; block move memory to memory
?time ; Signal Time and date operation
bnksel ; select bank for code execution and DMA
setbnk ; select different bank for disk I/O DMA
?xmove; set source and destination banks for one 127

; perform any additiunal system initialization
; and print signon message

; Init all 16 logical disk drives

push b ; save remaining count and abs drive
mov e,m! inx h! mov d,m! inx b ; grab @drv entry
mov a,e! ora d! jz d$init$next ; if null, no drive
push h ; save @drv pointer
xchg ; XDPH address in <HL>
dcx h ! dcx h ! mov a,m ! sta @RDRV; get relative drive code
mov a,c! sta @ADRV ; get absolute drive code
dcx h ; point to init pointer

Appendix E: Root Module of Relocatable BIOS CP/M 3 System Guide

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

002E
0031
0035

0036
0037
003C

0 07D 3E C 3
007F 32 0 0003205
0085 21 0 3002201
0085 2A0 0 002206
0091 C9

CD7800
CDOOOO
C30001

31D200
CD7800
CDOOOO
C30001

0092 ds 64
OOD2 = boot$stack e q u $

wboot

devtbl:

getdrv:

boot$1

ndif

0063 call set$jumps
0066 call ?Idccp
0069 jmp ccp

set$jumps:

OOD2 2 10000C9 Ixi h ,@ c tbl ! ret

d$init$next:

006C Ixi sp,boot$stack
006F call set$jumps
0072 call ? rlccp
0075 jmp ccp

if banked

; WBOOT

;DEVTBL

0078 3E O I CDSIOO mvi a , I ! call ?bnksl

; GETDRV

562BSE mov d,m ! dcx h ! mov e,
EBCDB6DI xchg ! cal l ipchl
El pop h

Cl pop b
OCOSC21700 inr c ! dcr b ! jnz
C36300 jmp boot$1

ret

cseg

Entry for system restarts.

Return address of drive table

Return address of character device table

mvi a,IMP
sta 0! sta 5 ; met up jumps in page zero
Ixi h,?wboot! shld I ; B IOS warm start entry
Ihld @MXTPA ! shld 6 ; BDOS system call entry

; following in resident memory

; get tntt pomter
; call init routine
; recover @drv pointer

; recover counter and drive ¹
d$init$1oop; and loop for each drive

; initialize page zero
; reload CCP
; then reset jmp vectors and exit to ccp

; fetch CCP for first time

OOD6 2 10000C9 lxi h ,@ d tbl ! ret

Appendix E: Root Module of Relocatable BIOS CP/M 3 System Guide

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

OOE9

OOFI
OOF8
OOFA
OOFD
OOFE

OOEB
OOEC
OOEF
OOFO

OOE6 2AOOOO

OODA 2AOOOO
OODD C3E900

OOEO 2AOOOO
OOE3 C 3 K 900

OOFF 04
0 100 7CB S
0102 C2E BOO
0105 C9

con out;

list:

auxout

co$next:

out$scan:

;CONOUT

notoutde vice:

ret

; LIST

; AUXOUT

; CONOST

0600 mvi b, ; Start with device 0

29 dad h ; shift out next bit
D2FFOO jnc notoutdevice
E5 push h
C5 push b

notoutready:

Console Output. Send character

to all selected

inr b ; next device number
mov a,h ! ora I ; see if any devices left
jnz co$next ; and g o f ind them.. .

Ihld @aovec ; fetch aux output bit vector
jmp out$Scan

CD2COIB7CA c a l l coster! ora a! jz notoutready
CIC5 pop b! puSh b; restore and resave the character and device
CDOOOO call ?co ; if device selected, print it
Cl pop b ; recover count and character
El pop h ; recover the rest of the vector

Ihld @lovec ; fetch list output bit vector

Ihld @covec ; fetch console output bit vector
jmp out$scan

List Output. Send character in <C>
to all selected devices.

Console Output Status. Return true if
all selected console output devices
are ready.

Auxiliary Output. Send character in <C>
to all selected devices

; save the vector
; save the count and character

devices
in <C>

conost:

Appendix E: Root Module of Relocatable BIOS CP/M 3 System Guide

268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

012C
012F
0130
0133
0137
013A
013B
013E
0142
0145
0149
014E

0 115 06 0 0

0112 2A OOOO

0106 2AOOOO

0109 C31 501

OIOC 2 A OOOO
OIOF C3 1 501

0117 29
0118 E5
0119 C5
0 11A 3EF F
011C DC 2CO I
0 11F C I
0120 El
0121 B7
0122 C8
0123 05
0 124 7CB 5
0126 C21 701
0 129 F6F F
012B C9

682600 mov
E5
292929 dad
11060019
7EE610 mov
El
CAOOOO
11280219
CDSDOI
7EC46FO I
FEIIC2500I
3EFF

coster:

listst

auxost

ost$scan:

cos$next:
mvi b,O

cc coster

; LISTST

dad h
push h
push b
mvi a,OFFh

pop b
pop h

; AUXOST

ora a
rz
dcr b
mov a,b! ora I
jnz cos$next
ori OFFh
ret

Ihld @aovec ; get aux output bit vector
jmp ost$scan

Ihld @lovec ; get list output bit vector

Ihld @covec ; get console output bit vector
jmp ost$scan

List Output Status. Return true if
all selected list output devices
are ready.

Auxiliary Output Status. Return true if
all selected auxiliary output devices
are ready.

I,b! mvi h ,O ; mak e device code 16 bits
push h ; save it in stack
h ! dad h ! dad h; offset into device characteristics tbl
Ixi d,@ctbl+6 ! dad d ; make address of mode byte

a,m ! ani mb$xonxoff

pop h ; recover console number in <HL>
jz ?cost ; not a xon device, go get output status direct
Ixi d,xofflist! dad d; make pointer to proper xon/xoff flag
call cisti ; see if this keyboard has character

mov a,m ! cnz c i i ; get f l ag or read key if mny
cpi ctlq! jnz not$q; if its a ctl-Q,
mvi a ,O F Fh ; set the flag ready

; start with device 0

; check next bit
; save the vector
; save the count
; assume device ready
; check status for this device
; recover count
; recover bit vector
; see if device ready
; if any not ready, return false

; drop device number
; see if any more selected devices

; all selected were ready, return true

; check for output device ready. including optional
; xon/xorf support

not$g:

Appendix E: Root Module of Relocatable BIOS CP/M 3 System Guide

323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

016F
0171
0174
0176

0166
0168
0168
016D
016E

01 SD
015F
0162
0164
0165

0 180 060 0

017D 2 A OOOO

0177 2AOOOO

017A C3 8 001

0157 77
0 158 CD6 6 0 1
0158 A6
OISC C9

0182 29
0 183 3E OO
0185 DCS DOI
0 188 B7C O
018A 04

0150 FE1 3C25701
0 155 3E OO

CSES
CDOOOO
EIC I
C9

CSES
CDOOOO
EICI
87
C9

CSE5
CDOOOO
EI CI
87
C9

cil:

costi

cistl:

const

not$s:

auxist:

cis$next:

ist$scan

; CONST

; AUXIST

ret

mvi

dad
mvi
cc cistl

ora a
ret

ora a
ret

ana m
ret

mov m ,a
call costi

push b ! push h
call? cist

pop h! pop b

push b ! push h
call ? cost
pop h! pop b

push b ! push h
call?ci

pop h! pop b

h
a,o

b,o

a! rnz
b

Ihld @aivec ; get aux input bit vector

Console Input Status. Return true if
any selected console input device
has an available character.

Ihld @civec ; get console input hit vector
jmp ist$scan

any selected auxiliary input device
has an available character.

Auxiliary Input Status. Return true if

cpi ctl s ! jnz not$s ; if its a ctl-S,
mvi a ,OOh ; cl ear the flag

; save the flag
; get the actual output status,
; and mask with ctl-Q/ctl-S flag
; return this am the status

; get input status with <BC> and <HL> saved

; start w i th device 0

; check next hit
, assume device not ready

; check status for this device
; if any ready, return true

; next device number

. get input, saving <BC> & <HL>

; get output status, saving <BC> & <HL>

ora
inr

Appendix E: Root Module of Relocatable BIOS CP/M 3 System Guide

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
421
421
422
423
424
425
426
427
428
429
430
431
432

0 I B6 E 9

0198 E5
0 19C 0 6 0 0

0 188 7CB 5
0180 C28 201
0190 AF
0191 C9

0152 El
0183 C3 0 000

0191 29
0 19F 31 0 0
OIAI DCS D OI
0 1 A4 B 7
O IA5 C2B 2 0 1
0 1 A8 0 5
O IA9 7CB 5
OIAB C2 9EO I jnz
OIAE El
OIAF C3 9 BO I

conin:

0195 C39 BO I jmp

auxin:
0198 2A OOOO lh I

0192 2A OOOO IhId @C

0 1 B7 C 5 push b
0 I B8 D 5 push d

pmsg$1oop:
OIB9 7E B 7CAC801 m o v a ,m

ipchl:

ci$rdy:

?pmsg:

ci$next:

in$ scan:

; CONIN

; AUXIN

xra
ret

tvec

mov
Jnz

pchl

ora a

d @aivec

push h
mvi b,O

in$scan

Utility Subroutines

ci$next ; go look at them

pop h ; d isca rd extra stack
jmp?ci

ready auxiliary input device.

ready console input device.

; save bit vector

dad h
mvi a,O
cc cisti

jnz ci$rdy ; th i s device has a character
dcr b ; else, next device
mov a,h ! ora I; see if any more devices

pop h ; recov er bit vector
jmp in$scan ; l o op ti l we find a character

Console Input. Return character from first

A uxiliary Input. Return character from f i r s t

; vectored CALL point

a,h ! ora I; see if any more selected devices
cis$next
a ; all selected were not ready. return false

; print message @<HL> up to a null
; saves <BC> & <DE>

; shift out next bit
; insure zero a (nonexiatant device not ready)
; see if the device has a character

! ora a! jz pmsg$exit

Appendix E: Root Module of Relocatable BIOS CP/M 3 System Guide

433
434
435
436
437
438
439
440
441
442
443
444
445
446
44?
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
469
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487

01D1
0109

01FD
0203
020C
0212
0218
0211
0224

01DE
01EO
01E4

01C8 D l
01C9 C l
0 1CA C 9

0225 323B02
0228 C3000 0

0 1D1 3 E 2 F

01E6 El
01E7 O A SF03
011A O A 5 703
01EO 7 B B 2C20101
01F2 C9

DSC5
4FCDOCOO
C1D1

01F3 1 8 FC9CFFF6 dw

0228 FFF FFFFFFFxofflist
0233 FFF FFFFFFF

?pderr:
210100CD87
3AEOOOC641
211300COB7
2AEFOOCDCB
211800COB7
2AFIOOCDCB
C9

bnksel

next:

pdecl:

tabe110:

stoploop:

nextdigit:

0 1BE 4 F E 5 mov c,a! push h
01CO C D OCOOE1 cal l ?cono ! pop h
01C4 2 3 C 3B90 1 inx h ! j m p pmsg$1oop

pmsg$exit:
pop d
pop h

OICB 01 F 30111FO lxi b , table10! lxi d,-10000

ret

ret

ret

: BNKSEL

sta @cbnk
jmp?bank

mvi a, '0'-1

E53C19D2DE pu sh h! inr a! dad d! jnc stoploop
3333C3D301 inx sp ! inx sp! jmp pdecl

push d! push b
mov c,a! call ?cono
pop b' pop d

pop h
ldax b! mov e,a! inx b
ldax b! mov d,a! inx b
mov a,e! ora d! jnz next

lxi h,drive$msg ! call ?pmsg
lda @adrv ! adi 'A' ! mov c,a
lxi h,track$msg ! call ?pmsg
lhld @trk! call?pdec
lxi h,sector$msg ! call ?pmsg
lhld @sect ! call ?pdec

-1000,-100,-10,-1,0

db -1,-1,-1,-1,-1,-1,-1,-1
db — 1, — 1, — 1, — 1, — 1, — 1 , — 1, — 1

?Pdec: ; print binary number 0-65535 from <HL>

Bank Select. Select CPU bank for further execution.

; physical bank select routine

; following resides in banked memory

; remember current bank
; and go exit through users

; error header

. track header
; track number
; sector header
; sector number

! call ?cono ; drive code

; ctl-s clears to zero

dseg

Appendix E: Root Module of Relocatable BIOS CP/M 3 System Guide

488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542

003F
0043
0047
0045
004F
0051
0057
0059
0061
0065
0069
006C

006D

0 07? 696 0
0079 22F 100
007C C9

0 071 696 0
0073 22 E FOO
0076 C9

home:
006E 01 0000 Ix i b,0

setsec

settrk:

not$first$select:
C9 ret

seldsk:

; HOME

;SETSEC

;SELDSK

; Disk I/O interface routines

mov I,c ! mov h,b
shld @trk
ret

RK;SETT
Set Track. Saves track address from <BC>

in @TRE for further operations.

; same as set track zero

Select Disk Drive. Drive code in <C>.
Invoke login procedure for drive
if this is first select. Return
address of disk parameter header

in <HL>

in @sect for further operations.

Home selected drive. Treated as SETTRK(0).

S et Sector. Saves sector number f rom < B C>

7932EDOO mov a, c ! sta @adrv ; save drive select code
69260029 mov I ,c ! mvi h,0 ! dad h ; create index from drive code
01000009 Ixi h ,@ dtbl ! dad b ; get pointer to dispatch table
7E23666F mov a, m ! i n x h ! mov h,m! mov l,a; point at disk descriptor
54C8 ora h ! rz ; if no entry in table, no disk
7BE601C26D mo v a ,e ! ani I ! jnz not$first$select ; examine login bit
ESEB push h ! xchg ; pu t po inter in stack & <DE>
21FEFF197E Ixi h , -2 ! dad d! mov a,m! sta @RDRV ; get relative drive
2IFAFFI9 Ixi h,- 6 ! dad d ; find LOGIN addr
7E23666F mov a, m ! i n x h ! mov h,m! mov l,a; get addr of LOGIN routine
CDB601 call ipchl ; call LOGIN
El pop h ; recover DPH pointer

mov I,c ! mov h,b
shld @sect
ret

Appendix E: Root Module of Relocatable BIOS CP/M 3 System Guide

543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597

0089
0088
008E
0093

0094
009A
009E
OOA2
OOA3
OOA7

0 070 696 0
007F 22 F 300

0085 32 F 600
0088 C9

0 082 3A 3 B 02

6960
7AB3C8
EB096E2600
C9

read:
2AED002600
11000019
7E23666F
E5
IIF8FF19
C3BDOO

sectrn:

setbnk

setdma

; READ

; WRITE

; SECTRN

; SETBNK

; SETDMA

ret

sta @dbnk
ret

mov I,c ! mov h,b
shld @dma

mov I,c ! mov h,b
mov a,d! ora e! rz
xchg! dad b! mov l,m! mvi h,O

in @DBNK for future disk dBtB
transfers.

Set DiBk Memory Bank. Saves bank number

Sector Translate. Indexes skew table in <DE>

in <HL> If no skew table (<DE> =0) then
returns physical=logical.

Set Disk Memory Address. Saves DMA address

so that further disk operations take place
in current bank.

Read physical record from currently selected drive,

Finds address of proper read routine from

extended disk parameter header (XDPH) .

with sector in <BC>. Returns physical Sector

Ida @cbnk ; default DMA bank is current hank

from <BC> in @DMA and sets @DBNK to @CBNK

ihId @adrv ! mvi h,O! dad h ; get drive code and double it
Ixi d,@dtbl ! dad d ; make address of table entry

mov a,m ! inx h ! mov h,m ! mov l ,a ; f e tch table entry
push h ; sav e address of table
Ixi d,-8! dad d ; point to read routine ddress
jmp rw$common ; us e common code

; fall through to set DMA bank

Write physical sector from currently selected drive.
Finds address of proper write routine from

extended disk parameter header (XDPH) .

Appendix E: Root Module of Relocatable BIOS CP/M 3 System Guide

598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652

023B

OOED
OOEE
OOEP
OOFI
OOF3
OOF5
OOF6

OOD I
OOE3
OOE8

OOCB

OOBD
OOCI
OOC2
OOC4
OOC8
OOCA

OOAA
OOBO
0084
0088
0089

O OCF A F C9

00

00
00

write:
2AED002600
11000019
7E23666F
E5
IIF6FF19

flush:

multio

rw$common:

;FLUSH

; MULTIO

3 2F500C9 sta @cnt! r e t

; error message components

3A2o542Dootrack$msg db ' T-',0
2C20S32DOOsector$msg db ', S-',0

xra a ! ret

@adrv ds
@rdrv ds
@trk ds
@eeet ds
@dma ds
@ cnt d b
@dbnk db

@cbnk db

@CNT

; disk communication data items

cseg

oDoAo74249drive$msg db cr ,l f , bell,'BIOS Error on ',0

Set multiple sector count. Saves passed count in

BIDS deblocking buffer flush. Not implemented.

7E23666F mov a, m ! inx h ! mov h,m! mov l,a ; get address of routine
Dl pop d ; recov er address of table
1518 dcx d ! dcx d ; point to relative drive
IA32EEOO Idax d ! s ta @rdrv ; get relative drive code and post it
1313 inx d! inx d ; point to DPN again
E9 pchl ; leap to driver

; return with no error

Ihld @adrv ! mvi h,O! dad h ; get drive code and double it
Ixi d,@dtbl ! dad d ; make address of table entry

mov a,B ! inx h ! mov h,m ! mov l ,a ; fe tch able entry
push h ; save address of table
Ixi d,-10! dad d ; po in t to write routine address

; common memory

; currently melected dimk drive
; controller relative disk drive
; current track number
; Current Sector number
; Current DMA address
; record count for multisectortransfer
; bank for DMA operations

; bank fOr processor operations

Appendix E: Root Module of Relocatable BIOS CP/M 3 System Guide

653 023C
AUXIN
AUXIST
AUXOST
AUXOUT
BANKED
BAUD110
BAUD12000
BAUD134
BAUD150
BAUD1800
BAUD19200
BAUD2400
BAUD300
BAUD3600
BAUD4800
BAUD50
BAUD600
BAUD7200
BAUD75
BAUD9600
BAUDNONE
BELL
BNKSEL
BOOT
BOOT I
BOOTSTACK
CCP
CI I
CINEXT
CINITLOOP
CIRDY
CIS NEXT
CIST I
CONEXT
CONIN
CONOST
CONOUT
CONST
COSNEXT
COSTI
COSTER
CR
CTLQ
CTLS
DEVTBL
DINITLOOP
DINITNEXT
DRIVEMSG
FALSE
FLUSH
GETDRV
HOME
INS CAN
IPCHL

0198

0063

0177

0192

0166

OIB2

99
017D
OIOC
OOEO
FFFF
0003
0008
0004
0005
00009
OOOF
OOOA
0006
OOOB
OOOC
0001
0007
OOOD
0002
OOOE
0000
0007
0225
0000
164
OOD2
0100
016F
019E
0005
408
0182
015D
OOEB
95
0106
OODA
94
0117
327
012C
OOOD
0011
0013
OOD2
0017
0036
00] D I
0000
OOCF
OOD6
006E
019B
*0 I B6

27¹
124
91
168¹
139
31¹
319
403¹
141¹
415¹
372¹
318
244¹
388¹
112
96
357¹
292¹
3381
250
25¹
281
291
115
1491
152
463
6¹
120
118
101
390
159

397¹
113
114
98
8¹

end

304

297
632
320
323
2041
163
1611
6321

632
475¹
138¹

178
171
345¹
411
143

6261
211¹
5201
4001
4231

367¹
277¹
230¹
186

379
331¹
258

267¹
220¹

3081

1981
181

375 406

413
511

Appendix E: Root Module of Relocatable BIOS CP/M 3 System Guide

ISTSCAN
LF
LIST
LISTST
MBINOUT
MB INPUT
MBOUTPUT
MBSERIAL
MBSOFTBAUD
MBXONXOFF
MULTIO
NEXT
NEXTDIGIT
NOTFIRSTSELECT
NOTOUTDEVICE
NOTOUTREADY
NOTQ
HOTS
OSTSCAN
OUTSCAN
PDECL
PMSGEXIT
PMSGLOOP
READ
RWCOM MON

SECTORMSG
SECTRN
SELDSK
SETBNK
SETDMA
SET JUMPS
SETSEC
SETTRK
STOPLOOP
TAB LEIO
TRACKMSG
TRUE
WBOOT
WRITE
XOFFLIST
?AUXI
?AUXIS
?AUXO
?AUXOS
?BANK
?BNKSL
?BOOT
?CI
?CINIT
?CIST
?CO
?CONIN
?CONO
?CONOS
?CONST

0180
OOOA
OOE6
0112
0003
0001
0002
0008
0004
0010
OOCB
OID I
0 I E6
006D
OOFF
OOFI
0150
0157
0115
OOE9
01 D3
OIC8
OIB9
0094
OOBD
OOE8
0089
003F
0085
007D
0078
0077
0071
OIDE
OIF3
OOE3
FFFF
006C
OOAA
022B
0015
0036
0012
0039
0000
0051
0000
0000
0000
0000
0000
0009
OOOC
0033
0006

359
26¹
97
109

314
119
443¹
452¹
506
246
249¹
320
323
269
223
445¹
432
431¹
106
591
46?
110
102
125
105
169
104
103
446
442
465
S¹
92
107
317
79
82
79
82
63
83
79
49
50
49
49
79
79
82
79

6191
456

3701
632
2391
2879

513¹
255¹
250
322¹
325¹
279
232
447
436¹
435
SBS¹
606¹
634¹
573¹
500¹
562¹
550¹
179
538¹
528¹
448¹
459¹
633¹

6
177¹
599¹
481¹
99¹
113¹
98¹
114¹
477
124¹
91¹

347
116
333
252
95¹
96¹
112¹
941

417
142

187

290¹
242¹

184¹

434 450 464

Appendix E: Root Module of Relocatable BIOS CP/M 3 System Guide

?COST
? DEVIN
?DRTBL
?DVTBL
?FLUSH
?HOME
? INIT
?LDCCP
? LIST
? LISTS
?MLTIO
?MOV
?MOVE
?PDEC
?PDERR
?PMSG
?READ
?RLCCP
?SCTRN
?SLDSK
?STBNK
?STDMA
?STSEC
?STTRK
?TIM
?TIME
?WBOOT
? WRITE
?XMOV
?XMOVE
@ADRV
@AIVEC
@AOVEC
@BNKBF
@CBNK
@CIVEC
@CNT
@COVEC
@CTBL
@DBNK
@DMA
@DTBL
@LOVEC
@MXT'PA
@RDRV
@SECT
@TRK

0000
003F
0042
003C
0048
0018
0000
0000
OOOF
002D
0045
004B
0000
OICB
OIFD
OIB7
0027
0000
0030
OOIB
0054
0024
0021
OOIE
004E
0000
0003
002A
0057
0000
OOED
0000
0000
0000
023B
0000
OOF5
0000
0000
OOF6
OOF3
0000
0000
0000
OOEE
OOF I
OOEF

49
82
82
82
83
80
44
45]
79
81
83
83
62
71
72
71
80
45
81
80
83
80
80
80
83
67
79
80
83
62
56
38
38
40
61
38
57
38
51
57
57
55
38
39
56
56
56

476
358
620
222
205
563
552
148
240
193
155
468
466

316
116¹
118¹
115¹
1201
1011
145
170
97¹
109¹
119¹
1221
122
4411
4621
4271
106¹
180
1101
1021
125¹
1051
1041
1031
1231
123
921
1071
1261
126
156
368
231

463

466

464
398
278

340

192

554
389
6441
268
313
645¹
643¹
212
288

650¹

468

465] 467

610 640¹
642¹
641¹

503 587 60 1

501 586 600 639¹

508
540
530

End of Appendix E

Appendix F
System Control Block Definidon for CP/M 3 BIOS

The SCB.ASM module contains the public definitions of the fields in the System Control
Block. The BIOS can reference public variables.

1

2 3

title 'System Control Block Definition for CP/M3 BIOS'

public @civec, @covec, @aivec, @aovec, @lovec, @bnkbf
public @cradma, @crdsk, @vinfo, @resel, @fx, @usrcd
public @mltio, @ermde, @erdsk, @media, @bflgs
public @date, @hour, @min, @sec, ?erjmp, @mxtpa

4 5 6

7 8

9 10
FEOO=

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
29
29
30
31
32
33
34
35
36
37
38
r/o)
39 FE5 8 = @iDATE
40

FE22 = @CIVEC

FE26 = @AIVEC

FE2A = @LOVEC

FE3E = @CRDSK
FE3F = @VINFO

FE44 = @USRCD
FE4A = @MLTIO

FE35 = @BNKBF

FE24 = @COVEC

FE2B = @AOVEC

FE41 = @RES EL
FE43 = @FX equ

FE4B = @ERMOE
FE51 = @BROSK
FE54 = @MED! A

FE3C = @CRDMA

srb*base equ OFEOOH

equ s c b$base+22h;

equ s c b$base+24h;

equ s c b$base+26h;

equ s c b$base+28h;

equ s c b$base+2Ah;

equ s c b$base+35h;

equ s c b$base+3Ch;

equ s c b$base+3Eh;
equ s c b$base+3Fh;

equ s c b$base+41h;
scb$base+43h . BDOS

equ s c b$base+44h;
equ s c b$base+4Ah;

equ s c b$base+4Bh;
equ s c b$base+5lh
equ s c b$base+54h;

equ s c b$base+57h;

equ s c b$base+58h;

, Baseof the SCB

Console Input Redirection
vector (word. r/w)
Console Output Redirection
Vector (word, r/w)
Auxi 1 iary Input Redirection
Vector (word, r/w)
Auxiliary Output Redirection
Vector (word. r/w)
List Output Redirection
Vector (word, r/w)
Address of 128 Byte Buffer
for Banked BIOS (word, r/o)

Current DMA Address
(word. r/o)

Current Disk (byte. r/o)
BDOS Variable "INFO"
(word, r/o)
FCO Flag (byte, r/o)
Function)br Error
Mess age (byte, r/o)
current User Code (byte, r/o)
Current Multi-Sector Count
(byte. r/w)
BDOS Error Mode (byte. r/o)
BDOS Error Disk (byte.r/o)
Set by BIOS to indicate
open door (byte. r/w)
BDOS Message Size Flag (byte.

Date in Days Since I Jan 78
(word, r/w)

FE57 = @BFLOS

FESA
FESB
FESc
FESF

41
42
43
44
4S
46 FE62 = @MXTPA
47
4B 000 0

@HOUR
@MIN equ
@SEC equ
@ERJMP

equ s c b$base+SAh; Hour in BCD (byte. r/w)
scb$base+S8h; Minute in BCD (byte. r/w)
scb$base+SCh; Second in BCID (byte. r/w)
equ s c b$base+SFh; BDOS Error "Message Jump

equ s c b$base+62h; Top of User TPA
; (word. r/w)

; (address at 6,7)(word, r/o)
end

Appendix G
Equates for Mode Byte Bit Fields

; equates for mode byte bit fields
mb$input
mb$output
mbinout
mb$soft$baud
mb$serial
mbxonxoff
baud$none
baud$50
baud$75
baud$110
baud$134
baud$150
baud$300
baud$600
baud$1200
baud$1800
baud$2400
baud$3600
baud$4800
baud$7200
baud$9600
baud$19200

Listing G-l. Equates for Node Byte Fields: NODEBAUD.LIB

equ 0000$0001b; device may do input
equ 0000$0010b; device may do output
equ mb$input+mb$output
equ 0000$0100b ; software selectable baud rates
equ 0000$1000b ; device may use protocol
equ 0001$0000b ; XON/XOFF protocol enabled
equ 0 ; no baud rate associated with device
e qu 1 ; SO baud
e qu 2 ; 75 baud
e qu 3 ; 110] baud
equ 4 ; 134.5 baud
e qu 5 ; 150] baud
e qu 6 ; 300 baud
equ 7 ; 600 baud
e qu 8 ; 1200 baud
e qu 9 ; 1900 baud
e qu 1 0 ; 2400 baud
equ 11 ; 3600 baud
equ 12 ; 4800 baud
equ 13 ; 7200 baud
equ 1 4 ; 9600 baud
equ 15 ; 19.2k baud

End of Appendix G

Appendix H
Macro Definitions for CP/M 3 BIOS Data Structures

Macro Definitions for CP/M3 BIOS Data Structures.
; dtbl <dphO,dphl,...> — drive table
; dph translate$table, — disk parameter header

disk$Parameter$block,
checksum$ size,
alloc$ size

; skew sectors,

(optional)
(optional)

— skew table
skew$factor,
first$sector$number

physica1$sector$size, — disk parameter block
physica1$sectors$per$track;
number$tracks,
block$ size,
numberdirentries,
track$offset,
checksumvecsize (optional)

; dpb

Drive Table. Contains 16 one word entries.

dtbl macro?list
local?n
? n set 0

irp ?drv,<?list>
?n set ? n+1

dw ?drv
endm

if?n > 16
.'Too many drives. Max 16 allowed'

exitm
endif

if?n < 16
rept (16-?n)
dw 0
endm

endif
endm

Appendix H: Macro Definitions

dph

CP/M 3 System Guide

macro ?trans,?dpb,?c size,?asize
local ?c sv,? alv

dw?trans

db 0,0,0,0,0,0,0,0,0
db 0 ; media flag

; translate table address
; BDOS Scratch area

; disk parameter block

; checksum vector

dw?dpb
if not nul?csize

dw ?csv

dw OFFFEh ; checksum vector allocated by GENCPM
else

else

endif

endif
if not nul?asize

dw?alv

dw OFFFEh ; alloc vector allocated by GENCPM

dw Offfeh,Offfeh,Offfeh
db 0 ; hash bank

; allocation vector

; dirbeb, dtabcb, hash alloc'd by GENCPM

if not nul?csize
?csv d s ?csize ; c h ecksum vector

endif
i f not nul ?a s i ze

?alv d s ?asize ; a l l ocation vector
endif

endm

dpb macro?psize,?pspt,?trks,?bls,?ndirs,?off,?ncks
local ? spt,?bsh,?blm,?exu,?dsm,?drm,?a10,?all,?cks,?psh,?psm
local?n

?psh set 0
?n set ? psize/128
?psm Set?n-1

rept 8
?n set ? n /2

i f?n =0

exitm
endif

;; physical sector mask and physical sector shift

?psh set?psh + 1
endm

? spt set?pspt*(?psize/128)

Appendix H: Macro Definitions CP/M 3 System Guide

?bsh
?n

set 3
set?bls/1024
rept 8
?n set ? n /2

if?n -0
exits
endif

?bsh set?bsh + 1
endm
set?bls/128-1
set (?trks-?Off)*?spt
set? size/(?bls/128)-1

?blm
?size
?dsm

?exm set?bls/1024
if?dsm > 255

if ?bls — 1024

.'Error, can"t have this size disk with lk block size'
exitm
endif

?exm set?exm/2
endif

?exm set ?exm-1
?all s e t 0
?n set (?ndirs*32+?b 1 s-1)/?bls

?all s e t (?all shr 1) or 8000h
endm

rept?n

?a10 set high?all
?all s e t low?al 1
?drm set?ndirs-1
if not nul?ncks

?cks set?ncks
else

?cks set?ndirs/4
endif

dw ?spt
db ?bsh,?blm
db ?exm
dw ?dsm
dw ?drm
db ?a10,?all
dw ?cks
dw ?Off
db ?psh,?psm

endm

; 128 byte records per track
; block shift and mask
; extent mask
; maximum block number
; maximum directory entry number
; alloc vector for directory
; checksum size
; offset for system tracks
; physical sector size shift and mask

Appendix H: Macro Definitions CP/M 3 System Guide

gcd macro?m,?n
;; greatest common divisor of m,n

produces value gcdn as result
(used in sector translate table generation)

?gcdm set?m;;variable for m
?gcdn set?n ; ;vsrisble for n
?gcdr set 0 ;;variable for r

?gcdx set?gcdm/?gcdn
?gcdr set?gcdm -?gcdx*?gcdn

rept 6 5 535

if?gcdr = 0

exitm
endif

?gcdn set?gcdr
endm

?gcdm set?gcdn

endm

macro? secs,? skf,? fsc
generate the translate table
?nxtsec set 0 ;; n ext sector to fi l l
?nxtbas set 0 ; ; moves by one on overflow
gcd %?secs,?skf
;; ?gcdn — gcd(?secs,skew)
?neltst set?secs/?gcdn
;; neltst is number of elements to generate
;; before we overlap previous elements
?nelts set?neltst ;;counter

skew

rept?secs ;;once for each sector
db ?nx t sec+? fsc
?nxtsec set?nxtsec+?skf

if?nxtsec > =?secs
?nxtsec set?nxtsec-?secs
endif

?nelts set?nelts-1
if?nelts = 0

?nxtbas set?nxtbas+1
?nxtsec set?nxtbas
?nelts s e t ? neltst
endif

endm
endm

End of Appendix H

Appendix I
ACS 8000-15 BIOS Modules

Boot Loader Module for CP/M 3

The BOOT.ASM module performs system initialization other than and disk I/O. BOOT loads
the CCP for cold starts and it for warm starts. Note that the device drivers in the Research
sample BIOS initialize devices for a polled, and an interrupt-driven, environment.
1 title 'Boot loadar module for Cp/M 3.0'
2
3 FFFF
4 0000
5
6 FFFF = banked equ true

true equ -1
false equ not true

7
8
9
10
11
12
13 maclib ports
14 maclib z80
15
16 0005 =

17
18 if banked
19 000 1 = t pa$bank equ 1

21 t pa$bank equ 0

bdos equ 5

public ?init,?ldccp,?rlccp,?time
extrn ?pmsg,?conin
extrn @civec,@covec,@aivec,@aovec,@lovec
extrn @cbnk,?bnksl

20 else

22 endif
23
24
25
26 ?init:
27 000 0 2100802200
28 000 9 2100402200
29 OOOF 2100202200
30 00 1 8 21EFOOCD2S
31 OO IE 218700CDOO
32 002 4 C9
33
34
35
36
37
38
39

ret

out$blocks:
0025 7EB7C847 mov a ,m ! ora a! rz! mov b,a
0029 234E23 inx h! mov c,m! inx h

002C+EDB3 DB OED H ,OB3H
002E C32500 j mp out $blocks

dseg ; init done from banked memory

lxi h,08000h ! shld @civec ! shld @covec; assign console to CRT
lxi h,04000h ! shld @lovec ; assign printer to LPT:
lxi h,02000h! shld @aivec ! shld @aovec; assign AUX to CRT1:
lxi h,init$table ! call out$blocks ; set up misc hardware
lxi h,signon$msg ! call?pmsg ; print signon message

outir

I. 1 Boot Loader Module for CP/M 3 CP/M 3 System Guide

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

0000 AF32DBOO
0004 21000022EC
OOOA 11CCOOCD73
0010 3CCA4AOO
0014 110001CD78
001A 118000CD7D
0020 I1CCOOCD82

0026 2100010180
002C 3AOOOOF5

ld$1:
0030 3E01CDOOOO
0035 7EF5
0037 3E02CDOOOO
003C F177
003E 230B
0040 78B1
0042 C23000
0045 F1CDOOOO
0049 C9

?rlccp:
0056 2100010180 l xi

005C 3B02CDOOOO mvi
0061 7EF5 mov
0063 3E01CDOOOO mvi
0068 F177
006A 230B
006C 78B1

r1$1:

?ldccp:

lxi
lda

pop
inx

mvi
mov
mvi

pop
inx

jnz
pop
ret

mov

004A 21ABOOCDOO lxi h,cc p$msg ! call?pms; report this.. .
0050 CDOOOO call?conin ; get a response
0 053 C30000 j mp ?ldcc p ; and try again

no$CCP: ; here lf we couldn't find the file

; First time, load the A:CCP,COM file into TPA
xra a! Sta ccp$fcb+15 ; zero extent
lxi h,O! shld fcb$nr ; start at beginning of file
lxi d,ccp$fcb! call open ; open file containing CCP
inr a! jz no$CCP ; error if no file.. '
lxi d,0100h ! call setdma ; Start of TPA
lxi d,128 ! call setmulti ; allow up to 16k bytes
lxi d,ccp$fcb! call read ; load the thing

This version of the boot loader loads the CCP from a file
called CCP.COM on the system drive (A:).

cseg ; boot loading most be done from resident memory

h,0100h! lxi b,OC80h; clone 3.125K

a,2! call?bnksl ; select extra bank
a,m ! push psw ; get a byte
a,tpa$bank ! call?bnksl ; select TPA
psw ! mov m,a; save the byte
h ! dcx b ; bump pointer, drop count
a,b! ora c ; test for done

h;0100h ! lxi b,OC80h; clone 3.125K, just in case
@cbnk ! push psw ; save current bank

a,tpa$bank!call?bnks; select TPA
a,m ! push psw ; get a byte
a,2! call?bnksl ; select extra bank
psw ! mov m,s; save the byte
h ! dcx b ; bump pointer, drop count
a,b! ora c ; test for done
ld$1
psw ! call?bnksl ; res t ore original bank

; now,
copy CCP to bank 0 for reloading

mov

I. 1 Boot Loader Module for CP/M 3 CP/M 3 System Guide

?time

ret
j nz r1$ 1

; CP/M BDOS Function Interfaces

87 006 E C25COO
88 007 1 C9
89
90 ; No external clock.
91
92 007 2 C9 ret
93
94
95
96 open:
97 0 073 OEOFC30500 mvi c,15 ! jmp bdos ; open file control block
98
99 setdma:
100 0 078 OEIAC30500 m vi c,2 6 ! jmp bdos
101
102 setmulti:
103 0070 OE2CC30500 mvi c,44! jmp bdos ; set record count
104
105 read:
106 0 0 82 OE14C30500 m vi c,2 0 ! jmp bdos
107
108
109 0 0 8 7 O DOAODOA43signon$msg db 1 3 ,10,13,10,'CP/M Version 1.0, sample

; set data transfer address

; read records

BIOS�',13,10,0
110
111 OOAB ODOA42494Fccp$msg db 13,10,'BIOS Err on A: No CCP.COM file',0

115 OODC ds

112
113
114 OOCC 0143435020ccp$fcb db

116 OOEC 000000 f cb$nr
117
118 OOBF 0326CFFF07init$table db
119 OOF4 0327CF0007 db
120 OOF9 012500 db
121 OOFC 00 db
122
123 OOFD

1,'CCP ','COM',0,0,0,0
16

db 0, 0 ,0

3,p$zpio$3a,OCFh,OFFh,07h; set up config port
3,p$zpio$3b,OCFh,000h,07h;set up bank port

l,p$bank$select,O ; select bank 0
0 ; end of init$table

end

BANKED
BC
BDOS
CCPFCB
CCPMSG
BE
FALSE
FCBNR

F FFF 6 ¹
0000
0005 16¹
OOCC 50
OOAB 73
0002
0 000 4 ¹
OOBC 5 1

18

9 7 100 1 0 3 1 0 6
5 2 56 114 ¹
111¹

116¹

I. 1 Boot Loader Module for CP/M 3 CP/M 3 System Guide

EL
INITTAB LE
IX
IY
1,01
NOCCP
OPEN
OUTBLOCKS
PBANKS ELECT
PBAUDCON1
PBAUDCON2
PBAUDCON34
PBAUDLPT1
PBAUDLPT2
PBOOT
PCENTDATA
PCENTSTAT
PCON2DATA
PCON2S TAT
PCON3DATA
PCON3S TAT
PCON4DATA
PCON4S TAT
PCONFIGURAT
PCRTDAT'A
PCRTSTAT
PFDCMND
PFDDATA
PF DINT
PFDMISC
PFDSBCTOR
PFDSTAT
PFDTRACK
PINDEX
PLPT2DATA
PLPT2S TAT
PLP'TDATA
PLPTS TAT
PRTC
PSELECT
PWD1797
PZCTC1
PZCTC2
PZDART
PZDNA
PZPIO1
PZPIOIA

0004
OOEF
0004
0004
0030
004A
0073
0025
0025
000C
0030
0031
000E
0032
0014
0011
0010
002C
002D
002E
0021
002A
002B

ION 0024
OOIC
001D
0004
0007
0008
0009
000E
0004
0005
0001
0028
0029
001E
0011
0033
0008
0004
000C
0030
OOIC
0000
0008
000A

30 119¹

61¹ 68
53 72¹
52 96¹
30 34¹ 39
120

I. 1 Boot Loader Module for CP/M 3 CP/M 3 System Guide

PZPIO1B
PZPIO2
PZPIO2A
PZPIO2B
PZPIO3
PZPIO3A
PZPIO3B
PZSIO1
PZSIO2
RIAD
RL1
SETDMA
SETMULTI
SIGNONMSG
TPABANK
TRUE
?BNKSL
?CONIN
? INIT
?LDCCP
?PMSG
?RLCCP
?TINE
@AIVEC
@AOVEC
@CBNK
@CIVEC
@COVEC
@LOVEC

000B
0010
0012
0013
0024
002E
0027
0028
002C
0082
005C
0078
007D
0087
0001
FFFF
0000
0000
0000
0000
0000
0056
0072
0000
0000
0000
0000
0000
0000

9 8 8

9 8 8 10

56
80¹
54
55
31
19¹
3¹
11

118
119

105¹
87
99¹
102¹
109¹
21¹
4
62
74
26¹
484
31
78¹
914
29
29
60
27
27
28

75
73

62
6
64

83

69 81 83

10
11
10
10
10

I.2 Character I/O Handler CP/M 3 System Guide

I.2 Character I/O Handler for Z80 Chip-based System

The CHARIO.ASM module performs all character device, input, output, and status
polling. CHARIO contains character device characteristics table.

1

2 3

title 'Character I/O handler for z80 chip based system'

; Character VO for the Modular CP/M 3 BIOS

; limitations:4 5 6

haud rates 19200;7200,3600,1800 and 134
7 8

9 10

are approximations.

11
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

0006 = max$devices e q u 6

?cinit:

cseg

0000 79FE06CA42 mov a,c ! cpi max$devlces ! jz cent$init; init parallel printer
0006 DO rnc ; invalid device
0007 692600 mov l,c ! mvi h,O ; make 16 bits from device number
OOOA E5 push h ; save device in stack
OOOB 292929 dad h ! dad h ! dad h; *8
OOOF 11E900196E l x i d ,@ctbl+7 ! dad d ! mov 1;m; get baud rate
0013 7DFE07 mov a,l ! cpi baud$600; see if baud > 300
0016 3E44D21DOO mvi a,44h ! jnc hi$speed; if > 600, use *16 mode
001B 3FC4 mvi a,OC4h else, use *64 mode

0010 323501 sta sioreg4
0020 2600111B01 m v i h ,O! lxi d,speed$table ! dad d ; point to counter entry
0026 7E322F01 mov a , m ! sta speed ; get and save ctc count
002A El pop h ; recover
0028 11DC0019 l xi d,data$ports ! dad d; point at SIO port address
002F 7E3C323001 m o v a,m! inr a! sta sio$port; get and save port

to work,

public ?cinit,?ci,?co,?cist,?cost
public @ctbl

maclib Z80 ; define Z80 op codes
maclib ports ; define port addresses
maclib modebaud ; define mode bits and baud equates

9600 is the maximum baud rate that is likely

haud rates 50, 75, and 110 are not supported

hi$ speed:

I.2 Character I/O Handler

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

0042 213901

0075+ED78
0077 E601
0079 C8
007A F6FF
007C C9

0063 3E1A
0065 C9

0070 AFC9

0034 IIFAFF19
0038 7E322C01
003C 212801
003F C34500

0051 78FE06D263
cil:

0057 C06600CA57
0050 00
OOS E+ED78
0060 E67F
0062 C9

?Co:

?ciat

?C1:

cent$init:

nu11$1nput:

stre am$out:

ret

ret

outir

xra a! ret

004S 7FB7C8 mov a,m! ora a! rz

0048 47234F23 m ov b,a! inx h! mov c;m! inx h

004C+EDB3 DB OED H ,OB3H
004E C34500 j mp str eam$out

lxi h,pio$init$tbl

; character input

; character input Status

0066 78FE06D27D mov a,b! cpi 6! jnc nu11$status; can't read from centronics
006C 682600 m ov l,b! mvi h,O ; make device number 16 bits
006F 11DC0019 l xi d ,data$ports ! dad; make pointer to port address
0073 4EOC mov c,m! inr c ; get SIO status port

inp a ; read from status port
DB O E D H,A*8+40H
ani 1 ; isolate RxRdy
rz ; return with zero
ori OFFh
ret

nu11$ status:

mvi a,lAh ; return a ctl-Z for no device

mov a,b! cpi 6! jnc nu11$input; can't read from centronics

call?cist! jz cii ; wait for character ready

dcr c ! inp a ; get data
DB O E D H,A*8+40H
ani 7Fh ; mask parity

CP/M 3 System Guide

lxi d,baud$ports­data$ports ! dad d ; offset to baud rate port
mov a,B ! sta ctc$port ; get and save
lxi h,serla1$init$tbl
jmp stream$out

; character output

I.2 Character I/O Handler CP/M 3 System Guide

007F
0085
0088
008A

0090

0006
OOOA

008B
0091
0095
0099
009A

OOB3
OOB9
OOBC
OOBF
OOC3

OOC7
OOCA

OOCD
0000
0003

009E
OOA5
OOA8
OOAE
OOB2

C9

O COE3031 db
3132 db

data$ports:
lclE2C2E db
2A28 db

C9 ret

co$spin:

cent$stat:

91
92
93
94
95
96
97
98
99
100
101 009B+ED79 DB O E D H,A*8+41H
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119 OOCS+ED78
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

baud$ports:

nu11$output:

centronics$out:

E620C8 ani 2 0h ! r z
F6FFC9 ori OFFh ! ret

ret

DB102F i n p$c entstat ! cas

78FE06CACD mov a,b! cpi 6! jz cent$stat
027000 j nc nu 11$status
682600 mov l ,b ! mvi h,O
11DC0019 l x i d ,data$ports ! dad d
4EOC mov c,m! inr c

E 604C8 ani 4 ! r z ; test transmitter empty
F6FFC9 ori O FFh ! ret ; return true if ready

inp a ; get input status
DB O E D H,A*8+40H

DB10E620C2 in p$centstat! ani 20h! jnz csntronics$out
79D311 mov a , c ! out p$centdata ; give printer data
DBIOF601D3 in p$centstat! ori 1! out p$centstat; set strobe
E67ED310 a n i 7Eh ! out p$centstat ; clear strobe

?cost: ; character output status

78FE06CA9E mov a,b! cpi 6! jz centronics$out
029000 j nc nu 11$0utput
79F5 mov a,c ! push psw ; save character from <C>
C5 push b ; save device number

CDB300CA8 call?cost! jz co$spin; wait for TxEmpty
E16C2600 po p h ! mov IP ! mvi h,O ; get device number in <HL>
1 1DC0019 l x I d ,data$ports ! dad d ; make address of port address
4E mov c,m ; get port address
Fl pop psw ! outp a ; send data

; serial base ports by physical device number
pcrtdata,p$1pt$data,p$con2data,p$con3data
p$con4data,p$1pt2data

; CTC ports by physical device number
p$baud$conl, p$baud$1ptl, p$baud$con2, p$baud$con 34
p$baud$con34,p$baud$1pt2

OODC
OOEO

I.2 Character I/O Handler CP/M 3 System Guide

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

OOE2 4352542020@
OOE8 OF
OOE9 OE
OOEA 4C50542020
OOFO 1F
OOFI QE
OOF2 4352543120
OOF8 OF
OOF9 OE
OOFA 4352543220
0100 OF
0101 CE
0102 4352543320
0108 OF
OL09 OE
010A 5641582020
0110 OF
0111 OE
0112 43454E2020
0118 02
0119 00
011A 00 ; table terminator

ctbl db 'CRT ' ; device 0, CRT port 0
db mbinout+mb$serial+mb$softbaud
db baud$9600
db 'LPT ' ; device 1, LPT port 0
db mbinout+mb$serial+mb$softbaud+mb$xonxoff
db baud$9600
db 'CRT1 ' ; device 2, CRT port 1
db mbinout+mb$serlal+mb$softbaud
db baud$9600
db 'CRT2 ' ; device 3, CRT port 2
db mb$'in$out+mb$serial+mb$softbaud
db baud$9600
db 'CRT3 ' ; device 4, CRT port 3
db 'mbinout+mb$serial+mb$softbaud
db baud$9600
db 'VAX ' ; device 5, LPT port 1 used for VAX interface
db mbinout+mb$serial+mb$softbaud
db baud$9600
db 'CEN ' ; device 6, Centronics rerallel printer
db mb$output
db baud$none
dbo

011B OOFFFFFFE9Speed$table db 0,255,255,255,233,208,104,208,104,69,52,35,

26,17,13,7
163
164
165
166
167
168
169
170
171
172
173
174
175
176 0 1 39 02130F07 pio$init$tbl

012B 02 db
012C ctc$port

012E Speed ds
012F 07 db
0130 Sio$port

0135 sioreg4

012D 47 db

0131 180311104 db

0136 05EA db
0138 00 db

seria1$init$tbl
2 ; two bytes to CTC
ds I ; port addresS of CTC
47h ; CTC mode byte
1 ; baud multiplier
7 ; 7 bytes to SIO
ds 1 ; port address of SIO
18h,3,0Elh,4
ds 1
5,0EAh
0 ; terminator

db 2,p $ zpio$2b,OFh,07h
3,p$zpio$2a,OCFh,OF8h,07h1 77 0 130 0312CFF807 d b

178 0 142 00 dbo
179
180 0143 end
BAUDIIO
BAUD1200
BAUD134

0003
0008
0004

I.2 Character I/O Handler CP/M 3 System Guide

BAUD150
BAUD1800
BAUO19200
BAUD2400
BAUD300
BAUD3600
BAUD4800
BAUD50
BAUD600
BAUD7200
BAUD75
BAUD9600
BAUDNONE
BAUDPORTS
BC
CENTINIT
CENTRONICSOUT
CENTS TAT
CII
COS PIN
CTCPORT
DATAPORTS
DE
HIS PEED
HL
IX
IY
MAXDEVICES
MBINOUT
MBINPUT
MBOUTPUT
MBSERIAL
MBSOFTBAUD
MBXONXOFF
NULLINPUT
NULLOUTPUT
NULLSTATUS
PBANKS ELECT
PBAUDCONI
PBAUDCON2
PBAUDCON34
PBAUDLPT1
PBAUDLPT2
PBOOT
PCENTDATA
PCENTSTAT
PCON2DATA

0005
0009
OOOF
OOOA
0006
OOOB
OOOC
0001
0007
0000
0002
OOOE
0000
0006
0000
0042
00911
OOCO
0057
008B
012C
OODC
0002
001D
0004
0004
0004
0006
0003
0001
0002
OOOB
0004
0010
0063
0090
0070
0025
OOOC
0030
0031
OOOE
0032
0014
0011
0010
002C

35

34

140
158
44

157
139
139
142
62
92
76

28
91
113
63¹
95¹
45
42

23¹
139

130
130
130
130
131

107
106
134

131

37¹

129¹

70¹
102¹
87¹ 114

49¹
105¹ 106
124¹
64
96
166¹
44 78 98

28
142 1 4 5 148

142 1 4 5 148
142 1 4 5 148

143 1 4 6 149 152 155

1 51 1 5 4

1 51 1 5 4
1 51 1 5 4

116 1 3 3¹

108 1 0 8 109 125

I.2 Character I/O Handler CP/M 3 System Guide

pCON2S TAT
PCON3DATA
pCON3S TAT
PCON4DATA
PCON4S TAT
PCONFIGURA
PCRT'DATA
PCRTSTAT
PFDCMBD
PFDDATA
PF DINT
PFDMISC
PFDSECTOR
PFDSTAT
PFDTRACK
PINDEX
PIOINITTB L
PLPT2DATA
PLPT2ST'AT
PLPTDATA
PLPTS TAT
PRTC
PSELECT
PWD1797
PZCTC1
PZCTC2
PZDART
PZDMA
PZPIO1
PZPIO1A
PZPIO1B
PZPIO2
PZPIO2A
PZPIO2B
PZPIO3
PZPIO3A
PZPIO3B
PZSIO1
PZSIO2
SERIALINITT
SIOPORT
SIOREG4
SPEED
SPEEDTABLE
STREAMOUT
?CI
?CINIT

002D
002E
002F
002A
002B

TION 0024
001C
001D
0004
0007
0008
0009
0006
0004
0005
000F
0139
0028
0029
001E
001F
0033
0008
0004
000C
0030
001C
0000
0008
000A
000B
0010
0012
0013
0024
0026
0027
0028
002C
012B
0130
0135
012E
011B
0045
0051
0000

46
43
38
40
39
47
16
16

135

177
176

134

134

134

50 176 ¹
135

164¹
170¹
172¹
168¹
162¹
52¹ 57
60¹
27¹

BL

I.2 Character I/O Handler CP/M 3 System Guide

0066 16
007F 16
0083 16
OOE2 17

64 74¹
90¹
96 112 ¹
33 138 ¹

?CIST
?CO
?COST
@CTBL

1.3 Drive Table CP/M 3 System Guide

1.3 Dri ve Table

The DRVTBL.ASM module points to the data structures for each
configured disk drive. The drive table determines which physical
disk unit is associated with which logical drive. The data
structure for each disk drive is called an Extended Disk Parameter
Header (XDPH) .

1 public @dtbl
2 extin fdsdO,fdsdl
3
4
5
6
7
8
9 0020 end
FDSDO 0000 2 6
FDSD1 0000 2 6
@DTBL 0000 1 6¹

cseg

0000 00000000 @dtbl dw fd sdO,fdsdl
0004 0000000000 dw 0,0,0,0,0,0,0,0,0,0,0,0,0,0; drives C-P non-existent

Listing I-3. Drive Table

1.4 Z80 DMA single-density Disk Handler

The FD1797SD module initializes the disk controllers for thedisks described in the Disk
Parameter Headers and Disk Parameter Blocks contained in this module. FD1797SD is written
for hardware that supports Direct Memory Access (DMA) .

1 title 'wd1797 w/ Z80 DMA Single density diskette handler'

2 3
CP/M-80 Version 3 -- Modular BIOS

Disk VO Module for wd1797 based diskette systems4 5 6

Initial version 0.01,
7 8

9 10

Single density floppy only. — jrp, 4 Aug

dseg

; Disk drive dispatc))ing tables for linked BIOS

public fdsdO,fdsdl

; Variables containing parameters passed by BDOS

extrn @adrv,@rdrv

11
12
13
14
15
16
17
18

I.4 Z80 DMA Single-density Disk Handle CP/M 3 System Guide

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
94
55
56
57
58
59
60
61
62
63
64
65

0000 E600
0002 DCOO
0004 DBOO
0006 BEOO
0008 0000

extrn
extrn
extrn
extrn
extrn
extrn

000b = cr equ 13
OOOA = l f equ 1 0
0007 = bell equ 7

; Extended

; Port Address Equates

saclib ports

maclib z80

maclib cpm3

; common control characters

; CP/M 3 Disk derinition macros

extrn @dma,@trk,@sect
extrn @dbnk

; System Control Block variables

extrn @ermde

; Utility routines in standard BIOS

; Z80 macro library instruction definitions

fdsdO dph tra ns,dpbsd,16,31

; BDOS error mode

dw fd$ wr i te
dw fd$r ead
dw fd$1ogin
dw fd$i n i tO
db 0 0 ; relative drive zero

?wboot ; war m hoot ve c tor
?pmsg; print message @<HL> up to 00, saves <BC> 4 <DE>

?pdec ; print binary number in <A> from 0 to 99,
?pderr; print BIOS disk error header

?conin,?cono; con in and out
?const; get console status

Disk Parameter Headers (XPDNS)

OOOA+A400 DW TRANS ; TRANSLATE TABLE ADDRESS
OOOC+0000000000 D B 0 ,0,0,0,0,0,0,0,0 ; BDOS SCRATCH AREA
0015+00 DB 0 ; MEDIA FLAG

I.4 Z80 DMA Single-density Disk Handle CP/M 3 System Guide

66
67
68
69

0016+0000
0018+2300
001A+3300
001C+FEFFFEFFFE

DW DPBSD ; DISK PARAMETER BLOCK
DW??0001 ; CHECKSUM VECTOR
DW??0002 ; ALLOCATION VECTOR
DW OFFFEH,OFFFEH,OFFFEH; DIRBCB, DTABCB, HASH

ALLOC'D BY GENCPM
70
71
72
73
74
79
76
77
78
79
80
81
82
83
84
85
86

0022+00
0023+
0033+

0052 E600
0054 DCOO
0056 DBOO
0058 CDOO
OOSA 0100

fdsdl

DB 0 ; HASH BANK
??0001 DS 1 6 ; CHECKSUM VECTOR
??0002DS 3 1 ; ALLOCATION VECTOR

dw fd$ write
dw fd$ r ead
dw fd$1ogin
dw fd$i n i t l
db 1,0 ; relative drive one
dph t r ans,dpbsd,16,31
DW TRANS ; TRANSLATE TABLE ADDRESS
DB 0,0,0,0,0,0,0,0,0 ; BDOS SCRATCH AREA
DB 0 ; MEDIA FLAG
DW DPBSD ; DISK PARAMETER BLOCK
DW??0003 ; CHECKSUM VECTOR
DW??0004 ; ALLOCATION VECTOR
DW OFFFEH,OFFFEH,OFFFEH; DIRBCB, DTABCB, HASH

ALLOC'D BY GENCPM

005C+A400
005E+0000000000
0067+00
0068+0000
006A+7500
006C+8500
006E+FEFFFEFFFE

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

0074+00
0075+ 770003
0085+ 770004

dpbsd

cseg ; DPB must be resident

dpb 128,26,77,1024,64,2
DW ??0 005; 128 BYTE RECORDS PER TRACK
DB ??0 006,??000; BLOCK SHIFT' AND MASK
DB ??0 008; EXTENT MASK
DW ??0 009; MAXIMUM BLOCK NUMBER
DW ??0 010; MAXIMUM DIRECTORY ENTRY NUMBER
DB ??0 0 11,??0012; ALLOC VECTOR FOR DIRECTORY
DW ??0 013; CHECKSUM SIzE
DW 2 ; OFFSET FOR SYSTEM TRACKS
DB ??0 014,??0015; PHYSICAL SECTOR SIZE SHIFT AND

; HASH BANK
; CHECKSUM VECTOR
; ALLOCATION VECTOR

0000+1AOO
0002+0307
0004+00
000S+F200
0007+3FOO
0009+C000
0008+1000
000D+0200
000F+0000

MASK
103
104
105

dseg ; rest is banked

I.4 Z80 DMA Single-density Disk Handle CP/M 3 System Guide

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

OOA4+01
OOA5+07
OOA6+OD
OOA7+13
OOA8+19
OOA9+05
OOAA+OB
OOAB+11
OOAC+17
OOAD+03
OOAE+09
OOAF+OF
OOBO+15
OOBI+02
OOB2+09
OOB3+OE
OOB4+14
OOB5+1A
OOB6+06
OOB7+OC
OOB8+12
OOB9+18
OOBA+04
OOBB+OA
OOBC+10
OOBD+16

OOC8+EDB3
OOCA C3C100

t rans s k ew
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

fd$initO

fd$init$next:
OOBE 2ICEOO lxi h,init$table

OOCI 7EB7CB mov a,m ! ora a ! rz
OOC4 47234E23 m ov b,a! inx h ! mov c,m! inx h

outir
DB O E DH,OB3H
jmp fd$init$next

26,6,1
?NXTSEC+1
?NXTSEC+1
?NXTSEC+1
?NXTSEC+1
?NXTSEC+1
?NXTSEC+1
?NXTSEC+1
?NXTSEC+1
?NXTSEC+1
?NXTSEC+1
?NXTSEC+1
?NXTSEC+1
?NXTSEC+1
?NXTSEC+1
?NXTSEC+1
?NXTSEC+1
?NXTSEC+1
?NXTSEC+1
?NXTSEC+1
?NXTSEC+1
?NXTSEC+1
?NXTSEC+1
?NXTSEC+1
?NXTSEC+1
?NXTSEC+1
?NXTSEC+1

called for first time initialization.

; Disk VO routines for standardized BIOS interface

; Initialization entry point.

fd$initl: ; all initialization done by drive 0

I.4 Z80 DMA Single-density Disk Handle CP/M 3 System Guide

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

OODB C9 ret

fd$read:

fd$write

rw$common:

OOCD C9 ret

OOCE 040A i n i t$table db 4 ,p$zpio$1A
OODO CFC217FF db 1100 1111b, 11000010b, 00010111b,11111111b
OOD4 040B db 4,p $ zpio$1B
OOD6 CFDD17FF db 1100 1111b, 11011101b, 00010111b,11111111b
OODA 00 dbo

OODC 211802 lxi h,read$msg ; point at " Read "
OODF 3E880601 mv i a ,88h! mvi b,01 h; 1797 read+ Z80DMA direction
OOE3 C3EDOO j mp rw $ common

jmp wr$common ; f al l through

OOE6 211F02 lxi h,write$msg ; point at " Write "
OOE9 3EA80605 mv i a ,OA8h! mvi b,05h; 1797 write + Z80DMA direction

fd$1ogin ; This entry is called when a logical drive is about to

; disk READ and WRITE entry points

; these entries are called with the following arguments:

; relative drive number in @rdrv (8 bits)
; absolute drive number in @adrv (8 bits)
; disk transfer address in @dma (16 bitS)
; disk transfer bank in @dbnk (8 bits)
; disk track address in @trk (16 bits)
; disk sector address in @sect (16 bits)
; pointer to XDPH in <DE>

; they transfer the appropriate data, perfor
; if necessary, then return an error code in

; be logged into for the purpose of density determination.

; It may adjust the parameters contained in the disk
; parameter header pointed at by <DE)

; we have nothing to do in
simple single density only environment.

m retries
<A>

; seek to correct track (if necessary),
; initialize DMA controller,

1.4 Z80 DMA Single-density Disk Handle CP/M 3 System Guide

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

0133 OB
0134 78B1
0136 C23301

spin$1oop:

same$track

more$retries:

retry $operation:

lxi b,16667

dcx b
mov a,b ! ora c
jnz spin$1oop

012D CDA901 call c heck$seek ;. . . read address and seek if wrong track

0130 011B41 ; 100 ms / (24 t states*250 ns)
; wait for h ead/seek settling

0139 3A00000305 lda @trk! out p$fdtrack ; give 1797 track
013E 3AOOOOD306 lda @sect! Out p$fdsector and sector

lxi h,dma$block ; point to dma command block
lxi b,dmab$1ength*256+ p$zdma ; command block length and

outir ; send commands to Z80 DMA
DB O E DH,OB3H

OQED 222702
OOFO 321102
OOF3 7832A802
OOF7 2A0000229F
OOFD 3A00006F26
0103 11160219
0107 7E321202
0108 D308

010D OEOA mvi c,10 ; allow 10 retries

010F C5 push b; save retry counter

0110 3A12022113 lda select$mask! lxi h,old$select! cmp m
0117 77 mov m,a
0118 C22D01 j nz ne w $track ; i f not same drive as last, seek

011B 3A00002114 lda @trk! lxi h,old$track! csp m
0122 77 mov m,a
0123 C22001 j nz new $ track ; i f not same track, then seek

0126 DB09E602C2 in p$fdmisc! ani 2! jnz same$track; head still loaded, we are OK

new$track: ; or drive or unloaded head means we should ..

240
241
242
243
244
245

0143 219A02
0146 010011

; and issue 1797 command.

shld operation$name ; save message for errors
sta disk$command ; save 1797 command
mov a,b ! sta zdma$direction; save Z80DMA direction code
lhld @dma (shld zdma$dma; get and save DMA address
lda @rdrv! mov l ,a ! mvi h, 0; get controller-relative disk drive
lxi d,select$table ! dad d ; point to select mask for drive
mov a,m ! sta select$mask ; get select mask and save it
outp$Select ; select drive

port address

0149+EDB3

0148 DB2S in p$bankse)ect ; get old value of bank select port
014D E63F47 ani 3Fh! mov b,a ; mask off DMA bank and save
0150 3AOOOOOFOF lda @dbnk! rrc! r rc ; get DMA bank to 2 hi-order bits

I.4 Z80 DMA Single-density Disk Handle CP/M 3 System Guide

246
247
248
249
250
251
252
253
254
255
256
257

0163 C 1
0164 B7C8

0155 E6COBO
0158 D325

015A 3A1102
015D CDDS01
0160 321502

; recover retry counter
; check status and return to BDOS if no error

; see if record not found error
; if a record not found, we might need to
seek

dcr c ! jnz retry$operation
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

0166 E610
0168 C4A901

0180 3A1502
0183 212902

01A6 C30000

0168 ODC20F01

errml:

cancel:

0177 CDOOOO call ?pderr

017A 2A2702CDOO lhld operation$name ! call?pmsg

016F 3AOOOOFEFF lda @ermde ! cpi OFFh ! jz hard$error

; Had permanent error, print message like:

hard$ error: ; otherwise,

0186 5E235623
018A 87F5
018C EBDCOOOOEB
0191 F1C28601

0195 218A02CDOO lxi h,error$msg ! call?pmsg; print <BEL>, Retry (Y/N) ? "
019B CDF50I call u$conin$echo ; get operator response
019E FE59CAOD01 cpi 'Y' ! jz more$retries; Yes, then retry 10 more times

01A3 3E01C9 mv i a,l ! r e t ; return hard error to BDOS

; suppress error message if BDOS is returning errors to application..

; BIOS Err on d: T-nn, S-mm, <operation> <type>, Retry?

; print mes sage header

; then, messages for all indicated error bits

lda disk$status
lxi h,error$table

mov e,m! Inx h! mov d,m! inx h ; ge t next message address
add a! push psw ; shift l e f t and push residual bits with status

xchg! cc?pmsg! xchg; print message, saving table pointer
pop psw ! jnz errml ; if any more bits left, continue

ani OCOh ! ora b ; merge with other bank stuff
out p$bankselect ; and select the correct DMA bank

lda disk$command ; get 1797 command
call exec$co'""'and ; start it then wait for IREQ and read status
sta disk$status ; save sta tus for error messages

pop b
ora a! rz

ani 0001$0000b
cnz check$seek

; here to abort job
; leap directly to warmstart vector

; get Status byte from last error
; point a t table of message addresses

; last function

jmp?wboot

I.4 Z80 DMA Single-density Disk Handle CP/M 3 System Guide

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

01D3 3EOB

OIE1 21AB02
01E4 0 I OOF

01CE 3E6A
0100 C3DS01

01BE 78D305
Olcl 3AOOOOB8C1
01C7 D307
01C9 3E1A
01CB C3D501

OIEO C9 ret

read$id:

01B9 CDD301 call r estore

01A9 C5 push b; save
01AA CDE101 call r ead$id
0 1AD CABE01 j z id$o k
01BO CDCE01 call step$out
01B3 CDE101 call read$id
0 1B6 CABE01 j z id$ o k

01BC 0600 mvi b,O
id$ok

restore:

step$out:

wait$IREQ:

check$seek:

0105 0304 out p$fdcmnd

0107 DB08E640CA in p$fdint! ani 40h
01DE 0804 in p$fdstat

exec$command:

mvi a,00001011b ; restore at 15 ms

jmp exec$command

; subroutine to seek if on wrong track
; called both to set up new track or drive

mvi a,01101010b ; step out once at 10 ms.
jmp exec$command

error counter

; try to read ID, put track in
; if OK, we' re DE
; else step towards Trk 0
; and try again
; if OK, we' re OK
; else, restore the drive
; and make like we are at track

mov a,b ! Out p$fdtrack ; send current track to track port
lda @trk! cmp b ! pop b ! rz; l f its desired track, we are done
out p$fddata ; else, desired track to data port
mvi a,00011010b ; seek wi 10 ms. steps
jmp exec$command

return Status
; issue 1797 command, and wait for IREQ

; send 1797 command
; spin til IREQ

! jz wait$IREQ
; get 1797 Status and clear IREQ

lxi h,readidblock ; set up DMA controller
lxi b,lengthiddmab*256+ p$zdma; for READ ADDRESS

operation
334
335
336
337

01E7+EDB3
01E9 3EC4
01EB CDD501

outir
DB O E D H,OB3H
mvi a,11000100b
call exec$command

; issue 1797 read address command
; wait for IREQ and read status

I.4 Z80 DMA Single-density Disk Handle CP/M 3 System Guide

338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361

0211
0212
0213
0214

OIEE E69D
01FO 21110046
01F4 C9

0215

0216 1020 select$table

u$cl:

u$conin$echo: ; get console input, echo it, and shift to upper case
01F5 CD000087CA c a l l ?const! ora a! jz u$cl ; see if any char already struck
01FC CDOOOOC3FS call?conin! jmp u$conin$echo; yes, eat it and try again

0202 CDOOOOFS call?conin ! push psw
0206 4FCDOOOO m ov c,a! call?cono
020A F1FE61D8 pop psw ! cpi 'a'! rc
020E D620 sui 'a'-'A' ; make upper case
0210 C9 ret

disk$command ds
s elect$mask d s
old$se lect ds
old$track ds

diik$status ds 1 ; last error status code for messages

ani 10011101b ; mask status
lxi h;id$buffer! mov b,m ; get actual track number in
ret ; and return with z flag true for OK

1 ; current wd1797 command
1 ; current drive select code
1 ; laat drive selected
1 ; last track seeked to

db 000 1$0000b,0010$0000b; for now use drives C and
D

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

0229 3902
022B 4502
0220 4F02
022F 5702
0231 6A02
0233 7002
0235 7C02
0237 8302

0239 204E6F7420b7$msg db

0218 2C20s26s61read$msg db
021F 2C20577269write$msg db

0227 1802 ope ration$name

error$table dw
dw
dw
dw
dw
dw
dw
dw

; error message components

', Read',0
', Write',0

dw rea d$msg

; table of pointers to error message strings
first entry is for bit 7 of 1797 status byte

b7$msg
b6$msg
b5$msg
b4$msg
b3$msg
b2$msq
b1$msg
b0$msg

' Not ready,',0

384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430

0245
024F
0257
026A
0270
027C
0283

028A

029A
0298
029C
029D
029E
029F
02A1
02A3
02A4
02A5
02A6
02A7
02A8
02A9
02AA
0011

02AB
02AC 14
02AD 28
02AE 8A
02AF
02BO
0282
02B4
02B5
02B6
02B7
02B8
0259
OOOF

C3

C3
14
28
8A
79

CF
87

7FOO
85
07
CF
05
CF

I.4 Z80 DMA Single-density Disk Handle

2050726F74b6$msq db
204661756Cb5$msg db
205265636Fb4$msg db
204352432Cb3$msg db
204C6F7374b2$msg db
2044524551b1$msg db
2042757379b0$msg db

2052657472error$msg

readidblockdb
db
db
db
db
dw
dw
db
db
db
db
db
db

lengthiddmab

; command string for Z80DMA device for normal operation

d ma$block d b
db
db
db
db

zdma$dma ds
dw
db
db
db
db
db

zdma$direction ds
db
db

dmab$1ength equ

' protect,',0
' Fault,',0
' Record not found,',0
' CRC,',0
' Lost dsta,',0
' DREQ,',0
' Busy,',0

db ' Retry (Y/N)? ',0

OC3h; reset DMA channel
14h ; channel A is incrementing memory
28h ; channel B is fixed port address
8Ah ; RDY is high, CE/ only, stop on EOB
7Dh ; program all of ch. A, xfer A->B (temp)
id$buffer; starting DMA address
6-1 ; Read ID always xfers 6 bytes
85h ; byte xfer, ch B is 8 bit address
p$fddata; ch B port address (1797 data port)
OCFh; load dest (currently source) register
Olh ; xfer B->A
OCFh; load source register
87h ; enable DMA channel
equ $ - r eadidblock

OC3h; reset DMA channel
14h ; channel A is incrementing memory
28h ; channel B is fixed port address
8Ah ; RDY is high, CE/ only, stop on EOB
79h ; program all of ch. A, xfer B->A (temp)
2 ; starting DMA address
128-1; 128 byte sectors in SD
85h ; xfer byte at a time, ch B is 8 bit address
p$fddata; ch B port address (1797 data port)
OCFh; load B as source register
05h ; fer A->B
OCFh; load A as source register
1 ; either A->B or B->A
OCFh; load final source register
87h ; enable DMA channel
$-dma$block

CP/M 3 System Guide

7D
1100
0500
85
07
CF
01
CF
87

I.4 Z80 DMA Single-density Disk Handle CP/M 3 System Guide

431
432
433
4 34 0 0 1 1
435
436
437
438
439
440
441
4 42 0 0 1 7
BOMSG
B1MSG
B2MSG
B3MSG
B4MSG
B5MSG
B6MSG
B7MSG
BC
BELL
CANCEL
CHECKSEEK
CR
DE
DISKCOMMAMD
DISKSTATUS
DMAB LENGTH
DMABLOCK
DPBSD
ERRM1
ERRORMSG
ERRORTABLE
EXECCOMMAND
FDINITD
FDINIT1
FDIMITNEXT
FDLOGIN
FDREAD
FDSDO
FDSD1
FD WRITE
HARDERROR
HL
IDBUFFER
IDOK

0283
027C
0270
026A
0257
024F
0245
0239
0000
0007
01A6
01A9
OOOD
0002
0211
0215
0011
029A
0000
0186
028A
0229
01D5
OOBE
OOCD
OOC1
OODB
OODC
OOOA
005C
OOE6
01A3
0004
0011
01BE

id$buffer ds
; track
; Side
; Sector
; length
;CRC1
;CRC2

end
381
380
379
378
377
376
375
374

cseg

203
251
239
238
62
277¹
283
276
250
60
77
145¹
59
58
14
14
57
263

52¹
289¹
226
50¹

422
302

257

249
275
4131
398¹
66
281
392¹
374¹
310
143¹
152¹
150
76
75
621
791
74
286¹

390¹
389¹
388¹
3871
386¹
3851
384¹
383¹

; easier to put

4341
3051

296¹

354¹
359¹

1621
188¹

193¹

413
79 83

316 3 2 3 ¹ 337

6 ; buffer to hold ID field

93¹

ID buffer in common

339
299

I.4 Z80 DMA Single-density Disk Handle CP/M 3 System Guide

INITTAB LE
IX
IY
LEMGTMIDDMA
LF
MORERETRIES
NEWTRACK
OLDSELECT
OLDTRACK
OPERATIOMMA
PBANkS ELECT
PBAUDCON1
PBAUDCON2
PBAUDCON34
PBAUDLPT1
PBAUDLPT2
PBOOT
PCENTDATA
PCENTSTAT
PCON2DATA
PCON2S TAT
PCON3DATA
PCON3S TAT
PCON4DATA
PCON4S TAT
PCONFIGURATI
PCRTDATA
PCRTSTAT
PFDCMND
PFDDATA
PFDINT
PFDMISC
PFDSECTOR
PFDSTAT
PFDTRACK
PINDEX
PLPT2DATA
PLPT2S TAT
PLPTDATA
PLPTSTAT
PRTC
PSELECT
PWD1797
PZCTC1
PZCTC2
PZDART
PZDMA

OOCE
0004
0004
000F
000A
010D
012D
0213
0214

ME0227
0025
000C
0030
0031
000E
0032
0014
0011
0010
002C
002D
002E
002F
002A
002B

ON 0024
001C
001D
0004
0007
0008
0009
0006
0004
0005
000?
0028
0029
001E
001F
0033
0008
0004
000C
0030
001C
0000

325
308
327
223
236
329
235

209

144

333
511
2101
217
215
219
202
243

333

306

1551

430¹

4 06 42 5

285
2 21 2 2 5 ¹
356¹
3571
2 71 3 6 9 1
247

239

I.4 Z80 DMA Single-density Disk Handle CP/M 3 System Guide

PZPIO1
PzPI01A
PZPIO1B
PZPIO2
PzPIO2A
PZPIO2B
PZPIO3
PZPI03A
PzPIO3B
PZSIO1
PZSIO2
REA DID
READIDBLOCK
READMSG
RESTORE
RETRYOPERAT
RWCOM MON
SAMETRACK
SELECTMASK
SELECTTABLE
SPINLOOP
STEPOUT
TRANS
UCI
UCONINECHO
WAITIREQ
WRITEMSG
ZDMADIRECT
ZDMADMA
?CONIN
?CONO
?CONST
?PDEC
?PDERR
?PMSG
?WBOOT
@ADRV
@DBNK
@DMA
@ERMDE
@RDRV
@SECT
@TRK

ION

0008
000A
000B
0010
0012
0013
0024
0026
0027
0028
002C
01E1
02AB
0218
01D3

ION010F
COED
0139
0212
0216
0133
01CE
OOA4
0202
01F5
0107
021F
02A8
029F
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

155
157

298
332
189
303
212¹
191
223
208
207
229¹
300
62
344
284
326*
194
204
205
32
32
33
30
31
29
28
18
20
19
24
18
19
19

269
271
290

245
205
263
206
236
219

301
417¹
366¹
318¹
259
198¹
234¹
215
361¹
232
314¹
63
346¹
343¹
327
367*

410¹
403*
345
348
344

345

347

331¹
430
369

355¹

2 80 28 3

79 80 106¹

2 35 3 0 7

I.5 Bank 4 Move Module for Linked BIOS CP/M 3 System Guide

I.5 Ban k and Move Module for CP/M 3 Linked BIOS

The MOVE.ASM module performs memory-to-memory moves and bankselects

title 'bank 4 move module for CP/M3 linked BIOS'1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 0016
BC
DE
HL
IX
IY
PBANKS ELECT
PBAUDCON1
PBAUDCON2
PBAUDCON34

0000 C9 ret

?bank:

?move:
0001 EB xchg

ldir

0004 EB xchq
0005 C9 ret

0002+EDBO DB OED H ,OBOH

end
0000
0002
0004
0004
0004
0025 26
OOOC
0030
0031

maclib z80
maclib ports

cseg

public ? move,? xmove,?bank
extrn @cbnk

?xmove: ; ALTOS can't perform interbank moves

0006 C5 push b ; save register b for temp
0007 171717E618 ral! ral ! ral ! ani 1Bh; isolate bank in proper bit position
O OOC 47 mov b , a ; save in reg B
0000 DB25 i n p $bankselect ; get old memory control byte
OOOF E6E7BO ani OE7h (ora b ; mask out old and merge in new
0012 0325 ou t p$bankselect ; put new memory control byte
0014 C 1 pop b ; r e store register b
0015 C9 ret

; by exiting through bank select

128 bytes at a time

; we are passed source in DE and dest in HL
; use Z80 block move instruction

; need next addresses in same regs

28

I.S Bank 4 Move Module for Linked BIOS CP/M 3 System Guide

PBAUDLPT1
PBAUDLPT2
PBOOT
PCENTDATA
PCENTSTAT
PCON2DATA
PCON2S TAT
PCON3DATA
PCON3S TAT
PCON4DATA
PCON4S TAT
PCONFIGURA
PORTDATA
PCRTSTAT
PFDCMND
PFDDATA
PF DINT
PFDMISC
PFDSECTOR
PFDSTAT
PFDTRACK
PINDEX
PLPT2DATA
PLPT2S TAT
PLPTDATA
PLPTS TAT
PRTC
PSELECT
PWD1797
PZCTC1
PZCTC2
PZDART
PZDMA
PZPIO1
PZPIO1A
PZPIO1B
PZPIO2
PZPIO2A
PZPIO2B
PZPIO3
PZPI03A
PZPIO3B
PZSIO1
PZSIO2
?BANK
?MOVE
?XMOVE

000E
0032
0014
0011
0010
002C
002D
002E
002F
002A
002B

TION 0024
001C
001D
0004
0007
000B
0009
0006
0004
0005
000F
0028
0029
001E
001F
0033
000B
0004
000C
0030
001C
0000
0008
000A
000B
0010
0012
0013
0024
0026
0027
002B
002C
0006
0001
0000

22¹
14¹
11¹

I.S Bank 4 Move Module for Linked BIOS CP/M 3 System Guide

0000 6@CBNK

1.6 I /o Port Addresses for Z80 Chip-based System: PORTS.LIB

This listing is the PORTS.LIB file on your distributiondiskette. It contains the port
addresses for the Z80 chip-basedsystem with a Western Digital 1797 Floppy Disk Controller.

VO Port addresses for Z80 chip set based system with wd1797 FDC

; chip bases

equ 0
e qu 4
e qu 8
equ 12
equ 16
e qu 2 0 ; OUT disables boot EPROM
equ 28 ; console 1 and printer 1
equ 36
e qu 4 0
e qu 4 4
equ 48

p$zdma
p$wd1797
p$zpiol
p$zctcl
P$zpio2
p$boot
p$zdart
p$zpio3
p$zsiol
p$zsio2
p$zctc2

; diskette controller chip ports

p$fdcmnd
p$fdstat
p$fdtrack
p$fdsector
p$fddata

p$wd1797+0
p$wd1797+0
p$wd1797+1
p$wd1797+2
p$wd1797+3

p$ select
p$fdint
p$fdmisc
p$zpiola
p$zpiolb

equ
equ
equ
equ
equ

; parallel VO 1

equ p$zpiol+0
equ p$zpiol+0
equ p$zpiol+1
equ p$zpiol+2
equ p$zpiol+3

; counter timer chip 1

equ p$zctcl+0
equ p$zctcl+2

p$baudconl
p$baudlptl
p$index equ p$zctcl+3

; parallel VO 2, Centronics printer interface

I.S Bank 4 Move Module for Linked BIOS CP/M 3 System Guide

p$cent$stat
p$cent$data
p$zpio2a
p$zpio2b

equ p$zpio2+0
equ p$zpio2+1
equ p$zpio2+2
equ p$zpio2+3

; dual asynch rcvr/xstr, console and serial printer ports

equ p$zdart+0
equ p$zdart+1
equ p$zdart+2
equ p$zdart+3

; Third Parallel I/O device

pcrtdata
pcrtstat
p$1pt$data
p$1pt$stat

p$configuration equ p$zpio3+0
p$bankselect
p$zpio3a
p$zpio3b

p$1pt2data
p$1pt2stat
p$con4data
p$con4stat

p$con2data
p$con2stat
p$con3data
p$con3stat

equ p$zplo3+1
equ p$zpio3+2
equ p$zpio3+3

; Serial I/O device 1, printer 2 and console 4

equ p$zsiol+0
equ p$zsiol+1
equ p$zsiol+2
equ p$zsio 1+3

; Serial I/O device 2, console 2 and 3

equ p$zsio2+0
equ p$zsio2+1
equ p$zsio2+2
equ p$zsio2+3

; second Counter Timer Circuit

equ p$zctc2+0
equ p$zctc2+1
equ p$zctc2+2
equ p$zctc2+3

p$baudcon2
p$baudcon34
p$baudlpt2
p$rtc

I.5 Bank 4 Move Module for Linked BIOS CP/M 3 System Guide

PCRTSTAT
PFDCMND
pFDDATA
PF DINT
PFDMISC
PFDSECTOR
PFDSTAT
PFDTRACK
PINDEX
PLPT2DATA
PLPT2S TAT
PLPTDATA
PLPTS TAT
PRTC
PSELECT
PWD1797
PZCTC1
PZCTC2
PZDART
PZDMA
PZPIO1
PZPIO1A
PZPIO1B
PZPIO2
PZPIO2A
PZPIO2B
PZPI03
PZPI03A
PZPIO3B
PZSIO1
PZSIO2
?BANK
?MOVE
?XMOVE
@CBNK

001D
0004
0007
0008
0009
0006
0004
0005
000F
0028
0029
001E
001F
0033
0008
0004
000C
0030
001C
0000
0008
000A
000B
0010
0012
0013
0024
0026
0027
002B
002C
0006
0001
0000
0000

5 22¹
5 14¹
5 11¹
6

I.5 Bank 4 Move Module for Linked BIOS CP/M 3 System Guide

1.7 Sa u ple Submit File for ASC 8000-15 System

Digital Research used this SUBMIT file to build the sample BIOS.

;Submit file to build sample BIOS for ACS 8000-15 single-density system

rmac bioskrnl
rmac buot
rmac move
rmac chario
rmac drvtbl
rmac fd1797sd
rmac scb
link bnkbios3[b,q]=bioskrnl,boot, move,chario,drvtbl,fd17975d,scb
gencpm

Listing 1-7. Sample Submit File for ASC 8000-15 System

End of Appendix I

Appendix
Public Entry Points for CP/M 3 Sample BIOS Modules

Module
Name

Public
Entry
Point

Input
Parameter

Return
ValueFunction

BIOS ERNL
?PMSG
?PDEC
?PDERR

CHARIO

?CIST

?CINIT

Print Message
Print Decimal
Print BIOS Disk
Err Msg Header

Char Dev Init C=Phys Dev ¹

Dev Parms in @CTBL
Char Inp Dev St B=Phys Oev ¹

none

HL points to msg
HL =number

none
none
none

none

?CI

?COST Char Out Oev St B=Phys Dev ¹

B=Phys Dev ¹

B=Phys Dev ¹
C=lnput Char

BC =byte count
DE =start source adr
HL =start dest adr
B=Dest Bank
C=Source Bank
A=Bank Number

MOVE

?CO

?MOVE

?xMOVE Set B anks for
Extended Move
Select Bank

Char Dev Input

Char Dev Output

Memory to Memory
Move

DE,HL point to
next bytes
after move
BC,DE,HL are
unchanged
All unchanged

A=OO if no input
A=OFFH if input

char available
A=OO if output
busy
A=OFFH if output
ready
A=next available
input char

?BANK

BOOT
?INIT System Init
?LDCCP Load CCP
?RLCCP Relo ad CCP
?TIME Get/S e t Time C=OOOH if get

C=OFFH if set

none
none
none none

none
none

none

Listing J-1. Public Entry Points for cP/M 3 Sample BIOS Modules

End of Appendix J

Appendix K
Public Data Items in CP/M 3 Sample BIOS Modules

Table K-1. Public Data Items
Module
Name

Public
Data Description

BIOS KRNL
@ADRV
@RDRV
@TRK
@SECT
@DMA
@DBNK
@CNT
@CBNK

Absolute Logical Drive Code
Relative logical drive code (UNIT)
Track Number
Sector Address
DMA Address
Bank for Disk VO
Multi-sector Count
Current CPU Bank

CHARIO
@CTBL Chara c ter Device Table

DRVTBL
@DTBL Drive Table

End of Appendix K

Appendix L

CP/M 3 BIOS Function Summary

Table L-1. BIOS Function Jump Table Summary

OutputN o. Fun c t io n Input

0 BOOT
1 W BOOT
2 CONST

None
None
None

14 W RIT E

1 5 L IST ST

1 8 A UXIS T

1 6 SEC T RN

2 0 DEVT B L
2 1 DEVIN I
2 2 DRVTB L

17 CON O ST

1 9 A UXO S T

1 0 SET T R K
11 SET S EC
1 2 SET D M A
13 READ

CONIN
CONOUT
LIST
AUXOUT
AUXIN
HOME
SELDSK

None

None

None

None

BC =Log Sect

None
C=Con Char
C=Char
C=Char
None
None
C=Drive 0-15
E=lnit Sel Flag

BC =Track No

BC =Sector No

BC =.DMA
None

C=Deblk Codes

None
C=Dev No 0-15
None

C=Mult Sec Cnt

DE = T

No
rans Tbl Adr

None
None
A=OFFH if ready
A=OOH if not ready
A=Con Char
None
None
None
A=Char

None
HL =DPH addr
HL =OOOH if invalid dr.

None
None
None
A=OOH if no Err
A=01H if Non-recov Err
A=OFFH if media changed
A=OOH if no Err
A=01H if Phys Err
A=02H if Dsk is R/0
A=OFFH if media changed
A=OOH if not ready
A=OFFH if ready
HL =Phys Sect No

A=OOH if not ready
A=OFFH if ready
A=OOH if not ready
A=OFFH if ready
A=OOH if not ready
A=OFFH if ready
HL =Chrtbl addr
None
HL =Drv Tbl addr
HL =OFFFFH
HL =OFFFEH
None2 3 M ULTI O

2 4 FLUS H

25 M OVE

None A=OOOH if no err
A=OOIH if phys err
A=002H if disk R/0
HL 4 DE point to next
bytes following MOVE

26 TIM E
2 7 SEL M E M
2 8 SETB N K
2 9 X M OV E

HL =Dest Adr
DE =Source Adr

BC=Count
C=Get/Set Flag N one
A=Mern Bank None
A=Mern Bank None
B=Dest Bank None
C=Source Bank
Reserved for System Implementor
Reserved for Future Use
Reserved for Future Use

3 0 USER F
31 RES ERV1
32 RES ERV2

End of Appendix L

IndexCP/M 3 System Guide

Index

$, 115
$B, 100, 104
?, 27,88
restriction on use, 73
?AUXI, 77
?AUXIS, 77
?AUXO, 77
?AUXOS, 77
?BANK, 75
?BNKSL, 77
?BOOT, 77
?CI, 75, 78, 80
?CINIT, 73, 75, 80
?CIST, 75, 78, 80
?CO, 75, 78, 80
?CONIN, 77
?CONO, 77
?CONOST, 77
?CONST, 77
?COST, 75, 78, 80
?DEVIN, 77
?DRTBL, 77
?DVTBL, 77
?FLUSH, 7 7
?HOME, 77
? INIT, 74, 75, 78
?LDCCP, 7 4 , 7 5, 7 8
? LIST, 77
? LISTS, 7 7
?MLTIO, 77
?MOV, 77
?MOVE,75, 85
?PDEC, 75, 76
?PDERR, 75, 76, 85
?PMSG, 75, 76
?READ, 77
?RLCCP, 7 5 , 78
? SCTRN, 7 7
?SLDSK, 77
?STBNK, 77
?STDMA, 77
? STSEC, 7 7
?STTRK, 77
?TIM, 77
?TIME, 75
?WBOOT, 77
?WRITE, 77
? XMOV, 77 ,8 5
?XMOVE, 75
@,27
restriction on use, 73

@ADRV, 75, 76
@ AIVEC, 28, 2 9
@ AOVEC, 28, 2 9
@BFLGS, 28, 3 0 , 31
@BNKBF, 18, 2 8 , 29
@CBNK, 75, 76
@ CIVEC, 28, 2 9
@CNT, 75, 76, 85
@COVEC, 28, 29
@CRDMA, 28, 29
@ CRDSK, 28, 2 9
@CTBL, 74, 75, 78
@DATE, 25, 28, 31
@DBNK, 75, 76
@DMA, 75, 76
@DTBL, 74, 75
@ERMDE, 28. 30
@ERDSK, 2B, 2 9
@ERJMP, 2B, 3 1 , 32
@FX, 28, 29
@HOUR, 25, 28, 31
@LOVEC, 28, 29
@MEDIA, 28, 30
@MIN, 25, 28, 31
@MLTIO, 28, 30, 52
@MKTPA, 18, 28, 32
@PDERR, 85
@RDRV, 75, 76
@RESEL, 28, 29
@SEC, 25, 2B, 31
@SECT, 75, 76
@TRK, 75, 76
@ USRCD, 28, 2 9
@VINFO, 28, 29

allocation units, 41
allocation vector, 34, 88

See also ALV
ALO and ALI,43
ALV, 34, 38

banked system, 39
double, 91
double-bit, 38
single-bit, 38

assembler source f i le , 71
assembly language

cross-reference program, 117
sources, 117

assembly-time arithmetic, 27

IndexCP/M 3 System Guide

assignment vector, 74

AUTO DISPLAY parameter, 88
AUTO parameter, 88
auto-density support, 109
automatic login feature, 41
AUXIN, 16, 17, 19, 50, 56
AUXIST, 16, 17, 50, 57
AUXOST, 16, 17, 50, 58
AUXOUT, 16, 17, 19, 50, 56

B

Backspace, 90
Bank

0,5,6
1,5,6
DMA buffer, 76
selection, 78
switching, 6

BANK field, 44, 46
bank number

current, 24
bank-switched memory, I, 6
block moves and memory

selects, 24
organization, 8
requirements, I , 7

banked BIOS
assembling, 69
linking, 69
preparing, 69

banked system
allocation vector, 39
BANK field, 46
BCB data structures, 46
BDOS and BIOS, in common

memory, 9
BDOS and BIOS, in Bank 0, 9
buffer control block, 44
common memory, 5, 34

with Bank I enabled, 6
Basic Disk Operating System

See BDOS
Basic Input Output System

See BIOS,
baud rate

current, 32
serial devices, 79

B DOS, I, 2, 1 5
calls to BIOS, 3, 21
disk I/O, 20
flags, 3
Function 44, 52
Function 49, 3
Function 50, 16
IMP, 18

Binary Coded Decimal (BCD)
fields, 31
format, 25

BIOS, 1,2, 15
assembling, 69
calls, 20
customizing, 4, 10

debugging, 100, 103
disk data structures, 34
error message header, 85
media flag, 107, 108
new functions, 113
routines, 2
organization, 15
subroutine entry p o ints, 49,

subroutines, 17
BIOS entry points, 15 , 49, 77

cold start, 101
flush buffers, 64

BIOS function calls:
0: 50, 51, 111, 161
I: 50, 52, 111, 161
2: 50, 55, 111, 161
3: 50, 55, 111, 161
4: 50, 55, 112, 161
5: 50, 56, 112, 161
6: 50, 56, 112, 161
7: 50, 56, 112, 161

9: 50, 59, 112, 161
10: 50, 59, 112, 161
11: 50, 60, 112, 161
12: 50, 60, 112, 161
13: 50, 61, 113, 161
14: 50, 61, 113, 161
15: 50, 5 7 ,113, 161
16: 50, 62, 113, 161
17: 50, 57, 113, 161
18: 50, 57, 113, 161
19: 50, 58, 113, 161
20: 50, 52, 113, 161
21: 50, 53, 113, 161
22: 50, 53, 113, 161
23: 50, 63, 113, 161
24: 50, 64, 113, 161
25: 50, 65, 113, 161
26: 24, 50,67, 113, 162

84

IndexCP/M 3 System Guide

27: 50, 66, 114, 162
28: 50, 66, 114, 162
29: 50, 66, 114, 162

BIOS functions
list, 50, Ill to 114
summary, 161, 162

BIOS jump vector, 15, 16, 49
public names, 77

BIOS modules, 71, 73
conventions, 73
external names, 73
external reference, 73
functional summary, 71

BIOSKRNL.ASM, 71 to 73
equate statement, 71
global variables, 76
modification restriction, 71
nonbanked system, 71
public utility subroutines,

76

buffers, 46
Blocking/Deblocking, 92
dirty, 64
pending, 52

24

BLM, 40, 42
block

defined, 41
mask, 40, 42
moves, 15
shift factor, 40, 42
size restriction, 41
transfers (memory-to-memory),

blocking logical
128-byte records, 23

blocking/deblocking, 53
in BIOS, 52, 62, 64

BOOT, 50, 51
entry point, 100
IMP, 16

BOOT.ASM, 71
module, 72, 137

boot loader, 102
module, 137

BOOT module
entry points, 77

boot ROMS, 51
BOOT routine, 18
booting CP/M 3, 102
BSH, 40, 42
Buffer Control Block, 34, 39

fields, 45
format, 44

buffer definitions, 94
buffer space, 8, 23

allocation, 15, 93
hardware-dependent, 5

buffering scheme, 8, 23

CCP, 2
flags, 3
loading into TPA, 78

CCP.COM, 13, 18
character device, 74

characteristics table, 140
initialization, 80, 140
input, 80
interfacing, 78
labels, 80
logical to physical

redirection, 74
output, 80
table (@CTBL), 74

character I/O, 19
data structures, 32
interface routines, 74
machine-dependent, 79
Operation, 74

redirection, 78
CHARIO.ASM, 71

module, 140

checksumming
full directory, 41

checksum vectors, 34, 38, 88
CHRTBL, 52, 78
clear area, 7
clock support, 15, 24, 67
clusters

CHARIO module, 72, 74, 78

See block
Cold Boot

Loader, 10, 12, 51
process, 12, 13
passpoint, 105

cold start, 10, 101, 137
initialization, 12
loader, 15, 19, 101

common memory, 5, 11, 34, 68
banked system, 34

base page, 90
BIOS data structures, 67

CONIN, 16, 17, 50, 55
CONOST, 16, 17, 50, 57
CONOUT, 16, 17, 50, 55
Console Command Processor

See CCP

IndexCP/M 3 System Guide

console output, 12
call, 3
function, 3

CONST, 16, 50, 55
COPYSYS utility, 98, 102
CP/M 2 BIOS

modification, 111
CP/M 3

Linked BIOS Bank/move
Module, 152
c ustomizing hardware, 1 1

loading into memory, 12
See also BIOS

CPM3.SYS, I
file, 11, 13, 19
file format, 115
loading into memory, 98

CPMLDR, 5, 19, 98, loo
sign-on message, 101
utility, 100

CPMLDR -- BDOS, 12
CPMLDR BIOS, 12

CPMLDR.-COM, 99
CTRL-C, 39
CTRL-Z, 19, 54
Customizing CP/M 3, 11

See DMA
Direct Memory Access

directory
buffers, 23, 34, 46, 92
caches, 23
checksumming, 41
entries, I, 41, 43
hashing, 39
hash tables, 5, 9, 92
records, 23
region, 10

search, 23
disk

accesses, 18, 23
compatibility, 10
controller, 83
density automatically
determined, 74
drives, 11, 107, 109
I/O, 15, 71, 72
organization, 10

disk formats
multiple, 109
subsystem, 34, 62

Disk Parameter Block, 23, 34,
37, 109, 144
banked system, 34
DPB macro, 48
fields, 40
format, 40

Disk Parameter Header, 23,
34, 36, 59, 109, 144

DPH macro, 47
fields, 37
format, 36
regular, 83

disks
distribution, I
double density, 42
number supported, I
physical sector size, 44
reformatting, 42

DMA, 144
address, 20
buffer, 23
controller, 9

dollar sign ($), 115

data
block allocation size, 40
buffers, 6, 23, 46, 93
record buffers, 24
record caching, 23
region, 10

data structures, 46, 144
in common memory, 67

DDT, 100
deblocking buffers, 8, 23

deblocking logical 128-byte
records, 23

debugger, 103
debugging

BIOS, 100, 103
w ith SID, 100, 103

default value
with question mark, 89

density selection
automatic, 62

density-sensing, 59
device name

format, 78
DEVICE utility, 20, 74
DEVINI, 16, 17, 50, 53
DEVTBL, 16, 17, 50, 52

DPH
See Disk Parameter Header

drive
characteristics, 12
default, 90
table, 36, 74

drive code
absolute, 76

IndexCP/M 3 System Guide

DRVTBL, 17, 50, 53
IMP, 16
module, 72, 74, 81

DRVTBL.ASM, 71
dynamic

allocation of space, I
disk definition table, 59

E

G command, 105
GENCPM, 6, 11, 12

command input, 87

directory hashing, 39
in banked system, 87
in nonbanked system, 87

questions, 89, 90
utility, 23, 36, 46, 87

global variables, 76end-of-file, 20
condition, 19, 54

entry points
BIOS subroutine, 84
BOOT, 51
BOOT module, 77, 78
flush buffers, 64

MOVE module, 86
WBOOT, 52

entry values, 27
equates

absolute external, 27
for Mode Byte Bit Fields, 131

erased character, 90
error

code, 24, 31
handling, 84
in multisector transfer, 63
nonrecoverable, 85

error messages
extended, I, 30
in foreign language, 32

long, 91
short, 30

Extended Disk Parameter
Header (XDPH), 72, 74, 81

fields, 83
format, 82

Extent mask, 41

hardware

nibble, 79

handshaking
polled, 57, 58

configurations, 2
initialization, 13, 77
requirements, I
supported, 10, 11
special DMA, 65

hardware environment, 2, 10, 15
banked system, 11
nonbanked system, 11

hash table, 39
directory, 9, 92
searches, 107

head number, 37

high-order
bit, 43
byte, 27

HOME, 16, 50, 58

hexadecimal address, 4

I/O, 2
character, 19, 74, 78
devices, 11
disk, 20, 74
drivers, 71
multiple sector, 85
Port Addresses, 153
ports, 78
redirection, 20
simple device, 3

IBM 3740 disk, 10
INIT, 83, 84

file
CPM3.SYS format, 115
random access, I
storage, 10
structure, I

first-time initialization
code, 83

flag, 27
global system, 30
media, 37

FLUSH, 16, 50, 64

IndexCP/M 3 System Guide

initialization
basic system, 51
cold start, 12
hardware, 51, 77
Page Zero, 18, 51
system tracks, 102

input, 140
input/output

See I/O
interbank moves, 86
intrabank moves, 86
IOBYTE facility, 52

LRU buffering scheme, 8, 23

LINK

IMP, 16, 18
jump

address, 16
instructions, 15, 27, 49
table, 2
vector, 15, 16, 77

23

L

L option, 100
LDRBIOS, 12, 51, 100

length restriction, 100
linking, 100

LDRBIOS.ASM, assembling, 100
Least Recently Used (LRU)

buffering, 8, 23

field, 44
L option, 100

LINK-80, 69, 73
linker, 27
LIST, 16, 17, 50, 56
LISTST, 16, 17, 50, 57
location zero, 6
logical

character device
combinations, 54
device characteristics, 19
device reassigning, 20
drive, 144
read operation, 62
record blocking/deblocking,

records, 3
sequential sector

address, 62
LOGIN, 83, 84
low-order

bit, 43
byte, 4

N

names

macro definitions, 46, 133
media

automatic type
determination, 74

change, 107
flag, 37, 108
removable, 107

memory
addresses, 12
configurations, I

contiguous, 6, 11
image, 13

organization, 6
selects, 15
top of banked, 5, 6

memory-mapped video
display, 19

memory organization
banked, 5, 6, 8
general, 3, 4
nonbanked, 7-9
resident, 5

memory requirements, 7

banked system, 7
nonbanked, 7
segment table, 92

memory-to-memory move, 86
mode

bits, 79
byte, 32

modules
communication between, 2
interactions, 73

MOVE, 16, 17,24,50,65
MOVE.ASM, 71, 73
MOVE Module, 85

entry points, 86
MOVES

interbank, 86
intrabank, 86

MULTIO, 16, 17, 20, 23, 50, 63
multiple sector read or write

operations, 20
multisector transfer, 63

external, 73
public, 73
user-defined, 73

IndexCP/M 3 System Guide

nonbank-switched memory, I
block moves and memory

selects, 24
requirements I, 7

nonbanked BIOS
assembling, 69
debugging, 103
linking, 69

nonbanked memory, 4
nonbanked system

allocation vector, 39
buffer control block, 44

configuration, 9
number of lines per console

page, 90

physical sector, 20
buffers, 23
count, 76
transfer, 23
translation, 62

PORTS.LIB, 153
Print Record, 115
printers, 11
public

data items, 159
definitions, 129
entry points, 157
names, 77
symbols defined in

public variables, 129
names, 17
predefined, 75

modules,
75

OFF field, 43
OPEN, 18
operating system bank, 9
operating system modules

banked, 5
resident, 5

output, 140
overlay

data buffer, 94
directory buffer, 93

question mark, 88
question variable, 88
questions

GENCPM, 89 to 94

r/o, 27
r/w, 27
READ, 16 to 23, 50, 61,

83, 84
Read-Write routines, 23, 24
Register A, 17, 20
removable drives

BIOS media flag, 107, 108
directory hashing, 107
performance penalty, 107

RESERVI, 16, 51
RESERV2, 16, 51
Resident System Extension (RSX)

Modules, 8
residual multisector count, 63
retry routine, 84
returned values, 27
RMAC, 69, 73, 99, 117
root module, 81, 85
rotational latency, 63
RSX entry point, 8
Rubout, 90

P command, 105
Page Zero, 4, 5, 18, 74

initialization, 18
passpoint, 105

cold BOOT routine, 105
in BIOS, 104

password protection, I
peripheral

single, 20
types, 12

peripheral device
I/O, 2
reassigning, 20

physical
devices, 20
disk unit, 144
I/O, 2

physical record
buffers, 107
mask, 41, 44
shift factor, 41, 44

IndexCP/M 3 System Guide

SCB, see System Control Block
SCB.ASM, 71

file, 17, 27, 28
module, 72, 129

scratchpad area, 34, 38

address, 37
skew factors, 37

SECTRN, 16, 50, 62
SELDSK, 21, 23, 50, 59, 109
IMP, 16
routine, 74, 109

SELMEM, 16, 50, 66
separate buffer pools, 8, 23

sequential
file input, 12
read, 23

serial devices, 74
baud rates, 79

SETBNK, 16, 23, 50, 66
SETDMA, 16, 20, 21, 23, 50, 60
SETSEC, 16, 21, 23, 50, 60
SETTRK, 16, 21, 23, 50, 59
SID, 100, 103, 105

G command, 104
I command, 104
L command, 104

sign-on message, 13, 101
single-density

disk handler Z80 DMA, 144
floppy disk drive, 11

skew factor, 62
skew table

address, 62
SKEW macro, 48
space allocation, 6
starting
disk transfer address, 76
sector, 76
track, 76

status polling, 140
subroutines

empty, 15
names, 17

symbols, public, 75

sector

UNIT, 83
user interface, 2
USERF, 16, 51

99

target system, 12
TIME, 16, 17, 50, 67
time of day

function, 24
clocks, 78

top of memory, 5-6, 90
tracing routines, 105
track address, 37
Transient Program Area

(TPA), 2, 32
transient programs, 5, 18
TYPE, 83

system
bank, 6
components, 2
generation (GENCPM), 7, 39
initialization, 15, 18, 77
labels, 27
loader program (CPMLDR), 13
printer, 19
start-up, 3, 11
time and date, 15

System Control Block (SCB)
definition, 17
disk organization, 10
error mode variable, 24
external labels, 27
fields, 3

system tracks, 10, 18, 19
initialization, 102
sample CP/M 3 organization,

variables
global, 76
public, 17, 75, 129

allocation, 38
checksum, 38
I/O redirection bit, 54
redirection, 29

vectors

IndexCP/M 3 System Guide

Warm BOOT routine, 3
Warm start, 10, 137
WBOOT, 50, 52

entry point, 52
IMP, 16
routine, 18

WRITE, 16, 20, 21, 23, 50, 61,
83, 84

X

XDPH, 72, 74, 81
fields, 83
format, 82

XMOVE, 16, 24, 50, 65, 66
XON/XOFF protocol, 32
XREF, 117

Z80 LDIR instruction, 65

