
N~Mw CCC~I OOQSSO rp l[l

Basic-80
(CP/M -85)

dBtB
systems

NOTICE

This software is licensed (not sold). It is l icensed to sublicensees, including
end-users, without either express or implied warranties of any kind on an "as is"
basis.

The owner and distributors make no express or implied warranties to sublicensees,
including end-users, with regard to this software, including merchantability, fitness
for any purpose or non-infringement of patents, copyrights or other proprietary rights
of others. Neither of them shall have any liability or responsibility to sublicensees,
including end-users, for damages of any kind, including special, indirect or
consequential damages, arising out of or resulting from any program, services or
materials made available hereunder or the use or modification thereof.

Technical consultation is available for any problems you encounter in verifying the
proper operation of these products. Sorry, but we are not able to evaluate or assist in
the debugging of any programs you may develop. For technical assistance, call:

(616) 982-3884 Application Software/Softstuff Products
(616) 98$-3860 Operating System/Language Software/Utilites

Consultation is available from 8:00 AM to 4:30 PM (Eastern Time Zone) on regular
business days.

Zenith Data Systems
Software Consultation
Hilltop Road
St. Joseph, Michigan 49085

CP,M® is a registered trademark of Digital Research.

Copyright ~ by Microsoft, 1979, all rights reserved.
Copyright "' Heath Company, 1981.

HEATH COMPANY
BENTON HARBOR, MICHIGAN 49022

ZENITH DATA SYSTEMS
ST. JOSEPH, MICHIGAN 49085

Table of Contents

Chapter One — System Introduction and General Information

Overview
Installation Guide .

Contents of the Diskette
Sample Output of PI.BAS
Diskette Use .
Preparing Working Diskettes .

.

System Introduction .
Manual Scope
Hardware Requirements . .
System Software Requirements .
Preparing the Diskette
Initialization of BASIC-80 .

General Information
Modes of Operation
Line Format

Line Numbers
Character Set .
Control Characters

BASIC-80 Programming
Loading the BASIC-80 Interpreter
Writing a BASIC-80 Program
Running a BASIC-80 Program
Debugging a BASIC-80 Program
Saving a BASIC-80 Program
Loading a BASIC-80 Program
Listing a BASIC-80 Program to a

1-2
1-3
1-3

1-4
1-6

1-7
1-7

1-7
1-7
1-8
1-8
1-9
1-9
1-9

1-10

1-11

1-12

1-13

1-13

1-15

1-17
1-18
1-20

1-21

1-22Hard Copy Device ..

Chapter Two — Expressions

Overview . .
Constants

String Constants
Numeric Constants .

Integer Constants .
Fixed Point Constants
Floating Point Constants .
Hex Constants
Octal Constants
Single and Double-Precision Numeric

Variable Names and Declaration Characters
Examples of BASIC-80 Variable Names
Array Variables .

Type Conversions

2-1

2-2
2-2

2-2

2-2

2-2
2-2
2-3

2-3

2-3
2-4
2-4

2-5

2-5

2-6

Variables

Expressions and Operators
Arithmetic Operators .

Integer Division and Modulus Ar i thmetic .
Overflow and Division by Zero

Relational Operators
Logical Operators

Logical Operators in Relational Expressions
Functional Operators

2-8

2-8

2-9

2-10

2-11

2-14

2-14

Chapter Three — Command Mode Statements

Overview
.

Command Mode Statements
3-1

3-2

3-2

3-3
3-4

3-4

3-5

3-6

3-6

3-7

3-7

3-8
3-9

3-10

3-10
3-11

3-12

3-13

3-14

3-14

AUTO
CLEAR .
CONT
DELETE

EDIT .
FILES
KILL .
LIST .
LLIST . .
LOAD ..
M ERGE..
NAME

NEW .
RENUM
RESET .
RUN .
SAVE . .
SYSTEM

Chapter Four — Program Statements

Overview .
Data Type Defini t ion .

.

DEFINT
DEFSNG
DEFDBL
DEFSTR

.

Assignment and Al l ocation Statements

4-1

4-2

4-2

4-2

4-3

4-3

4-4
4-4

4-4

4-5

4-5

4-6

4-6

DIM .
OPTION BASE .
ERASE .
LET
REM

.

SWAP

END

DATA
INPUT
LINE INPUT
LPRINT .
PRINT

Print Positions . .
Examples

Control Statements
Sequence of Execution .

FOR/NEXT
Examples . .
Nested Loops .

GOSUB/RETURN
GOTO .
ON/GOTO and ON/GOSUB
STOP .

Conditional Execution
IF/THEN/ELSE

Additional Considerations .
Nesting of IF Statements

WHILE/WEND
I /O Statements (Non-Disk) . .

4-7

4-7

4-7

4-8

4-9

4-10

4-11

4-12

4-13

4-14

4-14
4-14

4-16

4-16

4-17

4-18

4-18

4-19

4-20

4-2 1

4-21

4-21
4-22

4-23

4-24
4-25

READ .
RESTORE
WRITE .

Chapter Five — Strings

Overview . .
String Input/Output
String Operations .
S tring Functions . .

5-1

5-2

5-3

ASC
CHR$
HEX$
INKEY$
INPUT$
INSTR
LEFT$.
LEN .

MID$
MID$
OCT$.
RIGHT $
SPACE$
STR$..
STRING$.
VAL

5-5
5-5

5-6

5-6

5-7

5-8
5-8

5-9
5-9

5-10

5-10

5-11

5-11

5-12

5-12

5-13

Chapter Six — Arrays

6-1

6-2

6-2

6-3

6-3
6-4

6-5

6-6

6-6

6-7
6-7

6-8

6-8

Overview .
Arrays ..

Array Declarator
Array Subscript
OPTION BASE Statement
Vertical Arrays .
Multi-Dimensional Arrays

Matrix Manipulat ion
Matrix Input Subrout ines.
Scalar Mult ip l ication
Transposition of a Matrix .

Matrix Add i t ion .
Matrix Mul t ip l i cat ion . .

Chapter Seven — Functions

FRE
INP

LPOS
NULL .
OUT .
PEEK
POKE
POS ..
SPC ..
TAB
VARPTR
WAIT
WIDTH

DEF FN .

Overview
Arithmetic Functions

ABS ..
ATN
CDBL .
CINT .
COS ..
CSNG .
EXP ..
F IX . .
INT . .
LOG
RND
RANDOMIZE .
SGN
SIN

SQR
TAN

User-Defined Functions .

Assembly Language Programs

M athematical Functions
Special Functions .

7-1

7-2
7-3

7-3

7-4

7-4
7-5

7-5

7-6

7-6

7-7

7-7

7-8

7-8

7-9

7-10

7-10
7-10

7-11

7-12

7-13

7-13

7-14

7-14
7-15
7-15

7-15

7-16
7-16

7-17

7-18

7-21

7-22

7-23

7-23
7-24

7-24

7-25

7-25

DEF USR
USR
CALL

Chapter Eight — Special Features

Overview . .
Error Trapping . .
ON ERROR GOTO

RESUME
Error Trap Example

E RROR. . .
ERR and ERL Variables .
Error Codes ..

Formatted Output .
PRINT USING

String Fields
Numeric Fields

8-1
8-2

8-2

8-3

8-3

8-4

8-5

8-6

8-8

8-8

8-8

8-9

8-14

8-14

8-15

8-15
8-16

Trace Flag .
TRON/TROFF

Overlay Management ,
CHAIN
COMMON .

Chapter Nine — Editing

9-1

9-3
9-4

9-6

9-7

9-8

9-9

9-11

Overview
Moving the Cursor
Inserting Text . .
D eleting Text . .
Finding Text
Replacing Text
Ending and Restarting Edit Mode
Other Edit Mode Features .

Chapter Ten — BASIC-80 Disk File Operations

Overview
F ile Manipulation Commands ,

10-1

10-2

10-2

10-2

10-2

10-2

10-2
10-3

10-3

10-3

10-3

FILES
KILL .
LOAD
MERGE
NAME
RESET
RUN .
SAVE . .

Protected Files .

BASIC-80 Sequential I/O

File Management Statements ..
OPEN
CLOSE
EOF ..
LOF ..
LOC

Sequential Access Statements
INPUT¹ . .

Numeric Input . .
String Input

LINE INPUT¹ .
PRINT¹ and PRINT¹ USING
WRITE¹

Sequential Access Techniques .
Creating and Accessing a Sequential File .
Adding Data to a Sequential File .

Random Access Statements .
FIELD .
LSET/RSET
GET
PUT
MKI$, MKS$, MKD$.
CVI, CVS, CVD

Random Access Techniques
Creating a Random Access File
Accessing a Random Access File .

Additional Features

10-4
10-5
10-8
10-9
10-9

10-10
10-11

10-11

10-11
10-12

10-14

10-16
10-17
10-19
10-21
10-21
10-23
10-25
10-26
10-27
10-29
10-30
10-31

10-32

10-33

10-34
10-34
10-36
10-37

BASIC-80 Random I/O

Chapter Eleven — Microsoft BASIC-80 Summary

Overview
Abbreviations .
Data Type Declaration Characters
Arithmetic Operators, .
String Operator .
Relational Operators
Logical Operators
Commands .
Edit Mode Subcommands and Functions
Print Using Format Field Specifiers .

Numeric Specifier . .
String Specifier

11-2

11-2

11-3
11-3

11-3

11-4

11-5

11-9

11-10

11-10

11-10

11-11

11-11
11-11

11-12

11-13

11-14

11-16

11-18

11-19
11-20

11-20

11-20

11-21

11-22

11-24

Program Statements .
Data Type Defini t ion .
Assignment and Al location
Sequence of Execution .
Conditional Execution . .
Non-Disk I/O Statements

String Functions . .
Arithmetic Functions
Special Functions .
Special Features . .

Error Trapping . .
Trace Flag .
Overlay Management

Disk Input/Output Statements
Disk Input/Output Funct ions

Appendix A — Error Messages

A-2
A-6
A-8

General Errors .
Disk Related Errors
Reserved Words .

Appendix B — ASCII Codes

B-1
B-2

Decimal to Octal to Hex to ASCII Conversion
Control Character Defini t ions

Appendix C — Programming Hints

Conserving Memory Space
Saving Execution Time

C-1
C-3

Appendix D — Assembly Language Subroutines

D-2
D-3

D-5
D-5

D-5
D-5
D-6
D-6
D-7

D-9

Memory Al location
USR Function Calls
Numeric Storage Format .

Integer Storage Format . .
Single-Precision Storage Format
Double-Precision Storage Format

String Storage Format .
Data Type Conversions

CALL Statement .
I nterrupts . .

Appendix E — Random and Sequential I/O Programming Examples

Index

Index

Tables

Table

2-1

2-2
2-3

2-4

5-1
6-1

6-2

7-1

7-2

7-3

8-1

10-1

10-2

10-3

D-1

2-8

2-10

2-11

2-12

5-4
6-4

6-5
7-2

7-11

7-12

8-6

10-4

10-11

10-26
D-4

Arithmetic Operators . .

Relational Operators .
Logical Operators .
Truth Table for Logical Operators
String Functions .
Array Storage Allocation
Multi-Dimensional Array Storage Allocation
Arithmetic Functions
Mathematical Functions

Special Functions .
Error Codes .
File Management Statements
Sequential Access Statements .
Random Access Statements .
Register Values Used to Specify Data Types.

XII

System Introduction and General Information 1

Chapter One

System Introduction and General
Information

OVERVIEW

This Chapter contains an "Installation Guide" and general reference information
pertaining to the BASIC-80 Programming Language. BASIC-80 is one of the most
extensive imp lementations of BASIC available for the 8080, 8085, and Z80
microprocessors.

The hardware and systems software requirements for BASIC;-80 are presented in
this Chapter.

This Chapter also contains a user-oriented explanation of the operating envi
ronment of BASIC-80.

1-2 CHAPTER ONE

INSTALLATION GUIDE

for the Microsoft BASIC-80 Interpreter

This brief guide wi l l p r o v ide you w i t h
some useful information to help you get
BASIC-80 working in your microcompu

ter environment.

System Introduction and General Information 1 3

Contents of the Diskette

The diskette you received contains the following files:

Microsoft BASIC-80 Interpreter Diskette

MBASIC. COM
PI.BAS

MBASIC.COM is the BASIC Interpreter. Its commands and funct ions are dis
cussed in this Reference Manual. PI.BAS is a sample program writ ten in BASIC
which calculates the value of pi. PI.BAS is provided to help famil iarize you with
the workings of the interpreter.

Sample Output of PI.BAS

The listing provided below is sample output of the PI.BAS program.

BOUNDS ON PI — DOUBLE PRECISION BIONOMIAL THEOREM VERSION

N
3

4 5

6 7 8

SIDES
8

16
32
64

128
256
512

1,024
2,048
4,096
8,192

16,384
32,768
65,536

131,072
262,144
524,288

1,048,576

SIDE LENGTH
0.76536691188812
0.39018064737320
0.19603428244591
0.09813534468412
0.04908246546984
0.02454307302833
0.01227176748216
0.00613591633737
0.00306796119548
0.00153398059774
0.00076699029887
0.00038349514944
0.00019174757472
0.00009587385284
0.00004793689368
0.00002396846321
0.00001198423161
0.00000599211580

PI-LOWER BOUND
3.06146764755249
3. 12144517898560
3.13654851913452
3.14033102989197
3.14127779006958
3. 14151334762573
3. 14157247543335
3. 14158916473389
3.14159226417542
3. 14159226417542
3.14159226417542
3.14159226417542
3. 14159226417542
3.14159440994263
3. 14159226417542
3. 14159440994263
3.14159440994263
3.14159440994263

PI-UPPER BOUND
4.95931573036713
3.87800677621650
3.47739260077205
3.30237067197655
3.22030812114884
3. 18054350336212
3.16096780640274
3.15125708966375
3.14641880958168
3.14400368450104
3.14279751177684
3. 14219477240231
3.14189348940372
3. 14174501554227
3.14166756506744
3.14163205998885
3.14161323485294
3. 141 60382236958

9
10
11
12
13
14
15
16
17
18
19
20

Interpreter Results

1 4 C HAPTER ONE

Diskette Use

DISKETTE LOADING

Refer to Figure 1-1A or 1-1B, open the disk drive latch, and insert the diskette so
the diskette label faces the open latch. Then carefully close the drive latch.

FLOPPY DISK
DRIVE DOOR

FLOPPY D I SK
DRIVE DOOR LABEL

D I SKETTE
LOA D
SLOT

LED DISK
ACCESS INDICATOR

D I SKETTE
LOAD

EED D15K lj/
ACCESS INDICATOR

LA BEL

Figure 1-1BFigure 1-1A

System Introduction and General information 1 5

DISKETTE HANDLING

Diskettes are easily damaged. Observe the following precautions when handling
diskettes:

1. Kee p th e d iskette in its storage envelope whenever it is not in use.

2. K eep th e d iskette away from magentic f ields, including magnetic paper
clip holders, magnetized scissors or screwdrivers, and heavy electrical
equipment. Magnetic fields can distort the data recorded on the diskette.

3. R eplace damaged or excessively worn storage envelopes.

4. W ri te on ly on the diskette label, and then only with a felt-tip pen. Do not
use a pencil or ball-point pen, as these may damage the recording surface.

5. K ee p th e d iskettes away from hot or contaminating material.

6. D o n o t expose the diskette to sunl ight, l iquids, or smoke.

7. Do n o t t o uch the diskette surface. Abrasions can alter stored data.

WRITE-PROTECTION

The diskette can be wr i te-protected so that data cannot be wr i t ten to i t . (A l l
distribut ion d i skettes are sh ipped w r i t e -protected).

A 5.25-inch diskette has a write-protect notch on the side. When this notch is
covered with a tab or opaque tape, no data can be written on the diskette. Figure
1-2A i l lustrates a wr i te-protected 5.25-inch d i skette. Figure 1-2B depicts a
write-enabled 5.25-inch diskette.

1-6 CHAPTER ONE

D seette NoD suzette No.

NOTCH
OPAQUE

TAPE PROTECTIVE
'':R IN G::::

WR ITE ENABLEDWRITE PROTECTED

Figure 1-2BFigure 1-2A

Preparing Working Diskettes

To prepare working diskettes containing your BASIC-80 software and the CP/M
Operating System, perform the fol low ing activ i t ies. (If you need more informa
tion on any activ i ty, consult the Beginning Concepts, Start-Up Procedures, or
Reference Guide section of your CP/M-85 manual.)

1. Power up your computer .
2. Per form bootstrap with CP/M Backup Disk I .
3 . I n i t i a l ize a blank diskette with the FORMAT ut i l i t y .
4. Copy the CP/M Operating System to the formatted blank diskette with

5. Copy the fi les from your BASIC-80 Distribution Disk to the disk which
just received the system using the PIP uti l i ty .

the SYSGEN activi ty .

NOTE: All d i s t r ibut ion d iskettes are wr i te-protected to ensure that you
always have an accurate copy of the software. Therefore, dupl icate the
distribution diskettes and store them in a safe place. Use your copies for
day-to-day use of the programs.

System Introduction and General Information 1 7

SYSTEM INTRODUCTION

Manual Scope

This BASIC-80 Reference Manual is your reference source for the BASIC-80
language. Its Chapters are organized in a functional manner. If, for example, you
need information about strings, simply refer to Chapter Five, Strings.

Also included with the BASIC-80 package is an Installation Guide and a Refer
ence Card. The Guide contains the information you needed to create a working
copy of the BASIC-80 Interpreter. Keep the Reference Card handy, as it contains
often needed information.

Hardware Requirements

The hardware required to run the BASIC-80 Interpreter is:

1. 8080, 8085, or Z80 microcomputer.

2 . 48K of RAM .

3. One f loppy d isk dr ive.

4. T e rm inal device.

5. Op t i onally — a pr in ter

This is the min imum hardware configuration. We recommend that you have
more than one disk dr ive. If you plan to develop large programs, you wi l l no
doubt need a printer.

System Software Requirements

The BASIC:-80 Interpreter is designed to run under CP/M version 2.0 and later.

8 C HAPTER ONE

Preparing the Diskette

The BASIC-80 Interpreter is distributed on 5.25" floppy disks. The Installation
Guide furnished with this product contains the information you wil l need when
you create your work ing diskette.

Never use your distr ibut ion copy of BASIC-80 except to make copies for your
own use. Keep your d istr ibut ion copy in a safe place. The Installation Guide
contains more information about disk handl ing procedures.

Initialization of BASIC-80

BASIC-80 is distributed in an absolute binary format. BASIC-80 is stored on the
disk with the file name MBASIC.COM. BASIC-80 can be directly loaded into
memory and used. To load BASIC-80, type the following in response to the CP/M
prompt:

MBASIC

This command wil l load MBASIC into memory. After MBASIC has been loaded
into memory, a sign-on message will be displayed. The message should look
similar to this:

B ASIC-80 Rev . 5 .2 2

[CP/M Version]
Copyright 1977-1982 (C) by Microsoft

Created: 1 9 -MAR-82
15430 Bytes f r e e

Note that the revision number, the creation date, and the number of free bytes
might be different with your system.

A BASIC-80 program can be automatically executed when the f i l e name i s
appended to the command string. For example, if you want to load the interpre
ter and run the program PI.BAS, you could use the following command str ing:

MBASICEPI

The space between MBASIC and PI is required. (Throughout this manual, we
will use the symbol a to indicate a required space.) The default extension .BAS
will be assumed. If the file name specified can not be found, the message "File
not found" will be displayed, and you will be returned to the CP/M Command
Mode.

System Introduction and General Information 1 9

GENERAL INFORMATION

Modes of Operation

After you have loaded the interpreter, BASIC-80 wil l type "Ok" . This prompt
signifies that BASIC-80 is in the Command Mode.

In the Command Mode, the BASIC-80 Interpreter wil l execute your instruction

as soon as you terminate the entry with a RETURN. The commands and state
ments entered in Command Mode should not be preceded by line numbers.
Results of arithmetic and logical operations may be displayed immediately and
stored for later use, but the instructions themselves are lost after execution. This
mode is useful for debugging and for using BASIC-80 as a "calculator" for quick
computations that do not require a complete program.

If you begin a program line with a line number, BASIC-80 assumes that you wish
to store this program l ine for execution at a later date. This is called the Inter
mediate or Program Mode. The program stored in memory wi l l be executed if
you enter the RUN command.

Line Format

Program lines in a BASIC-80 program have the following format (square brackets
indicate optional):

nnnnn<BASIC-80z statementz [: BASIC-80 statement...]

At the programmer's option, more than one BASIC-80 statement may be placed
on a line, but each statement on a line must be separated from the last by a colon.

A BASIC-80 program line always begins with a line number, ends with a carriage

return, and may contain a maximum of 255 characters.

The ~ character indicates that a space should be inserted.

It is possible to extend a logical l ine over more than one physical l ine by use of
the terminal's LINE FEED key. LINE FEED lets you continue typing a logical line
on the next physical l ine wi thout entering a RETURN.

10 C HAPTER ONE

Line Numbers

Every BASIC-80 program line begins with a line number. Line numbers indicate
the order in which the program l ines are stored in memory and are also used as
references for branching and edi t ing. Line numbers must be in the range 0 to
65529. A period (.) may be used in EDIT, LIST, AUTO and DELETE commands to
refer to the current l ine.

Line numbers can have blank spaces before them, after them, or between their
digits. However, none of these spaces are mandatory.

If statements with dupl icate line numbers are inserted into a program by you or if
they are generated by a program, BASIC-80 will interpret only the statement with
the last duplicate line number that occurs in the program. Preceding statements
with the same line number wi l l be d isregarded.

System Introduction and General Information 1 1 1

Character Set

The BASIC-80 character set is compr ised of a lphabetic characters, numeric
characters and special characters. The alphabetic characters are the upper case
and lower case letters of the alphabet. The numeric characters are the digits 0
through 9.

BASIC-80 also recognizes the fol lowing special characters and terminal keys:

Character

DELETE
ESC
TAB

&
7

/ (

$]

)

Colon

Name

Quotation marks
Blank
Semicolon
Equal sign or assignment symbol
Plus sign
Minus sign
Asterisk or mul t ip l i cat ion symbol
Slash or div ision symbol
Up arrow or exponentiation symbol
Left parenthesis
Right parenthesis
Percent
Number (or poundj sign
Dollar sign
Exclamation point
Left bracket
Right bracket
Comma
Period or decimal point

Single quotation mark (apostrophej

Ampersand
Question mark
Less than
Greater than
Backslash or integer division symbol
At-sign
Underscore
Deletes last character typed.
Escapes Edit Mode subcommands.
Moves print posit ion to next tab stop.
Tab stops are every eight columns.
Moves to next physical l ine.
Terminates input of a l ine.

LINE FEED
RETURN

1-12 C HAPTER ONE

Control Characters

The following control characters are in BASIC-80:

CTRL-A

CTRL-C

CTRL-G

CTRL-H

Enters Edit Mode on the l ine being typed.

Interrupts program execution and returns to BASIC-80 command
level.

Rings the bell at the terminal .

Backspace. Deletes the last character typed.

Tab. Tab stops are every eight columns.CTRL-I

CTRL-0 Hal ts p ro g ram o u t pu t w h i l e execut ion con t inues. A s econd

CTRL-S

CTRL-R

Control-0 restarts output.

Retypes the line that is currently being typed.

Suspends program execution.

Deletes the line that is currently being typed.CTRL-U

T o execute any of these control characters, hold down the CTRL key w h i l e
simultaneously typing the letter. Thus, to execute CTRL-G, hold down the CTRL
key while simultaneously typing the letter G.

S ystem introduction and General Information 1 1 3

BASIC-80 PROGRAMMING

This section wi l l t e l l you how to w r i te a BASIC-80 program and explain the
unique features of the BASIC-80 programming environment. No attempt wil l be
made to teach the subject of BASIC programming, but enough information wi l l
be provided so that you should be able to successfully use the BASIC-80 Interpre
ter.

Loading the BASIC-80 Interpreter

The BASIC-80 Interpeter, which must be loaded into your computer's memory
before you can use it, is an absolute binary f i le. This means that it is in a form
which can be directly executed by your computer. Before you can perform the
procedures listed below, you must "boot-up" your computer. If you are not sure
how to do this, refer to the appropriate operating system manual.

The CP/M fi le name used to reference the interpreter is MBASIC.COM. So, to
load the BASIC-80 Interpreter into memory, type the following response to the
prompt from CP/M:

A) MBASIC

(Do not type the A) , as this represents the prompt from CP/M. Do remember to
terminate the l ine by pressing the RETURN key.)

This assumes that the file MBASIC.COM resides on the current default disk. If
the file does not reside on the current default disk, type the drive name and then
the file name. For example, if A: is the current default disk, and the BASIC-80 file
resides on drive B:, you would use the following command to load BASIC-80:

A)B: MBASIC

After BASIC-80 is loaded into memory, a sign-on message will be displayed on
your screen. The amount of free memory, as well as the BASIC-80 version
number, will also be displayed. Take note of the amount of free memory, as this
will no doubt be a crucial issue if you wish to write large, complex programs.

14 GHAPTER QNE

When BASIC-80 is loaded in the manner described above, it will make certain as
sumptions about the operating environment. BASIC-80 assumes that:

No more than 3 disk f i les wil l be open,
All available memory will be used,
Random record size is 128 bytes.

Y ou can change these assumptions by u s ing cer tain sw i t ches, wh ich a r e
explained below.

The number of disk fi les that can be open can range from 0-15. The /F: switch is
used to specify the maximum number of f i l es. BASIC-80 wil l establish a f i l e
buffer in memory for each file specified with the /F: switch. This wil l decrease
the amount of free memory that you have to work wi th. For example, to set up
f ive file buffers, you could use the fol lowing command:

A) M B A SICE /F:5

Note the space that is required between MBASIC and the /F:5. If you do not type
this space, CP/M wil l assume that the switch is part of the f i le name.

You can also specify the highest memory location that BASIC-80 wil l use by
typing the /M: switch. In some cases it is desirable to set the amount of memory
well below the CP/M BDOS to reserve space for assembly language subroutines.
In all cases, the highest memory location should be below the start of BDOS

(whose address is contained in locations 6 and 7). If the /M: switch is omitted, all
memory up to the start of BDOS is used.

NOTE: The number of f i les and the highest memory location numbers can be
either decimal, octal (preceded by 8 0), or hexadecimal (preceded by &H).

You can also change the record size of a random file by using the /S: switch. The
default record size is 128 bytes, and the maximum record size is 256 bytes. For
example, to set the maximum r ecord s ize to 200 bytes, you could use the
following command:

A) MBASICz /S:200

S ystem Introduction and General Information 1 1 5

Any combination of these three switches can be used in a command l ine. For
example:

A) MBASICDPAYROLL.BAS

Use all memory and 3 f i les, load and execute PAYROLL.BAS

A) MBASICBINVENT/F:6

Use all memory and 6 f i les, load and execute INVENT.BAS

A) MBASICB/M:32768

Use first 32K of memory and 3 f i les.

After the BASIC-80 interpreter has been loaded into memory, a program may be
writ ten .

Writing a BASIC-80 Program

A BASIC-80 program is composed of lines of statements containing instructions
to BASIC-80. Each of these program lines begins with a line number, followed by
one or more BASIC-80 program statements. These line numbers indicate the

sequence of statement execution, although this sequence may be changed by

space

certain statements.

The format of a BASIC-80 program l ine is:

line
number

100 [optional

or tab]

statement
keyword

LET [optional

or tab]

text

statement

X = X +1 (RETUR N)

terminator
line

space

Every program l ine in a BA SIC-80 program must begin w i th a l ine number,
which must be a positive integer within the range 0 — 65529. This BASIC-80 line
number is a label that dist inguishes one l ine from another wi thin a progran t.

Thus, each line number in the program must be unique.

Each program line in a BASIC-80 program is terminated with a carriage return,
which you can generate by pressing the RETURN key on your console device.

1 1 6 CHAPTER ONE

You could use consecutive l ine numbers l ike 1,2,3,4. For example:

1X = 1

2Y = 2

3Z = X+Y
4 END

However, a useful practice is to wr i te l ine numbers in increments of 10. This
method wil l a l low you to insert addi t ional statements later between existing
program lines.

10X = 1

20Y = 2

30Z = X+ Y

40 END

Another useful practice is to let BASIC-80 automatically generate ling numbers
for you. This is accomplished with the AUTO statement. The AUTO statement
tells BASIC-80 to automatically generate line numbers. For example, if you type
AUTO 100,10, then BASIC-80 wil l generate line numbers beginning with l i ne
number 100 and incrementing each line by 10. Then all you need to do is type the
BASIC-80 program l ine after the generated line number.

System Introduction and General Information 3-37

Running a BASIC-80 Program

After a BASIC-80 program has been written, it is usually desirable to execute the
program. The task can be accomplished by the RUN command. The fol lowing
statement would tel l BASIC-80 to execute the program currently in memory:

RUN

Execution begins at the lowest numbered l ine and cont inues with the next
lowest numbered l ine (unless the sequence of execution was altered with a
statement l ike the GOTO statement). The-RUN command can also specify the
f irst l ine number to be executed. For example, the following command would
cause execution to begin with l ine number 100:

RUNE 100

The RUN command can also be used to execute a BASIC-80 program that is
currently residing on a d isk f i le . For example, assume the f i le ALBUM.BAS
resides on the current default disk. The fol lowing statement would be used to
execute ALBUM.BAS:

RUN "ALBUM"

Note that no drive specification or f ile name extension was included in the fi le
name string. In this case, the current default dr ive and the extension .BAS are
assumed.

Also make sure that you always use only upper-case letters in the f i le name
string. BASIC-80 must rely on CP/M to manipulate fi les for it , and most CP/M
utili t ies cannot recognize any f i le whose name is stored in lower-case letters.
Thus, storing a file under a lower-case file name can be very unpleasant, since
CP/M cannot recognize the lower-case file name, and therefore cannot ERAse or
REName the f i le. Fi les whose names are stored in l ower-case letters can be
deleted only f rom w i t h in BA SIC-80. This practice of using only upper-case
letters in a file name applies to all BASIC-80 statements which require a file name
to be specified.

This is not to say that there is anything intr insically wrong in using lower-case
letters in a file name; it is just that assigning lower-case file names may produce
an undesirable result. You may want to use a lower-case file name to record a file
in such a way that it cannot be easily renamed or erased. Thus, using lower-case
file names can provide an extra level of protection for important programs.

1-18 C HAPTER ONE

Debugging a BASIC-80 Program

In some cases, a BASIC-80 program wi l l not execute as you expected. This is
usually a result of either a syntax error or a logic error. A syntax error is much
easier to detect, as BASIC-80 wil l not only detect these syntax errors for you, but
it wil l also point out the offending program l ine and invoke the Edit Mode. A
logic error is much harder to detect, but several statements have been provided to
make this a much more pleasant task.

When BASIC-80 detects a syntax error, it wil l automatically enter the Edit Mode
at the line that caused the error. At this point, you may wish to press the L key in
o rder to l is t t h i s l i ne . (L i s a c o mmand to th e BA SIC-80 Editor. For more
information about the Editor, see Chapter Nine, "Editing".)

Syntax errors usually result because of a misspelled keyword or an incorrectly
structured program l ine. Remember that BASIC-80 requires all keywords to be
delimited by a space. The easiest way to correct a syntax error is to rely heavily on
the Reference Manual.

Anytime you have a syntax error, you should refer to the appropriate page in the
Reference Manual. Use the Index to find the appropriate page. After you discover
and correct your error, remember what you did wrong so you can avoid making

the same mistake again.

Because of the interactive nature of BASIC-80, it is very convenient to debug a
BASIC-80 program. Several statements have been provided to help you debug a
BASIC-80 program. But your f i rst step is to f ind out the nature of the "bug" .

A program "bug" may cause the wrong values to be output. Maybe a program is
branching to the wrong statement. The results of a calculation may be wrong, or
even incomprehensible. A program "bug" might cause an error condit ion to be
flagged. So you must discover what the program is doing before you can discover

why the program is doing i t .

Also keep in mind that, in most cases (99.99%), it is a bug in your program that is
causing a problem. It is highly unl ikely that the BASIC-80 Interpreter is at fault.
This Interpreter represents one of the most comprehensive implementations of
BASIC available for the 8080/8085/Z80, and is very rel iable. So, it is best to

always assume that a problem is caused by a user program bug.

System Introduction and General Information $ -] 9

Once you have decided what the program is doing, you can take steps to discover
why it is not executing correctly. For example, assume that a program is branch
ing to a line number different than where you want it to branch. The trace flag has
been provided to trace the f low of a program. To enable the trace, the TRON
statement is used, and to disable the trace, the TROFF statement is used.

The trace flag wi l l p r in t each l ine number as i t i s being executed. The l i ne
number wil l be enclosed in square brackets ([]). It is best to generate a hard copy
l isting of the program f i rst so you can fo l low th i s l i s t ing wh i l e the t race is
running.

Another important technique you can use is to set breakpoints in a program. You
can use the STOP statement to temporarily terminate program execution, and
then enter commands to print the values of various variables. You can also assign
new values to these variables. Then you can continue program execution with a

CONT command or a Command Mode GOTO.

Although you can print and change the values assigned to variables, you must
not change the BASIC-80 program after you interrupted execution with a STOP
statement. If you do change the program, al l the previously stored variable
values wil l be lost, and all open f i les wi l l be closed.

1-20 C HAPTER ONE

Saving a BASIC-80 Program

When you have completed a BASIC-80 programming session, you wil l no doubt
want to save a copy of y our m ost cu r rent program on the d i sk. This i s ac
complished with the SAVE command. The general form of the SAVE command
is:

S AVE "< f i l ename) "

The (f i l e name> must be a valid CP/M f i le name. If no device specification is
given, the current default dr ive w i l l be assumed. If no f i le name extension is
given, the default extension of . BAS will be assumed. For example, if you wish to
save a program called GAME.BAS, you could use the fol lowing statement:

SAVE "C:GAME.BAS"

Note that this file wi l l be wr i t ten on dr ive C:. The file name extension of .BAS
could have been omit ted, in w h ich case it would have been suppl ied as the
default. Make sure you always use upper case letters when specifying a f i l e
name. BASIC-80 wil l usually save fi les in a compressed binary format. A prog
ram can optionally be saved in ASCII format, but it takes more disk space to store
it this way. To save a program in ASCII format, append an A to the end of the file

name string. For example:

SAVE "C:GAME",A

This wil l save the file on drive C: in ASCII format with a file name of GAME.BAS.
You can also save a program in a protected format so that it can not be listed or
edited. Just append a P to the end of the f i le name string. For example:

SAVE "C:GAME" ,P

This file wil l be saved in an encoded binary format. When this protected file is
l ater RUN or (LOADed), any attempt to LIST or EDIT this progam wi l l fa i l .

System Introduction and General Information $ -2)

Loading a BASIC-80 Program

When you begin a BASIC-80 programming session, you may want to l oad a
p rogram from the d isk i n to m emory. This i s accompl ished w i th th e L OA D
command. The general form of the LOAD command is:

L OAD " (f i l ename) "

For example, if you wanted to load the program PAYROL.BAS, you could use the
command:

LOAD "PAYROL"

Note that the file name extension was omitted. BASIC-80 will assume a file name
extension of .BAS. Also note that the dr ive specification was omit ted. In th is
case, the current default dr ive w i l l be assumed.

You must specify the file name using only upper case letters. This applies to all
string constants or variables that contain f i le names.

It is also possible to execute a program with the LOAD command. In this case, an
R is appended to the end of the f i le name string. For example:

LOAD "PAYROL" ,R

This form of the LOAD command wil l load a program into memory and execute it
as if a RUN command had been typed. All currently open fi les wil l remain open
for use by the program.

1-22 C HAPTER ONE

Listing a BASIC-80 Program to a Hard Copy Device

At some point during your programming effort, you may want a hard copy listing
of a BASIC-80 program. A BASIC-80 program is listed to a hard copy device in
much the same manner as it is l isted to a console device. Use the LLIST com
mand.

The general form of the LLIST command is

LLIST

This wil l l ist the current program on the hard copy device. It is also possible to
specify the range of line numbers to be listed. For example in order to list a single
l ine, you can use the command:

LLIST 100

This wil l l i s t only the l ine number 100. A range of l ine numbers can also be
specified:

LLIST 100-500

This wil l l is t l ine numbers 100 through 500, inclusive.

The LLIST command wil l d i rect the output to the CP/M LST: device. This logical
device can be assigned to several different physical devices. Refer to your CP/M
manual for information about this process.

Expressions 2 1

Chapter Two

Expressions

OVERVIEW

An expression is a group of symbols to be evaluated by BASIC-80. Expressions
are composed of numeric or string variables, numeric or string constants, and
function references. These operands can stand alone, or they can be combined by
arithmetic, logical, or relational operators. This chapter explains the various

rules for constructing and evaluating expressions.

2-2 CHAPTER TWO

CONSTANTS

Constants are the actual values BASIC-80 uses during execution. There are two
types of constants: string and numeric.

String Constants

A string constant is a sequence of up to 255 alphanumeric characters enclosed in

double quotation marks. The fol lowing are examples of string constants:

"HELLO"
" 25,000 0 0 "
"Number of Employees"

Numeric Constants

Numeric constants are posit ive or negative numbers. Numeric constants in
BASIC cannot contain commas. There are five types of numeric constants:

INTEGER CONSTANTS

Integer constants are whole numbers between — 32768 and + 32767. Integer
constants can not have decimal points.

FIXED POINT CONSTANTS

Fixed point constants are positive or negative real numbers, that is, numbers that
contain decimal points.

FLOATING POINT CONSTANTS

Floating point constants are positive or negative numbers represented in expo
nential form (similar to scientific notation). A floating point constant consists of
an optionally signed integer or f ixed point number (the mantissa) followed by
the letter E and an optionally signed integer (the exponent). The allowable range
for floating point constants is 10 3" to 10+'" .

Examples:

235.988E- 7 = .0000235988

2359E6 = 2359000000

(Double-precision floating point constants use the letter D instead of E.)

Expressions 2 3

HEX CONSTANTS

Hexadecimal constants are hexadecimal numbers with the prefix 8 H.

Examples:

8 H76
8 H32F

OCTAL CONSTANTS

Octal constants are octal numbers with the prefix &0 or 8 .

Examples:

8c0347

8 1234

SINGLE AND DOUBLE-PRECISION NUMERIC CONSTANTS

Fixed and f loating point numeric constants may be either single-precision or
double-precision numbers. With double-precision, the numbers are stored with
16 digits of precision, and pr inted with up to 16 dig i ts.

A single-precision constant is any numeric constant that has:

1. Seven or fewer digi ts, or,
2. Exponential form using E, or,
3. A t r a i l ing exclamation point (!) .

A double-precision constant is any numeric constant that has:

1. E ight or more digi ts, or,
2. Exponential form using D, or,
3 . A t r a i l ing number sign (¹) .

Examples:

Double-Precision ConstantsSingle-Precision Constants

46.8
-7.09E-06

3489.0

22.5!

345692811
-1.09432D-06

3489.0¹
7654321.1234

2-4 CHAPTER TWO

VARIABLES

Variables are names which represent values that are used in a BASIC-80 pro
gram. The value of a variable may be assigned explici tly by the programmer, or it
may be assigned as the result of calculations in the program. Before a variable is
assigned a value, its value is assumed to be zero.

Variable Names and Declaration Characters

BASIC-80 variable names can contain up t o 40 characters, all of w h ich a re
significant. The characters allowed in a variable name are letters and numbers,
and the decimal point is also allowed in a variable name. The first character must
be a letter.

A variable name may not be a reserved word. BASIC-80 wil l a l low embedded
reserved words to be part of a variable name. If a variable begins with FN, it is
assumed to be a cal l to a user-defined funct ion. Reserved words inc lude al l
BASIC-80 commands, statements, function names, and operator names.

Variables may represent either a numeric value or a string. String variable names
are written with a dollar sign ($) as the last character. For example: A$ = "SALES

REPORT". The dol lar sign is a var iable type declaration character; that is, i t
"declares" that the variable wi l l represent a string.

Numeric var iable names may d ec lare in teger, s ingle-precision, or d oub le

precision values. The type declaration characters for these variable names are as
follows:

Integer variable
Single-precision variable
Double-precision variable

The default type for a numeric variable name is single-precision.

Expressions 2 5

Examples of BASIC-80 Variable Names:

PIP
MINIMUM!
LIMIT%

There is a second method by which variable types may be declared. The BASIC
80 statements DEFINT, DEFSTR, DEFSNG and DEFDBL may be included in a
program to declare the types for certain variable names. These statements are
described in detail in Chapter Four, "Program Statements."

Declares a double-precision value.
Declares a single-precision value.
Declares an integer value.

Array Variables

An array is a group or table of values referenced by the same variable name. Each
element in an array is referenced by an array variable that is subscripted wi th
integers or integer expressions. An array variable name has as many subscripts as
there are dimensions in the array.

For example, V(10) would reference a value in a one-dimensional array, T(1,4)

would reference a value in a two-dimensional array, and so on. The maximum
number of dimensions in an array is 255. The maximum number of elements per
dimension is 32767. See Chapter Six, "Arrays," for more information.

2-6 CHAPTER TWo

TYPE CONVERSIONS

When necessary, BASIC-80 wil l convert a numeric constant from one type to
another. The fol lowing ru les and examples i l lustrate these type conversions.

If a numeric constant of one type is set equal to a numeric variable of a different
type, the number wil l be stored as the type declared in the variable name. (If a
string variable is set equal to a numeric value or vice versa, a "Type mismatch"
error occurs.j

Example:

10 A%%uo = 23 4 2

20 PRINT A/,
RUN

23

During expression evaluation, all of the operands in an arithmetic or relational
operation are converted to the same degree of precision as the most precise
operand. Also, the result of an arithmetic operation is returned to this degree of

precision.

Example:

10 Dg = 6g/7
20 PRINT D4
RUN

.8571428571428571

In the above example, the arithmetic was performed in double-precision and the
result was returned in DP as a double-precision value.

10 D = 6P/7
20 PRINT D
RUN

.857143

In this example, the arithmetic was performed in double-precision and the result
was returned to D (a single-precision variable); thus rounded and pr inted as a
single-precision value.

Expressions 2 7

When a fixed point value is converted to an in teger, the fractional port ion is
rounded.

Example:

10 C/<) = 55 . 8 8

20 PRINT C /()
RUN

56

If a double-precision variable is assigned a single-precision value, only the first
seven digits, rounded, of the converted number wi l l be val id. This is because
only seven digits of accuracy were suppl ied with the single-precison value.

The absolute value of the d i f ference between the p r in ted double-precision
number and the original single-precision value wil l be less than 6.3E-8 times the
original single-precision value.

Example:

10 A = 2 . 0 4

20 BP = A

30 PRINT A;BP
RUN

2.04 2 . 03 99 9 9 961853027

2-8 CHAPTER TWO

EXPRESSIONS AND OPERATORS

An expression may be simply a string or numeric constant, or a variable, or it may
combine constants and variables with operators to produce a single value.

Operators perform mathematical or logical operations on values. The operators
provided by BASIC-80 may be div ided into four categories:

1. A r i t hmet ic
2. Relati onal
3. Log ical
4. Funct ional

Arithmetic Operators

The arithmetic operators, in order of precedence, are:

Operator Op e r a t ion Sample Expression

Exp onentiation
Negation

Multiplication
Floating Point Div is ion
Integer Division
Addit ion
Subtraction

X "Y
— X

X*Y

X/Y
XNY
X+Y
X — Y

Table 2-1
Arithmetic Operators.

To change the order in which operations are performed, use parentheses. Opera
tions within parentheses are performed first. Inside parentheses, the usual order
of operations is maintained.

Thus, the expression:

A+(Z — ((Y+R)/T)) J + VAR

is evaluated in the fol low ing sequence:

Y+R = e i

(ei /T)
Z — e2
e3~J = e 4

A e 4 = e5

e5+VAR

e2
83

e6

Expressions 2 9

INTEGER DIVISION AND MODULUS ARITHMETIC

Two additional arithmetic operators are available in BASIC-80, integer division
and modulus arithmetic.

Integer division is denoted by the backslash (g). The operands are rounded to
integers (must be in the range -32768 to 32767) before the division is performed,
and the quotient is truncated to an integer. For example:

10%4 = 2
2 5.68 i 6 . 9 9 = 3

The precedence of integer division is just after mult ip l ication and floating point
divisi on.

Modulus arithmetic is denoted by the operator MOD. It gives the integer value
that is the remainder of an integer div ision. For example:

10.4 MOD 4 = 2 (10$4 =2 with a remainder 2)

2 5.67 MOD 6 . 9 9 = 5 (26g7 =3 with a remainder 5)

The precedence of modulus ari thmetic is just after integer division.

OVERFLOW AND DIVISION BY ZERO

If, during the evaluation of an arithmetic expression, an operation that divides by
zero is encountered, the "D iv i s ion by zero" er ror message is displayed. The
interpreter also inserts the machine infin ity value, (1.70141E +38) with the sign
of the numerator as the result of the div is ion, and execution continues.

If the evaluation of an exponentiation results in zero being raised to a negative

power, the "D iv is ion by zero" er ror message is displayed, posit ive machine
infinity is supplied as the result of the exponentiation, and execution continues.

I f overflow occurs, the "Overflow" error message is displayed, machine infini ty
with the algebraically correct sign i s supp l ied as the result , and execution
continues.

2-10 c HAPTER Two

Relational Operators

Relational operators are used to compare two values. The result of the compari
son is either "true" (— 1) or "false" (0). This result may then be used to make a
decision regarding program flow.

Operator Re l a t ion Tested Expression

X=Y

X (> Y
XcY
X>Y

X (= Y

X> =Y

Equality
Inequality
Less than
Greater than
Less than or equal to
Greater than or equal to

Table 2-2
Relational Operators.

(The equal sign is also used to assign a value to a variable.)

When arithmetic and relational operators are combined in one expression, the
arithmetic is always performed f irst. For example, the expression

X +Y < (T-1) / Z

is true if the value of X p lus Y is less than the value of T-1 div ided by Z.

Examples:

IF SIN (X)<0 GOTO 1000

IF I MOD J <) 0 THEN K =L+1

E xpressions 2 1 1

Logical Operators

Logical operators perform bit manipulat ion, tests on mult iple relations, or Boo
lean operations. The logical operator returns a bi tw ise result wh ich i s e i ther
"true" (not zero) or " false" (zero). In an expression, the precedence of logical

operations follows arithmetic and relational operations. Logical operators con
vert their operands to integers and return an integer result. Operands must be in
the range — 32768 to 32767* or an "Overf low" error occurs.

The outcome of a logical operation is determined as shown in the fo l low ing
table. The operators are listed in order of precedence.

OPERATOR EXAMPLE EXPLANATION

NOT A T h e l ogi ca l negative of A. If A i s t rue,NOT

AND A AND B

A ORB

NOT A is false.

The logical product of A and B. A AN D
B has the value true only i f A and B
are both true. A AND B has the value
false if either A or B is false.

The logical sum of A and B. A OR B has
the value true if ei ther A or B or both is true.
A OR B has the value false only i f both A and
B are false.

OR

XOR A XOR B T h e l og i ca l exclusive OR of A and B.

is true. Otherwise, A XOR B is false.

A IMP B T he l og i ca l imp l i cat ion of A and B.
A IMP B is false if and only i f A i s t rue
and B is false; otherwise the value is true.

A XOR B is true if ei ther A or B (but not both)

IMP

A EQV B A is l og i c a l ly equivalent to B. A EQV
B is true if A and B are both true or
both false. Otherwise, A EQV B is false.

EQV

Table 2-3
Logical Operators

*When you use variables with any of the logical operators, declare the variable as type integer by using either
the "%" type declaration character or the DEFINT statement (See Page 4-2 for a discussion of DEFINT).

2-12 CHAPTER TWO

NOT AND

NOT X X AND Y

OR XOR

X OR Y X XOR Y

IMP EQV

XIMP Y XEQVY

Table 2-4
Truth Table for Logical Operators.

Logical operators work by c onvert ing thei r operands to s ix teen bit , s igned,
two's-complement integers in the range — 32768 to +32767. (If the operands are

not in this range, an error results.) If both operands are suppl ied as 0 or — 1,
logical operators return 0 or — 1. The given operation is performed on these
i ntegers in b i tw ise fashion; i .e., each bi t o f the result i s determined by t h e
corresponding bits in the two operands. In binary arguments, bit 15 is the most
significant bit , and bit 0 is the least signif icant bi t .

Expressions 2 1 3

Thus, it is possible to use logical operators to test bytes for a part icular b i t
pattern. For instance, the AND operator maybe used to "mask" all but one of the
bits of a status byte at a machine I/O port . The OR operator may be used to
"merge" two bytes to create a particular binary value. The following examples
will help demonstrate how the logical operators work. (In all of the examples
below, leading zeros on binary numbers are not shown.)

Examples:

6 3 AND 1 6 =16

63 = b inary 11 1111 and 1 6 = b inary 10000 , so 63 an d 1 6 = 16

15 AND 14=14

15 = b inary 1111 and 14 = b inary 1110, so 15 AN D 1 4 = 14 binary 1110)

— 1 AND 8 = 8

— 1 = binary 11 11111111111111 and 8 = b i n a r y 1 0 00 , so — 1 AND 8 = 8

4 OR 2 =6

4 = b i n ary 10 0 an d 2 = binary 10, so 4 OR 2 = 6 (binary 110)

10 OR 10 =10

10 = b inary 10 10 , so 1010 OR 1 0 1 0 = 1010 (decimal 10)

— 1 OR — 2= — 1

— 1 = binary 1 1 1 1 111111111111 and — 2 = b i n a r y 1 1 1 1 1 11111111110 ,

so — 1 OR — 2 = — 1. The bit complement of sixteen zeros is sixteen ones,
which is the two's complement representation of — 1.

NOT X = (X+1)

The two's complement of any integer is the bit complement plus one.

6 I M P 2 = — 5

6 = b i n ar y 110 an d 2 = b inary 10 , so 6 IM P 2 = — 5

3 EOV 4 = — 8

3 = b i n ary 1 1 an d 4 = binary 100, so 3 EQV 4 = binary — 8.

2-'14 CHAPTER TWO

LOGICAL OPERATORS IN RELATIONAL EXPRESSIONS

Just as the relational operators can be used to make decisions regarding program
flow, logical operators can connect two or more relations and return a true or
false value to be used in a decision.

Examples:

IF D<200 AND F<4 THEN 80
I F I > 1 0 OR K) 0 T HEN 5 0

IF NOT P THEN 100

The result of evaluating a relational expression wil l be either true (— 1) or false

(0). This result wi l l then be used as the operand for the logical operator.

Functional Operators

A function is used in an expression to call a predetermined operation that is to be
performed on an operand. BASIC-80 has "intr insic" funct ions that reside in the
system, such as SQR (square root) or SIN (sine). Al l o f BA SIC-80's intr insic
functions are described in Chapter Seven, "Functions."

BASIC-80 also allows "user-defined" funct ions that are written by the program
mer. The proper format for constructing and referencing user-defined functions
is described in Chapter Seven, "Functions."

Command Mode Statements 3 I

Chapter Three

Command Mode Statements

OVERVIEW

Whenever the "Ok" p r ompt i s d i sp layed on the console, BASIC-80 is in the
Command Mode. In this Mode, BASIC-80 will respond to a command as soon as
it is entered.

Several commands are useful in Command Mode. These are:

AUTO
CLEAR
CONT
DELETE
EDIT

FILES
KILL
LIST
LLIST
LOAD

MERGE
NAME
NEW
RENUM

RESET
RUN
SAVE
SYSTEM

All of the commands (except CONT) may also be used within a program.

NOTE: Many of these statements enable you to access disk f i les. When
accessing disk fi les, remember that BASIC-80 files can be saved to the disk
in either upper case or lower case letters. Hence, if you are accessing a saved
BASIC-80 program fi le, specify the appropriate letter case.

3 2 CH APTER THREE

COMMAND MODE STATEMENTS

AUTO (enable automatic line numbering)

Form:

The AUTO command wil l turn on the automatic l ine numbering funct ion. The
AUTO command al lows you to enter the program text, wi thout l ine numbers
since the l ine numbers wil l be generated automatically.

AUTO begins numbering at (l i n e number) an d i n crements each subsequent
line number by (i n c rement) . I f no l ine number or increment is specified, the
default value of 10 is suppl ied. If (l i n e number> is fo l lowed by a comma but
(i ncrement) i s not specif ied, the last increment specified in an AUTO com
mand is assumed.

If AUTO generates a line number that is already being used, an asterisk is printed
after the number to warn the user that any input w i l l rep lace the existing l ine.
However, typing a carriage return immmediately after the asterisk wil l save the
l ine and generate the next l ine number.

AUTO is terminated by typing CTRL-C. The line in which CTRL-C is typed is not
saved. After CTRL-C is typed, BASIC-80 returns to the Command Mode.

Examples:

A UTOS [(l ine number)] , [(i n c rement)]

AUTO

AUTO 100,50 Generates line numbers 100,150,200

Generates line numbers 10,20,30,40

Generates line numbers 500,510,520AUTO 500

Command Mode Statements 3 3

CLEAR (initialize variables)

Form: CLEAR,[(expression1)] , [(e x p ression2)]

The CLEAR command w i l l se t a l l n u m eric var iables to zero and al l s t r i ng
variables to null . The CLEAR command can optionally be used to set the high
memory l imi t and the amount of stack space that is available to BASIC-80.

(expression1) is a memory location (expressed in decimal) which, if specified,
sets the highest memory location available for use by BASIC-80.

(expression2) sets aside stack space for use by BASIC-80. The default is 256
bytes or one-eighth of the available memory, whichever is smaller.

Examples:

CLEAR

Sets all numeric variables to zero and all str ings to nul l .

CLEAR,32768

Sets 32768 as the highest memory location for use by BASIC-80.

CLEAR, ,2000

Allocates 2000 bytes for stack space.

CLEAR,32768,2000

Sets 32768 as the highest memory location for use by BASIC-80 and allocates
2000 bytes for stack space.

3 4 CH APTER THREE

CONT (continue program execution)

CONTForm:

The CONTinue statement is used to resume execution of a p rogram after a
CTRL-C has been typed, or a STOP or END statement has been executed. The
CONTinue statement can also be used to resume execution after an error.

Execution wi l l resume at the l ine after the break. If the break occurred after a
prompt from an INPUT statement, execution continues with the reprint ing of the
prompt (7 or prompt str ing).

CONT is usually used in conjunction with STOP for debugging. When execution
is stopped, variable values may be examined and changed using Command
Mode statements. Execution may be resumed with CONT or a Command Mode
GOTO, which resumes execution at a specified l ine number.

If any changes are made to the program during the break, CONT becomes invalid
and the error message "Can't continue" w i l l appear on your screen.

DELETE (delete program lines)

Form: DELETEa[<l ine number)] - < l i n e number)

D ELETEz <line number) - [< l i n e number)]
or

The DELETE statement is used to delete program l ines from memory.

BASIC-80 wil l always return to Command Mode after a DELETE is executed. If
<line number> does not exist, an " I l legal funct ion call " error occurs.

Examples:

deletes line 40DELETE 40

DELETE 40 — 100 deletes lines 40-100, inclusive

deletes all l ines up to and inc lud ing l ine 40DELETE -40

Command Mode Statements 3 5

EDIT (enter Edit Mode)

EDITa(l i ne number>Form:

The EDIT statement wil l enter the Edit Mode at the specified l ine number.

In Edit Mode, it is possible to edit port ions of a line without retyping the entire
line. Upon entering Edit Mode, BASIC-80 types the line number of the line to be
edited. Then it types a space and waits for an Edit Mode subcommand.

The Edit Mode subcommands may be categorized according to the fo l low ing
functions:

1. M o v ing the cursor.

2. I nsert ing text.

3. De let ing text.

4. F i n d ing text .

5. Replacing text.

6. End ing and restarting Edit Mode.

The Edit Mode subcommands are not displayed on the terminal device. Some of
the Edit Mode subcommands may be preceded by an integer which causes the
command to be executed that number of times. When a preceding integer is not
specified, it is assumed to be one.

The Edit Mode subcommands are explained in Chapter Nine, "Editing."

3 6 CH APTER THREE

FILES (list names of files)

FILES [" <fi lename) "]Form:

The FILES command is used to l ist the names of f i les residing on the disk.

" < f i l en am e) " m u st fo l l o w t h e n o r m a l C P / M n a m i n g c o n v e n t i o ns . I f

< f i lename) i s o m i t t ed , al l t h e f i l e s on t h e d e faul t d r i v e w i l l b e l i s t ed .
"<f i lename) " i s a str ing which may contain question marks ('?) to match any

character in the file name or extension. An asterisk (
*) can be used to match any

primary f i le name or extension.

Examples:

l ist all f i le names on current default disk

FILES "» .BAS" l ist all f i le names with extension .BAS

F ILES "B » . » " l ist all f i le names on drive B:

FILES

KILL (delete file from disk)

KILL "[< dr i vena me):] < filename)"Form:

The KILL statement deletes the specified f i le from the specified disk dr ive.

The <dr ivename) can be any valid dr ive in your hardware environment. If not
specified, the interpreter assumes the default dr ive.

The <f i l ename) m u s t be speci f ied. I t must i nc lude the pr imary name and

extension [if any) of the fi le, and it must fol low CP/M f i le naming conventions.
This file may be a program file, a sequential data file, or a random access data file.
I f the file is a data fi le, it must be closed before it is deleted with KILL .

Command Mode Statements 3 7

LIST (list program on terminal)

Form: L ISTS[(l i ne number)] - [(l i n e number)]

The LIST command is used to list all or part of the program currently in memory.
The listing wi l l be displayed on the terminal device.

BASIC:-80 wil l always return to Command Mode after a LIST is executed.

I f the l ine numbers are omitted, the entire program is l isted beginning at the
lowest l ine number. The l ist ing is terminated by ei ther typ ing CTRL-C or by
reaching the end of the program.

I f one l ine number is specif ied, then only th is l ine w i l l be d i sp layed on the
terminal device.

Examples:

LIST

LIST 500

LIST 150

List the entire program.

List l ine number 500.

List all l ines from 150 to the end of the program.

List all l ines from the lowest number through 100.LIST — 100

L IsT 150-<00 L i st l i n e s 15 0 t h r o ug h 4 0 0 , i n c l u s i v e .

LLIST (list program on line printer)

Form:

The LLIST command wil l l ist all or part of the program currently in memory. The
listing wil l be printed on the line printer. The options for LLIST are the same as
LIST. BASIC-80 wil l a lways return to the Command Mode after an LLIST is
executed.

LLIST wil l assume that you have a 132-character wide pr inter.

Examples: See the examples for LIST

L LISTz [(l ine number)] - [(l i n e number)]

3 8 CH APTER THREE

LOAD (load program file from disk)

LOAD " (f i l ename) " [,R]Form:

The LOAD command is used to load a f i le from the disk into memory.

"<f i lename) " i s t h e CP/M f i l e name associated with the program f i le . The

default extension .BAS wi l l be suppl ied.

LOAD closes all open files and deletes all variables and program lines currently
residing in memory before it loads the designated program.

The R option can be used to RUN the program after it has been LOADed. If the R
option is used, all open f i les wil l be left open.

The R option may be used to chain several programs (or segments of the same

program). Information may be passed between the programs using temporary
disk data fi les.

Example:

LOAD "STARTRK",R

LOAD "B:GANIE1.BAS"

N OTE: BASIC-80 wi l l no t ma p a f i l e name to upper case. Thus, al l o f t h e
statements which specify a CP/M file name should have the file name expressed
in upper case letters. If a lower case file name is created in the directory, it can
then only be accessed with BASIC-80.

Command Mode Statements 3 9

MERGE (merge program)

M ERGE "(f i l ename) "Form:

The MERGE command wil l merge a disk program file into the program currently
in memory.

"(f i l ename) " i s the CP/M file name associated with the disk file that you wish

to be inserted. The default f i le name extension .BAS wil l be suppl ied. The fi le
must have been saved in ASCII format. If the file is not in ASCII format, a "Bad
file mode" error occurs.

If any lines in the disk file have the same line numbers as lines in the program in
memory, the l i nes in the f i l e be ing i nserted from the d isk w i l l r e p lace the
corresponding l ines in memory. Merging may be thought of as "inserting" the
program lines on the disk into the program in memory.

BASIC-80 wil l a lways return to the Command Mode after executing a MERGE
command.

Examples:

%IERGE "PROG1" wil l insert the f i le PROG1.BAS from the de

fault disk drive into the program in memory.

MERGE "B:TEST.BAS" w i l l i n s ert the file TEST.BAS from disk drive B
into the program in memory.

NOTE: After the MERGE command has been used, the line numbers that were
merged into the f i le w i l l be arranged in numeric sequence, whether they f i t
before, after, between, or over the l ines of the program originally in memory.

3 10 CHAPTER THREE

NAME (change name of disk fi le)

Form:

The NAME statement renames the specified file residing on the specified drive.

The <dr ive) c a n b e any va l id d r ive in y our hardware environment. I f you
specify drives, you must specify the same drive with both the <oldf i le) and the
<newfi le) . I f you do not specify either drive, the interpreter assumes the default
drive.

The <oldf i le) m u s t be specified. It must include the primary name and exten

sion (if any) of a file that currently exists on the specified (or default) drive, and it
must follow CP/M f i le naming conventions. This f i le may be a program f i le, a
sequential data f i le, or a random access data fi le.

The <newfi le) m u st be specified. It must include the primary name and exten
sion (if any) that you would l ike to replace the current name of <oldf i l e) . I t must
also follow CP/M f i le naming conventions.

N AME " [< d r i v e) :] < o l d f i l e) " A S " [< d r i v e) :] < n ew f i l e) "

NEW (delete current program)

Form:

The NEW command is used to delete the program currently in memory and clear
all variables. After a NEW command has been executed, all numeric variables are
set to zero and al l str ing variables to nul l .

BASIC-80 wil l a lways return to Command Mode after a NEW is executed.

NEW

Command Mode Statements 3 1 1

RENUM (renumber program lines)

R ENUMa[<new number)] , [< o ld number>] , [< i ncrement)]Form:

The RENUM command wi l l renumber program l ines.

<new number> is the f i rst l ine number to be used in the new sequence. The
default is 10. <old number> is the line in the current program where renumber
ing is to begin. The default is the first l ine of the program. < increment> is the
increment to be used in the new sequence. The default increment is 10.

The RENUM command w i l l a l so change al l l i ne number references wi th in
GOTO, THEN, ON/GOTO, ON/GOSUB and ERL statements to reflect the new
line numbers. If a nonexistent line number appears after one of these statements,
the error message "Undefined line xxxxx in yyyyy" is printed. The incorrect line
number reference (xxxxx] is not changed by RENUM, but l ine number yyyyy
may be changed.

RENUM can not be used to change the order of program l ines or to create line
numbers greater than 65529. In these cases, an "Il legal function call" error wi l l
result.

Examples:

RENUM

Renumber the entire program. The first new l ine number wi l l be 10. The
l ine numbers wil l be incremented by 10.

RENUM 300,, 50

Renumber the entire program. The first new line number wil l be 300. Lines
will increment by 50.

R ENUM 1000,900 , 2 0

Renumber the l ines from 900 up so they start with l ine number 1000 and
increment by 20.

3-'t 2 CHAPTER THREE

RESET (change diskette)

RESETForm:

The RESET command enables you to exchange a new disk for the disk in the
current default drive. RESET cannot be used with a drive name argument. Any
attempt to supply a dr ive name argument w i l l generate a "Syntax error" .

The RESET command should be issued only after you replace the old default
disk with the new default disk. If you issue a RFSET command before switching
disks, BASIL'-80 wil l read the di rectory information off of the old d isk .

The only effect of the RESET command is to read the directory information off of
the new disk and into memory. RFSET does not close open fi les.

Example:

RESET

Command Mode Statements 3 1 3

RUN (execute program)

RUN~[(l i ne number>]Form 1:

Form 1 of the RUN command is used to execute a program currently in memory.

If (l ine number> is specified, execution begins on that l ine. A RUN command

without the (l i n e n u mber) w i l l s t ar t execution at the l owest l ine number.
BASIC-80 wil l a lways return to Command Mode after a RUN is executed.

Example:

RUN 10 Executes the program currently in memory.
Execution starts at l ine number 10.

Executes the program currently in memory.
Execution starts at the lowest numbered l ine.

RUN

RUN " (f i l ename>" [,R]Form 2:

Form 2 of the RUN command is used to load a BASIC-80 program from disk into
memory and run it . The R is optional and if used wil l leave all data fi les open.

"(f i l ename>" is the name of the file on the disk. The default extension is .BAS.
"(f i l ename>" m ust be a valid CP/M f i le name enclosed in quotation marks.

RUN closes all open f i les and deletes the current contents of memory before
loading the designated program. However, with the R option, all data fi les wil l
remain open.

Example:

Loads and executes PROG1.BASRUN "PROG1"

RUN "B: GAME", R L oa d s and executes B:GAME.BAS leaving all data fi les
open.

3 14 C HAPTER THREE

SAVE (write program to disk)

S AVE " (f i l ename) " , A

S AVE " (f i l ename) " , P

Form:

S AVE " (f i l ename) "

The SAVE command w i l l w r i te to a d isk f i le the program that is currently in
memory.

"(f i l ename) " i s a string enclosed in quotes that conforms to the CP/M require

ments for f i le name construction. The default extension .BAS is suppl ied. I f
(f i l ename) a l ready exists, the file w i l l be wr i t ten over.

The A opt ion w i l l save the f i l e i n A S CII format. Otherwise, BASIC-80 wi l l
assume the compressed binary format. ASCII format takes more space on the
disk, but some disk commands require that the f i les be in ASCII format. For
example, the MERGE command requires an ASCII format f i le.

The P option wil l protect the file by saving it in an encoded binary format. When
a protected file is later RUN or (LOADed), any attempt to list or edit it wi l l fa i l .

Examples:

SAVE"COM2" ,A

SAVE"PROG",P

SYSTEM (perform CP/M warm boot)

Form:

The SYSTEM command wil l c lose all fi les and then perform a CP/M warm boot.
Because CTRL-C wil l always return to BASIC-80 Command Mode, the SYSTEM
command must be used to return to CP/M.

SYSTEM

Example:

SYSTEM

A> (prompt from CP/M,
assuming A-. is the current default disk)

Program Statements 4

Chapter Four

Program Statements

OVERVIEW

The program statements available to the BASIC-80 programmer can be divided
into four funct ional groups: Data type defini t ion, Assignment and al location,
Control, and I/O (Non-disk). This Chapter w i l l exp lain the var ious program
statements in these four groups.

Note: These program statements can also be used as Command Mode statements.

4-2 CHAPTER FOUR

DATA TYPE DEFINITION

A DEF statement declares that the variable name beginning with a certain range
of letters is of the specified data type. However, a type declaration character
always takes precedence over a DEF statement.

If no data type declaration statements are encountered, BASIC-80 assumes all
variables without declaration characters are single precision variables.

DEFINT (declare variable as integer)

DEFINTz (le t ter range)Form:

The DEFINT statement is used to declare a range of variable names as integer
data types.

An integer data type w i l l t ake up l ess memory than a s i ng le-precision or

double-precision data type. However, a variable declared as an integer data type
can only be assigned values in the range — 32768 through +3Z767 inclusive.

Example:

D EFINT I - N All variables beginning with the letters I,J,K,L,M, and N
will be integer variables.

DEFSNG (declare variable as single-precision)

Form:

The DEFSNG statement is used to declare a range of variable names as single
precision data types.

Single-precision variables are stored with seven digits of precision and they are
printed with six d ig its of precision.

Example:

DEFSNG>(l e t ter range>

All variables beginning with the letters A,B,C, and D wi l l
be single-precision variables.

DEFSNG A — D

Program Statements 4 3

DEFDBL (declare variable as double-precision)

Form:

The DEFDBL statement is used to declare a range of variable names as double
precision data types.

Double-precision variables are stored with 16 dig its of precision and they are
printed with 16 dig its of precision.

Examples:

DEFDBL x — z, A A ll v a r i ab les beginning with the letters X, Y, Z and A wi l l

DEFDBLz (le t ter range)

be double-precision variables.

DEFSTR (declare variable as string)

DEFSTRz (letter range>Form:

The DEFSTR statement is used to declare a range of variable names as string data
types.

A string is a sequence of characters — letters, blanks, numbers, and special
characters — up to 255 characters long.

Example:

A ll var iables beginning w i th the le t ter S w i l l be s t r ingDEFSTR S

variables.

4 4 CH APTER FOUR

ASSIGNMENT AND ALLOCATION STATEMENTS C)

DIM (set-up array)

Form:

The DIMension statement is used to set up th e m ax imum v a lues for array
variable subscripts and al locate storage accordingly.

If an array variable name is used without a DIM statement, the maximum value of
its subscript(s) is assumed to be 10. If a subscript is used that is greater than the
maximum specif ied, a "Subscript out of range" error occurs. The min imum
value for a subscript is always 0, unless otherwise specified with the OPTION

DIM~(l i s t of subscripted variables>

BASE statement.

The DIM statement sets all the elements of the specified arrays to an initial value
of zero.

Example:

10 DIM A(20)
20 FOR I = 0 T O 2 0

3 0 A(I) = I + 1

40 NEXT I

OPTION BASE (set minimum value for array subscript)

Form:

The OPTION BASE statement is used to declare the minimum value for array
subscripts. The default base is 0. This may be changed to 1. The OPTION BASE
statement must be executed before the DIM statement is executed. If an OPTION
BASE statement appears after an array has been DIMensioned, a "Dup l icate
definit ion" error wi l l resul t .

Example:

OPTION~BASEz n

OPTION BASE 1

For more information on array storage allocation, see Chapter Six, "Arrays."

NOTE: An OPTION BASE statement can be executed only once during a single
run of a BASIC-80 program. If BASIC-80 encounters more than one OPTION
BASE statement in a single program, the "Dupl icate defini t ion" error message
will be displayed.

Program Statements 4 5

This message wil l be displayed even if the path of your program leads to the
same OPTION BASE statement more than once due to an execution loop. How
ever, you can safely insert more than one OPTION BASE s tatement in to a
program if each statement resides in a di f ferent branch of the program, and if
only one of these branches is accessible during a single run of the program.

ERASE (remove array from program)

Form: ERASERS(list of array names>

The ERASE statement is used to remove an array from a program. Arrays may be
redimensioned after they are ERASEd, or the previously allocated array space in
memory may be used for other purposes.

I f an attempt is made to red imension an array w i thout f i rst ERASEing it , a
"Duplicate Definit ion" error occurs. If an attempt is made to ERASE an array that

has not been defined in a DIM statement, an " I l legal funct ion call " error w i l l
result.

Example:

1 0 DIM A (4 0 1

20 ERASE A
8 0 DIM A (5 0)

LET (assign value to a variable)

Form: LETz (v a r i a b l e) = (e x p r e ss ion)

The LET statement is used to assign the value of an expression to a variable.

Note that the word LET is optional, as the equal sign is sufficient when assigning
an expression to a variable name.

Example:

1 0 LET D = 1 2

20 LET S UM = X + Y + Z

or

10 D = 1 2

20 SUM = X + Y + Z

4 6 CH APTER FOUR

REM (insert remark)

REM<(remark>Form:

The REM statement allows explanatory remarks to be inserted in a program.

REM statements are not executed but are output exactly as entered when the
program is l isted.

REM statements may be branched into (from a GOTO or GOSUB statement), and
execution wil l continue with the first executable statement after the REM state
ment.

Remarks may also be added to a l ine by preceding the remark wi th a s ingle
quotation mark.

Example:

10 REM THIS IS A REMARK

20 ' THIS IS ALSO A REMARK

SWAP (exchange variable values)

Form:

The SWAP statement is used to exchange the values of two variables.

Any type variable may be swapped (integer, single-precision, double-precision,
string), but the two variables must be of the same type or a "Type mismatch"
error results.

Example:

SWAPO'(var iable>, (var iable>

10 A$ = " ONE " : B $ = " F OR" : C $ = " A L L "

20 PRINT A$;B$; C$
30 SWAP A$,0$
40 PRINT A$;B$;Ctt
RUN

ONE FOR ALL

ALL FOR ONE

Ok

Program Statements 4 7

CONTROL STATEMENTS

Two types of control statements are available to the BASIC-80 programmer. One
type affects the sequence of execution, and the other type is used for condit ional
execution.

Sequence of Execution

The sequence of execution statements are used to alter the sequence in which the
lines of a program are executed. Normal ly, execution begins with the lowest
numbered line and continues, sequentially, unti l the highest numbered l ine is
reached.

The sequence of execution statements allow the BASIC-80 programmer to exe
cute the lines of a program in any sequence the program logic dictates.

END (terminate program execution)

Form:

The END statement wil l terminate program execution, close all fi les, and return
to Command Mode.

END statements may be placed anywhere in the program to terminate execution.
Unlike the STOP statement, END does not cause a BREAK message to be dis
p layed. An END statement at the end of a program is optional. BASIC-80 wi l l
always return to Command Mode after an END is executed.

Example:

END

520 I F K) 1 0 0 0 T HEN END

4 8 CH APTER FOUR

FOR/NEXT (repetitive execution loop)

Form: FOR~<variable) = X TO Y [STEP Z].

NEXT>[<variable)]

where X,Y and Z are constants, variables, or numeric expressions.

The FOR/NEXT statement wil l al low a series of instructions to be performed in a
loop a given number of t imes.

<variable) i s used as the loop counter. The first numeric expression (X) is the
initial value of the counter. The second numeric expression (Y) is the terminal
value of the counter. The third numeric expression (Z) is the incremental value
for the loop counter.

Before the FOR/NEXT l oo p i s e x ecuted, these three numeric v a lues are
e valuated. First, the terminal va lue i s evaluated. Then the i n i t ia l va lue i s
evaluated. The loop counter is then set equal to the in i t ial value.

Any attempt to change these three values during the execution of the loop wi l l
have no effect. However, the loop counter must not be changed or the loop wi l l
not operate as expected.

After the numeric values are evaluated, a check is performed to see if the init ial
value of the loop exceeds the terminal value. If the in i t ia l va lue of the loop
exceeds the terminal value, the loop wil l not be executed. (If the STEP value is
negative, the init ial value must be greater than the terminal value or the loop wil l
not be executed.)

The program lines following the FOR are executed unti l the NEXT statement is
encountered. Then the loop counter is incremented by the amount specified by
STEP. A check is performed to see if the value of the loop counter is now greater
than the terminal value.

I f it i s no t g reater, BASIC-80 branches back to the statement after the FOR
statement and the process is repeated. If the value of the loop counter is greater
than the terminal value, execution continues with the statement fol lowing the
NEXT statement. The statements between the FOR and the NEXT statements
constitute the range of the FOR/NEXT loop.

If STEP is not specified, the incremental value is assumed to be one. If STEP is a
negative value, the loop counter is decremented each time through the loop. The
loop is executed unti l the loop counter is less than the f inal value.

Program Statements 4 9

Examples:

10 FOR J = 5 T O 1 ST E P - 1

2 0 PRINT J ;
30 NEXT J
RUN

5 4 3 2 1
Ok

The statement in the range of th is l oop w i l l be executed f ive t imes. In th i s
example, 5 is the init ial value, 1 is the terminal value, and — 1 is the incremental
value. Note that the init ial value is greater than the terminal value. This is valid
because the incremental value is negative. Also note that the variable J could
have been omitted from the NEXT statement in l ine 30.

10 FOR J = 5 T O 1

20 PRINT J ;
30 NEXT J
RUN
Ok

In this example, the statement in the range of the loop w i l l no t be executed
because the init ial value is greater than the terminal value. The STEP value has
been omitted, so it is assumed to be 1.

10 I = 5
20 FOR I = 1 T O I + 5

30 PRINT I ;

40 NEXT
RUN

1 2 3 4 5 6 7 8 9 10
Ok

In this example, the loop executes 10 times. The terminal value for the loop is
e valuated f i rst . The te rminal v a lue (I + 5 j i s 10 . N ext , the i n i t ia l v a lue i s
evaluated. The init ial value is 1. The loop counter is then set equal to the init ial
value. Because the STEP value has been omi t ted, the incremental va lue i s
assumed to be 1.

4 1 0 C HAPTER FOUR

Nested Loops

FOR/NEXT loops may be nested. That is , a FOR/NEXT loop may be p laced
within the range of another FOR/NEXT loop.

When loops are nested, each variable name should be assigned only one value. If
more than one value is assigned to a single variable name, only the inner most
value wil l be interpreted; any outer values wil l be disregarded.

If nested loops have the same end point, a single NEXT statement may be used for
all of them. If a single NEXT statement is used, the order in which the variables
should be specified must be exactly the opposite of the order in wh ich these
variables were specified in the corresponding FOR statements.

The variable in a NEXT statement may be omi t ted, in wh ich case the NEXT
statement wil l match the most recent FOR statement. If a NEXT statement is
encountered before its corresponding FOR statement, a "NEXT w i thout FOR"
error message is issued and execution is terminated.

Valid Nesting Invalid NestingValid Nesting

FOR J = 1 T O 10 FOR J = 1 TO 10F or J = 1 T O 10

FOR I = 1 T O 5 FOR I = 1 T O 5

NEXT I

NEXT J

c
FOR I = 1 TO 5

N EXT I , J NEXT J

NEXT I

Note that w i th the va l id nest ing, the range of the inner loop i s completely
contained wi thin the range of the outer loop.

Program Statements 4 1 1

GOSUB/RETURN (branch to subroutine)

GOSUB~(l i ne number)Form:

RETURN

The GOSUB/RETURN statement is used to branch to and return f rom a sub
routine.

(l ine number> is the f i rst l ine of the subroutine.

A subroutine may be called any number of times in a program, and a subroutine
may be called from wi thin another subroutine. Such nesting of subroutines is
l imited only by available memory.

The RETURN statement in a subroutine causes BASIC-80 to branch back to the
statement following the most recent GOSUB statement. A subroutine may con
tain more than one RETURN statement.

Subroutines may appear anywhere in the program, but it is good programming
practice to separate the subroutine from the main program. To prevent inadver
tant entry into the subroutine, it may be preceded by a STOP, END, or GOTO
statement that directs program control around the subroutine.

Example:

10 GOSUB 40
20 PRINT "BACK FROM SUBROUTINE"

30 END
35 REM
40 REM THIS IS THE SUBROUTINE

45 REM

50 PRINT " SUBROUTINE";
60 PRINT " I N

70 PRINT " PROGRESS"
80 RETURN
RUN

SUBROUTINE IN PROGRESS

BACK FROM SUBROUTINE

Ok

4-12 CHAPTER FOUR

GOTO (unconditional branch)

GOTO' < l ine number)Form:

The GOTO statement wi l l b ranch uncondi t ionally out of the normal program
sequence and continue execution at the specified l ine number.

I f <l ine number> is an executable statement, that statement and those following
are executed. If it is a nonexecutable statement, execution proceeds at the first
e xecutable statement encountered after < l ine number) .

If <l ine number> has not been previously defined, an "Undefined line number"
error wil l be displayed.

Example:

10 GOTO 30
2 0 PRINT " L I N E 2 0 "

30 PRINT " L I NE 30"
40 END

RUN

LINE 30
01%

P rogram Statements 4 1 3

ON/GOTO and ON/GOSUB (evaluate and branch)

Forms: ONa(expression>z GOTO' (l i s t of l ine numbers)

ONz (expression)z GOSUBz (l i s t of l ine numbers)

The ON/GOTO and the ON/GOSUB statements are used to branch to one of
several specified l ine numbers, depending on the va lue returned when an
expression is evaluated. The result of evaluating (expression> must be positive
and less than 255. If the value of (e x p ression> is non- integer, the fractional
portion is rounded.

The value of (e x p ression> determines which l ine number in the l ist w i l l be
used for branching. For example, if the value of the expression is three, the third
line number in the l ist w i l l be the destination of the branch.

If the value of (expression> is zero or greater than the number of line numbers
in the l ist, BASIC-80 wil l cont inue wi th the next executable statement. If the
value is negative or greater than 255, an " I l legal funct ion call " error occurs.

In the ON/GOSUB statement, each line number in the list should be the first line
number of a subroutine.

Example:

10 LM

20 ON L GOTO 50,60,70,80

30 END

50 PRINT "LINE 50":GOTO 90

60 PRINT "LINE 60":GOTO 90

70 PRINT "LINE 70":GOTO 90

80 PRINT "LINE 80":GOTO 90

90 STOP
RUN

Break i n 8 0
LINE 80
Ok

In this example, L =4, thus causing a branch to the fourth l ine number in the list.
The fourth line number in the list is 80. If L)4 or if L =0, then the program would

have branched to line number 30.

4-14 CHAPTER FOUR

STOP (suspend execution)

Form:

The STOP statement is used to terminate program execution and return BASIC
80 Command Mode.

STOP statements may be used anywhere in a program to terminate execution.
When a STOP is encountered, the fol lowing message is printed:

STOP

B reak in l i ne n n n n n

Unlike the END statement, the STOP statement does not close any f i les.

BASIC-80 wil l a lways return to the Command Mode after a STOP is executed.
Execution can be resumed by issuing a CONT command.

Example:

1 0 PRINT " L I N E 1 0 "

20 STOP
3 0 PRINT " L I N E 3 0 "

40 END
RUN

LINE 10

BREAK IN 20
Ok

CONT

LINE 30

Ok

Conditional Execution

The conditional execution statements are used to optionally execute a statement
or series of statements. The statement or series of statements will be executed if a
certain condit ion is met.

IF/THEN/ELSE (conditional execution)

Form:

IFz <expression)~ THEN' [<statement(sl)] ~ELSE',[<statement(s))]

IFz <expression) a GOTOz,[<l ine number)] z ELSE',[<statement(s))]

Program Statements 4 1 5

The IF/THEN/ELSE statement is used to make a decision regarding program flow
based on the result returned by an expression.

If the result of (e x p ression) i s t rue (not zero), the THEN clause is executed.
THEN may be fol lowed by ei ther a l ine number for branching or one or more
statements to be executed. If mult iple statements are to be executed, they must be
separated by colons (:).

If the result of (expression) i s false (zero), the THEN clause is ignored and the
ELSE clause, if present, is executed. ELSE may be fo l lowed by e i ther a l i ne
number for branching or one or more statements to be executed. If mu l t i p le
statements are to be executed, they must be separated by colons (:).

NOTE: BASIC-80 enables you to specify THEN or ELSE clauses without any
accompanying statements. BASIC-80 also enables you to specify the GOTO
clause without an accompanying l ine number.

If you are concerned that an IF/THEN/ELSE statement will become too long, you
can display the ELSE clause on the following physical line by entering a line feed
(press the LINE FEED key) before entering the ELSE clause in this statement.
However, do not enter a carriage return or precede the ELSE clause with a l ine
number.

The keyword THEN can optionally be replaced with a GOTO statement. In this
case, if the result of the expression is t rue, the program w i l l b ranch to th e
statement number specified in the GOTO statement.

Examples:

IF I THEN PRINT "I IS NOT ZERO" ELSE PRINT "I IS ZERO"

This statement wil l pr int "I IS NOT ZERO" if the value of I is not zero. If the
value of I is zero, the message "I IS ZERO" w i l l be pr inted.

IF X=A GOTO 100 ELSE PRINT "NOT EQUAL"

This statement wil l branch to line number 100 if X = A. If X is not equal to A,
the message "NOT EQUAL" w i l l be pr in ted.

IF IOFLAG THEN PRINT A$ ELSE LPRINT A$

This statement causes printed output to go either to the terminal or the line

printer depending upon the value of a variable (IOFLAG). If IOFLAG is zero,
output goes to the l ine pr inter. If IOFLAG is not zero, output goes to the
terminal.

4-16 CHAPTER FOUR

Additional Considerations

When an IF/THEN statement is fo l lowed by a l ine number in the Command
Mode, an "Undef ined l ine number" error results unless a statement with the
specified l ine number had previously been entered in the Indirect Mode.

When using IF to test equality for a value that is the result of a f loating point
computation, remember that the internal representation of the value may not be
exactly the same as the printed value. Therefore, the test should be against the
range over which the accuracy of the value may vary. For example, to test the
single-precision variable A against the value 1.0, use:

IF ABS (A — 1.0)<1.0E — 06 THEN

This test returns TRUE if the value of A is 1.0 with a relative error of less than
1.0E-6.

Nesting of IF Statements

IF/THEN/ELSE statements may be nested, but make sure that the same number of
IF's and ELSE's are used. Each ELSE will be matched with the closest unmatched

THEN. In the fo l low ing example, the operator was able to inc lude the ELSE
statements in l ine 20 by using l ine feeds.

Example:

10 INPUT A
2 0 I F A= C THEN I F A= B THEN PRINT " A= B A= C "

<operator-typed LINE FEEDS

<operator-typed LINE FEED >
ELSE PRINT " A N OT = B "

ELSE PRINT " A N OT = C "

30 PRINT A

This nested IF will f i rst test to see if A = C. If A does not equal C, the second ELSE

will be executed, the message "A NOT = C" wil l be printed and execution wil l be

continued at l ine 30.

If A = C, the first THEN wi l l be executed. This wil l result in another test. This
t ime, A w i l l be compared to B. I f A d oes not equal B, the f i rst ELSE wil l be
executed. So, if A does not equal B, the message "A NOT = B" wil l be printed and

execution wi l l cont inue with l ine 30.

If A = B, the second THEN w i l l be executed, result ing in the message "A = B

A = C" being printed on the terminal. After print ing this message, execution wi l l
continue at l ine 30.

P rogram Statements 4 1 7

WHILE/WEND (conditional execution)

WHILE~<expression)

<loop statements)

Form:

WEND

The WHILE... WEND statement is used to execute a series of statements in a loop
as long as a given condi t ion is true.

If <expression) i s not zero (that is, true), <loop statements> are executed unti l

t he WEND statement is encountered. BASIC-80 then returns to the W H I L E
statement and checks <expression) . I f i t i s st i l l not zero (true), the process is
repeated. If the value of the expression is zero (false), execution resumes with the

statement fol lowing the WEND statement.

WHILE/WEND loops may be nested to any level. Each WEND wi l l match the
most recent WHILE. An unmatched WHILE statement causes a "WHILE without
WEND" error, and an unmatched WEND statement causes a "WEND wi thout

WHILE" error.

Example:

10 I = 1

20 WHILE I
30 PRINT "WHILE/WEND LOOP"

40 I = 0

50 WEND
60 END

RUN

WHILE/WEND LOOP

Ok

4 18 C HAPTER FOUR

I/O Statements (Non-Disk)

DATA (store constants)

Form:

The DATA s tatement is used to s tore numeric and s t r ing constants. These
constants are assigned to variables by using the READ statement.

DATA statements are nonexecutable and may be placed anywhere in the prog

ram. A DATA statement may contain as many constants as wil l fi t on a logical
l ine. Any number of DATA statements may be used in a program.

The READ statement wil l access the DATA statement in l ine number sequence.
therefore, the data contained therein may be thought of as one continuous list of
items, regardless of how many items are on a line or where the lines are placed in
the program.

(l ist of constants) may contain numeric constants in any format, .i .e., fixed

point, floating point or integer. (No numeric expressions are allowed in the list.)

String constants in DATA statements must be surrounded by double quotation
marks only i f they contain commas, colons or signi f icant leading or t ra i l ing
spaces. Otherwise, quotation marks are not needed.

The type (numeric or stringj of variable given in the READ statement must agree
with the type of the corresponding constants in the DATA statement.

DATA statements may be reread from the beginning by use of the RESTORE

DATA' (l i s t of constants)

statement.

Example:

10 DATA 12 .3 , H E L L O, "GOOD,BYE", 3 4
20 DATA 1 , 2 , 3 , 4 , 5

Program Statements 4 1 9

INPUT (input f rom terminal)

INPUT [; <" prompt string ">;] <list of variables)Form:

The INPUT statement is used to input data from the terminal dur ing program
execution.

When an INPUT statement is encountered, program execution pauses and a

question mark is pr inted to ind icate that the program is wait ing for data.

If < "prompt string") i s inc luded, the string is printed before the question mark.

The required data should then be entered at the terminal. (The question mark can
be suppressed by putt ing a comma instead of a semicolon between the prompt
string and the l ist of variables.)

If the keyword INPUT is immediately followed by a semicolon, then the carriage
return typed by the user does not echo a carriage return/l ine feed sequence.

The data that is entered is assigned to the variable(s) given in the variable list.
The number of data items supplied must be the same as the number of variables
in the list. The data items input must be separated by commas.

The variable names in the list may be numeric or string variable names (includ
ing subscripted variables). The type of each data item that is input must agree
with the type specified by the variable name. Strings input to an INPUT state
ment need not be surrounded by quotation marks.

Responding to an INPUT prompt with more or fewer data items than the program
expects, or with an unexpected type of data (string data instead of numeric data),
causes BASIC-80 to display the "Redo from start" error message. Responding
with numeric data when the program expects string data will not cause the error
message because BASIC-80 interprets inputted numeric data as if it were string
data. No assignment of input va lues is made unti l an acceptable response is

made.

Example:

10 INPUT"ENTER VALUE";X
20 PRINT X
30 END

RUN

ENTER vALUE? (you tyPe) 5
5

Ok

4-20 CHAPTER FOUR

LINE INPUT (input entire line)

LINEz INPUT t <;) (" p ro m p t st r ing ") ;] (str ing variable)

The LINE INPUT statement is used to input an entire line (up to 255 characters)
to a string variable, wi thout the use of del imi ters.

The (" p r ompt str ing") i s a str ing l i teral that is printed at the terminal before

input is accepted. A question mark is not printed unless it is part of the prompt
s tring. Al l i n pu t f rom the end of the prompt st r ing to the carr iage return is
assigned to (s t r ing var iable>.

If the key words LINE INPUT are immediately followed by a semicolon, then the
RETURN typed by the user to end the i n pu t l i n e does not echo a carr iage
return/l ine feed sequence at the terminal .

A LINE INPUT may be escaped by typing CTRL-C. BASIC;-80 will return to the

C;ommand Mode and type "Ok". A C;ONT command wil l resume execution at the

Form:

LINE INPUT.

Example:

10 LINE I N PUT"NAME? — ";J$

20 PRINT JS
30 STOP

RUN

NAME? (you type) JONES, JACK L.
JONES, JACK L.
BREAK IN 30

Ok

Program Statements 4 21

LPRINT (output data to line printer)

Form:

The LPRINT statement is used to pr int data on the l ine pr inter.

LPRINT defaults to a 132-character wide printer, unless you change this default
with a "WIDTH LPRINT" statement. (See Page 7-22.)

LPRINT defaults to a 132-character wide pr inter.

LPRINT <list of expressions>

PRINT (output data at terminal)

Form:

The PRINT statement is used to output data to the terminal. (A question mark
may be used in place of the keyword PRINT in a PRINT statement.)

If <l ist of expressions) i s om i t ted, a blank l ine is pr inted. If < l i s t of expres
sions> is included, the values of the expressions are printed at the terminal. The
expressions in the l ist may be numeric and/or string expressions. String con
stants must be enclosed in quotation marks.

PRINT < l is t of expressions>

Print Positions

The position of each pr inted i tem is determined by the punctuation used to
separate the items in the l ist. BASIC-80 divides the l ine into pr int zones of 14
spaces each.

In the list of expressions, a comma (,) causes the next value to be printed at the
beginning of the next zone. A semicolon (;) causes the next value to be printed
immediately after the preceding value. Typ ing one or more spaces between
expressions has the same effect as typing a semicolon. Strings enclosed in quotes
without separating spaces wil l be concatenated.

If a comma or a semicolon terminates the l ist of expressions, the next PRINT
statement begins print ing on the same l ine, spacing accordingly. If the l ist of
expressions terminates without a comma or a semicolon, a carriage return is
inserted at the end of the l ine. If the pr in ted l ine is longer than the terminal
width, BASIC-80 goes to the next physical l ine and continues print ing.

NOTE: A number with spaces between its digits is still considered to be a single

4-22 CHAPTER FOUR

Printed numeric values are always fol lowed by a space. Positive numbers are
preceded by a space. Negative numbers are preceded by a minus sign.

Single-precision numbers that can be accurately represented with 6 or fewer
digits in the unscaled format are output using the unscaled format. For example,
10" (— 6) is output as .000001 and 10 (— 7) is output as 1E-7.

Double-precision numbers that can be accurately represented with 16 or fewer
digits in the unscaled format are output using the unscaled format. For example,
1D-16 is ou t pu t as .0000000000000001 and 1 D -17 i s ou t pu t as 1 D - 17 .

Examples:

10 X =5

20 PRINT X+5 , X - 5 , X + (- 5 j , X " 5
30 END

RUN

10 0

Ok
— 25 3125

In this example, the commas in the PRINT statement cause each value to be
printed at the beginning of the next pr int zone.

10 FOR X = 1 T O 5

20 J = J + 5

30 K =K+10

4 0 ?J ; K ;

50 NEXT X
RUN

5 10 10 20 1 5 3 0 20 40 2 5 50
OR

In this example, the semicolons in the PRINT statement cause each value to be

printed immediately after the preceding value. (Don't forget, a number is always
followed by a space and positive numbers are preceded by a space.) In line 40, a
question mark is used instead of the word PRINT.

P rogram Statements 4 2 3

READ (read values from DATA statement)

READz«l is t of variables>Form:

The READ statement is used to read values from a DATA statement and assign
them to variables.

A READ statement must always be used in conjunction with a DATA statement.
READ statements assign the constant values contained in a DATA statement to
the variables contained in the READ statement.

The assignment of values is on a one-to-one basis. READ statement variables may

be numeric or s t r ing, and the data types of the va lues read f rom the data
statements must agree with the variable types specified in the corresponding
READ statement variable. If data types do not agree, a "Syntax error" wil l result .

A single READ statement may access one or more DATA statements (they wil l be
accessed in order), or several READ statements may access the same DATA
statement.

I f the number of variables in (l i s t o f var iables> exceeds the number of data
constants in the DATA statements, an "Out of data" error wi l l result .

If the number of variables specified is fewer than the number of elements in the

DATA statements, subsequent READ statements wil l begin reading data at the
first unread element. If there are no subsequent READ statements, the extra data
is ignored.

To reread DATA statements from the start, use the RESTORE statement.

Example:

10 FOR I = 1 T O 1 0

20 READ A(I j
30 NEXT I
4 0 DATA 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2

This program segment READs the values from the DATA statement into the array
A. After execution, the value of A(1) wi l l be 3, and so on.

4-24 CHAPTER FOUR

RESTORE (reset data pointer)

R ESTORE[~(l i ne number)]Form:

The RESTORE statement is used to reset the data pointer in a DATA statement so
that the data may be reread.

After a RESTORE statement is executed, the next READ statement accesses the

f irst i tem in the f i rs t DATA s tatement in the p rogram. I f (l i n e n u mber> i s
s pecified, the next READ statement w i l l access the f i rst i tem in th e D A T A
statement, at or fol low ing the specif ied l ine number.

Example:

1 0 READ A,B , C

20 RESTORE
3 0 READ D,E , F

4 0 DATA 57 , 6 8 , 7 9

This program segment wil l assign the constants 57,68,79 to the variables A,B,C.
The RESTORE statement in l ine 20 wil l reset the DATA pointer so that the READ
statement in l i n e 3 0 w i l l a s s ign th e c o n s tants 57 ,68,79 to th e v a r i ab les D ,E,F.

P rogram Statements 4 2 5

WRITE (output data to terminal)

WRITE[a <list of expressions>]Form:

The WRITE statement is used to output data to the terminal .

I f < l is t o f expressions> i s om i t ted, a b lank l ine w i l l b e ou tput . I f < l i s t o f
expressions> is included, the values of the expressions are output to the termi
nal. The expressions in the l ist may be numeric and/or string expressions, and
they must be separated by commas.

When the printed items are output, each item wil l be separated from the last by a
comma. Printed strings wil l be delimited by quotation marks. After the last item
in the l ist is pr inted, BASIC-80 wil l i nsert a carriage return/l ine feed.

The WRITE statement outputs numeric values using the same format as the
PRINT statement.

Example:

10 A = 80 : B =90 : CS ="BASIC — 80"

20 WRITE A,B , CS
RUN

80,90 , " BASIC-80 "
Ok

4 26 CHAPTER FOUR

strings 5 1

Chapter Five

Strings

OVERVIEW

A string is a sequence of characters — letters, blanks, numbers, and special

characters — up to 255 characters long. A s t r ing constant is constructed by
enclosing these characters in a set of double quotation marks. A string variable

can be declared by simply adding the str ing declaration character, $, to th e
variable name. A statement can also declare a variable a string variable by using
the DEFSTR statement.

Microsoft BASIC-80 provides complete faci l i t ies for manipulat ing str ings. A
string can be compared, PRINTed, concatenated with other strings, etc. Several
functions for manipulat ing strings are also available to the BASIC-80 program
mer.

This Chapter wil l cover the fol lowing subjects:

"String Input/Output"

"String Operations"

"String Functions"

5 2 CH APTER FIVE

STRING INPUT/OUTPUT

String constants can be input to a p rogram in the same manner as numeric
constants. The INPUT statement can be used. The string can usually be typed
without quotes.

10 INPUT "YOUR NAME";J$
20 PRINT ' (HELLO It; JS
RUN
YOUR NAME? ryou t y pe] J OHN
HELLO JOHN

Ok

However, if you wish to input a string constant which contains commas or which
contains leading or trail ing blanks, the string must be enclosed in quotes. (When
the INPUT statement is used.)

10 INPUT "YOUR NAME";JS
20 PRINT JS

RUN
YOUR NAME? [you type] "JONES, JOHN"

JONES, JOHN

Ok

The LINE INPUT statement can be used to input strings that contain any pr in t
able character. The string does not have to be enclosed in quotes when the LINE
INPUT statement is used.

10 LINE INPUT "YOUR NAME";JS

20 PRINT J$
RUN
YOUR NAME (you type) JONES, JOHN

JONES, JOHN

Ok

strings 5 3

STRING OPERATIONS

Strings may be concatenated using the + . For example:

10 XS ="FI RST"

20 Y$ = " A N D

30 Z$ ="LAST"

40 PRINT X$+Y$+Z$
RUN
FIRST AND LAST
Ok

Strings may be compared using the same relational operators that are used with
numbers:

The strings are compared character-for-character from left to r ight. The ASCII
codes for the character are compared, and the character with the lower ASCII
value is considered to precede the other character.

For example, the string "Z$" precedes the string "Z*" because "$" (ASCII code
decimal 36) has a lower value than does " *" (ASCII code - decimal 42).

When strings of different lengths are compared, the shorter string is considered
to precede the longer string. Every character, including blanks and any non

printing character is significant in a string comparision. For example, the string
"AB" w i l l p recede the string "ABz" because of the trail ing blank in the string
ccAB~ I I

A string constant must also be enclosed in double quotes whenever it is used in
an assignment statement or in a comparison expression.

Example:

Z$ ="STRING CONSTANT"

IF Z$ ="NUMERIC CONSTANT" THEN STOP

5 4 CH APTER FIVE

STRING FUNCTIONS

The string funct ions available to the BASIC-80 programmer are:

Function Definit ion

string to ASCII value conversion

ASCII value to string conversion

decimal to hexadecimal conversion

ASC(X$)

CHR$(I)

HEX $(X)

INKEY$

INPUT$(X, Y)

INSTR(I,X$, Y$)

LEFT$(X $,I)

LEN(X$)

MID$(X$,I,J)
MID$(X$,I,J)= Y $

OCT$(X)

RIGHT$(X $,I)

SPA CE$(X)

STR$(X)

STRING$(I,J)
STRING$(I,X$)

VAL(X$)

read characters

search for substring

return leftmost characters

length of string

return substring
replace portion of str ing

convert decimal to octal

return r ightmost characters

return str ing of spaces

return str ing representation

build str ing

read one character from terminal

return numerical representation
of the string

Table 5-1
String Functions

Strings 5 5

ASC (convert string to ASCII value)

Form:

The ASC function wil l return a numerical value that is the ASCII decimal code of
the first character of the string X$. If X$ is a null string, an "Il legal function call"

ASC(X$)

error is returned.

Example:

10 XS =" TEST"

20 PRINT ASC(XS)
RUN

84
Ok

In the above example, the first letter of the string X$ is a T. The ASCII code for T is
84.

CHR$ (convert ASCII value to string)

Form:

The CHR$ function wi l l return a str ing whose one element has ASCII decimal
code I. (ASCII codes are listed in "A p pendix B.") CHR$ is commonly used to
send a special character to the terminal. For instance, the BEL character could be
sent by the statement; PRINT CHR$(7).

Example:

CHR$(I)

PRINT CHR$(66)
B
Ok

5 6 CH APTER FIVE

HEX$ (convert decimal to hexadecimal)

Form:

The HEX$ function wil l return a string which represents the hexadecimal value
of the decimal argument. X is rounded to an integer before HEX$(X) is evaluated.

Example:

HEX$(X)

10 INPUT X

20 A$ = HEX/(X)
30 PRINT X;" DECIMAL IS ";A/;" HEXADECIMAL"

RUN
? 32
32 DECIMAL IS 20 HEXADECIMAL

INKEY$ (read one character from keyboard)

Form:

The INKEY$ funct ion w i l l r e turn e i ther a one-character string containing a

character read from the terminal or a null string if no character is pending at the
terminal. No character is echoed and all control characters are passed through
the program except for CTRL-C wh ich t e rminates the program and re turns

INKEY$

BASIC-80 to the Command Mode.

Example:

10 X$ = INKEY$

2 0 IF X $=CHR$(32) THEN STOP
30 GO TO 10

This example would read from the keyboard unti l a space (ASCII decimal-32)
was typed.

Strings 5 7

INPUT$ (read characters)

INPUT$(X, Y)Form:

The INPUT$ function wil l return a string of X characters, read from the terminal
or from f i le number Y. If the terminal is used for input , no characters wil l be
echoed and all control characters are passed through except CTRL-C, which is
used to interrupt the execution of the INPUT$ funct ion.

Example:

10 OPEN " I " , 1 , "D A TA.DAT"
20 IF EOF(1) THEN 50
30 PRINT INPUTS(1, 1)
40 GOTO 20
50 END

The above example wil l p r in t al l the characters in the f i le DATA.DAT

10 XS =INPUTS(1)
2 0 I F X S= "P" T HEN 5 0 0

3 0 I F X S= "S" THEN 700 E LSE 1 0

This example would read one character from the keyboard. If the character is a P,

program control would be transferred to line number 500. If the character is an S,
control would be transferred to line number 700. If the character is neither an S
nor a P, control would be transferred back to l ine number 10.

5 8 CH APTER FIVE

INSTR (search for substring)

INSTR(I,X$, Y$)Form:

The INSTR function wi l l search for the first occurrence of string Y$ in X$ and
return the position at which the match is found. Optionally, the offset I sets the

position for starting the search. I must be in the range 1-255. Ifl) L E N (X$) or if X$
is null or if Y$ can not be found, INSTR will return 0. If Y$ is null, INSTR returns I
or 1.

X$ and Y$ may be string variables, string expressions or string l i terals.

Example:

10 XS = »ABCDEB»

20 Y$ = »B»

30 PRINT INSTR(X$,Y$) ; I NSTR(4,X$,Y$)
RUN

2 6
Ok

LEFT$ (return leftmost characters)

Form:

The LEFT$ function wil l return a string comprised of the leftmost characters of
X$. I must be in the range 0 to 255. If I is greater than the length of X$, the entire
string (X$) will be returned. If I equals 0, the null string (length zero) is returned.

Example:

LEFT$(X$,I)

10 AS = "BASIC — 80»

20 B$ = LEFT/(A$,5)
30 PRINT BS
RUN
BASIC
Ok

strings 5 9

LEN (return length of a string)

Form: LEN(X$)

The LEN funct ion w i l l r e turn the number of characters in X$. Non-pr int ing
characters and blanks are counted.

Example:

10 X$ = "ABC DEF"
20 PRINT LEN(XSj
RUN

7
Ok

MID$ (return substring)

MID$(X$,I,J)Form:

The MID$ function wil l return a string of length J characters from X$ beginning
with the Ith character. I must be in the range 1 to 255; and J must be in the range 0
to 255. If J is omitted, or if there are fewer than J characters to the right of the Ith
character, all r i ght -most characters beginning w i th th e I th character are re
turned. If I is greater than the length of string X$, MID$ wil l return a null str ing.

Example:

10 A$ ="GOOD"

20 BS ="MORNING EVENING AFTERNOON"

3 0 PRINT A$;MID/ (B$,8 , 8)
RUN
GOOD EVENING

Ok

5 l 0 C HAPTER FIVE

MID$ (replace portion of string)

MID$(X$,I,J)= Y $Form:

This form of the MID$ function wi l l replace a portion of one string with another
string.

The characters in string X$, beginning at position I, are replaced by the charac
ters in str ing Y$. The var iable J, which i s op t ional, refers to the number of
characters from string Y$ that w i l l be used in the replacement. The variable I
must be within the range 1 to the length of X$. Any other value causes the "Il legal
function call" error message. The variable J must be in the range 0 - 255. The Y$
string can be null , but the X$ str ing must be assigned.

However, regardless of whether J is omi t ted or inc luded, the replacement of
characters never goes beyond the original length of X$.

Examples:

A$ ="1234567" at the beginning of each example

Statement Resultant A$

12ABCD7M ID/(A$,3 , 4) ="ABCDE"

MID/(A$,5) ="ABCDE"

M ID/(A$, 1 , 2) = " A "

1234ABC

A234567

OCT$ (convert decimal to octal)

Form:

The OCT$ function wi l l return a string which represents the octal value of the
decimal argument. X is rounded to an in teger before OCT$(X) is evaluated.

Example:

OCT$(X)

PRINT OCT%(24)
30
Ok

Strings 5 11

RIGHT$ (return rightmost characters)

Form:

The RIGHT$ function wi l l return the right-most I characters of string X$. If I is
greater than or equal to the length of the string X$, the function wi l l return the
entire string. If I equals 0, the nul l s t r ing (length zero) wi l l be returned. The
variable I must be in the range 0 to 255.

RIGHT$(X$,I)

Example:

10 AS =" DISK BASIC — 80"
20 PRINT RIGHT/(A$,8)

RUN
BASIC-80
Ok

SPACE$ (return string of spaces)

Form:

The SPACE$ function wil l return a string of spaces of length X. The expression X
is rounded to an integer and must be in the range 0-255.

Example:

SPACE$(X)

10 FOR I = 1 T O 5

20 X$ = SPACE/(I)
30 PRINT XS; I
40 NEXT I
RUN

1

2
3

4
5

Ok

5-12 CHAPTER FIVE

STR$ (return string representation)

Form:

The STR$ function wil l return the string representation of X. For example, if X =

45.3, then STR$(X) equals the string " 45.3". A leading blank wi l l be inserted
before "45.3" to allow for the sign of X. Arithmetic operations may be performed
on X, but not on the str ing STR$(X).

Examples:

STR$(X)

PRINT STRS(100)
100

PRINT STRS(— 100)
— 100

STRING$ (build string)

Forms: STRING$(I,J)

or

STRING$(I,X$)

The STRING$ function w i l l re turn a str ing of length I composed of the ASCII

code J or the first character of X$. I and J must be in the range 0-255.

Examples:

PRINT STRINGS(10 " 4")

PRINT STRINGS(15,65)
AAAAAAAAAAAAAAA

Strings 5 13

VAL (return numerical representation)

Form:

The VAL function wil l return the decimal numerical representation of the string
X$. The VAL function wi l l strip al l leading blanks, tabs, and line feeds from the
argument string.

If the first valid character of X$ is not +, -,&, or a digit, then VAL(X$) = O. The h is
used to specify an octal value. The VAL funct ion wil l convert this octal value to
decimal when VAL(X$) is evaluated. If the string X$ contains both numeric and
alphanumeric characters, only the leading numeric characters wil l be used in
evaluating X$.

Examples:

VAL(X$)

PRINT VAL("100 FEET")
100

P RINT VAL("FEET 100")
0

PRINT VAL("&100")

64

PRINT VAL(" -3")
— 3

PRINT VAL("&H16")
22

5 14 C HAPTER FIVE

Arrays 6 1

Chapter Six

Arrays

OVERVIEW

This Chapter explains the methods used to create and reference an array, which
is simply an ordered l ist of data i tems. This l ist of data i tems can be a one
dimensional vertical array, or it can be a table of data items consisting of rows
and columns.

These data items may be either string or numeric. Each one is referred to as an
"element". To help i l lustrate the concept of arrays, an example is included in

this Chapter.

This Chapter also contains several sample routines which can be used to ma
nipulate arrays. These sample routines can be used to add, mult ip ly , transpose
and perform other useful operations on numeric arrays.

6-2 CHAPTER slX

ARRAYS

Array Declarator

Before an array is referenced, it should be "declared" by use of an array de
clarator. The DIM statement is used to establish the maximum number of ele.
ments in an array. The general form of the DIM statement is:

D IME <name) [(< in teger expression))]

where:

<name) i s a valid BASIC-80 symbolic name

<integer expression) i s any va l id in teger expression which when evaluated,
will be rounded to a positive integer value. This positive integer value wil l then
become the maximum number of elements associated with that specific array
name. The maximum number of dimensions is 255. The maximum number of
elements per dimension is 32767. When used, this expression must be enclosed
in parentheses.

Examples:

D IM A(3),DS(2 ,2 , 2)
DIM Q1(R+T)
DIM Zg (100)

An array can also be declared wi thout the use of the array declarator. When
BASIC-80 encounters a subscripted variable that has not been defined with a
DIM statement, it wil l assume a maximum subscript of 10. Thus, an array can be
established without the use of the DIM statement.

If one or more variables is declared with the same name as an array name, the
interpreter recognizes each name as a separate entity.

Example:

10 A$ =1

20 A ! =2

30 A4 =3

40 A(5) =4

5 0 PRINT Ago,'A!'Ag 'A (5)
RUN

1 2 3 4

Arrays 6 3

Array Subscript

Each element of an array can be uniquely referenced by having an array subscript
appended to the end o f th e ar ray name. This array subscript i s an i n t eger
expression which references a unique element of the array.

Examples:

A (1),DS(I , J , K)
Q1(2)
zg(55)

Any attempt to reference an array element with a subscript that is negative wil l
result in an " I l l egal Function Call " er ror. References to subscripts which are
larger than the maximum value established by a DIM statement and references
which contain too many or too few subscripts wil l generate a "Subscript Out of
Range" error.

OPTION BASE Statement

The minimum subscript for an array element is assumed to be 0. The array
declarator A(10) actually establishes an 11-element array, A(0) — A(10). The
OPTION BASE statement can be used to change this default min imum a rray
subscript to 1. The fol lowing example i l lustrates the use of the OPTION BASE
statement.

Example:

OPTION BASE 1
DIM A(10)

This program segment w i l l establish a 10 e lement array, A(1) — A(10). The
OPTION BASE statement must appear before any DIM statement or before any
subscripted variable is referenced. An attempt to use the OPTION BASE state
ment after an array has already been established wi l l result in a " D u p l i cate
Definit ion" error .

6 4 cH APTER SIx

Vertical Arrays

A vertical array is a 1-dimensional array. This type of array is established if a DIM
statement with one subscript is used, or if BASIC-80 is allowed to establish the
default array size. Assuming that the default array size of 11 elements has been
established for the array A, BASIC-80 would al locate storage as follows:

Subscripted variable

A(0)
A(1)
A(2)
A(3)
A(4)
A(5)
A(6)
A(7)
A(8)
A(9)

A(10)

Array element

E lement ¹ 1
E lement ¹ 2
E lement ¹ 3
Element ¹ 4
E lement ¹ 5
E lement ¹ 6
E lement ¹ 7
E lement ¹ 8
E lement ¹ 9
E lement ¹ 1 0
E lement ¹ 1 1

Table 6-1
Array St orag e All ooati on.

The variable A(9) would refer to the tenth element of this vert ical array. (Al
though, the OPTION BASE statement could be used to set the min imum sub
script to 1, in wh ich case A(9) would refer to the ninth element of the array.)

Arrays 6 5

Multi-Dimensional Arrays

A mult i -d imension array is declared in the same manner as a vert ical array,
except that both row and column size are declared. For example, to declare a 3 x

3 array, the fol lowing sequence of statements could be used:

OPTION BASE 1
DIM A(3,3)

After this program segment is executed, BASIC-80 would reserve nine storage
locations for the array. (Note that the minimum subscript value was set to 1 with
the OPTION BASE statement.)

Storage for the array would be al located as follows:

Column 3

Row 1 A(1,2)

A(2,2)

A(3,2)

A(1,3)

A(2,3)

A(3,3)

A(1,1)

A(2,1)

A(3,1)

Table 6-2
Multi-Dimensional Array

Storage Allocation.

When reading from left to right, note that the second array subscript varies most
rapidly. This is because BASIC-80 allocates array storage such that the r ight
most subscript varies the fastest.

String arrays can also be established in the same manner as numeric arrays. A
string array is declared when the DIM statement is used.

DIM A$ (100)

This statement wil l establish a 101 element string array. To access an element of
the array, append an array subscript to the end of the variable name.

A$ (20) =" A STRING ARRAY"

6 6 cH APTER six

MATRIX MANIPULATION

The following is a collection of subroutines which are very useful for manipulat
i ng a matr ix . The subrout ine l ine nu mbers may have to be changed to be
compatible with your main program.

Matrix Input Subroutines

5000 'SUBROUTINE NAME — MATIN2
5010 'ENTRY Ig = g OF ROWS, Jg = g OF COLUMNS

5020 DIM MAT(IX • Jfo)
5030 FOR Kfo = 1 TO I X
5040 PRINT "INPUT ROW g";Kg

5050 FOR L$, =1 TO Jg
5060 INPUT MAT(KX • Ljo)
5070 NEXT Lg,Kg
5080 RETURN

The above subroutine wil l accept data from the terminal and assign this data to
the 2-dimensional array named M AT . U pon en try i n to t h i s subrout ine, the
integer variable I% must contain the number of rows in the matrix, and J% must
contain the number of columns.

5000 'SUBROUTINE NAME — MATIN3

5010 ' ENTRY Ig = SIZE OF DIMENSION gi

5020 Jg = SIZE OF DIMENSION g2

5030 Kg = SIZE OF DIMENSION g3

5040 DIM MAT(IX JX Kfo)
5050 FOR L$ = 1 TO I g ,
5060 FOR M$ = 1 TO J fo
5070 FOR N$ = 1 T O Kfo
5080 READ MAT(Lg,M$,NX)
5090 NEXT N$.Mg,L$
6000 RETURN

This subroutine is used to read data from a DATA statement and assign this data
to the 3-dimensional array named MAT. Upon entry into this subroutine, the
integer variable I% must contain the number of elements for dimension I , J%
must contain the number of elements for dimension 2, and K% must contain the
number of elements for dimension 3. The data must also be contained in a valid
DATA statement.

Arrays 6 7

Scalar Multiplication (multiplication by a
single variable)

5000 'SUBROUTINE NAME — MATSCALE

5010 ' ENTRY — I X = SIZE OF DIMENSION P1
5020 JX = SIZE OF DIMENSION P2
5030 KX = SIZE OF DIMENSION P3
5040 ' A — ORIGINAL ARRAY

5050 ' X — SCALAR FACTOR
5060 ' B — NEW ARRAY
5070 FOR Lg, = 1 TO K $
5 080 FOR M$ = 1 TO Jg
5090 FOR Ng = 1 TO I g

6 000 B (N$, M $, L $) = A (N$,M$,L$)+X
6 010 NEXT N g
6020 NE X T M$
6030 NEXT LX
6040 RETURN

This subroutine will multiply each element in the 3-dimensional array A by the
value assigned to X and produce a new 3-dimensional array B. Upon entry into
this subroutine, I% must contain the size of dimension ¹1 , J% must contain the
size of dimension ¹2 , K% must contain the size of dimension ¹3 , and X must
contain the value to multiply by (scalar factor). Both arrays A and B must also
have previously been defined by a DIM statement.

Transposition of a Matrix

5000 'SUBROUTINE NAME — MATTRANS

5010 ' ENTRY Ig = g OF ROWS, Jg = g OF COLUMNS
5020 'TRANSPOSE A INTO B
5030 FOR K$ = 1 TO I $
5 040 FOR L g = 1 TO Jg
5 050 B(Lg , K g) = A (K$,L$)
5 060 NE X T L$
5070 NEXT Kg
5080 RETURN

T his sub r ou t in e w i l l t r a n s p ose th e 2 - d i m e n s i ona l m a t r i x A i n t o th e
2-dimensional matrix B. Upon entry into the subroutine, I% must contain the
number of rows and J% must contain the number of columns. Both array A and B
must have been previously defined by a DIM statement.

6 8 c HAPTER s(x

Matrix Addition

5000 'SUBROUTINE NAME — MATADD

5010 ' E NTRY I fo = SIZE OF DIMENSION g1

5020 Jf = SIZE OF DIMENSION g2

5030 KK = SIZE OF DIMENSION P3
5040 'ARRAY A+B = C

5050 FOR L / o = 1 T O K /o

5 060 FOR M $ = 1 TO J fa
5070 FOR N/a = 1 T O I /o

5080 C(N$, M / a ,L/o)= B (N$,Mgj,Llo) + A (N/a,M/o,L/o)
5090 NEXT N/o
6000 NE X T Mfo
60 1 0 NEXT L/o

6020 RETURN

This subroutine wil l add the elements of arrays A and B to produce a new array C.
A,B, and C must have previously been defined by a DIM statement.

Matrix Multiplication

5000 ' SUBROUTINE NAME — MATMULT

50 10 E NTRY ARRA Y A MUST BE D 1/o BY D3/o ARRAY
5020 ARRAY B MUST BE D3/o BY D2'$ ARRAY
5030 ARRAY C MUST BE D1/o BY D2/o ARRAY

5040 FOR I % = 1 T O D 1 / o

5050 F OR J /o = 1 T O D 2/ o

5060 C (I%%uo J/o)
5070 FOR K/o = 1 T O D 3 /o

5080 C(I/o,Jg) =C (I/o,J/o)+A(I /o,K/o) B (K/o J/o)
5090 NEXT K/o
6 000 NEXT J f a

6 010 NEXT I / o

This subroutine wil l mu l t i p ly the 2-dimensional array A by the Z-dimensional
array B and produce C.

Functions 7

Chapter Seven

Functions

OVERVIEW

BASIC-80 provides a ful l set of i n t r insic funct ions for use by the BASIC-80
programmer. One group of intr insic functions is the arithmetic functions. These
functions are referenced by a symbolic name; when invoked, they return a single
value. This single value wil l be either an integer or single-precision data type.
The arguments to the arithmetic funct ions are enclosed in parentheses.

BASIC-80 programmers also have a group of special functions that they may use.
These special functions each have their own unique requirements for referenc
ing.

Complete facili t ies for constructing and referencing user-written functions have
also been included in BASIC-80.

7-2 CHAPTER SEVEN

ARITHMETIC FUNCTIONS

Several arithmetic functions are available for use by the BASIC-80 programmer.
These arithmetic funct ions are:

DEFINITION

absolute value

FUNCTION

ABS(X)

ATN(X)

CDBL(X)

CINT(X)

COS(X)

CSNG(X)

EXP(X)

FIX(X)

INT(X)

LOG(X)

RND(X)

RANDOMIZ E r esee d random number generator

SGN(X)

SIN(X)

SQR(X)

TAN(X)

sign (+,- or 0) of X

arctangent

convert to double-precision

round to integer

cosine

convert to single-precision

e to the power of X

truncate suppl ied argument

largest integer (= X

natural log of X

random number between 0 and 1

sine of X

square root of X

tangent of X

Table 7-1
Arithmetic Functions.

Functions 7 3

ABS (absolute value)

ABS(X)Form:

The ABS function returns the absolute value of the expression X.

Example:

P RINT ABS(7+(-5))
35

Ok

ATN (arctangent)

Form:

The ATN func t ion w i l l r e turn the arctangent of X . X m us t be expressed in
radians. The result wil l be in the range — pi/2 to pi/2. The expression X may be
any numeric type, but the evaluation of ATN i s a lways performed in s ingle
precision.

Example:

ATN(X)

10 X = 3

20 PRINT ATN(X)
RUN

1.24905
01%

7 4 GHA PTER SEVEN

CDBL (convert to double-precision)

Form:

The CDBL funct ion wi l l convert X to a double-precision number.

Example:

CDBL(X)

10 X = 454. 67
20 PRINT X;CDBL rx)
RUN

454.67 4 54 . 6 7 0 0 134277344
Ok

CINT (round to integer)

CINT(X)Form:

The CINT function wil l convert X to an integer. The fractional port ion of X wi l l
be rounded to the nearest integer. If this function returns a result that is not in the
range — 32768 to 32767, an "Overf low" error w i l l occur.

Example:

PRINT CINT r45.67)
46

Ok

Functions 7 5

COS (cosine)

Form:

The COS function wi l l return the cosine of X. X must be expressed in radians.
The calculation of COS is performed in single-precision.

Example:

COS(X)

10 X = 2 + C O S(.4)
20 PRINT X
RUN

1.84212

Ok

CSNG (convert to single-precision)

Form:

The CSNG function wi l l convert X to a single-precision number.

Example:

CSNG(X)

10 Ag = 975 .3421g
20 PRINT A$;CSNG(AQ)
RUN

9 75.3421 9 7 5 . 3 4 2
Ok

NOTE: The ¹ i s used to declare the values as double-precision data types.

7 6 CHA PTER SEVEN

EXP (e raised to a power)

Form:

The EXP funct ion w i l l r e turn e r a i sed to the p ower o f X . e i s t h e n a tural
logarithm's base value (2.718Z8...). X must be (= 87.3365. If EXP overflows, the
"Overflow" error message is displayed.

Example:

EXP(X)

1OX = 5

20 PRINT EXP(X-1)
RUN

54.5982
OR

FIX (truncate supplied argument)

Form:

The FIX function wil l return the truncated integer part of X. The major difference
between FIX and INT i s that FIX s imply r emoves any decimal por t ion of a
number. INT wi l l round a negative number to the next lowest number.

Examples:

FIX(X)

P RINT FIX(58 .75)
58

Ok

P RINT FIX(- 5 8 . 7 5)
— 58

Ok

Functions 7 7

INT (convert to integer)

INT(X)Form:

The INT function wil l return the largest integer (= X. When a negative value is
rounded, it w i l l be rounded to the next smallest value.

Examples:

P RINT INT(99 . 8 9)
99

P RINT INT(- 1 2 . 1 1)
— 13

LOG (natural logarithm)

LOG(X)Form:

The LOG function wil l return the natural logarithm of the supplied argument. X
must be greater than zero. IF X is less than or equal to zero, an "I l legal function
call" error message wil l be displayed.

Example:

PRINT LOG(45/7)

1.86075

7 8 CHA PTER SEVEN

RND (random number generator)

Form: RND(X)

The RND function w i l l r e turn a random number between 0 and 1. The same
sequence of random numbers is generated each time the program is executed
unless the random number generator is reseeded. The RANDOMIZE statement is
used to reseed the random number generator.

I f X<0, the sequence of numbers w i l l be restarted. X>0 o r X o m i t ted w i l l

generate the next random number in the sequence. X=0 wil l r epeat the last
number generated.

Example:

10 FOR I = 1 TO 5

20 PRINT I NT (RND+100) ;
30 NEXT

RUN

2 4 30 3 1 5 1 5
OK

RANDOMIZE (reseed random number generator)

Form

The RANDOMIZE statement is used to reseed the random number generator.
<expression> is used as the random number seed value. If <expression> i s
omitted, BASIC-80 suspends program execution and asks for a value by print ing:

RANDOMIZE <expression>

R andom Number Seed (- 3 2768 t o 32767) ?

The value input is used as the random number seed.

If the random number generator is not reseeded, the RND function returns the
same sequence of random numbers each time the program is executed.

Functions 7 9

To change the sequence of random numbers every time the program is executed,
place a RANDOMIZE statement at the beginning of the program and change the
argument with each run.

Example:

10 RANDOMIZE RND
20 FOR I = 1 TO 5

30 PRINT (RND+100)
40 NEXT I
50 GOTO 10

The (expression) a r gument can also be derived by performing an operation

(such as PEEK or INP) on an address or port value.

SGN (sign of expression)

SGN(X)Form:

The SGN function returns a result based on the numeric value of X.

If X(0, SGN(X) wil l return — 1. If X =0, SGN(X) will return 0. If X)0 , SGN(X) wil l
return 1.

You can create an arithmetic IF statement using this funct ion:

ON SGN(X)+2 GOTO 100,200,300

If X is negative, the program wil l b ranch to l ine number 100. If X is zero, the
program will branch to line number 200. If X is positive, the program wil l branch
to line number 300.

Example:

10 INPUT X
20 ON SGN(X)+2 GOTO 50,60,70

50 PRINT"NEGATIVE":GOTO 10

60 PRINT"ZERO":GOTO 10

70 PRINT"POSITIVE":GOTO 10

RUN
? — 10
NEGATIVE

0
ZERO
? 10
POSITIVE

7 1 0 C HAPTER SEUEN

SIN (sine)

Form:

The SIN funct ion w i l l r e turn the sine of X. X must be expressed in radians.
SIN(X) is calculated in single-precision.

Example:

SIN(X)

P RINT SIN(1 . 5)
.997495

Ok

SQR (square root)

SQR(X)Form:

The SQR function wil l return the squareroot of X. X mustbe) =O. If X is less than

zero, an "I l legal funct ion call " error w i l l be d isplayed.

Example:

10 X = 2 5

20 PRINT X,SAR(X)
RUN

25 5
Ok

TAN (tangent)

FORM:

The TAN function wil l return the tangent of X. X must be in expressed in radians.
TAN(X) will be calculated in single-precision. If TAN overflows, the "Overflow"
error message wil l be displayed.

Example:

TAN(X)

PRINT TAN(10)
.64836

Ok

Functions 7 1 1

MATHEMATICAL FUNCTIONS

Some functions that are not intr insic to BASIC-80 may be calculated as follows:

Function BASIC-80 Equivalent

SECANT

COSECANT

COTANGENT

INVERSE SINE

INVERSE COSINE

HYPERBOLIC SINE

HYPERBOLIC COSINE

HYPERBOLIC SECANT

HYPERBOLIC TANGENT

HYPERBOLIC COSECANT

SEC(X) = 1 /COS(X)

CSC(X) = 1 /SIN(X)

COT(X) = 1 /TAN(X)

ARCSIN(X) = ATN(X/SQR(— X*X + 1))

ARCCOS(X) = ATN(X/SQR(-X *X+1))+1.570796

SINH(X) = (EXP(X)-EXP(-X))/2

COSH(X) = (EXP(X)+EXP(-X))/2

TANH(X) = (EXP(X)-EXP(-X))/(EXP(X)+EXP(-X))

SECH(X) = 2 /(EXP(X)+EXP(-X))

CSCH(X) = 2 /(EXP(X)-EXP(-X))

COTH(X) = (EXP(X)+EXP(-X))/(EXP(X)-EXP(-X)) .HYPERBOLIC COTANGENT

Table 7-2
Mathematical Functions

7 12 C HAPTER SEVEN

SPECIAL FUNCTIONS

Several special functions are available for use by the BASIC-80 programmer.
These special functions are:

Function Definit ion

free memory space

input from port

position of pr int head

set number of nul l s

FRE(X)

INP(I)

LPOS(X)

NULL(X)

OUT I,J

PEEK(I)

POKE I,J

POS(X)

SPC(X)

TAB(I)

VARPTR(X)

WAIT I,J,K

WIDTH I

output to port

read byte from memory

write byte to memory

current cursor posit ion

print spaces

tab carriage

variable pointer

status of port

set terminal l ine w id th

set printer l ine wid thWIDTH LPRINT I

Table 7-3

Special Functions.

FRE (return amount of free memory)

FRE(0) FRE (X$)Form:

The FRE function wil l return the number of bytes in memory that are not being
used by BASIC-80. The arguments to FRE are dummy arguments.

FRE(" ") forces some system housekeeping to consolidate a contiguous block of

f ree memory before returning the number of free bytes. The housekeeping wi l l
take 1 to 2 minutes. Even if you do not use FRE, BASIC-80 wil l in i t iate house
keeping when there is not enough cont iguous free memory for BASIC-80 to

perform an operation.

Example:

PRINT FRE(0)

INP (input byte from I/O port)

Form:

The INP function wil l return the byte read from port I. I must be in the range 0 to
255. INP is the complementary funct ion to OUT.

Example:

INP(I)

10 A = INP(255)

7 1 4 CH ARTER SEVEN

LPOS (return position of print head)

Form:

The LPOS function wil l return the current position of the line printer print head
within the line printer buffer. This does not necessarily correspond to the actual
physical position of the pr int head. X is a dummy argument.

Example:

LPOS(x)

100 IF LPOS(X))60 THEN LPRINT CHRIS(13)

NULL (set number of nulls)

Form:

The NULL function sets the number of nulls that wil l be printed at the end of a
line.

F or 10 character-per-second tape punches, < in teger expression) s h o u ld b e

greater than or equal to 3.

For teletypes and teletype-compatible CRTs (when tapes are not being punched),
then (i n t eger expression) sh ould be 0 or 1.

For 30 character-per-second hard copy printers, <integer expression) should be

NULL (i n t eger expression)

2 or 3.

The default value of (i n t eger expression) i s 0 .

Example:

OR
N ull 2
OR
10D INPUT X

200 I F X . 5 0 T HEN STOP

30D PRINT X
400 GOTO 100

Because of the NULL funct ion in the preceding example whenever the interpre
ter sends an end-of-l ine sequence (carriage return and l ine feed), two nul ls are
also sent.

Functions 7 1 5

OUT (output byte to I/O port)

Form:

The OUT statement wil l send a byte to an output port. I and J must be integer
expressions in the range 0 to 255. The integer expression I is the port number,
and the integer expression J is the data to be transmitted.

Example:

OUT I,J

100 OUT 32, 100

PEEK (examine contents of memory location)

Form:

The PEEK function wil l return the byte read from memory location I. The value
returned wil l be a decimal integer in the range 0 to 255. I must be in the range
-32768 to 65535. PEEK is the compl imentary funct ion to the POKE funct ion.

Example:

PEEK(I)

PRINT PEEK(34000)
234

01%

Note: You may not get the same result if you PEEK memory location 34000.

POKE (change contents of memory location)

Form:

The POKE function wil l change the contents of a memory location. If I or J is a
floating point number, it is rounded to the nearest integer.

The integer expression I is the address of the memory location to be changed. I
must be in the range -32768 to 65535.

The integer expression J is the value to be placed into memory location I. J must
be in the range 0 to 255.

POKE I,J

7 16 G HAPTER SEUEN

POKE and PEEK are useful for efficient data storage, loading assembly language
subroutines, and passing arguments and results to and from assembly language
subroutines.

Example:

P OKE 34000 , 1

01%

POS (return current cursor position)

Form:

The POS function wil l return the current cursor position. The left-most position
is 1. I is a dummy argument.

Example:

POS(I)

IF POS(I) 60 THEN PRINT CHRS(13)

SPC (print blanks)

SPC(ilForm:

The SPC function is used to print blanks on the terminal or the line printer. The
integer argument I specifies how many blanks are to be printed. I must be in the
range -32768 to 32767. The SPC function may only be used with PRINT and
LPRINT statements.

Example:

PRINT "OVER";SPC(15) ; " T HERE"
OVER THERE

OK

Functions '7 17

TAB (tab carriage)

TAB(I)Form:

The TAB statement is used to space to position I on the terminal or line printer. If
the current print position is already beyond space I, TAB goes to position I on the
next line.

Position 1 is the left-most position, and width is the right-most position. I must
be a number in the range 1 to 255. TAB may only be used with PRINT and
LPRINT statements.

Example:

10 PRINT "NAME";TAB(10j;"AMOUNT"

20 READ A$,B$
3 0 PRINT AS;TAB(10 j ; BS
40 DATA "WILLIAMS" "$20.00"
RUN
NAME AMOU NT
WILLIAMS $20.00

7 18 C HAPTER SEVEN

VARPTR (variable pointer)

Form¹1 : VA RPT R (< v a r iable name>)
Form¹2: VA RP TR (¹ < f i le number>)

Form ¹1 of the VARPTR function is used to return an address-value which can
be used to locate where the variable <var iable name> is stored in memory. A
value must have been previously assigned to <var iable name> or an " I l l egal
function call " error w i l l resul t .

Any type variable name may be used (numeric, string, array). The result returned
will be an integer in the range -32768 to 32767. If a negative address is returned,
add it to 65536 to obtain the actual address. This returned address (which we wil l
refer to as A) has a d i f ferent meaning depending upon on the data type of
<variable name>.

N OTE: The results from these examples may vary depending on how m u ch
memory your system has, how much memory is being used for BASIC-80, etc.

I f <variable name) i s a str ing value:

A — Contains the length of the string.
A+1 — C o n ta ins the LSB (least significant byte) of the actual string start

A+2 — C o n ta ins the MSB (most s igni f icant byte) of the actual s t r ing
ing address.

starting address.

The actual address where the string value is stored can be calculated by:

actual address = (value found at location A+2)*256 + (value found at location
A+1)

This address will most likely be in high RAM where the string values are stored.
If the string value is a constant (a string l i teral), this address wil l represent the
area of memory where the program l ine containing the str ing is stored.

(Remember, A is only the address of this in formation, you must PEEK(A) to
obtain the actual value.)

Example:

X$="ABC" [you t y p e]

PRINT VARPTR(X$j [you t y p e]
-28927
Ok

Ok

Functions 7 1 9

I f (var iable name) i s an in teger value:

A — Contains the LSB of the 2-byte integer
A+1 — C o n ta ins the MSB of the 2-byte integer

To display th is i n formation (in t w o ' s complement decimal representation),
execute a PRINT PEEK(A) and a PRINT PEEK(A+1) .

Example:

Ig = 1000 [you t y p e]
014

PRINT VARPTR(If) [you type)
— 29121
Ok

I f (va r iable name> is a single-precision value:

A — Contains the LSB of value.
A+1 — Contains next MSB of value.
A+2 — MSB (most signif icant byte) with imp l ied leading one.

A+3 — Exponent of value in excess 128 notation
Most signif icant bit is the sign of the number.

(128 is added to the exponent).

I f (va r iable name) i s a double-precision value:

A — Contains the LSB of value.
A+1 — Next MSB.
A+2 — Next MSB.
A+3 — Next MSB.
A+4 — Next MSB.
A+5 — Next MSB.
A+6 — MSB (most signif icant byte) with imp l ied leading one.

A+7 — Exponent of value in excess 128 notation.
Most signif icant bit is the sign of the number.

7-20 CHAPTER SEVEN

The double and single-precision numbers are stored in a normalized exponent

form, so that a decimal is assumed before the MSB. The exponent is stored in
excess 128 notation (128 is added to the exponent). The high order bit of the MSB
is used as a sign bit. It is 0 if the number is positive or 1 if the number is negative.

Example:

10 A = 2 3 . 4

20 B$ =23.12345678

30 PRINT VARPTR(A),VARPTR(B¹)
RUN
— 23888 -23880

Ok

Form¹2 of the VARPTR function is used to return the address of the FIELD buffer
for the specified random f i le .

Example:

10 OPEN "R" , 1 , " O UT.DAT"

20 FIELD¹1 , 1 2 8 A S J UNKS
30 PRINT VARPTR(81)
RUN

— 2345
Ok

Functions 7 21

WAIT (monitor port)

Form:

where I is the number of the port being monitored. The WAIT function is used to
suspend program execution while monitor ing the status of a machine input port,

The WAIT function causes execution to be suspended until a specified machine
input port develops a certain bit pattern. The data read at the port is XOR'ed with
the integer expression K, and then AND'ed with the integer expression J.

If the result is zero, BASIC-80 loops back and reads the data at the port again. If
the result is non-zero, execution resumes with the next executable statement. If K
is omitted, it is assumed to be zero. I,J, and K must be in the range 0 to 255.
(Remember, all numbers are decimal unless preceded by 8 H, &0, or &.)

Example:

WAIT I,J,[K]

WAIT 20,6

Execution stops unti l ei ther bit 1 or bit 2 of port 20 are equal to 1. (Bit 0 is least
significant, bit 7 is most.) Execution resumes at the next statement.

W AIT 10,255 , 7

Execution stops until any of the most significant five bits of port 10 are equal to 1,
or any of the least signif icant three bits are 0. Execution resumes at the next
statement .

7-22 CHAPTER SEVEN

WIDTH (set line width)

Form:

The WIDTH function is used to set the printed line width for the terminal or l ine
printer. The LPRINT opt ion is used for the l ine pr inter wid th .

(in teger expression) is the number of characters in the printed line. The default
l ine width for the terminal is 80 and the default l ine width for the line printer is

WIDTH [LPRINT] (i n t eger expression)

132.

IF (in teger expression) i s 255 the line width is " in f in i te" , that is, BASIC never
inserts a carriage return. However, the position of the cursor or pr int head, as
given by the POS or LPOS function, returns to zero after position 255.

Examples:

WIDTH 80 set terminal w idth at 80 characters.

set printer width at 96 characters.WIDTH LPRINT 96

Functions 7 23

USER-DEFINED FUNCTIONS

Sometimes it is necessary to execute the same sequence of program statements or
m athematical formulas in several d i f ferent p laces. BASIC-80 al lows you t o
define your own f u n c t ions and then reference these functions in th e same
manner as the standard system functions, such as ABS, SIN, or SQR.

At t imes it may also be necessary to code a specific port ion of a program in
assembly language. Facilities have been provided for the BASIC-80 programmer
to reference assembly language programs from a BASIC-80 program.

DEF FN (define function)

Form:

The DEF FN statement is used to define an impl i ci t funct ion.

(name> must be a legal variable name. This name, preceded by the FN becomes
the function name. The entries in the variable list are "dummy" variable names.
The dummy variables represent the argument variables or values in the function
call.

Any number of arguments are allowed, and any valid expression may appear on
the right side of the equal sign. The length of the function defini t ion is limi ted to
one logical l ine (255 characters).

User-defined functions may be of any type. The type of a function is specified by
inserting one of the type declaration characters (%,!,¹ ,or $) after the function
name. If a t ype declaration character is no t used, the def in i t ion (DEFSTR,
DEFSNG, etc.) for that letter applies. If you have made no unique DEF's, then a
numeric variable is assumed to be a single-precision data type.

If a type is specified for the function, the value of the expression is forced to that
type before it is returned to the cal l ing statement. If a type is specified in the
function name and the argument type does not match, a "Type mismatch" error
occurs. DEF FN is i l legal in the Command Mode.

Example:

DEF FN(n ame> ((v a r i able l ist>) = expression

10 DEF FNAB(X, Y) =X+Y
20 SUM = FNAB(10,20)
30 PRINT SUM
RUN

30
Ok

NOTE: If dupl icate functions are defined, only the f i rst wi l l have effect.

7-24 CHAPTER SEVEN

ASSEMBLY LANGUAGE PROGRAMS

It is possible to invoke an assembly language program in either of two methods.
The first method is to use the USR function, and the other method is with the
CALL statement.

For more information, see Appendix D, "Assembly Language Subroutines."

DEF USR (define entry address for USR subroutine)

DEF~USR(d i g i t) = (expression>Form:

The DEF USR statement is used to define the entry points for up to 10 assembly

language subroutines.

The (d i g i t) i s the number of the assembly language subroutine. (d i g i t> may
be any number from 0-9. If (d i g i t > i s om i t ted, it is assumed to be 0.

The value of (e x p ression> i s the start ing address of the assembly language
subroutine in decimal, unless the number is preceded by a special base specifica
t ion character. A hexadecimal number is specified with the prefix &H and an
octal number is specified with the prefix &0 or & .

Examples:

DEF USR1 =5 H22

DEF USR2 = 45000

DEF USR5 = ADDRESS

Functions 7 25

USR (invoke assembly language subroutine)

Form:

The USR function is used to invoke an assembly language subroutine. <d ig i t>
must be in the range 0-9 and corresponds to the digit supplied with the DEF USR
statement. If <dig it> is omitted, it is assumed to be zero. X is the argument to be
passed to the assembly language subroutine.

Examples:

USR<digit>(Xl

Z = USR1(B/2)

A = USR2(1.23)

C = USR5(ARG1)

NOTE: A detailed description of how to define and reference USR functions is
contained in Appendix E.

CALL (call assembly language subroutine)

CALL><variable name) [(argument l ist)]Form:

The CALL statement is used to call an assembly language subroutine.

<variable name) is assigned an address that is the starting point, in memory, of
the assembly language subroutine. The address should be assigned before a

CALL statement is executed. <var iable name> may not be an array variable
name. <argument l ist) c ontains the arguments that are passed to the assembly
language subroutine.

The CALL statement generates the same call ing sequence used by Microsoft 's
FORTRAN, COBOL and BASIC Compilers. This calling sequence is explained in
Appendix D, "Assembly Language Subroutines."

Example:

110 MYROUT = 8cHDQQQ

1 20 CALL MYROUT(I , J , K)

7 26 CH APTER SEVEN

Special Features 8

Chapter Eight

Special Features

OVERVIEW

BASIC-80 provides the programmer with several special features. One of these
features, Error Trapping, is useful for detecting errors during program execution.
Another feature is the PRINT USING statement. This statement al lows the

programmer to specify the format of both numeric and str ing output .

Another important feature is the Trace flag, which al lows the programmer to
follow, l ine-by-l ine, the execution of a program.

BASIC-80 also provides the facil i t ies for overlay management. The CHAIN and
COMMON statement are used for this funct ion.

8 2 CH APTER EIGHT

ERROR TRAPPING

BASIC-80 allows the programmer to wr i te error detection and error handl ing
routines which can attempt to recover from errors, or provide more complete
explanations of the causes of errors. This facility has been added through the use
of the ON ERROR GOTO, RESUME, and ERROR statements, and with the ERR
and ERL variables.

ON ERROR GOTO (enable error trapping)

ON~ERRORaGOTO~ <line number>Form:

The ON ERROR GOTO statement is used to enable error trapping and specify the
f irst l ine of the error handl ing subrout ine.

Once error trapping has been enabled, all errors detected, including Command
Mode errors (e.g., Syntax errors), wil l cause a jump to the specified error hand
l ing subroutine. If < l ine number> does not exist, an "Undefined l ine number"
error results.

To disable error trapping, execute an ON ERROR GOTO 0. Subsequent errors
will print an error message and halt execution. An ON ERROR GOTO 0 statement
that appears in an error trapping subroutine causes BASIC-80 to stop and print
the error message for the error that caused the trap. We recommend that all error
trapping subroutines execute an ON ERROR GOTO 0 if an error is encountered
for which there is no recovery action.

If an error occurs during execution of an error handl ing subroutine, the BASIC
error message is printed and execution terminates. Error trapping does not trap
errors within the error handl ing subroutine.

Example:

10 ON ERROR GOTO 1000

Special Features 8 3

RESUME (continue execution)

RESUME
RESUME 0
RESUME NEXT
RESUMEz <line number)

Forms:

The RESUME statement is used to continue program execution after an error
recovery procedure has been performed.

Any one of the four formats shown above may be used, depending upon where
execution is to resume:

RESUME Execution resumes at the statement
which caused the error.or

RESUME 0

RESUME NEXT Execution resumes at the statement
immediately fol lowing the one which
caused the error.

E xecution resumes at < l ine number) .RESUMEz (1 ine number>

A RESUME statement that is not in an error trap rout ine causes a "RESUME
without error" message to be printed.

Error Trap Example:

100 ON ERROR GOTO 500

200 INPUT"WHAT ARE THE NUMBERS TO DIVIDE";X,Y
210 Z =X /Y
220 PRINT "QUOTIENT IS";Z

230 GOTO 200
5 00 I F E R R= 11 AN D E R L= 210 THEN 520
510 STOP
520 PRINT"YOU CAN'T HAVE A DIVISOR OF ZERO!"

530 RESUME 200

8 4 CH APTER EIGHT

ERROR (generate error)

Form: ERROR (i n teger expression)

The ERROR statement can be used either to simulate the occurrence of a BASIC
80 error, or to allow error codes to be defined by the user.

The value of (i n teger expression) must be greater than 0 and less than or equal
to 255. If the value of (i n t eger expression> equals an error code already in use
by BASIC-80, the ERROR statement wil l s imulate the occurrence of that error,
and the corresponding error message wil l be pr inted.

To define your own er ror code, use a value that is greater than any used by
BASIC-80's error codes. (It is preferable to use the highest available values, so
compatibi l ity may be maintained when more error codes are added to BASIC
80.) This user-defined error code may then be conveniently handled in an error
trap routine.

If an ERROR statement specif ies a code for wh ich no error message has been
defined, BASIC-80 responds with the message "Unprintable error". Execution of
an ERROR statement for wh ich there is no error trap rout ine causes an error
message to be printed and execution to hal t .

Example:

LIST
10 S = 1 0

2 0 T = 5

30 ERROR S + T
40 END
01%

RUN
String too long in line 30

Or, in Command Mode:

OR

ERROR 15 (you type this line)
String too long tBASIC-80 types this l ine)
01%

Special Features 8 5

ERR and ERL Variables

When an error handl ing subrout ine is entered, the variable ERR contains the
error code for the error, and the variable ERL contains the line number of the line
in which the error was detected. The ERR and ERL variables are usually used in

IF/THEN statements to direct program f low in the error trap rout ine.

If the statement that caused the error was a Command Mode statement, ERL wil l
contain 65535. To test if an error occurred in a Command Mode statement, use IF

65535 = ERL THEN ... Otherwise, use

IF ERR = error code THEN ...

IF ERL = l ine number THEN

If the line number is not on the right side of the relational operator, it cannot be
renumbered by RENUM. Because ERL and ERR are reserved variables, neither
may appear to the left of the equal sign in a LET (assignment] statement.

When the error handl ing subroutine is entered, the variable ERR contains the
error code for the error. The error codes and their meanings are listed on the next
page. See Appendix A, "Error Messages," for a more detailed discussion of the

error messages.

8 6 CH APTER EIGHT

ERROR CODES

General Errors

ERRORCODE

10

12

13

14

15

17

18

19

20

21

22

23

Can't continue

Next without for
Syntax error
Return wi thout gosub
Out of data
I llegal function cal l
Overflow
Out of memory
Undefined l ine number
Subscript out of range
Duplicate defini t ion
Division by zero
Illegal direct
Type mismatch
Out of string space
String too long
String formula too complex

Undefined user function
No resume
Resume without error
Unprintable error
Missing operand
Line buffer overflow
For without next
While wi thout wend
W end without wh i l e

29

30

Table 8-1
Error Codes.

Special Features 8 7

Disk Errors

CODE ERROR

Field overflow
Internal error
Bad file number
File not found
Bad file mode
File already open
Disk i/o error
File already exists
Disk full
Input past end
Bad record number
Bad file name
Direct statement in f i l e
Too many f i les

50

51

52

53

54

55

57

58

61

62

63

64

66

67

Table 8-1 (Cont'd.)

Error Codes.

8 8 CH APTER EIGHT

FORMATTED OUTPUT

The PRINT USING statement can be used to output in formation in a specif ic
format. This feature is useful in such applications as printing payroll checks or
accounting reports.

PRINT USING (format output)

Form:

The PRINT USING statement is used to print strings or numbers using a specified
format.

<list of expressions) is comprised of the string expressions or numeric expres
s ions that are to be printed, separated by semicolons or commas. <string exp> is
a string l i teral (or variable) that is comprised of special formatting characters.
These formatting characters (see below) determine the field, and the. format, of
the printed strings or numbers.

String Fields

When PRINT USING is used to print strings, one of three formatting characters
may be used to format the string f ield:

PRINT USING<str ing exp> ;< l i s t of expressions>

This specifies that only the f i rst character in the given str ing is to be pr inted.

Special Features 8 9

"gn spaces/ »

T his specifies that 2+ n c h aracters from the st r ing are to be p r i n ted. I f t h e
backslashes are typed with no spaces, two characters wil l be printed; with one
space, three characters will be printed, and so on. If the string is longer than the
field, the extra characters are ignored. If the field is longer than the string, the
string wil l be left-justif ied in the f ield and padded with spaces on the right .

Example:

$0 A$ »LOOK».B$ »Q'U'r»

20 PRINT USING »!";A/;B$
30 PRINT USING "X X"'AS'BS
40 PRINT USING "X X";AS;BS; » ! ! »

RUN
LO
LOOK OUT
LOOK OUT ! !

»$»

T he ampersand specif ies a var iable l ength s t r ing f i e ld . When the f i e ld i s
specified with "8 " , the str ing is output exactly as input .

Example:

$0 A$ »LQQK».B$=» QUT»

20 PRINT USING »!";AS

30 PRINT USING "8 " ;B$
RUN
L
OUT
Ok

Numeric Fields

When PRINT USING is used to print numbers, the following special characters
may be used to format the numeric f ie ld :

A number sign is used to represent each digit position. Digit positions are always
filled. If the number to be printed has fewer digits than positions specified, the
number wil l be r ight- justif ied (preceded by spaces) in the field.

8 1 0 CHAPTER EIGHT

A decimal point may be inserted at any position in the field. If the format string
specifies that a digi t is to precede the decimal point , the digit w i l l a lways be
printed (as 0 if necessary). Numbers are rounded as necessary.

Examples:

P RINT USING "g$.g$ " ; . 7 8
0.78

PRINT USING "gpss.$g";987.654
987.65

PRINT USING "g$ $g zzz" ; 1 0 . 2 , 5 . 3 , 6 6 . 7 8 9 , . 2 34
10.20 5 . 3 0 66 . 79 0 . 2 3

In the last example, three spaces were inserted at the end of the format string to
separate the printed values on the l ine.

A plus sign at the beginning or end of the format string wil l cause the sign of the
number (plus or minus) to be pr inted before or after the number.

A minus sign at the end of the format field w i l l cause negative numbers to be
printed with a t ra i l ing minus sign. If the number is posit ive, a space wil l be
printed.

Examples:

PRINT USING "+$g.g$aa"; — 68.95,2.4 , 5 5 . 6 , .9
- 68.9 5 +2 .4 0 +5 5 .6 0 — 0 . 90

P RINT USING "g$.g$ — z ";-68.95 , 22 .449 , - 7 . 0 1
68.95 — 22.4 5 7 . 0 1

Special Features 8 11

11* * 11

A double asterisk at the beginning of the format string causes leading spaces in
the numeric field to be fi l led with asterisks. The ** also specifies positions for

two more digits.

Example:

P RINT USING "" " g . g " ;12 . 3 9 , - 0 . 9 , 7 6 5 . 1
+12.4 + — Cl.9 765. 1

11
$$ 11

A double dollar sign causes a dollar sign to be printed to the immediate left of the
formatted number. The $$ specifies two more digit positions, one of which is the
dollar sign. The exponential format cannot be used with $$. Negative numbers
cannot be used unless the minus sign trails to the r ight .

Example:

PRINT USING "$$rItgg.gg" ;4 56 .78
$456.78

I I **
$ 11

The **$ at the beginning of a format string combines the effects of the above two

symbols. Leading spaces will be asterisk-fi l led and a dollar sign wil l be printed
before the number. ** $ specifies three more digit positions, one of which is the
dollar sign.

Example:

P RINT USING " + + sgtlt , gg"; 2. 34
II II II $2 34

8 12 C HAPTER EIGHT

A comma that is to the left of the decimal point in a formatting string causes a
comma to be printed to the left of every third digit on the left side of the decimal
point. A comma that is at the end of the format string is pr inted as part of the
string. A comma specifies another digi t posit ion. The comma has no effect i f
used with the exponential (" " " ") f o rmat .

Examples:

P RINT USING "44gk, H " ' 123 4 . 5
1,234.50
01%

P RINT USING "g4g4.4g , " ; 1 2 34 . 5
1234.50 ,
01%

i| A A A A t t

Four carets (or up-arrows) may be placed after the digit posit ion characters to

specify exponential format. The four carets allow space for E+xx to be printed.
Any decimal point posi t ion may be specif ied. The signi f icant dig its are left
justified, and the exponent is adjusted. Unless a leading + or t rai l ing + or - i s
specified, one digit position wil l be used to the left of the decimal point to print a
space or a minus sign.

Example:

P RINT USING "g$.g$ t t t t " ; 23 4 . 5 6
2.35E+02

01%

PRINT USING ".ggtttt-";888888

.8889E+06
01%

PRINT USING "+ .gg t t t t " ; 12 3
+.12E+03
01%

Special Features 8 13

An underscore in the format string causes the next character to be output as a
literal character.

Example:

P RINT USING " ! g g .g g ! " 12 . 3 4
!12.34 !

The underscore itself may be a l i teral character by placing " " in the format

string.

Errors

If the number to be printed is larger than the specified numeric field, a percent

sign (%) is pr inted in f ront of the number. If rounding causes the number to
exceed the field, a percent sign wil l be printed in front of the rounded number.

Examples:

PRINT USING "g$.gg" ; 1 1 1 .22
$0111.22
Ok

PRINT USING " .g$ " 999
fo1. 00
Ok

I f the number of digits specified exceeds 24, an "Il legal function call" error wi l l
result.

8-14 CHAPTER EIGHT

TRACE FLAG

As a debugging aid , two s tatements are provided to t race the execution of
program instructions.

TRON/TROFF (enable/disable trace flag)

TRONForms:

TROFF

The TRON/TROFF statements are used to trace the execution of program state
ments.

As an aid in debugging, the TRON statement (executed in either the Command or
Indirect Mode) enables a trace flag that prints each line number of the program as
it is executed. The numbers appear enclosed in square brackets. The trace flag is
disabled with the TROFF statement (or when a NEW command is executed).

Example:

TRON
Ok
LIST
10 K =10

20 FOR J = 1 TO 2

30 L = K + 1 0

40 PRINT/ J ; K ; L

50 K =K+10

60 NEXT

70 END
Ok
RUN

[10] [20] [3 0] [4 0] 1 10 20
[50] [60] [3 0] [40] 2 20 30

[60]
Ok

TROFF

Ok

Special Features 8 15

OVERLAY MANAGEMENT

BASIC-80 provides two statements, CHAIN and COMMON, which are useful for
manipulating overlays. With these two statements, it is possible to merge several

programs during the execution of a program, as well as pass several or all the
variables to another program.

CHAIN (call overlay)

Form: CHAIN [MERGE] "(f i lename)" [,[(l ine number exp)]
[,ALL][,DELETE(range)]]

The CHAIN statement is used to call a program and pass variables to it from the
current program.

"<f i lename) " i s the name of the program that is called.

Example:

CHAIN"PROG1"

(l ine number exp) i s a l ine number or an expression that evaluates to a l ine
number in the called program. It is the starting point for execution of the called
program. If it is omi t ted, execution begins at the f irst l ine.

Example:

CHAIN"PROG1",1000

(l ine number exp) i s no t af fected by a RENUM command.

With the ALL op t ion, every variable in the current program is passed to the
called program, and a line number must be specified in the CHAIN statement. If
t he ALL op t ion i s om i t ted, the current p rogram must contain a COMM ON
statement to specify the variables that are passed.

Example:

CHAIN"PROG1",1000,ALL

I f the MERGE option is included, it al lows a subroutine to be brought into the
BASIC program as an overlay. That is, a MERGE operation is performed with the
current program and the called program. The called program must be an ASCII
file if i t is to be MERGEd.

8 1 6 CHAPTER EIGHT

Example:

CHAIN MERGE" OVRLAY", 1000

After an overlay is brought in, i t is usually desirable to delete it so that a new
overlay may be brought in. To do this, use the DELETE option. The line numbers
in the (r ange) o f the delete are affected by the RENUM command.

Example:

CHAIN MERGE" OVRLAY", 1000, DELETE 1000 — 5000

If the MERGE option is omi t ted, CHAIN does not preserve variable types or
user-defined funct ions for use by the chained program. That is, any DEFINT,

DEFSNG, DEFDBL, DEFSTR, or DEFFN statement containing shared variables
must be restated in the chained program.

COMMON (pass variables)

COMMONS (l ist of variables)Form:

The COMMON statement is used to pass variables to a chained program.

The COMMON statement is used in con junct ion w i th the CHAIN statement.
COMMON statements may appear anywhere in a program, though we recom
mend that they appear at the beginning. The same variable cannot appear in
more than one COMMON statement. Array variables are specified by appending
"()" to the variable name. If all variables are to be passed, use CHAIN with the

ALL option and omit the COMMON statement.

Example:

100 COMMON A,B,C,D(j,GS

110 CHAIN " PROG3",10

Editing 9 1

Chapter Nine

Editing

OVERVIEW

In Edit Mode, it is possible to edit port ions of a line without retyping the entire
line. Upon entering Edit Mode, BASIC-80 types the line number of the line to be
edited. Then it types a space and waits for the Edit Mode subcommand.

Edit Mode subcommands are used to insert, delete, replace, or search for text
within a line. The subcommands are not echoed to the terminal. Some of the Edit
Mode subcommands may be preceded by an integer which causes the command
to be executed that number of t imes. When an in teger is not specif ied, i t i s
assumed to be one.

9 2 CH APTER NINE

Edit Mode subcommands may be categorized according to the fol lowing func
tions:

1. M o v ing the cursor.

2. I n sert ing text .

3. De let ing text .

4 . F i n d ing text .

5. Replacing text.

6. En d ing and restarting Edit Mode.

If BASIC-80 receives an unrecognizable command or i l legal character while in
Edit Mode, it sounds the bell (CTRL-G) and the command or character is ignored.
You can invoke the Edit Mode by typ ing :

EDIT~<line number>

W here (l i n e n u mber) i s t h e n u m ber of the l i n e to be ed i ted. I f no (l in e
number) ex i sts, an "Undef ined l ine number" error w i l l result .

The requested line number wil l be printed, followed by a space. The cursor wil l
now be positioned to the left of the f i rst character in the l ine.

Type in the fol lowing l i ne:

100 FOR J = 1 TO 10:PRINT J:NEXT

This program line wil l be used to demonstrate the various Edit Mode commands.

Editing 9 3

MOVING THE CURSOR

n Space Bar

In Edit Mode, the Space Bar is used to move the cursor to the right. For example,
using line 100 entered above, invoke the Edit Mode. The line number 100 should
be displayed on your screen as such:

100

Now press the Space Bar. The cursor w i l l m ov e over one space. The f i r st
character of the program line wil l now be displayed. If this character was a blank,
then a blank wil l be displayed on your screen. Keep pressing the Space Bar until
the first non-blank character is displayed. At this point, the screen should look
something l ike this (depending on the contents of this program l ine):

100 F

It is also possible to move over more than one space at a time. Just press a number
key first, and then the Space Bar. For example, to move over five spaces, type 5
and then press the Space Bar once. The characters wil l be printed as you move

over them.

100 FOR J =

(Your display may not look exactly like this, depending on how many blanks you
inserted in the program l ine.j

BACK SPACE

In Edit Mode, the BACK SPACE key moves the cursor one space to the left. The
characters are not deleted as you move over them. To return to our example,

100 FOR J =

if the cursor were positioned after the = sign, pressing BACKSPACE once should
m ove the cu r sor u n de r t h e = sign. Thus:

100 FOR J =

9 4 CH APTER NINE

INSERTING TEXT

I (Insert)

The I command wi l l i nsert text beginning at the current cursor posit ion. The
inserted characters are printed on the terminal. To terminate insertion, press the
ESC key. If you press the RETURN during the insert command, the effect is the
same as typing ESC and then RETURN.

Use the Space Bar to move past the 0 in the 10.

100 FOR J =1 TO 10

Now, suppose you want to change the 10 to 100. Press the I key (you don't have to
terminate the entry with a RETURN). You are now in Insert Mode. To make the

neccessary change, type a 0. The display should now look l ike th is:

100 FOR J = i TO 100

Now that you have made the change, press the ESC key and you wil l exit Insert
Mode. Now press the RETURN to save all your changes and return to BASIC-80
Command Mode. Line 100 should look simi l iar to th is:

100 FOR J =1 TO 100: PRINT J : NEXT

During an insert command, you can use the BACK SPACE key on the terminal to
delete characters on the left of the cursor.

If you try to insert a character that wil l make the line longer than 255 characters, a
bell wil l be heard and the 256th character wil l not be pr inted.

Ed;t;., 9-5

X (Extend Line)

The X command is used to extend the line. X moves the cursor to the end of a line.
BASIC-80 then goes into the Insert Mode and allows text to be inserted as if an
insert command had been given. When you are finished extending the line, press
ESC or RETURN and you w i l l be returned to BASIC-80 Command Mode.

For example, to extend l ine number 100, which you have been editing, invoke
Edit Mode with l ine number 100. The screen wil l show:

100

Now press the X key. The entire line wil l be displayed and the cursor wil l be at
the end of the l ine:

100 FOR J = 1 TO 100: PRINT J: NEXT

You have been put into Insert Mode. Now you can add another program state
ment to the end of t h i s l i ne. For example, type :PRINT"ALL D ONE" and a
RETURN. The line has now been extended to include this statement. If you were
to LIST 100, it should look l ike th is :

100 FOR J =1 TO 100: PRINT J: NEXT: PRINT" ALL DONE"

9 6 CH APTER NINE

DELETING TEXT

nD (Delete)

nD deletes n characters to the r ight of the cursor. The deleted characters are
echoed between backslashes, and the cursor is positioned to the right of the last
character deleted. If there are fewer than n characters to the right of the cursor,
the remainder of the l ine wi l l be deleted.

For example, enter Edit Mode w i t h l i n e number 100, wh ich you have been
editing. Now, using the Space Bar, move the cursor over to the end of the FOR
statement. The screen should look something l ike th is:

100 FOR J =1 TO 100:

Now type 8D. This wi l l de lete eight characters to the right of the cursor. The
screen should look something l ike th is:

100 FOR J =1 TO 100: SPRINT J: i

(Note that the characters deleted are enclosed in backslashes.)

Now press RETURN and you wi l l be back to the BASIC-80 Command Mode. If

you LIST 100, you should not ice that the PRINT J: statement has been deleted
from the program l ine.

H (Hack and Insert)

H deletes all characters to the right of the cursor and then automatically enters
Insert Mode. H is useful for replacing statements at the end of a line. For example,
assume you wish to change the last statement of program l ine 100. First, you
must enter Edit Mode w i th l i n e n u mber 100. Now m ove over to the NEXT
statement with the Space Bar. The screen should look simi lar to th is :

100 FOR J =1 TO 100: NEXT:

Press the H key and then type STOP. Type a RETURN to save this change and you
will also exit to BASIC-80 Command Mode.

Now list l ine number 100. If you' ve been following the edit ing changes in this
Chapter, the line should look l ike th is :

100 FOR J =1 TO 100: NEXT: STOP

Editing 9 7

FINDING TEXT

nS(ch) (Search)

The search subcommand searches for the nth occurence of (ch) an d posi t ions
the cursor before it. The character at the current cursor position is not included in
the search. If (ch) i s no t found, the cursor wil l stop at the end of the l ine. Al l
characters passed over during the search are printed. NOTE: only characters to
the right of the cursor are included in this search.

For example, using the current form of the sample line 100, enter Edit Mode with
line 100. Next, type 2S: . This command wi l l be used to search for the second
occurrence of the colon character in program line 100. The display should look
something l ike th is:

100 FOR J =1 TO 100:NEXT

At this point you can execute any command you wish. You could enter a counter
variable after the NEXT statement by first entering Insert Mode and then typing a
space and the variable J. Now hit ESC to exit Insert Mode. Finally, press RETURN
in order to exit back to the BASIC-80 Command Mode. Now, if you were to list
l ine number 100, i t w ould l ook s im i lar to th i s (assuming you fo l l owed the
editing changes in this chapter):

100 FOR J =1 TO 100: NEXT J: STOP

nK(ch)(Search and "Kill")

The search and kil l subcommand is simi lar to the search subcommand except
that al l the characters passed over in th e search are deleted. The cursor is

positioned before (c h) an d a ll t he d e l e ted ch aracters are enc losed i n
backslashes.

For example, invoke the Edit Mode with the current version of l ine 100. Now

type 2K:. This command wi l l de lete all of the characters in the l ine up to the
second occurrence of the colon. The screen should look simi lar to th is :

100 KFOR J =1 TO 100:NEXT J i

The second colon still needs to be deleted, so type D. The screen should then look
similar to this:

100 NFOR J =1 TO 100: NEXT J V,: i

Now press RETURN and LIST l ine 100. It should look l ike th is:

100 STOP

9 8 CH APTER NINE

REPLACING TEXT

nC(Change)

The change subcommand changes the specified number of characters beginning
at the current cursor position. If you type only a C without a preceding number,
the computer assumes that you wish to change only one character. If you enter a
number n before you type C, then it assumes that you wish to change the next n
characters.

After you have entered n characters, the Change Mode wi l l be exi ted. If you

attempt to enter any more characters, the bell is sounded and the extra characters
are ignored.

For example, first retype l ine 100 as:

100 FOR J =1 TO 100:PRINT J:NEXT

Next, enter Edit Mode with l ine 100. Your screen should look something l i ke
this:

100

Now let's assume that you want to change the terminal value in the FOR/NEXT
loop from 100 to 150. You would have to move the cursor over to the first zero in
100. Use the Space Bar to move the cursor over. If you go too far, simply press the
BACKSPACE key to move the cursor back.

100 FOR J = 1 TO 1

Now type C. BASIC-80 wil l assume that you wish to change only one character.
Type 5 and then press RETURN. The changed l ine should look l ike th is :

100 FOR J =1 TO 150: PRINT J : NEXT

Editing 9 9

ENDING AND RESTARTING EDIT MODE

RETURN(Save changes and Exit)

After you press a RETURN, the remainder of the line is printed, the changes you
made are saved, and the computer returns to the BASIC-80 Command Mode.

E(Save Changes and Exit)

The E subcommand has the same effect as RETURN, except that the remainder of
the line is not pr inted.

Q(Cancel and Exit)

The Q subcommand returns to the BASIC-80 Command Mode wi thout saving
any of the changes that were made to the l ine dur ing Edit Mode.

L(List Line)

The L subcommand lists the remainder of the line (saving any changes made so
far) and repositions the cursor at the beginning of the line, still in the Edit Mode.
L is usually used to list the l ine when you f i rst enter Edit Mode. For example:

EDIT 100
100

(you type L)
(BASIC-80 responds:)
100 FOR J =1 TO 1 5 0 : P RINT J : N E XT
100

9) 0 C HAPTER NINE

A(Cancel and Restart)

The A subcommand lets you begin edi t ing a l ine over again. It d iscards any
changes made so far and restores the original l ine, repositioning the cursor at the
beginning. In order to use the A subcommand,you must not be currently execut
ing any other subcommand. If you are executing another command (such a.
Insert), press the ESC, and then press the A. In the fo l l ow ing example, the
operator first l ists the original l i ne, then makes changes in Insert Mode, then
decides to start over, using the A subcommand to restore the original l ine:

EDIT 100
100

(operator types L)
100 FOR J =1 TO 1 5 : PR I N T J :N E XT
100

100 f o r J = 1 To 15 (op erator types I and adds a zero)
(operator types ESC)
(operator types L)
100 FOR J =1 TO 1 5 0 0 : P R I NT J : N E XT
100

(operator types A)

(operator types L; note how or ig inal l ine has been restored)
100

100 FOR J = 1 TO 100: PRINT J : NEXT
100

Editing 9 1 1

OTHER EDIT MODE FEATURES

SYNTAX ERRORS

When it f inds a syntax error during the execution of a program, BASIC-80 wil l
automatically enter Edit Mode at the l ine that caused the error. For example:

10 K = 2(4)
RUN

Syntax E r r o r i n 10
Ok
10

When you f in ish edi t ing the l ine and press RETURN (or the E subcommand),
BASIC-80 reinserts the l ine. This causes all variable values to be lost, and al l
open files to be closed. To preserve the variable values for examination, first exit
Edit Mode wi th the Q subcommand. BASIC-80 wi l l r e turn to the Command

Mode, and all variable values wil l be preserved.

CTRL-A

To enter the Edit M ode on the l ine you are currently typ ing, type CTRL-A.
BASIC-80 wil l respond with a carr iage return, an exclamation point (!),and a
space. The cursor wil l then be positioned at the first character in the line. At this
point you may proceed by typing any Edit Mode subcommand.

CURRENT LINE EDITING

You may use the period (.) to denote the current l ine when you invoke the Edit
Mode. So, the command:

EDIT .

will invoke the Edit Mode at the current line. The line number symbol (.) always
refers to the current l ine.

9-12 CHAPTER NINE

BASIC-80 Disk File Operations 10

Chapter Ten

BASIC-8Q Disk File Operations

OVERVIEW

BASIC-80 provides several sets of statements for creating and manipu lat ing
program and data fi les.

The file manipulation commands are very useful for manipulating program files.
Some of these commands can also be used with data fi les.

The file management statements are used to open and close data files, check for
end-of-file, and to obtain information about the size of a fi le.

The sequential access statements are used to access sequential fi les. The sequen
t ial access file is easy to use, but the data must be accessed sequential ly .

The random access statements are used to access and manipulate random access
files. The random access file requires more program steps than the sequential
access, but the records in the f i le can be read in any order.

10-2 CHAPTER TEN

FILE MANIPULATION COMMANDS

This is a review of the commands and statements that are useful for manipulat ing
program and data fi les. These statements and commands are also discussed in
Chapter Three, "Command Mode Statements".

FILES' [" < filename> "]

The FILES command l ists the names of the files that are residing on the current
disk. If the optional <f i lename) s t r ing is included, the names of the files on any
specified disk can be listed.

KILL~" <filename>"

The KILL command deletes the file from the disk. "f i lename" may be a program
file, or a sequential or random access data file. If "f i lename" is a data file, it must
be closed before it is killed.

LOADS "<filename> "[,R]

The LOAD command loads the program from disk into memory. The R option

runs the program immediately. LOAD always deletes the current contents of
memory and closes all files before LOADing. If R is included, however, open data
files are kept open. Thus programs can be chained or loaded in sections and can
access the same data fi les.

MERGE<" < filename)"

The MERGE command loads the program from disk into memory but does not
delete the current contents of memory. The program l ine numbers on disk are
merged with the l ine numbers in memory. If two l ines have the same number,
only the l ine from the d isk program is saved. After a MERGE command, the
"merged" program resides in memory and BASIC-80 returns to Command Mode.

NAMEz "<oldfile>" AS "<newfile>"

To change the name of a disk file, execute the NAME statement, NAME "oldf i le"
AS "newfi le" . NAME may be used with program fi les, random fi les, or sequen

tial f i les.

B ASIC-80 Disk File Operations 10 3

RESET

RESET reads the directory information off of a newly inserted disk which you
have exchanged for the disk in the current default dr ive. RESET does not close
files that were opened on the former default disk. Therefore, use RESET only
after you have closed any open f i les and replaced the current default d isk.

RUN<" (f i lename) "[,R]

RUN "f i lename" loads the program from disk into memory and runs it . RUN

deletes the current contents of memory and closes all f i les before loading the
program. If the R option is included, however, all open data files are kept open.

SAVE<" (f i lename) "[,A]

The SAVE command wr i tes to disk the program that is currently residing in
memory. The A option wr i tes the program in ASCII format. (Otherwise, BASIC
uses a compressed binary format.)

Protected Files

If you wish to save a program in an encoded binary format, use the "Protect"
option with the SAVE command. For example:

SAVE "MYPROG",P

A program saved this way cannot be l isted or edited.

10-4 C HAPTER TEN

FILE MANAGEMENT STATEMENTS

BASIC-80 provides a full set of I/O statements to be used for disk f i le manage
ment. These statements are listed below:

FunctionStatement

Opens a disk f i le and assigns a file number to the diskOPEN

EOF

LOF

CLOSE

file.

Closes a disk f i le and de-assigns the file number from
the disk f i le .

Returns — 1 (true) if the end of a file has been reached.

Returns the number of records present in the last extent
accessed.

Returns the next record to be accessed for a random fi le
and the total number of sectors accessed for a sequential
file.

LOC

Table 10-1

File Management Statements.

The OPEN statement is used to assign a file number to a disk file name. Also, the
OPEN statement is used to def ine the mode in w h ich the f i l e i s to be used

(sequential or random access).

The CLOSE statement performs the opposite function of the OPEN statement. It
wil l de-assign the f i le number from a disk f i le name.

The EOF function wi l l return — 1 (true) if the end of a sequential f i le has been
reached. The EOF function can also be used with random fi les to determine the
last record number.

The LOF function wi l l return the number of records present in the last extent
accessed.

The LOC function, when used with a random fi le, wil l return the next record to
be accessed. When used with a sequential f i le, it returns the number of records
accessed since the file was opened.

These statements are discussed on the following pages. For a detailed program
ming example that ut i l izes these statements, see "Appendix F."

B ASlc-80 Disk File Operations 10 5

OPEN (open disk data file)

OPEN "mode",[4]<f i lenumber) , "< f i lename) "[<,reclen)]Form:

where:

"mode" is a string expression whose first character is one of the following mode

specification strings:

0 S p eci f ies sequential output mode.
I S p e c i f ies sequential input mode.
R Speci f ies random input /output mode.

This string expression wil l be referred to as the "mode string" .

<fi lenumber) i s an i n teger expression which represents the f i le number as
sociated with the fi le. This number wil l be used in subsequent I/O operations.

< fi lenumber) m u s t no t exceed the number of f i les that were set dur ing the
BASIC-80 in i t ial ization process. If no f i les were set dur ing the i n i t i l i zat ion

process, BASIC-80 will assume a maximum of 3. (See Chapter One, "System

Introduction and General Information" , for more information about this ini t ial i
zation process.)

"<filename)" is the fully qualified CP/M file name. No extensions are assumed,
so the file name must inc lude this in formation. I f no d r ive is specif ied, the
current, default drive is assumed.

<reclen) i s an integer expression which, if included, sets the record length for
random f i les. The maximum record length is 256 bytes. The default record
length is 128 bytes. If a record length greater than 128 bytes is desired, this length
must also be specified when BASIC-80 is ini t ial ized. This record length option
can only be used with random fi les. Any attempt to declare the size of a sequen
t ial record wil l result in a "Syntax error" .

The OPEN statement is used to associate a file number with a f i le name. The
OPEN statement also defines the mode in which the file wil l be used (sequential
or random access). Subsequent I/O operations wil l r e ference the f i le number
assigned to a file name. For example, assume that a file was opened using the
following statement:

10 6 CHAPTER TEN

This statement wil l assign fi le number 2 to the file SAMPLE.DAT. Because no
drive name was specified, BASIC-80 wil l assume that SAMPLE.DAT resides on
the current default drive. The mode string for this file specifies "I" — sequential
input.

I f SAMPLE.DAT does not exist on the current default d isk, an error w i l l b e
generated, since input can not be performed on a non-existent file. Now, to input
data from this f i le, the fol lowing statement would be used:

INPUT$2,<variable list>

Note that this INPUT¹ statement references file number 2, and file number 2 was
the number assigned to the file SAMPLE.DAT. (This is only a general form of the
INPUT¹ statement. A detailed discussion of the INPUT¹ statement appears later
in this Chapter.)

Now assume that the fol lowing OPEN statement is used:

OPEN "0" , 3 , " B : OUTPUT.DAT"

This will assign file number 3 to the file OUTPUT.DAT. Since the file name does
contain the drive specification B:, BASIC-80 wil l create this output f i le on drive
B:. If this f i le already exists on dr ive B:, it w i l l be destroyed, and all previous
contents of the file wi l l be lost. Now, to output data to this f i le, the fol lowing
statement would be used:

WRITE$3,<variable list>

The WRITE¹ s tatement references file number 3, and f i le number 3 had been
previously assigned to the f i le B:OUTPUT.DAT. So, the data specified in the
(variable l ist> w o u ld be wr i t ten to the f i le B:OUTPUT.DAT. (The WRITE¹
statement is discussed in more detail later in this Chapter.) A f i le can also be
opened for random I/O. One OPEN statement can be used to open the file for both
random input and random output . For example, the fol lowing statement wi l l
open a file for random I/O.

OPEN "R",1 , " RANDOM.DAT"

The file, RANDOM.DAT, is opened for random I/O. If RANDOM.DAT does not
exist, it wil l be created on the current default disk. Now, either random input or
random output can be performed wi th th is f i le. Note that no record size was
specified with this OPEN statement. Therefore, BASIC-80 wil l assume the de
fault record size of 128 bytes. A di f ferent record size can be specified with the
OPEN statement. (But only for a random access file.)

B ASIC-80 Disk File Operations 10 7

For example, to open the file RANDOM.DAT for random access, and declare a
record size of 32 bytes, the fol lowing statement would be used:

OPEN "R",1 , " RANDOM.DAT",32

Now the record size would be 32 by tes. The CP/M sector size is 128 bytes.
Therefore, four records would be stored in each CP/M sector. The record size can
also be set during the init ial ization procedure with the /S switch. (See Chapter 1,
"System Introduction and General Information," for the in i t ia l ization proce

dure.)

It is important to note that the mode under which a file was opened must be the
same as the mode in w h i ch the f i l e i s accessed. For example, consider the
following statement:

OPEN "I" , 1 , "T E ST.DAT"

The file TEST.DAT has been opened for sequential input and assigned to f i le

number 1. Now an attempt to perform output on this f i le would be invalid and
would generate an error message. For example:

WRITE$1,"HELLO THERE"

This WRITE¹ s t a tement references file number 1. The previously executed
OPEN statement has set the mode for file number 1 as sequential input. So this
WRITE¹ w o u ld be invalid and would generate an error message.

However, there is an exception to this rule. Under certain circumstances several
sequential I/O statements may be used with a random f i le. The condit ions for
using these sequential I/O statements with random fi les are explained in the last

part of this chapter.

10 8 C H APTER TEN

CLOSE (close disk data file)

CLOSE [¹] [<f i lenumber>]

CLOSE ¹ <f i lenumber >[,<fi lenumber>]...

Form:

The CLOSE statement is used to conclude I/O activity to a disk data f i le.

<fi lenumber> is the number under which the file was opened. A CLOSE with no
arguments wil l c lose all open f i les.

Assume the fol lowing OPEN statement appears in a program:

OPEN "0", 1 , " ARTIST.DAT"

Now a sequential output statement may reference this fi le. When output to this
file has concluded, it should be closed with the CLOSE statement.

CLOSE $1

This statement wil l d isassociate file number 1 from the file ARTIST.DAT. Any
reference to file number 1 would now be invalid. The file may then be reopened
using the same or a different f i le number. For example:

OPEN "I" , 3 , " A RTI ST .DAT"

The file ARTIST.DAT is now associated with f i le number 3, and is opened for
sequential input. Now, a sequential input operation with this file would be valid,
When the input operation has concluded, this f i le should be closed with the
CLOSE statement.

CLOSE g3

The file could again be reopened:

OPEN "R",3 , " ARTIST.DAT"

The file number 3 has again been associated with the file ARTIST.DAT, but, this
t ime the file has been opened for random I/O.

A CLOSE for a sequential output f i le wr i tes the final buffer of output to the disk
file. (This subject is covered in more detail later in this chapter.)

The END statement and the NEW command wi l l c lose all disk f i les automati
cally. Any attempt to edit or modify a program wil l also automatically close all
open disk f i les. (The STOP statement does not close disk f i les.)

/

B ASIC-80 Disk File Operations 10 9

EOF (check for end-of-file)

Form:

(f i lenumber> i s the f i le number assigned to a disk data f i le in a previously
executed OPEN statement.

The EOF function wi l l re turn -1 (true) if the end of a sequential f i le has been
reached.

The EOF is useful for detecting when the end of a sequential f i le has been
reached. The EOF funct ion should be used in conjunction wi th the INPUT¹
statement and the LINE INPUT¹ s t atement to avoid " Input past end" errors.

The EOF function may also be used with random fi les. If a GET is done past the
end of the last sector of the random fi le, the EOF function wil l return — 1 (true).
This may be used to find the size of a random file if record size equals sector size
(128 bytes).

Example:

EOF ((fil enumb er >)

10 OPEN " I " , 1 , " D A TA"

20 IF E OF(1) T HEN 100
30 INPUT$1,A$
40 GOTO 20

100 PRINT " END — OF — FILE REACHED"

LOF (return number of records)

LOF((fi lenumber>)Form:

(f i lenumber> i s the f i le number assigned to a disk data f i le in a prev iously
executed OPEN statement.

The LOF Function returns the number of sectors present in the last extent that
was accessed. If the f i le does not exceed one extent, and record length equals
sector length (128 bytes), then LOF returns the true length of the file. (Refer to the
"CP/M Appl icat ion Programmer's Manual" for more information on extents.)

Example:

110 IF NUM/) LOF (1) THEN PRINT "INVALID ENTRY"

10-10 CH APTER TEN

LOC (return record number)

LOC(<filenumber>)Form:

<fi lenumber> i s the f i le number assigned to a disk data f i le in a previously
executed OPEN statement.

When used with a random f i le , the LOC funct ion returns the current record
number. The current record number is the number of the last record accessed via
GET or PUT. The first t ime a particular f ile is accessed, the current record is 1.
The largest possible record number is 3Z767.

When used with a si quential fi le, the LOC function returns the number of sectors
(128 byte blocks) accessed since the file was opened.

Examples:

10 OPEN " I " , 1 , tt TEST.DAT /'

20 OPEN "R" , 2 , " R ANDOM.DAT"

200 PRINT"SECTORS READ — ";LOC(1)

210 PRINT"NEXT RECg — ";LOC(2)

B ASlC-80 Disk File Operations 10 1 1

BASIC-80 SEQUENTIAL I/O

Sequential fi les are easier to create than random fi les but are limited in flexibi l i ty
and speed when i t comes to accessing the data. The data that is wr i t ten to a
sequential file is stored, one item after another (sequentially), in the order it is
sent and it must be read back in the same order. The data is stored as a stream of
ASCII characters.

Sequential Access Statements

INPUT¹

LINE INPUT¹

Input data from sequential file.

Input entire l ine from sequential f i le .

Write data to sequential f i le.PRINT¹
PRINT¹ U SING

WRITE¹ Write data to sequential f i le (with del imi ters automati
cally inserted).

Table 10-2
Sequential Access Statement.

INPUT¹ (input data from sequential file)

Form:

The INPUT¹ s tatement is used to read data items from a sequential disk file and
assign them to program variables. The data wil l be read sequentially. When the
file is opened, a pointer wil l be set to the beginning of the file. Each time data is
read from the f i le , the pointer w i l l advance. To start reading over f rom the
beginning of a f i le, the sequential f i le must be closed and re-opened.

<fi lenumber> is the number used when the file was opened for input. <variable
list> contains the variable names that the input data wil l be assigned to. (The
input data types must match the types specified by the variable name. It i s
invalid to read a string data value into a numeric variable.)

INPUT¹<f i lenumber>,<variable list>

10-12 CHAPTER TEN

Numeric Input

The data items in the f i le should appear just as they would i f data were being
typed in response to an INPUT statement. With numeric values, leading spaces
are ignored.

The first character encountered that is not a space, carriage return, or line feed is
assumed to be the start of a number. The number terminates on a space, carriage
return, l ine feed, comma, or semicolon.

For example, assume the fol lowing data image exists on a disk f i le :

(note: the z represents a blank or space — ASCII 32)

~ ~2. 1234z — 123. 234~z456(c a r r i a g e r e t u r n >

Then the INP UT st a tern ent:

INPUT41,X,Y ,Z

or the sequence of INPUT statements:

I NPUT/i , X ; I N PUT/ i , Y : I N PUT/ i , Z

will assign the data values as follows:

X=2.1234

Y =-123 . 2 3 4

Z = 456

BASIC-80 Disk File Operations 10 1 3

The following discussion assumes the image on the disk is (note: the z represents
a blank or space - ASCII 32):

~ ~2.1234~-123 .234 ,456<car r i a g e r e t u r n >

And the INPUT statement used to access the data is:

INPUTP1,X,Y,Z

The two blanks before the value 2.1234 are leading spaces; therefore, they are
ignored. The next character encountered is a 2, and this is considered the start of
the first numeric field.

The BASIC-80 I/O processor now scans for the terminator of the f irst numeric
f ield. The blank between 2.1234 and — 123.234 is this terminator. So when
BASIC-80 encounters this blank, i t assumes that the f i rst numeric f i eld has
ended. This first numeric field is assigned to the first item in the variable list, the
variable X.

The BASIC-80 I/O processor now scans for the beginning of the second numeric
field. The minus sign (—) is considered the start of the second numeric field. The
BASIC-80 I/O processor will scan for the terminator of the second numeric field.
The comma between — 123.234 and 456 is this terminator. So, when BASIC-80
encounters this comma, it assumes that the second numeric field has ended. This
second numeric f ield is assigned to the second i tem in the var iable l ist , the
variable Y.

The BASIC-80 I/O processor now scans for the beginning of the third numeric
f ield. The number 4 i s considered the start of the th i rd numeric f i e ld. The
BASIC-80 I/O processor wil l then scan for the terminator of the third numeric
field. The carriage return after 456 is this terminator. So when BASIC-80 encoun
ters this carriage return, it assumes that the third numeric field has ended. This
third numeric field is assigned to the third item in the variable list, the variable Z.

At this point, all three variables in the variable list have values assigned to them,
so execution of the INPUT statement has been completed. Execution continues
with the next statement.

10-14 CHAPTER TEN

String Input

When BASIC-80 scans the sequential data file for a string item, leading spaces,
carriage returns, and line feeds are ignored. The first character encountered that
is not a space, carriage return, or l ine feed is assumed to be the start of a string
item.

This string is considered an unquoted string, and wil l terminate on a comma,
carriage return or l ine feed (or after 255 characters have been read).

If this first character is a quotation mark, the string is considered a quoted string.
The string i tem w i l l consist of al l characters read between the f i rst quotation
mark and the next quotation mark. Commas, blanks, and carriage return charac
ters can be included in this string. A quoted string may not contain a quotation
mark wi thin the quoted string.

For example, assume the fol lowing data image exists on a disk f i le :

BENTON, HARBOR, MI "49022" carr Iage retur n..

Then the statement:

INPUT/i , A$, B$,C$

would assign the data values as fol lows:

A$ =BENTON

B$ =HARBOR

C$= MI"49022"

Note that the comma is used as the terminator in the above example. Al l three
strings are considered to be unquoted strings.

In the last string field, the quotation mark is considered as part of the string. This
is because the string starts with the let ter M and is terminated by a carr iage
return.

BASIC-80 Disk File Operations 10 15

Assume a comma is inserted between MI and "49022". The disk image would
then look l ike th is:

BENTON, HARBOR,MI,"49022"

Now there are a total of four str ing f ields. The first three are unquoted strings
f ields, and the last is a quoted string field. These four fields could be input wi th
the following statement:

INPUT $1,A$,B$,0$,0$

the variable values would be assigned as follows:

A$ = BENTON

B$ = HARBOR

C$=MI

D$ =49022

The variable D$ would not contain the quotation marks because the quotation
marks were used to terminate the field, and as such they do not represent data
values.

10-16 CHAPTER TEN

LINE INPUT¹ (i nput entire line from sequential file)

Form: LINEz INPUT¹ (f i l e n u mber) , (s t r i ng var iable)

The LINE INPUT¹ statement is used to read an entire line (up to 255 characters),
without del imi ters, from a sequential disk data f ile to a string variable.

(f i lenumber) i s the f i le number assigned to the file with the OPEN statement.
The file must be opened for sequential input (I mode). (s t r ing variable> is the
variable name to which the input w i l l be assigned.

LINE INPUT¹ reads all characters in the sequential file up to a carriage return. It
then skips over the carriage return/ l ine feed sequence, and the next LINE IN
PUT¹ reads all characters up to the next carriage return. (If a line feed/carriage
return sequence is encountered, it is preserved.)

If no carriage return is found, LINE INPUT¹ w i l l read unti l 255 characters have
been read. These 255 characters wil l then be assigned to the string variable.

LINE INPUT¹ i s especially useful if each field of a data file has been terminated
with a carriage return, or if a BASIC-80 program saved in ASCII mode is being
read as data by another program.

For example, assume the fol lowing program exists in a disk f i le :

10 OPEN "0 " , 1 , " L I S T " <ca r r i ag e r etu r n >
2 0 INPUT C$ <car r i a g e r e t u r n >
30 PRINT g1, C$ <carriage return>
40 CLOSE g1 < carriage return>

then the statement:

LINE INPUT$1,Z$

could be repetitively used to read each line in the program OPENed and CLOSEd
above, one line at a t ime.

BASIC-80 Disk File Operations 10 1 7

PRINT¹ AND PRINT¹ USING (write to sequential disk f i le)

Forms:

PRINT¹ < f i l enumber> ,< l is t of expressions>

PRINT¹<f i lenumber>,USING<string exp>;<l ist of expressions>

The PRINT¹ s tatement is used to wr i te data to a sequential disk f i le .

<fi lenumber> is the number used when the f i le was opened for output. The
expressions in < l ist of expressions> are the numeric and/or string expressions
that wil l be wr i t ten to the f i le.

PRINT¹ does not compress data on the disk. An image of the data is wri t ten to
the disk, just as it would be displayed on the terminal with a PRINT statement.
(The PRINT statement is discussed in Chapter Four, "Program Statements.") For
this reason, take care to delimit the data on the disk so it wil l be input correctly
from the disk.

In the l ist of expressions, numeric expressions should be del imi ted by semi
colons.

For example:

P RINTP1,A;B; C ; X ; Y ; Z

(If commas are used as delimiters, the extra blanks that are inserted between
print fields will also be written to disk.)

String expressions must be separated by semicolons in the l ist. To format the
string expressions correctly on the d isk, use expl ici t del imi ters in the l ist of
expressions.

For example, let A$=" cAMERA" and B$ ="93604 — 1" .

The statement:

PRINT$1,A$;B$

would wr i te cAMERA93604 — 1 to the disk. Because there are no del im i ters, this
could not be input as two separate strings. To correct the problem, insert explicit
delimiters into the PRINT¹ s tatement as follows:

P RINT$1,A$; " , " ; B $

10-18 CHAPTER TEN

The image wri t ten to disk is:

CAMERA, 93604 — 1

which can be read back into two str ing variables.

I f the st r ings themselves contain commas, semicolons, signi f icant l eading
blanks, carriage returns, or line feeds, write them to disk surrounded by explici t

quotation marks, CHR$(34l.

For examp le , le t AS=" cAMERA, AUI'0MATIc" and BS=" 93604 — 1". The statement :

PRINT/i , A S ;BS

would wr i te the fol lowing image to disk:

CAMERA, AUTOMATIC 93604 — 1

and the statement:

INPUT$1,AS,BS

would i n p u t " c AMERA" to AS and " AUTQMATIc 93604 — 1" to B$. To separate th ese

strings properly on th e d i sk , w r i t e double quotes to the d isk i m age us ing
CHRS(34).

The statement:

PRINT$1,CHRS(34);AS;CHRS(34);CHRS(34);BS;CHRS(34)

writes the fol lowing image to disk:

93604 — 1""CAMERA, AUTOMATIC"

and the statement:

INPUT$1,AS,BS

would input "cAMERA, AUTQMATIc" to A$ and " 93604-1" to Bs.

The PRINT¹ s tatement may also be used with the USING option to control the
format of the disk f i le. For example:

PRINT$1,USING"$$$$$.$$, " ; J ; K ; L

B ASIC-80 Disk File Operations 10 1 9

The comma at the end of the format string serves to separate the items in the disk
file. (For a complete discussion of the PRINT USING statement, refer to Chapter
Eight, "Special Features.")

NOTE: The WRITE¹ s tatement wi l l automatically insert the proper del imiters

between data items in a sequential f i le .

WRITE¹ (wr ite to sequential disk file)

Form:

The WRITE¹ s tatement is used to wr i te data to a sequential f i le.

<fi lenumber) i s t h e nu mber wh ich was assigned to the f i le w i th an OPEN
statement. The file must be open for sequential output (0 mode). The expres
sions in the list are string or numeric expressions, and they must be separated by

WRITE¹< f i l enumber) , < l i s t of expressions>

commas.

The difference between WRITE¹ and PRINT¹ i s that WRITE¹ i n serts commas
between the items as they are written to disk and delimits strings with quotation
marks. Therefore, it is not necessary for the user to put explicit del imi ters in the
l ist. A carriage return/ l ine feed sequence is inserted after the last i tem in the
variable list is wr i t ten to the disk f i le .

Example : L et A$=" cAMERA" and Bg ="93604-1" . T he statement:

WRITE$1,A$,B$

writes the fol lowing image to disk:

"CAMERA" "93604 — 1"

A subsequent INPUT¹ s tatement, such as:

INPUT$1,A$,B$

would i n p u t " c AMERA" to Ag and " 9 3604 — 1" to B$.

10-20 C HAPTER TEN

Note: The WRITE¹ s t a tement is recommended for most app l i cat ions using
sequential output. Most problems arising from using sequential fi les are a result
of not inserting the proper del imi ters between data items. The WRITE¹ s tate
ment el iminates the need to be concerned wi th de l im i t ing data i tems, thus
eliminating most problems associated with sequential I/O.

In those cases where the WRITE¹ s t a tement w i l l no t p rov ide the f lexib i l i ty
n eeded for some unique sequential output appl ication, use of the PRINT¹ o r
PRINT¹ USING statement should be considered. Gare should be taken to insure
that all the data items are separated by the proper delimiters.

B ASIC-80 Disk File Operations 10 2 " I

0 Sequ e ntial Access Techniques

CREATING AND ACCESSING A SEQUENTIAL FILE

The following program steps are required to create a sequential f i le and access
the data in the file:

Open the file for sequential output.

OPEN "0 " , ¹ 1 , " D A T A .DAT"

This step will associate the file number 1 with the file DATA.DAT. Because the 0
mode string was specified, the file will be opened for sequential output. Since no
drive specification was included with the f i le name, the current default dr ive
will be assumed.

I f a file DATA.DAT already exists on the current default dr ive, contents of this
file wil l be lost. This is due to the fact that, when a file is opened for sequential
output, the BASIC-80 I/O processor wil l move the EOF marker to the beginning
of the fi le. Thus, the previous contents of the fi le can no longer be accessed.

Write data to the file

WRITE¹1,A$,B$,C$

This step assumes that some string value has been assigned to the string vari
ables A$,B$ and C$. The WRITE¹ s t a tement w i l l w r i t e data to the f i le w i th
delimiters, so it is not neccessary to insert any del imi ters.

The PRINT¹ statement could have been used to write the data to this sequential
file, but then it would have been necessary to insert delimiters between the data
items. So for most applications using sequential output, it is more efficient to use
the WRITE¹ s tatement.

10-22 CH APTER TEN

Close the file

CLOSE¹1

This statement wil l w r i te any remaining data from the buffer to the disk f i le .
Output to this file wil l then be terminated. The file must be closed before it can be
reopened for sequential input .

Reopen the file for input

OPEN "I" , ¹ 1 , " DA TA .DAT"

The file number 1 is again associated with the file DATA.DAT. This time, the file
is opened for sequential input .

Read the data

INPUT¹1,X$, Y$,Z$

The data wi l l be read f rom the f i l e DA T A .DAT and assigned to the s t r ing
variables X$,Y$ and Z$

NOTE: The above example ignores the role of the I/O buffer in the sequential I/O
process. Actually, BASIC-80 reads and wr i tes in 128-byte blocks. So each IN
PUT¹ or WRITE¹ s tatement may not necessarily require a disk access.

With sequential output , each WRITE¹ o r PRINT¹ w i l l p l ace the data in the
buffer area. When the buffer is fil led with data, the data will actually be written to
the disk f i le.

With sequential input, 128 bytes will be read and placed in the buffer area. Then
the BASIC-80 I/O processor wil l sort through the data in the buffer to satisfy the
INPUT¹ s tatement variable l ist .

BASIC-BO Disk File Operations 10 2 3

ADDING DATA TO A SEQUENTIAL FILE

A s soon as an exist ing sequential f i le is opened for output ("0 " m o d e) , t h e
current contents of the f i l e are destroyed. Thus, several program steps are
required to add data to an exisiting sequential fi le. The following procedure can
be used to add data to an existing f i le called "DATA.DAT"

Open "DATA.DAT" for sequential input

OPEN "I" ,1,"DATA.DAT"

This step associates file number 1 with the data file DATA.DAT. This file wil l be
opened for sequential input. Since no drive specification was included with the
file name, BASIC-80 will assume the current drive. If the file DATA.DAT can not
be found on the current default drive, a "File not found" error wil l be generated.

Open a second file called "TEMP.TMP" for sequential output

OPEN "0 " ,2 , "TEMP.TMP"

The file, TEMP.TMP wil l be used as a temporary work f i le. After this process is
completed, this file wil l be renamed and it wil l contain the original data as well
as the newly created data.

Read in the data in "DATA.DAT" and write it to "TEMP.TMP"

INPUT¹1,A$,B$,C$
WRITE¹2,A$,B$,C$

This step must be repeatedly executed unti l al l the data in f i le ¹ 1 i s read.

10 24 CHAPTER TEN

Close "DATA.DAT" and kil l i t .

CLOSE ¹1
KILL" DATA. DAT"

This file is no longer needed, as the information from this f i le has been copied
into the file TEMP. TMP

Write the new information to "TEMP. TMP"

WRITE¹2,A$,B$,C$

The data assigned to the string variables A$,B$ and C$ will be written to the disk
file.

Close the file

CLOS E¹2

This step wil l terminate the output operation performed with th is f i le .

Rename "TEMP. TMP" as "DATA.DAT"

NAME "TEMP. TMP" AS "DA TA. DAT"

Now there is a file on disk called "DATA.DAT" that inc ludes all the previous
data plus the new data that was added to the f i le.

BASIC-80 Disk File Operations 10 2 5

BASIC-80 RANDOM I/O

Creating and accessing random fi les requires more program steps than sequen
tial fi les, but there are advantages to using random fi les. One advantage is that
random fi les require less room on the disk because BASIC-80 stores them in a
packed binary format. (A sequential file is stored as a series of ASCII characters.)

The biggest advantage to random files is that data can be accessed randomly, i.e.,

anywhere on the disk — it is not necessary to read through all the information, as
with sequential f i les. This is possible because the information is stored and
accessed in distinct un its called records and each record is numbered.

All data stored in a random f i le must be a string data type.

To store numeric values in a random fi le, the numeric values must be converted
to strings. Several functions have been provided to convert numeric values to
strings. These functions, (MKI$,MKS$,MKD$), are explained later in this Chap
ter.

10-26 CHAPTER TEN

Random Access Statements

Statement Function

Set up random f i le buffer.FIELD

LSET Move data to random buffer.
(left-justified)

Move data to random buffer.
(right-justified)

RSET

GET Read random record.

PUT

CVI

CVS

MKI$

MKS$

MKD$

Write random record.

Make integer into 2-byte string.

Make single-precision number
into 4-byte string.

Make double-precision number
into 8-byte string.

Convert 2-byte string to integer.

Convert 4-byte string to
single-precision number.

Convert 8-byte string to
double-precision number.

CVD

Table 10-3
Random Aeeess Statements.

BASIC-80 Disk File Operations 10 2 7

FIELD (set up random fi le buffer)

Form:

FIELD¹<f i lenumber>,<field width> AS <string variable>

The FIELD statement is used to al locate space for variables in a random f i l e
buffer.

<filenumber> is the number assigned to the random file in the OPEN statement.
< field wid th> i s the number of characters (bytes) to be al located to <s t r ing
variable>.

For example:

FIELD/i, 20 AS N$, 10 AS ID/, 40 AS ADD/

allocates the first 20 positions (bytes) in the random file buffer to the string
variable N$, the next 10 posit ions to ID$, and the next 40 posit ions to ADD$.
FIELD does not place any data in the random fi le buffer, but instead defines the
fields in the random file buffer.

A FIELD statement can only reference a file which has been opened for random

I/O (R mode). The FIELD statement must also be executed prior to performing
any I/O operation with the random f i le .

The total number of bytes allocated in a FIELD statement must not exceed the
record length that was specified when the file was opened. Otherwise, a "Field
overflow" error occurs, (The default record length is 128.)

If a number smaller than 128 is specified for the record length, the BASIC-80 I/O
processor will take care of blocking and deblocking the record. For example, if a
record length of 32 bytes is specified in the OPEN statement, the BASIC-80 I/O

processor wil l block 4 of these logical records per physical record (sector). The
user program is not responsible for blocking and deblocking these logical re
cords.

If a number greater than 128 is specified for the record length, the BASIC-80 I/O

processor will also take care of blocking and deblocking the record. This number
must be specified by using the /S switch when ini t ial iz ing BASIC-80. The largest
record size allowed is 256 bytes.

10-28 CH APTER TEN

Any number of FIELD statements may be executed for the same fi le, and al l
FIELD statements that have been executed are in effect at the same time. For
example, the fo l low ing F IELD statement could be used to def ine a 32-byte
random buffer:

FIELD$1, 16 AS F1$,16 AS F2$

This FIELD statement would allocate the first 16 characters (bytes) of the random
buffer to the variable F1$ and the next 16 characters (bytes) to the variable F2$.
Then, another FIELD statement could be used to redefine the buffer:

FIELD$1,32 as BUFF$

So the variable BUFF$ would refer to all 32 characters in the buffer. F1$ would
still refer to the f i rst 16 characters and F2$ would st i l l refer to the second 16
characters.

Do not use a fielded variable name in an INPUT or LET statement. Once a variable
name is fielded, it po ints to a specific address in the random f i le buffer. If a
subsequent INPUT or LET statement with that variable name is executed, the
variable's pointer is moved to str ing space.

Examples:

FIELD41,128 AS I B UFF$

F IELD$4,10 AS A$ (1) , 1 0 AS A$ (2) , 1 0 AS A$ (3)

FIELD$2,1 AS STUFF$

(Note: the variable I must be assigned an integer value prior to the execution of
this statement.)

BASIC-80 Disk File Operations 10 2 9

LSET/RSET (move data to random buffer)

Forms: LSET <f ielded variable> = <string expression>

RSET <fielded variable> = <string expression>

The LSET/RSET statements are special assignment statements used to assign a
string expression to a variable that has appeared in a FIELD statement (fielded
variable).

The LSET/RSET statements are used to move data from memory to a random fi le
buffer. This step is performed in preparation for a PUT statement. The only way
to move data to a random buffer is by using the LSET/RSET statement.

If the <string expression) requires fewer bytes than were fielded to the <fielded
variable>, LSET left-justifies the string in the field by adding spaces on the right.
RSET is used to right-justify the string in the field by adding spaces on the left.

The only difference between LSET and RSET is the fact that LSET left-justif ies
the field and RSET right-justif ies the field. If the string is too long for the field in
both cases, characters are dropped from the right.

Numeric values must be converted to str ings before they are LSET or RSET.
Several special random I/O funct ions have been provided to perform this con
version. (Refer to the discussion of the MKI$, MKS$, and the MKD$ funct ions
later in this Chapter.)

Examples:

150 LSET A$ =MKS$(AMTj
160 LSET DQ=DESC$

170 LSET V$ ="LEFT — JUSTIFY AND PLACE IN BUFFER"
180 RSET GS ="RIGHT-JUSTIFY AND PLACE IN BUFFER"

String variables A$,D$,V$ and G$ must have appeared in a previously executed
FIELD statement.

10-30 C HAPTER TEN

GET (read random record)

G ET [¹] < f i l enumber) [,< record number)]Form:

The GET statement is used to read a record from a random disk file into a random
buffer. Before executing a GET statement, the file to be accessed must be opened
for random I/O.

Addit ional ly, the random f i l e bu f fer must have been def ined w i th a F I ELD
statement. If the random file buffer has not been defined, there will be no way to
access the data after the GET has been executed.

<fi lenumber) i s t h e n u m ber under w h ich the f i l e was opened. I f < r ecord
number) is omitted, the current record is read into the buffer. The current record
is the record number one greater than that of the last record accessed. The first
time a particular f i le is accessed, the current record is 1. The largest possible
record number is 32767.

If an attempt is made to GET a record whose number is higher than that of the last
record number in the fi le, the buffer wil l be fi l led with NUL characters (ASCII 6],
although no error wi l l be generated. The LOF funct ion can be used to prevent
this from occurring.

Examples:

GET$1, 100

GET$2

GET FILE, I R EC

GET$5,REC

BASIC-80 Disk File Operations 10 3 1

PUT (write random record)

Form: PUT [¹] <f i lenumber> [, <record number>]

The PUT statement is used to write a record from a random buffer to a random
disk fi le. Before executing a PUT statement, the f i le to be accessed must be
opened for random I/O.

Addit ional ly, the random f i l e bu f fer must have been def ined w i th a F IELD
statement. If the random file buffer has not been defined, there will be no way to
move data into the buffer before executing the PUT statement.

<filenumber> is the n u mber under w h ich th e f i l e was opened. I f < r ecord
number> is omi t ted, the current record is wr i t ten. The current record is the
record number one greater than that of the last record accessed. The first time a
particular f i le is accessed, the current record is 1. The largest possible record
number is 32767.

If the <record number> is higher than the end-of-file record number, <record
number> becomes the new end-of-file record number. Space will be allocated on
the disk to accommodate the new end-of-file record, as well as all lower num
bered records.

Before executing a PUT statement, the data to be wri t ten to a disk f i le must be
moved into the buffer area. The LSET/RSET statements are used to move the data
to the random f i le buffer.

Examples:

PUT$1

PUT$2,43

PUT I,4

10-32 C HAPTER TEN

MKI$, MKS$, MKD$ (make a numeric value into a string)

Forms: MKI$(<integer expression>)
MKS$(<single-precision expression>)
MKD$(<double-precision expression>)

The "make" functions, (MKI$, MKS$, MKD$) are used to convert numeric value

to string value. Any numeric value that is placed in a random file buffer must be
converted to a string.

The MKI$ funct ion is used to convert an integer to a 2-byte string. The integer
expression must be in the a l lowable range for in teger values. If i t i s not , an
" Illegal funct ion call " e r ror w i l l be generated. Any f ract ional por t ion of the

number wil l be truncated.

The MKS$ funct ion is used to convert a single-precision number to a 4-byte
string. The MKD$ function is used to convert a double-precision number to an
8-byte string.

These functions wil l not move the data to the random buffer. So after a numeric
value is converted to a string, it st i l l must be moved to the random f i le buffer.
Addit ional ly , the random f i l e bu f fer must have been def ined w i th a F I ELD
statement.

If the random file buffer has not been defined, there wil l be no way to access the
data after the GET has been executed. The data must also be moved into the
random buffer using LSET or RSET.

For example, to convert the integer variable IV% to a string and assign it to the
field variable FV$, the fol lowing single program statement could be used:

LSET FV$ = MKI$(Ivg)

The variable FV$ should have appeared in a previously executed FIELD state
ment.

Example:

90 AMT = (K+T)
1 00 FIELD g1 , 8 A S 0 $, 20 A S N $
110 LSET D$ = MKS$(AMT)
120 LSET N$ = A $
130 PUT g1

BASIC-80 Disk File Operations 10 33

CVI, CVS, CVD (Converting string to numeric form)

Forms: CVI (<2-byte string>)
CVS (<4-byte string>)
CVD (<8-byte string>)

The CVI, CVS and CVD functions are used to convert string values to numeric
values. These functions are generally used to convert numeric values that have
been read from a random disk f i le. Data is always stored in random f i les as a
string data type. Therefore, a numeric value read from a random disk file must be
converted from a str ing back into a number.

The CVI function converts a 2-byte string to an integer. If the length of the string

is greater than 2 bytes, only the first two characters in the string wil l be used. If
the length of the string is less than 2 bytes, an "I l legal function call" error wi l l
result.

The CVS function converts a 4-byte string to a single-precision number. If the
length of the string is greater than four bytes, only the first four characters in the
string wil l be used. If the length of the string is less than four bytes, an "I l legal
function call" error w i l l result .

The CVD function converts an 8-byte string to a double-precision number. If the
length of the string is greater than eight bytes, only the first eight characters in

the string wi l l be used. If the length of the str ing is less than eight bytes, an
"Illegal function call " error w i l l resul t .

Examples:

PRINT CVS(AS)

Ag=CVD(BUFF$)

I = I+CVI (I $)

10-34 C HAPTER TEN

Random Access Techniques

CREATING A RANDOM A C CESS FILE

The following program steps are required to create a random f i le.

OPEN the file for random access

OPEN "R", 1 "FILE.DAT" ,32

In this example, the mode string specifies "R" — random access. File number 1 is
assigned to the file FILE.DAT. Since no dr ive specification was included wi th
this file name, the current default drive is assumed. This example also specifies a
record length of 32 characters (bytes). If the record length is omitted, the default
record length is 128 characters (bytes).

Set up the random file buffer

FIELD¹1, 20 AS VAR1$, 4 AS A$, 8 AS P$

Use the FIELD statement to allocate space in the random buffer for the variables
that wil l be wr i t ten to the random f i le . The FIELD statement references fi le
number 1, which has been opened for random input. (It is invalid to FIELD a file
which has been opened for sequential input or output .)

This FIELD statement w i l l a l l ocate the f i rst 20 characters of the random f i l e
buffer for the variable VAR1$, the next four characters for the variable A$, and

the next eight characters for the variable P$.

BASIC-80 Disk File Operations 10 3 5

Move the data into the random buffer

LSET VAR2$ =X $
LSET A$ =MKS$(AMT)
LSET P$ = TEL$

Use LSET to move the data into the random buffer. Numeric values must be made
into strings when placed in the buffer. To do th is, use the "make" funct ions:
MKI$ to make an integer value into a string, MKS$ for a single-precision value,
and MKD$ for a double-precision value.

In this program step, the single-precision variable AMT is f i rst coverted to a
string, and then it is assigned to the variable A$. The variable A$ has appeared in
a previous FIELD statement. The FIELD statement was used to al locate four
characters (bytes) to the variable A$.

Write data to disk

PUT4t1

Write the data from the buffer to the disk using the PUT statement. No record
number was specified with this PUT statement, so the current record number
will be written. The current record is the record number one higher than the last
record accessed. The first t ime a f i le is accessed, the current record is one.

Do not use a fielded string variable in an INPUT or LET statement. This causes
the pointer for that variable to point into string space instead of the random fi le
buffer.

10-36 CH APTER TEN

ACCESSING A RANDOM ACCESS FILE

The following program steps are required to access a random fi le :

OPEN the fi le for random access

OPEN "R" , ¹ 1 , " F ILE.DAT" ,32

This step wil l open the file "FILE.DAT" for random access. The file can now be
accessed by referring to f i le number 1.

Set up random file buffer

FIELD¹1, 20 AS VAR3$,4 AS A$, 8 AS P$

Use the FIELD statement to allocate space in the random buffer for the variables
that will be read from the file. In this example, 20 characters (bytes) are allocated
to the string variable VAR3$, four characters are allocated to the string variable

A$, and eight characters are allocated to the string variable P$.

NOTE: In a program that performs both input and output on the same random
file, you can often use just one OPEN statement and one FIELD statement.

Read data into buffer

GET¹1

Use the GET statement to move the desired record into the random buffer. No
record number was specified with th is GET statement, so the current record
number will be read. The current record is the record number one higher than the
last record accessed. The first time a file is accessed, the current record is one.

BASIC-80 Disk File Operations 10 3 7

Access data in the buffer

The data in the buffer may now be accessed by the program. Numeric values

must be converted back to numbers using the " convert" f unct ions: CVI for
integers, CVS for single-precision values, and CVD for double-precision

PRINT VAR4$
AV = CVS(A$)
DP ¹ = CVD(P$)

Additional Features

After a GET statement, INPUT¹ and LINE INPUT¹ may be used to read charac
t ers from the random f i le buffer. PRINT¹ , PRINT¹ U S I NG, and WRITE¹ m ay
also be used to put characters in the random file buffer before a PUT statement.

In the case of WRITE¹ , BASIC-80 pads the buffer with spaces (if necessary) and
then inserts a carriage return. Any attempt to read or wr ite past the end of the
buffer causes a "Field overflow" error .

10-38 CHAPTER TEN

Microsoft BASIC-80 Summary 1 1

Chapter Eleven

Microsoft BASIC-80 Summary

OVERVIEW

This Chapter is a summary of the important concepts, ideas, keywords, etc. of the
BASIC-80 programming language. The various intrinsic functions as well as the
string functions are also included in this chapter.

1 1-2 CH APTER ELEVEN

Abbreviations

Abbreviation Function

Use in place of PRINT.

Use in place of REM.

"current l ine" ;use in place of l ine number with LIST,

EDIT, etc.

Data Type Declaration Characters

ExamplesC haracter Dat a T y p e

0/

String

Integer

Single-Precision

ZDS$, WLWS

I/ , VALUE/o

V!,FLAG!

Double-Precision DP/,PL/

E

Double-Precision

(exponential notation)

Single-Precision
(exponential notation)

1.23456789D-12

1.23456E+23

Microsott BASIC-80 Summary 1 1 3

Arithmetic Operators

Operation PerformedOperator

Addit ion

Subtraction

Multip l ication

Division (f loating point)

Integer division

Exp onentiation

MOD Modular div is ion

String Operator

Operator Op era t i on Performed Example

I i
A

f!
+

4«Ilail +cc
Q

t 0concatenate (string togetherj

Relational Operators

Operator Numeric Expressions String Expressions

Less than Precedes

Greater than

Equal to

Follows

Equals

Precedes or equals

Follows or equals

Does not equal

< = or = < L ess t h a n or equal to

) = or =) Greater than or equal to

<) o r) < Does n ot e qual

4 CH A PTER ELEVEN

Logical Operators

FunctionOperator

NOT

AND

Bitwise negation

Bitwise disjunction

Bitwise conjunctionOR

IMP

XOR Bitwise exclusive OR

Bitwise impl ication

Bitwise equivalenceEQV

Microsoft BASIC-80 Summary 1 1 5

Commands

Command/Function

A UTOS [<line number>] , [< increment)]

Enable automatic l ine numbering
s tarting at < l ine number> and
i ncrementing by < i n c rement) .

Examples

AUTO

AUTO 10

AUTO 5, 5

CLEAR

Set numeric values to zero,
s trings to nul l .

CLEAR,<expression>

Same as CLEAR, but <expression)
i s used to set the high memory l im i t
for use by BASIC-80.

CLEAR,<expression1) , < expression2)

S ame as CLEAR<expression) b u t
<expression2> is used to set the
amount of stack space for use
by BASIC-80.

CLEAR

CLEAR,32768

CLEAR,32768,2000

CONT

Continues program execution
after a BREAK or STOP.

CONT

DELETE<<l ine number)

Deletes the specified l ine
number in the current program.

DELETE 100

DELETEz -< line number)

Deletes every l ine of the
current program up to and
i ncluding < l ine number) .

DELETE -500

11 6 CH APTER ELEVEN

Command/Function Examples

DELETEz <line number) - < l i n e number)

Deletes all l ines of the
current program from the f i rst
l ine number through the

second line number.

DELETE 10-1000

EDITz <line number)

Enter Edit Mode at the
specified l ine number.

F ILES' [" <f i lename) "]

List names of f i les residing

on the default or
specified disk.

EDIT 100

FILES "+ . BAS"

LIST
List the program currently
in memory starting with the
lowest numbered l ine.

LIST

LISTs<l ine number)

L ist the specified l ine
number.

LIST 100

LISTS <line number>-< l ine number)

List all l ines from the
f irst line up to and
including the second.

L LISTs[< l ine number)] - [< l i n e number)]

L ist all or part of the
program currently in memory .
The listing w i l l be pr in ted
on the line pr inter. The
options for the LLIST command
are the same as for the LIST
command.

LIST 10-100

LLIST

LLIST 500

LLIST 150

LLIST — 100

LLIST 150 — 400

Microsoft BASIC-80 Summary 1 1 7

Command/Function

LOAD < "filename" >[,R]

Load a program file from disk

into memory. The R is optional ,
and if used wil l run the program
after it is loaded.

Examples

LOAD"B;GAME"

LOAD"FROG.ASC",R

M ERGE "<f i l ename) "

Merges a disk f i le into a
program in memory.

N AME " [< d r i v e) :] < o l d f i l e) " A S
" [< drive) :] < newfi le) "

MERGE"B:TEST.BAS"

Renames a disk f i le.

NEW

Deletes the current program

and clears all variables.

RENUM [<nn>],[<mm)] , [< i i>]

Renumbers program l ines start
i ng at l ine <m m) , as l i ne
< nn) , w i t h i n c rements of < i i > .

NEW

RENUM

RENUM 300, , 5

R ENUM 1000,900 , 2 0

RESET

Changes disk in default dr ive.

R UN [< l ine number)]

Executes the current program
starting with specif ied l ine
n umber. If < l ine number) i s
not specified, execution starts
at the lowest l ine number.

RESET

RUN 100

RUN

RUN < "filename" >[,R]
Loads a program from disk and
executes it. R keeps all data
files open.

RUN "PROG1"

RUN"B:GAME",R

8 CH A PTER ELEVEN

ExamplesCommand/Function

SAVE "(f i l ename) " ,A
SAVE "(f i lename) ",P

Saves the current program on
disk. If A is used, the f i le
is saved in ASCII format. If
P is used, the file is saved
in a protected format.
I f neither the P or A is used,
the file is saved in a compressed
binary format.

SAVE"CQM2",A

SAVE"TEST1"

SAVE"INVEN" , P

SYSTEM

Closes all f i les and performs
a CP/M warm start.

SYSTEM

Microsoft BASIC-80 Summary 1 1 9

Edit Mode Subcommands and Functions

Command Function

End editing and return to Command Mode.

Move cursor <i> spaces to the right. (Defaults to 1.)

[<i>]Back Space M ov e cu r sor <i> spaces to the left. (Defaults to 1.)

RETURN

[<i>]Space Bar

List remainder of program l ine and
return cursor to the beginning of
the program l ine.

List remainder of program l ine, move

cursor to the end of the l ine, and go
into Insert Mode.

Insert text beginning at the current

position of the cursor. Use ESC to
exit Insert Mode.

Cancel edit ing changes and return cursor
to beginning of l ine.

End editing, save all changes and return
to Command Mode.

End editing, cancel all changes and return
to Command Mode.

[<i>]D

[<i>]C

[<i>]S<c>

Delete remainder of l ine and then enter
Insert Mode.

Delete specified number of characters <i>
beginning at current cursor position. (Defaults to 1.)

Change (or replace) the specified number
o f characters <i> u s ing the next < i >
characters entered. (Defaults to 1.)

Move the cursor to the < i > t h occurence of
character <c> , count ing from the current
cursor position. (Defaults to 1.)

Delete all characters from the current cursor
position up to the < i > t h occurrence of
character <c> . (Defaults to 1.)

[<i>]K<c>

11-10 CHAPTER ELEVEN

Print Using Format Field Specifiers

Numeric
S pecifier Fu n ct i o n Example

$$

Numeric field.

Decimal point posi t ion.

Print leading or trai l ing signs

tplus for posit ive numbers, minus
for negative numbers).

Print trai l ing sign only i f va lue
printed is negative.

Fill leading blanks with asterisks.

Place dollar sign immediately to
left of leading dig i t .

Asterisk fil l and f loat ing dol lar
sign.

Use comma every three digits

(left of decimal point on ly) .

Exponential format. Number is
a ligned so leading digi t is

+ ¹¹ ¹ ¹

¹ ¹ A A A A

non-zero.

String
S pecifier Fun ct i o n Example

Single character

g(spaces)g 2 + nu m ber of spaces in character
field.

Variable length str ing f ield.

Literal
S pecifier Fu n ct i o n Example

Literal character string f ield.

Microsoft BASIC-80 Summary

Program Statements

Statement/Function Examples

DATA TYPE DEFINITION

DEFINTz <letter range)

Declare range of variable

names as integer data types.

DEFSNGz <letter range)

Declare range of variable
names as single-precision
data types.

DEFDBLn<letter range>

Declare range of variable

names as double-precision
data types.

DEFSTR~<letter range)

Declare range of variable
names as string variables.

DEFINT I-N

DEFDBL X, Y, Z

DEFSNG A — H,O — P

DEFSTR A — C, Z

ASSIGNMENT AND ALLOCATION

DIM« li s t o f subscripted variables)

Allocate storage for array. D IM A(20) ,B(12 ,2)

OPTIONS BASE>n

OPTION BASE 1Declare minimum value for
array subscript. The default

base is 0. This may be changed
to 1.

f1-12 cHAPTER ELEYEN

Statement/Function Examples

ERASERS (list of array names)

Remove an array from the ERASE A, B

program.

LET~<variable> = <expression)

Assign value of expression
to variable.

LET SUM = A+B+0

REMa <remark)

Insert remark into program.

SWAP~<variable> ,<var iable>

Exchange the values of two
variables.

REM'GRP IS GROSS PAY

SWAP A, B

SEQUENCE OF EXECUTION

END

Terminate program execution,
close all f i les and return
to Command Mode.

FORa<V> = < X>z TOa< Y> t STEPa<Z)]

Allows repetit ive execution of

a series of statements .

100 END

FOR I = 1 TO 100

GOSUB~< line number)

Branch to subroutine beginning
at < li ne numb er >.

GOSUB 100

GOTO' < l ine number>

Branch to specified l ine
number.

GOTO 400

NEXT' r <variable)]

Terminates a FOR loop. NEXT I

Microsott BASic-ao Summary 1 1 13

Statement/Function Examples

ON><expression)z GOTO~l ine1,...linek

Evaluate expression. If
INT(<expression)) equals
one of the numbers 1-k,
branch to appropriate

l ine number. If i t i s
not equal, go to the

ON L1 GOTO 10,20,30

next statement.

ON><expression)z GOSUBz line1,...1inek

Same as ON...GOTO except
branch is to a subroutine.

ON L GOSUB 300,400

RETURN

Terminates a subroutine.
Branches to the statement
following the most recent
GOSUB.

RETURN

STOP

Terminates program execution
and returns to Command Mode.

STOP

CONDITIONAL EXECUTION

IFz < expression) T H EN' < s tatement(s))
ELSE' <statement(sl)

Evaluate <expression) : I f t rue ,
execute THEN clause. If false,
execute ELSE clause. (if present)

IF A =O THEN A = 1

ELSE A =O

11 14 C HAPTER ELEVEN

Statement/Function

WHILEz <expression)

<loop statements>

Examples

WEND

Executes a series of statements

in a loop as long as a given
condition is true.

WHILE A =Q

PRINT "ZERO"

WEND

NON-DISK I/O STATEMENTS

INPUT [<;) < " p r ompt str ing ") ;] < l i s t of variables)

Inputs data from the terminal
during program execution.

LINE~INPUT [<;) < "prompt string");]<str ing variable)

Inputs an entire l ine (up to
255 characters) to a string
variable, without the use of

delimiters.

INPUT "AGE";A

LINE INPUT J$

DATA' (l i s t of constants)

Stores numeric and str ing
constants. These constants
are assigned to variables
by using the READ statement.

PRINT~<l ist of expressions)

Outputs data on the terminal .

DATA 34, 23. 1, 45. 0

DATA "HELLO", "BYE"

PRINT "HELLO"

PRINT A$,Z,C

READz <list of variables)

Reads data into specified
variables from a DATA
statement.

READ I,A , B

READ A$,B$

Microsoft BASIC-80 Summary 11 1 5

ExamplesStatement/Function

RESTORE [(l i ne number>]

Resets DATA pointer so
that data may be reread.

LPRINT>(l i s t of expressions>

Prints data on the l ine
printer.

RESTORE

LPRINT "HELLO"

16 CH APTER ELEVEN

String Functions

Function ExampleOperation

ASC(X$) Returns ASCII code of f i rst
character in str ing argument.

Returns a one-character string
whose character has the ASCII
code of I.

ASC ("]3")

ASC(H$)

CHR$(66)

CHR$(N)
CHR$(I)

Converts a number to a
Hexadecimal string.

HEX$(100)

HEX$(A)
HEX $(X)

Reads one character from the
keyboard.

A$ =INKEY$INKEY$

INPUT$(X,Y) Reads X ch aracters from the
keyboard or from f i le number

INPUTS(1,1)

Y.

INSTR(A$," , ")

LEFT$(X$,I)

LEN(X$)

MID$(X$,I,J)

INSTR(I,X$,Y$) Ret u rns the posit ion of the
f irst occurrence of Y$ in X$
starting at p os i ti on I.

Returns left-most I characters
of the string expression X$.

Returns length of str ing X$.

Returns string of length J
characters from X$ beginning
with the Ith character.

LEN(A$)

LEFT$(A$,1)

LEFT$(C$,3)

M ID$(X$,5 , 10)

Microsott BAS)C-80 Summary 1 1 1 7

Function ExampleOperation

M ID$(A$,1 ,2) =" Z"MID$(X$,I,J)= Y $ Replaces the characters in X$,
beginning at posit ion I , wi th
the characters in Y$. J is the
number of characters to use in
the replacement.

Converts the numeric expression
X to an octal string.

OCT$(24)OCT$(X)

SPACE$(X)

RIGHT$(X$,I) Retur n s the r ight-most I
characters of string X$.

Returns a string of X spaces.

RIGHT$(X$,8)

SPACE$(20)

STR$(X) STR$(100)

STRING$(I,J)

Converts a numeric expression
to a string.

Returns a string of length I
containing characters with
the ASCII code J.

STRING$(20,33)

VAL(X$)

STRING$(I,X$) Retu r n s a str ing of length I
containing the f i rst character
of string X$.

Converts the string X$ to a
numeric value.

STRINGS(20 " ! ")

V AL("3.14 ")

11-18 CHAPTER ELEVEN

Arithmetic Functions

Function ExampleOperation

INT(X)

COS(X)

ABS(X)

ATN(X)

CDBL(X)

CINT(X)

CSNG(X)

EXP(X)

FIX(X)

Returns absolute value.

Returns arctangent of X.

(X must be in radians.)

Converts X to double-precision.

Converts X to an integer by
rounding.

Returns the cosine of X.

(X must be in radians)

Converts X to single-precision.

Returns e to the power of X.

Returns truncated integer
portion of X.

Returns largest integer
not greater than X.

Returns the natural logarithm
of X. X must be greater than

ATN(3)

ABS(— 1)

CDBL(A)

CSNG(V)

COS(A+B)

EXP(34.5)

F IX(23.2)

LOG(45/7)

CINT(46.6)

I NT(-12 . 1 1)

LOG(X)

zero.

RND(X) Returns a random number between
0 and 1.

Returns -1 for negative X, 0
for zero X, +1 for posit ive

RND(0)

SGN(C/A)SGN(X)

X.

SIN(X)

SQR(X)

Returns the sine of X.

(X must be in radians.)

Returns the square root of
X. X must be non-negative.

Returns the tangent of X.

(X must be in radians.)

SQR(A+B)

SIN(A+1.3)

TAN(X+Y+Z)TAN(X)

Microsoft BASIC-80 Summary 1 1 1 9

Special Functions

Function Example

INP(ll

FRE(XJ

Operation

Returns memory space not
used by BASIC-80.

Returns the byte read from

port I.

Returns current posit ion
of line printer pr int head
within the l ine pr inter
buffer.

FRE(0)

LPOS(0)

INP(255)

LPOS(XJ

OUT I,J

PEEK(IJ

NULL(XJ Sets the number of nul ls
to be printed at the end
of each line.

Sends byte J to port I.

Reads a byte from the
specified memory address.

Puts byte J into memory
location I.

NULL(3)

PEEK(8192)

OUT 127,255

POKE(8192,200)POKE I,J

SPC(IJ

TAB(IJ

POS(XJ

VARPTR(X J

Returns current cursor
position.

Prints I spaces on the
terminal.

Moves cursor and/or
print head to specified posit ion.

Returns address of variable
in memory.

Status of port I is XOR'ed
with K and AND'ed with J.
Continued execution awaits
non zero result.

POS(1)

WAIT 21,1

VARPTR(V)

PRINT SPC(5)

PRINT TAB(20)

WAIT I,J(,K]

WIDTH I Sets the terminal l ine wid th .

WIDTH LPRINT I Sets the l ine pr inter wid th .

WIDTH 80

WIDTH LPRINT 132

20 CHA PTER ELEVEN

Special Features

ERROR TRAPPING

Statement/Function Example

ON~ERRORz,GOTO' (l i n e nu mber)

Enables error trapping and
specifies the first l ine of
the error trapping subroutine.

R ESUMEa[(l i n e number)]

Continues program execution
after an error recovery
procedure has been performed.

ERRORS (integer expression)

Simulates the occurrence of
an error, also allows error
codes to be defined by user.

RESUME

RESUME NEXT

RESUME 100

ON ERROR GOTO 100

ERROR 10

ERL
Error l ine number. PRINT ERL

ERR
Error code number. PRINT ERR

TRACE FLAG

TRON
Enables trace flag. TRON

TROFF
Disables trace flag. TROFF

Microsott BASic-8O Summary 1 1 2 1

Statement/Function Example

OVERLAY MANAGEMENT

C HAIN [MERGE]" <f i lename) " [, [(l i n e number exp)]
[,ALL][,DELETE<range)]]

Calls program and passes
variables from the current

program.

COMMON~< l is t of variables)

CALL "FROG"

Pass variables to a chained
program.

COMMON A,B

11-22 CH APTER ELEVEN

Disk Input/Output Statements

Statement/Function

CLOSE[¹][<f i lenumber)] [,<f i lenumber)]

C;loses disk fi les. If no argument
is supplied, all open f i les are

Example

CLOSE $6

closed.

FIELD¹ < f i l enumber) , < f i e ld s ize)
AS cstr ing variable)

Allocates random buffer space to
<string variable>, where < f i l e number)
is the random buffer referenced, and
<field size> is the space reserved
f or a given (s t r ing var iable) .

G ET[¹]< f i l e number) [,< record number)]

FIELD $1,3 AS A$

Transfers data from the < record number>
o f the random f i le < f i l e number) t o t h e
random buffer. If (r e cord number> i s
omit ted, the nex t re (ord i s t r a n s fer red .

INPUT¹ < f i l enumber> ,< var iable l ist>

GET g1, I

Reads data from f i le < f i l enumber)
and assigns the input to the
e lements of (v a r iable l is t) .

INPUT $3, A,B

KILLS "<f i lename>"

KILL "A :GAME.BAS"Deletes a disk fi le.

LINEz INPUT¹ < f i l e number> ,< s t r ing variable>

Read an entire l ine from a f i l e
<file number) an d assigns it to
< string variable) .

LINE INPUT g1, A$

M icrosoft BASiC-BO Summary 1 1 2 3

Statement/Function Example

LSET <f ielded variable) = <string expression>

Stores data in random f i le buffer,
left justif ied.

OPEN "<mode> " , [¹] < f i l enumber) , < " f i l ename" >

O pens a disk f i le, where "< m od e> " i s
the file type,<f i lenumber> is the
I/O label, and <file name> is the
disk directory entry.

PRINT¹ < f i l e number>, <l ist of expressions>

Writes data to a sequential disk f i le .

PUT [¹] < f i l enumber> [,< record number)]

Transfers data from the random f i le
buffer to random f i le < f i l e number> .
I f <record number) i s om i t ted,
the next record is wr i t ten.

RSET <fielded variable) = <string expression>

Stores data in a random f i le buffer,
r ight justi f ied.

WRITE¹< f i l e number) , < l is t of expressions>

Writes data to a sequential disk
file. Delimiters are inserted
between items in the I/O l ist .

PUT g2,3

RSET B$ =" BYE"

PRINT $1,A$,B

LSET A$ =" HELLO"

OPEN II O I I , 1, IIGM. DAT"

WRITE g2, A, B$

11-24 CHAPTER ELEVEN

Disk Input/Output Functions

Function

CVD(X$)

Operation

Converts 8-character string
to double precision number.

Converts 2-character string
to an in t eger .

Converts 4-character string
to single precision number.

EOF(f i le no.) Retu r n s t rue (— 1) if a fi le
is positioned at its end.

Returns next record number
to read (random f i le) .
Returns number of sectors
accessed (sequential f i le).

Converts double-precision
number to an 8-character
string.

Converts an integer to
a 2-character string.

Converts a single-precision
number to a 4-character
string.

CVI(X$)

CVS(X$)

MKI$(1%)

MKD$(Z¹)

LOC(f i le no.)

Example

X=LQC (1)

IF EOF(1)

B=CVS(B$)

Ag=CVD(A$)

I / =CVI (I$)

B$=MKS$(B)

A$ =MKD$(AQ)

I$™KI$ (I/o)

MKS$(B)

A PPENDIX A A- 1

Appendix A

Error Messages

After an error occurs, BASIC-80 returns to the Command Mode and types Ok.
(Although overflow and division by zero errors wil l not cause BASIC-80 to stop
execution.) Variable values and the program text remain intact, but you cannot
continue the program with the CONT command. However, execution can be
continued with a Command Mode GOTO.

The formats of error messages are:

Direct Statement
Indirect Statement

(error message)
(errror message) i n n n nnn

where nnnnn is the line number where the error occurred. When an error occurs
in a direct statement, no l ine number is pr inted.

The error messages are listed on the next few pages, along with the error number.
If an error should occur for which there is no error code, BASIC-80 wil l pr int the
message "Unpr intable error" .

A-2 APPENDIX A

GENERAL ERRORS

NEXT without FOR

The variable in a NEXT statement corresponds to no previously executed FOR
statement.

Syntax er r or

A line has been encountered that contains some incorrect sequence of characters
(such as unmatched parenthesis, misspelled statement or command, incorrect
punctuation, etc.).

RETURN without GOSUB

A RETURN statement has been encountered before a GOSUB was executed.

Out of data

A READ statement was executed but all of the DATA statements in the program
have already been read.

Illegal function call

The parameter passed to an arithmetic or string function was out of range. Illegal
function calls can occur due to:

1. A n egative array subscript (LET A(-1)=0).

2. A n u n reasonably large array subscript () 3 2 767).

3. LOG wi th a negative or zero argument.

4. SQR with a negative argument.

5. A " B w i th A n egative and B not an integer.

6. A c a l l to a USR funct ion before the address of a machine language
subroutine has been entered.

7. Cal ls to MID$, LEFT$, RIGHT$, INP, OUT, WAIT, PEEK, POKE, TAB,

SPC, STRING$, SPACE$, INSTR, or ON...GOTO with an i m p r oper

argument.

APPENDIX A A- 3

O ver f l o w

The result of a calculation was too large to be represented in BASIC-80's number
format. If an underflow (Le. a number is too small to be represented) occurs, zero
is given as the result and execution continues without any error message being

printed.

Out of memory

A program is too large, has too many variables, too many FOR loops, too many
GOSUB's, or too compl icated expressions.

Undef i ned l i n e n u mber

The line reference in a GOTO, GOSUB, IF...THEN...ELSE or DELETE was to a
non-existent l ine.

Subscript out of range

An attempt was made to reference an array element which is either outside the
dimensions of the array, or with the wrong number of subscripts.

10 Duplicate Definition

After an array was dimensioned, another dimension statement for the same array

was encountered. The error o f ten occurs i f an a r ray was g iven the default
dimension of 10, and later in the program, the same array is specified in a DIM
statement.

D iv i s i o n b y z e r o

A division by zero has been encountered in an expression, or the evaluation of an
expression results in zero being raised to a negative power. Machine inf in i ty
with the sign of the numerator is supplied as the result of the division, or positive
machine in f in i ty i s supp l ied as the result o f the i nvo lu t ion, and execution
continues.

12 Illegal direct

A statement that is i l legal in D i rect Mode has been entered as a Direct Mode
command.

A-4 APPENDIXA

13 Type mismatch

A string variable has been assigned a numeric value or vice versa; a function that
expects a numeric argument has been given a string argument or v ice versa.

14 Out o f str ing space

String variables have caused BASIC-80 to exceed the amount of f ree memory
remaining. BASIC-80 wil l al locate string space dynamically, unti l i t runs out of
memory.

15 Stri ng too long

An attempt was made to create a string more than 255 characters long.

String formula too complex

A string expression was too long or too complex. The expression should be
broken into smaller expressions.

17 C an't c o n t i nu e

An attempt has been made to continue a program that:

1. Has hal ted due to an error.

2. Has been modif ied dur ing a break in execution.

3. Does not exist.

18 Undefined user function

A reference was made to a user-defined function which had never been defined.

No RESUME19

BASIC-80 entered an error trapping rout ine, but the program ended before a
RESUME statement was encountered.

RESUME without err or20

A RESUME statement was encountered, but no error trapping rout ine had been
entered.

APPENDIX A A 5

21 Unpr int a b l e e r r or

An error message is not available for the error condi t ion wh ich exists. This is
usually caused by an ERROR with an undefined error code.

22 Missing oper and

During evaluation of an expression, an operator was found w i th no operand
following i t .

23 Line buffer over flow

An attempt has been made to input a l ine that has too many characters.

FOR without NEXT26

A FOR was encountered wi thout a matching NEXT.

29 WHILE with ou t WEND

A WHILE statement has been encountered wi thout a matching WEND.

WEND withou t WHILE30

A WEND was encountered without a matching WHILE.

A-6 APPENDIX A

DISK RELATED ERRORS

Field over flow50

An attempt was made to allocate more bytes than were specified for the record
length of a random f i le .

51 I nte r na l e r r o r

An internal malfunct ion has occurred in BASIC-80. Report condi t ions under
which error occurred and al l re levant data to Zenith Data Systems Customer
Service.

52 Bad file number

A statement or command has referenced a file number that is not OPEN or is out
of the range of numbers specified at in i t ia l ization.

File not found53

A LOAD, KILL, or OPEN statement referenced a file that did not exist.

Bad file mode54

An attempt was made to perform a PRINT or WRITE on a random file, to OPEN an
already open random f i le for sequential output, to perform a GET or PUT on a
sequential f i le, to load from a random f i le , or to execute an OPEN statement
where the file mode is not I ,O, or R.

55 Fil e a l r e ady open

A sequential output mode is issued for a fi le that is already open; or a KILL is
given for a f i le that is open.

Disk I /O error57

An I/O error occured on a disk I/O operation. It is a fatal error, i.e., the operating
s ystem cannot r ecover f rom th e e r r o r .

58 File already exists

The file name specified in a NAME statement is identical to a file name already in
use on the disk.

APPENDIX A A-7

Disk full61

All disk storage space is in use.

I nput pas t end

An INPUT statement is executed after all the data in the file has been INPUT, or
for a null (empty) fi le. To avoid this error, use the EOF function to detect the end
of file.

Bad record number

I n a PUT o r GET s tatement, the record number i s e i ther greater than th e
maximum al lowed (32768) or equal to zero.

Bad file name

An i l legal form is used for the f i le name with LOAD, SAVE, KILL, or OPEN.

Direct statement in file

A direct statement is encountered whi le an ASCII-format f i le is being loaded.
The LOAD is terminated.

Too many files

An attempt is made to create a new f i le (using SAVE or OPEN) when al l 255
directory entries are ful l .

A-8 APPENDIX A

RESERVED WORDS

Some words are reserved by B A SIC-80 for use as statements, commands,
operators, and so on, and therefore may not be used in var iable or funct ion
names. The reserved words are listed below. Note that all intr insic functions are
considered to be reserved.

ABS
AUTO
CDBL

COMMON
CVD
DEF

DEFSTR

ELSE
ERASE
EXP

FN

GOSUB
IMP

INSTR

LEN
LLIST

LOG

MERGE
MKSS
NEXT

ON
OUT

PRINT

REM

RESUME
RSET

SIN

STEP

SWAP
THEN

USR
WEND

XOR

AND

CALL

CHRS
CONT
CVI
DEFDBL

DELETE

END

ERL

FIELD

FOR
GOTO
INKEYS
INT

LET

LOAD

LPOS
MIDS
MOD

NOT

OPEN
PEED
PUT

RENUM

RETURN
RUN

SPACES
STOP
SYSTEM
TO
VAL

WHILE

ASC
CHAIN

CLEAR
COS
CVS
DEFINT

DIM

EOF
ERR

FILES

FRE

HEXS
INP
KILL

LINE

LOC
LPRINT

MKDS
NAME

NULL
OPTION
POKE

RANDOMIZE
RESET

RIGHTS
SAVE
SPC()
STRS
TAB()

ATN
OINT

CLOSE
CSNG
DATA
DEFSNG
EDIT

EQV
ERROR
FIX

GET

IF
INPUT

LEFTS
LIST

LOF

LSET

MKIS
NEW

OCTS
OR
POS
READ

RESTORE
RND
SGN

SQR
STRINGS
TAN

TRON

WAIT

WRITE

TROFF
VARPTR

WIDTH

A PPENDIX B B- 1

Appendix B

ASCII Codes

DECIMAL TO OCTAL TO HEX TO ASCII CONVERSION

IV
DEC OCT HEX DEC OCT H EX ASC I I DEC O CT HEX ASCI I DEC OCT HEX ASCIIASCII

000
001
002
003
004
005
006
007

0 1

2

3 4 5

7

00
01
02
03
04
05
06
07

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL

32
33
34
35
36
37
38
39

040 . 20
041 . 2 1
0 42 . 2 2
0 43 . 2 3
044 . 24
045 . 2 5
046 . 26
0 47 . 2 7

SPACE 64 100
6 5 . 10 1
66 . 102
67 103
68 . 104
69 . 105
70 . 1D6
7 1 107

40 . @
41 . A
42 . B
43 . C
44 . D
4 5 . E
46 . F
47 . G

96
97
98
99

100
101
102
103

140
141
142
143
144
145
146
147

60
61
62
63
64
65

67

10
11
12
13
14
15

8 9 010
011
012
013
014
015
016
017

08
09
QA
QB
QC
QD
QE
OF

BS
HT
LF
VT
FF
CR
SO
SI

40
41
42
43
44
45
46
47

0 50 . 2 8
0 51 . 2 9
0 52 . 2 A
0 53 . 2 B
054 . 20
0 55 . 2 D
0 56 . 2 E
D57 . 2 F

72 . 110
73 . 111
74 112
7 5 1 13
7 6 . 114
77 1 15
78 . 116
7 9 . 1 17

48 . H
4 9 . I
4A . J
4B . K
40 . L
4D . M
4E N
4F . 0

104
105
106
107
108
109
110
111

150
151
152
153
154
155
156
157

68
69
6A
68
6C
6D
6E
6F

PERIOD

/

16
17
18
19
20
21
22
23

020
021
022
023
024
025
026
027

DLE
Dci
DC2
DC3
DC4
NAK
SYN
ETB

48
49
50
51
52
53
54
55

0 60 . 3 0
061 . 3 1
D 62 . 3 2
0 63 . 3 3
0 64 . 3 4
065 . 3 5
0 66 . 3 6
0 67 . 3 7

80 . 12D
81 . 121
82 . 122
83 . 123
84 . 124
85 . 125
86 . 126
87 . 127

50 . P
51 . Q
52. . R
53 . S
54 . T
55 . U
56 . V
57 . W

112
113
114
115
116
117
118
119

160
161
162
163
164
165
166
167

70
71
72
73
74
75
76
77

10
11
12
13
14
15
16
17

24
25
26
27
28
29
30
31

030
031
032
033
034
035
036
037

18
19
1A
18
1C
1D
1E
1F

CAN
EM
SUB
ESC
FS
GS
RS
US

56
57
58
59
60
61
62
63

070 . 38
0 71 . 3 9
D 72 . 3 A
0 73 . 3 8
074 . 3 0
075 . 3D
076 . 3E
D77 . 3F

88 . 130
89 . 13 1
90 . 132
91 . 133
92 . 134
93 . 135
94 . 136
95 . 137

58 .
59 . Y

5A . Z
5B . [
5C
5D . J
5E
5F

120
121
122
123
124
125
126
127

170
171
172
173
174
175
176
177

78
79
7A
78
70
7D
7E
7F

I
)

X

Y
Z

DELETE

B-2 APPENDIX B

Control Character Definitions

NUL
SOH
STX
ETX

EOT

ENQ
ACK

BEL

BS
HT
LF

VT
FF
CR
SO
SI
DLE

DC1

DC2
DC3
DC4
NAK

SYN
ETB
CAN

EM
SUB
ESC
FS
GS
RS
US

N ull : T ape f e e d ,
Start of Heading; Start of Message

Start of Text; End of Address

End of Text; End of Message

End of Transmission; Shuts off TWX machines

Enqui ry ; WRU
Acknowledge; RU
Rings Bel l
Backspace
Horiz o n t a l TA B
L ine Feed o r S p ac e (New L i n e)
Vert i c a l TAB
Form Feed (PAGE)
C arri ag e R e t u r n
Shift Out

Shif t I n
D ata L i n k E s c a p e
Device C o n t r o l 1 ; Re a d e r o n
Device C o n t r o l 2 ; Pu n c h o n
Device Control 3; Reader off

Device Control 4; Punch off

Negat iv e A c k nowl edge ; E rr or
Synchronous Id l e (SYNC)
End of Transmission Block; Logical End of Medium

Cancel (CANCL)
End o'f Medium

Substitute
Escape
F il e S e p a r a t o r
G roup Separa t o r
R ecord Separ a t o r
U nit S e p a r a t o r

Refer to the chart on Page B-1. Note that any pr in t control character defined
above and listed in column I of the chart can be produced from the combination
of CTRL and the alphabetical character in column III or IV which is on the same
line and to the right of the print control character. That is, DLE is CTRL-P or "P,
BEL is CTRL G or "G, and so on.

APPENDIX C C

Appendix C

Programming Hints

As your level of programming experience increases, you wil l eventually have to
concern yourself with program efficiency. The two main resources you will have
to conserve are: memory space and execution t ime. This Appendix has been
included to aid in your programming effort.

CONSERVING MEMORY SPACE

To conserve memory space, make sure that you do the following:

Place multiple program statements on a single line.

BASIC-80 must keep track of each program line as well as the program line
number. If you place multiple statements on a single line, less space will be used
for program line overhead.

Remove all unnecessary REM statements.

When you use a REM statement, BASIC-80 wil l store the one-byte code which
represents the REM keyword plus the ASCII representation of the actual remark.
This can result in a lot of memory being used simply for remarks. (You wil l have
to consider the trade-off of program documentation vs. memory space when you
remove these REM statements.)

Use a subroutine call (GOSUB) only when a GOTO won't work.

The GOSUB statement should be used only when a routine must be called from
several different places within the main program. If a routine is to be called from
the same place every time, then use a GOTO. Each active GOSUB wil l consume
memory space (to update the stack), but a GOTO wi l l no t .

C-2 APPENDIX C

Use as few parentheses in an expression as possible.

Structure your arithmetic expressions so they use as few parentheses as possible.
Each time BASIC-80 has to evaluate an expression enclosed in parentheses, it
will consume more memory space. BASIC-80 will also have to store the result of
this evaluation in a temporary storage location, thus using more memory space.

Use integer variables whenever possible.

This is very important, as integer variables only consume two bytes of memory.
A single-precision variable wil l take four bytes, and a double-precision wil l take
eight bytes.

Dimension arrays sparingly.

Make sure that you only al locate as much space for an array as you wil l use. For
example, if you allow BASIC-80 to establish the 11-element default array size,
and then only use four of these elements, you have wasted more space than you
have used. So always set the array size with a d imension statement, never let
BASIC-80 assume the default size of 11 elements. (Unless your array size is only
11 elements.)

Split large programs into smaller modules.

BASIC-80 wil l al low you to CHAIN between programs, as well as pass variables
between programs. This makes it very easy to write a large program as several
small programs and pass variables between them.

Use DEF statements to declare variable types.

This wil l prevent you from having to use the type declaration characters, thus
saving you one byte for every variable that is not a single-precision data type.

Reduce the number of simultaneously open data files.

Every data file requires a buffer area, so it is more efficient to use the same buffer
for several different files. To do this, open the first file as file ¹1, and then access
i t as needed. Then close this f i le and open the second file as file ¹1 . A l though

you wil l not be able to simultaneously access both files, you wil l st i l l be able to
access both fi les as needed.

Reduce the number of variables and arrays in a program.

You can accomplish this by reusing variables and arrays in a program when they
are no longer needed. Or, you can establish one variable to be used as a

FOR/NEXT counter, and then use it for every FOR/NEXT loop.

APPENDIX C C-3

SAVING EXECUTION TIME

To save execution t ime make sure you do the fol lowing:

Define the most commonly used variables first.

The variables are placed in the BASIC-80 variable table as they are encountered.
When a variable is referenced, the table is searched sequential ly. Thus, i f a
variable is near the top of the table, it w i l l take less time to access.

Use integer variables in FOR/NEXT loops.

This is very important and can result in a signif icant time savings. If you wish to
try an experiment, set up a FOR/NEXT with a single-precision loop counter and
time the execution. Then simply define the loop counter as an integer data type
and time the execution again. (Make sure you set the loop for at least 10,000
iterations.) You wi l l no t ice a signif icant di f ference in the execution t imes.

Use variables instead of constants in arithmetic expressions.

BASIC-80 uses a floating point decimal representation for numeric values. It
takes less time for BASIC-80 to access a variable than to convert a constant to this
representation. If you have a constant you are planning to use quite often in a

program, assign it to a variable and use the variable instead.

This list is by no means exhaustive, but if you adhere to the above suggestions,
you wil l be wel l on the way to generating efficient code.

C 4 A PPENDIX C

APPENDIX D 0

Appendix D

Assembly Language Subroutines

BASIC-80 provides two methods for calling assembly language subroutines from
a BASIC-80 program. The f i rst method uses the USR function, wh ich a l lows
assembly language subroutines to be called in the same way BASIC-80's intrinsic
functions are called. The second method uses the CALL statement, which gener
ates the same calling sequence as the Microsoft FORTRAN, COBOL, and BASIC
Compilers.

Since assembly language subroutines bypass some of the built-in safeguards of
BASIC-80, calling assembly language subroutines renders BASIC-80 vulnerable
to and defenseless against the errors in those subroutines. Therefore, write your
subroutines with caution.

D-2 APPENDIX D

MEMORY ALLOCATION

When using assembly language subroutines with BASIC-80, an important con
sideration is memory space allocation. Memory space must be set aside for an
assembly language subroutine before it can be loaded.

During in i t ia l ization, enter the highest memory location minus the amount of
memory needed for the assembly language subroutine(s). The /M switch can be
used during in i t ia l ization to set the top of memory. (See Chapter One, "System

Introduction and General Information," for more information about the ini t ial i
zation procedure. j BASIC-80 uses all memory available from its starting location
up, so only the topmost locations in memory can be set aside for user sub
routines.

After an assembly language subroutine is called, the stack pointer is set up for
eight levels (16 bytes) of stack storage. If more stack space is needed, BASIC-80's
stack can be saved and a new stack set up for use by the assembly language
subroutine. BASIC-80's stack must be restored, however, before the program
returns from the subroutine.

The assembly language subroutine may be loaded into memory by means of the

CP/M system monitor, or by us ing the BASIC-80 POKE statement. Assembly
language subroutines may also be assembled with the MACRO-80 assembler and
loaded using the LINK-801inking loader. (These programs are not provided with
BASIC-80, they must be purchased separately.)

A PPENDIX D 0 - 3

USR FUNCTION CALLS

Before a USR function is called, the entry address for the USR subroutine must be
defined in a DEF USR statement.

DEF USR

(define entry address for USR subroutine)

Form:

The DEF USR statement is used to def ine entry points for up to 10 assembly
language subroutines.

The <dig it> is the number of the assembly language subroutine. <dig i t> may
be any number from 0-9. If <d ig i t> i s om i t ted, i t i t assumed to be 0.

The value of <expression) i s th e start ing address of the assembly language

subroutine. This address is assumed to be in d ec imal un less a special base
specifier character is used. Hexadecimal numbers are specified with the prefix
&H and octal numbers are specified with the prefix &0 or & .

DEF USR< digit> = <expression>

The format of the USR function call is :

USR[<digit)] (argument)

where <digit> is from 0 to 9 and the argument is any numeric or string expres
sion. <digit) s p eci f ies which USR subroutine is being called, and corresponds
with the digit suppl ied in the DEF USR statement for that subroutine. If <dig i t>
is omitted, USRO is assumed. The address given in the DEF USR statement
determines the starting address of the subroutine.

0 4 AP P ENDIX D

When the USR function call is made, register A contains a value that specifies the
data type of the argument that was given. The value in A w i l l be one of the

following:

Value in A T yp e o f A r g ument

Two-byte integer (two's complement)

String

Single-precision f loating point number

Double-precision f loating point number

Table D-1

Register Values Used to Specify Data Types.

I f the argument is a numeric data type, the [H,L] register pair wi l l po int to the
F loating Point Accumulator (FAC) where the argument is stored. i h e F A C
occupies eight bytes in memory — enough for a double-precision number.

APPENDIX D 0 5

NUMERIC STORAGE FORMAT

Integer Storage Format

An integer argument is stored as a 2-byte data value. The integer is stored in a
two's complement representation. (In the fo l low ing d i scussion, the F loat ing

Point Accumulator will be referred to as the FAC.) An integer argument will be
stored in the FAC as fol lows:

FAC-3 — Contains the lower 8 bits of the argument

(the least significant byte)

FAC-2 — Contains the upper 8 bits of the argument

(the most signif icant byte)

Single-Precision Storage Format

A single-precision argument is stored as a 4-byte data value. The first byte will be
the exponent. The exponent wi l l be stored in excess 128 (200 octal) notation.
This means that 200 (octal) represents an exponent of 0, 201 (octal) represents an
exponent of 1, 177 (octal) represents an exponent of -1, and so forth. A single
precision number wi l l be stored in the FAC as fol lows:

FAC-3 — Contains the lowest eight bits of the mantissa.

FAC-2 — Contains the middle eight bits of the mantissa.

FAC-1 — Contains the highest seven bits of the mantissa with leading 1

suppressed (implied). Bit 7 is the sign of the number (O=positive,
1 = negative).

FAC — Contains the exponent stored in "excess 128" (200 octal) format

Double-Precision Storage Format

A double-precision argument is stored using the same format as the single
precision number, only f our m ore by tes are used to s tore the mant issa. A
double-precision number is stored in the FAC in the same manner as a single

precision number, except:

FAC-7 through FAC-4 contain four more bytes of the mantissa (FAC-7
contains the lowest eight bi ts).
(least significant).

0 6 A PPENDIX D

STRING STORAGE FORMAT

If the argument is a string, the [D,E] register pair points to three bytes called the
"string descriptor" . Byte 0 of the str ing descriptor contains the length of the

string (0 to 255). Bytes one and two, respectively, are the lower and upper eight
bits of the string starting address in string space.

CAUTION: If the argument is a string literal in the program, the string descriptor
will point to the string within program text where the string appears. Be careful
not to alter or destroy your program this way. To avoid unpredictable results, add
+"" to the str ing l i teral in the program.

Example:

A$ = " BASIC — 80 II + l l11

This wil l force BASIC-80 to copy the str ing l i teral into str ing space and wi l l

prevent alteration of program text dur ing a subroutine call .

Data Type Conversions

Usually, the value returned by a USR function is the same type (integer, string,
s ingle-precision or double-precision) as the argument that was passed to i t .
However, call ing the MAKINT subrout ine returns the integer in [H ,L] as the
value of the funct ion, thus forcing the value returned by the funct ion to be
integer.

To execute MAKINT, use the following sequence to return from the subroutine:

MAKINT E QU
PUSH

LHLD
XTHL

105H
H
MAKINT

;address of MAKINT for CP/M

; save va l u e t o be r e t u r n e d
; get address of MAKINT subroutine

; save r e t u r n o n st a c k a n d
; get back [H , L]
; retu r nRET

Also, the argument of the funct ion, regardless of its type, may be forced to an
integer value of the argument in [H ,L]. Execute the fol lowing subrout ine:

F RCINT E A U 103H
LXI H

H

FRCINT

;address of FRCINT for CP/M

; get address of subroutine

;continuation

; place o n s t a c k
;get a d d r es s o f FR CI NT

P.USH
LHLD
PCHL

APPENDIX D 0 7

CALL STATEMENT

BASIC-80 user function calls may also be made with the CALL statement. The
calling sequence used is the same as that in Microsoft's FORTRAN, COBOL and
BASIC compilers.

The general format of the CALL statement is:

CALL <variable name) [(argument list)]

<variable name> is assigned an address that is the starting point in memory of
the assembly language subroutine. The address should be assigned to <variable
name> before a CALL statement is executed. <variable name> may not be an
array variable name. <argument l ist> contains the arguments that are passed to
the assembly language subroutine.

A CALL statement with no arguments generates a simple "CALL" instruct ion.
The corresponding subroutine should return via a simple "RET." (CALL and
RET are 8080/8085/Z80 opcodes — consult an 8080/8085/Z80 reference manual
for details.)

A subroutine CALL with arguments results in a somewhat more complex call ing
sequence. For each argument in the CALL argument list, a parameter is passed to
the subroutine. That parameter is the address of the low byte of the argument.
Therefore, parameters always occupy two bytes each, regardless of data type.

The method of passing the parameters depends upon the number of parameters
to pass:

A. I f the number of parameters is less than or equal to 3, they are passed
in the registers. Parameter 1 will be in HL, 2 in DE (if present), and 3 in

BC (if present).

B. I f t h e n u mber of parameters is greater than 3, they are passed as
follows:

1 . Parameter 1 in HL ,

2. Parameter 2 in DE.

3. Parameters 3 through n in a contiguous data block. BC wil l point
to the low byte of this data block (i.e., to the low byte of parameter
3).

Note that, with this scheme, the subroutine must know how many parameters to
expect in order to f ind them.

0 8 APP ENDIX D

Conversely, the calling program is responsible for passing the correct number of
parameters. There are no checks for correct number or type of parameters.

If a subroutine expects more than three parameters, and needs to transfer them to
a local data area, there is a system subrout ine named $AT (l ocated in t h e
FORTRAN library, FORLIB.REL) which wi l l perform the transfer. If you do not
have FORTRAN, the $AT argument transfer subroutine is l isted on Page D-9

$AT is called with HL po in t ing to the local data area, BC pointing to the third
parameter, and A containing the number of arguments to be transferred (Le., the
total number of arguments minus 2). Your subroutine is responsible for saving
the first two parameters before call ing $AT.

For example, if a subroutine expects five parameters, it should use the following
general procedure:

SUBR: SHLD P1

XCHG

SHLD P2

MVI A,3

LXI H , P3

CALL $AT

;SAVE PARAMETER 1

;SAVE PARAMETER 2

;NO. OF PARAMETERS LEFT

; POINTER TO LOCAL AREA

;TRANSFER THE OTHER 3 PARAMETERS

[body of subroutine]

RET

DS

DS

DS

;RETURN TO CALLER

; SPACE FOR PARAMETER 1

; SPACE FOR PARAMETER 2

; SPACE FOR PARAMETERS 3 — 5

P1:

P2:

P3:

When parameters are accessed in a subprogram, remember that they are only
pointers to the actual arguments passed.

I t is entirely up to the programmer to insure that the arguments in the call ing
program correspond in number, type, and length with the parameters expected
by the subprogram.

APPENDIX D D 9

A listing of the argument transfer subroutine /AT f o l l ows.

ARGUMENT TRANSFER00100

00200
00300

00400

00500

00600
00700

00800
00900

01000

01100

01200

01300

0 1400

01500

01600
01700

01800

01900

02000

02100

02200

02300

AT1:

$AT:
ENTRY $AT
XCHG
MOV H, B

MQV L , C
MOV C,M

I NX H

MQV B ,M
I NX H
XCHG

MOV M, C
I NX H

MOV M ,B
I NX H

XCHG
DCR A

JNZ AT1

RET

;(B, CJ POINTS TO 3RD PARAMETER

;(H, LJ POINTS TO LOCAL STORAGE FQR PARAMETER 3

;(AJ CONTAINS THE g OF PARAMETERS TO XFER(TOTAL-2)

; SAVE (H,LJ I N (D , E J

; (H,L J = PTR TO PARAMETERS

; (B,CJ = PARAM ADR

;(H,LJ POINTS TO LOL,AL STORAGE

;STORE PARAM IN LOCAL AREA

;SINCE GOING BACK TO AT1

;TRANSFERRED ALL PARAMS?

;NO, COPY MORE

;YES, RETURN

INTERRUPTS

Assembly language subroutines can be wri t ten to handle interrupts. Al l in ter
rupt handl ing subroutines should save the stack, registers A-L, and the PSW.
Interrupts should always be re-enabled before returning from the subroutine,
s ince an interrupt automatically d isables all fu r ther in terrupts once i t i s re
ceived. It is also very important to choose the proper interrupt vector. With L'P/M
BASIC;-80, all interrupt vectors are free.

D-10 A PPENDIX D

APPENDIX E E-1

Appendix E

Random and Sequential I/O
Programming Examples

A directory appl ication, such as a computerized telephone book, is a practical
u se of random f i l es . The f o l l o w in g t w o s a m pl e p r o grams i l l u s t rate th i s
technique. The first program, "DIRECTORY", accepts the data required to build
the random file and a sequential directory fi le. The second program, "QUERY",
retrieves the data from the directory f i le .

To fully understand this method of random I/O, you should look at what infor
mation is contained in the directory fi le. The directory file has a key created from
p utting together the ind iv idual 's f i rst and last names. The other f ield in t h e
directory is the record number. The record number is used as an index, and
points to that particular ind iv idual 's entry in the random f i le .

When you run the "QUERY" program, you wil l supply the first and last name of a

person. If it is a valid name (that is, if it is an entry in the directory), the record
number wil l be used. This wil l po int to the proper record in the random fi le, so
the telephone number can be retrieved.

Note that these examples are NOT intended to be efficient examples of random
file usage. They are designed to show how to use the random and sequential fi le
'commands.

The example does not show how to add to the data in the f i le once it has been
created. This was done to keep the example simple. If you want to add more
names to the fi le, you wi l l need to modify or rewr ite the build program.

As it stands, the build program assumes that there is no pre-existing directory
f ile and starts build ing one. If it were changed to read in the old directory f i le,
then new entries could be added. (Lines 50 to 80 in the query program read the
file.)

E-2 APPENDIX E

If you want to do this, first open A: TABLI..EXT for input and read all of it into an
array such as NPf and SP. Then close the file, but reopen it for output before you
write out the directory.

Again, this example is not designed to be efficient. An efficient program would

put the di rectory as the f i rst or last few records of the f i le A :RFILE.EXT. In
addition, the directory would be kept in alphabetical order for efficient search
ing.

You wil l understand these examples best if you type them in and use them.

5 REM "DIRECTORY PROGRAM"

1.Q OPEN "Q" , 1 , " A : T A BLE.EXT"

20 OPEN "R " , 2 , " A : R F I L E . E XT"

30 FIELD g2 , 12 AS LN$, 9 AS SN$, 12 AS SR$, <operator types LINE FEED>
12 AS CI$, 1 0 A S S Z$, 2 AS CD$,2 AS EX$,2 AS PN$

LSET CI$ =N4$:LSET SZ$=N5$

40 REC =REC+1

5 0 LINE I N PUT " L AST NAME? " ; N 1$
60 LINE INPUT "FIRST NAME? ";N2$
70 LINE I N PUT " STREET ADDRESS? " ; N3$
8 0 L INE I N PUT " C I T Y ? " ";N4$
9 0 LINE I N PUT " STATE Z I P ? " ; N 5 $
100 INPUT P H ONE NUMBER (XXX, XXX XXXX) ; N'g, N1/0, N2/0
110 LSET L N$=N1$: LSET SN$ =N2$: LSET SR$ =N3$: <operator types LINE FEED>

120 LSET CD$=MKI$(N/) :L S E T E X$=MKI$(N1/) < operator types LINE FEED>

130 KEY$ =N1$+N2$
140 PRINT $ 1,KEY$;" , " , R EC
150 PUT 42 , REC
160 LINE INPUT "MORE INPUT (Y OR NO) "; MI$<operator types LINE FEED>

LSET PN$:MKI$ (N2/a)

: IF M I $= "Y" G OTO 4 0

170 CLOSE
180 END

APPENDIX E E-3

Line Number

20

10

Explanation

Open directory f i le and label i t "A :TABLE.EXT" .

Open a random f i le and label i t as "A :RFILE.EXT."

Reserve space in the random f i le buffer for d i rectory en30
tires.

LN$ = Last Nam e

SN$ = First N am e

SR$ = Street Address

CI$ = City

SZ$ =State and Zip Code

CD$ =Area Code

EX$ = Telephone Exchange
PN$ = Last 4 digits of

telephone number

40

110

120

130

50 - 100

Increment record number counter.

Accept input data.

Left-justify the str ing input for the random buffer.

Left-justify and convert i n tegers to str ing va lues. (You

must convert to s t r ings before PUTting va lues into the
buffer.)

Construct the key from f i rst and last names.

Output data to the directory f i le.

KEY$ = Key for directory
REC = Record number of random f i le

140

Put the record in the random buffer.150

Check for more data.160

170 Close all f i les.

End the program and return to MBASIC Command Mode.180

E-4 APPENDIX E

5 REM "QUERY PROGRAM"

10 OPEN " I " , 1 , " A :T A BLE.EXT"

2 0 OPEN " R I ' , 2 ,
I' A: RFILE. EXT I'

30 FIELD $2,12 AS LN$,9 AS SN$,12 AS SR$,12 AS CI$,(operator types LINE FEED>

10 AS SZ$,2 AS CD$,2 AS EX$,2 AS PN$
40 IF EOF(1) THEN GOTO 90
50 CT = CT+1
60 INPUT 41,NP$(CT),SP(CT)
70 GOTO 50
8 0 INPUT "NAME (LAST,FIRST) " ; L $, F $
90 KEY$ = L$+F$
1 00 FOR I / 0 =1 TO C T

1 10 IF K E Y$= NP$ (I /0) THEN GOTO 1 50
1 20 NEXT I / 0

130 PRINT "NO RECORD EXISTS":GOTO 170

1 40 GET $2,SP(I /)
150 PRINT LN$,SN$,CVI(CD$);" — ";CVI(EX$);" — ";CVI(PN$)

160 INPUT"MORE QUERIES? (Y OR N) ";M$:IF M$ ="Y" GOTO 90

170 CLOSE
180 END

APPENDIX E E-5

Line Number

20

30

Explanation

Open directory f i le for input .

Open the random f i le .

Reserve space in random f i le buffer.40

80

60

70

90

110

130

100

120

Check for end-of-file condit ion.

Increment directory record counter.

Read directory into str ing.

Loop back for EOF check.

Supply th e n am e fo r w h i c h y o u w a n t t h e t e l ephone
number.

Create key from the f i rst and last names.

Set up loop to search for record in the di rectory.

Compare input key to di rectory key.

If no match on f i rst comparison, try the next key.

I f no match is found after comparing al l keys, pr int the140

150

message.

If match is found, put the requested record in the random
buffer.

After converting the requested record back to integer, print160

it.

Check for more queries.170

180 Close all f i les.

End the program and return to Microsoft BASIC's prompt.190

E-6 APPENDIX E

INDEx I- 1

Index

ABS, 7-3
absolute value function, 7-3
accessing a random access file, 10-36

accessing a sequential f i le, 10-21
Adding Data to a Sequential Fi le, 10-23
Addit ional considerations for IF statements, 4-16
additional features of random access files, 10-37
address, entry for USR routine, 7-24
allocation of

string space, 3-3
stack space, 3-3

arccosine, 7-11
arcsine, 7-11
arctangent function, 7-3
Arithmetic Functions, 7-2
Arithmetic Operators, 2-8
Array

Declarator, 6-2
Subscript, 6-3
Vertical, 6-4

Arrays, 6-1
ASC, 5-5
ASCII to numeric conversion, 5-5
ASCII to string conversion, 5-5
Assembly Language

Programs, 7-24
subroutines, 7-25,E-1

assign value to a variable, 4-5
associate file number with f i le name, 10-5
ATN, 7-3
AUTO, 3-2
automatic insertion of del imi ters in d 'sk f i le, 10-18
automatic l ine numbering, 3-2
avoiding Input past end errors, 10-9

BASIC-80

Bad file mode, A-6,3-9
Bad file name, A-7
Bad file number, A-6
Bad record number, A-7
base specification characters, 7-24

Random I/O, 10-25
Sequential I/O, 10-11

BEL character, 5-5

branch to subroutine, 4-11
buffer, moving data to, 10-29
buffer, sequential f i le, 10-22
buffer, random file, 10-27

build string, 5-12
call overlay, 8-15
CALL statement, D-7
calling sequence, D-7
Can't continue, A-4,3-4

cancel and quit (Edit Mode), 9-10
CDBL, 7-4
CHAIN, 8-15
change contents of memory locatio
change sequence of random numbe
change text (Edit Mode), 9-8
character pending at terminal, 5-6
Character Set,1-12
check for end-of-file, 10-9

CHR$, 5-5
CINT, 7-4
CLEAR, 3-3

close disk data fi le, 10-8
CLOSE, 10-8
Command Mode Statements, 3-1

n, 7-15

r, 7-8i

COMMON, 8-16
concatenation, 5-3
conclude I/O activity to disk f i le, 10-8
Conditional Execution, 4-14,4-17
Conserving Memory Space, C-1
Constants, 2-2

Floating Point Constants, 2-2
Hex Constants, 2-3
Integer Constants, 2-2
Octal Constants, 2-3
Single and Double-Precision Numeric Constants, 2-3
String Constants, 2-2

Fixed Point Constants, 2-2

CONT, 3-4
continue execution after error trap, 8-3
continue program execution, 3-4
Control Characters,1-12
Control Statements, 4-7
Conversion, Type, 2-6

conversion from ASCII to numeric, 5-5
conversion from ASCII to string, 5-5
conversion from decimal to hexadecimal, 5-6

decimal to octal, 5-10
numeric values to string, 10-32
string to numeric form, 10-33
string to numeric value, 5-13
to double-precision, 7-4
to integer, 7-4
to single-precision, 7-5

COS, 7-5
cosecant, 7-11
cosine function, 7-5
cotangent, 7-11
CP/M extents, 10-9
CP/M file name, 10-5
Creating a Sequential f i le, 10-21
CSNG, 7-5
Current Line Edit ing, 9-11
CVD, 10-33
CVI, 10-33
CVS, 10-33

DATA, 4-18
data file, opening, 10-5
Data Type Conversion, 2-6
Data Type Defini t ion, 4-2
debugging aid, 8-14
decimal to hexadecimal conversion, 5-6
decimal to octal conversion, 5-10
declare variable

as double-precision, 4-3
as integer, 4-2
as single-precision, 4-2
as string, 4-3

DEF FN, 7-23
DEF USR, 7-24
default

extension, 3-14,3-8
printer l ine wid th , 7-22
record length, 10-5
terminal l ine wid th , 7-22

DEFDBL, 4-3
define entry address for USR routine, 7-24
define function, 7-23
defintion of data types, 4-2
DEFINT, 4-2
DEFSNG, 4-2
DEFSTR, 4-3
default dr ive, 10-5
DELETE, 3-4
delete current program, 3-10
delete program l ines, 3-4
Deleting Text (Edit Mode), 9-6
delimiters in sequential f i les, 10-13
DIM, 4-4
Dimension statement, 6-2
Direct statement in f i le, A-7
disable error trapping, 8-2
disable trace flag, 8-14
disk fi le, opening, 10-5
Disk File Operations, 10-1
Disk full, A-7
Disk I/O error, A-6
Division by zero, A-3,2-9
double-precision, 4-3
Double-Precision Storage Format, D-5
Duplicate defini t ion, A-3,4-4,6-3

convert

e raised to a power, 7-6
EDIT, 3-5
Editing, 9-1
ELSE, 4-14
enable automatic l ine numbering, 3-2
enable Edit Mode, 9-2
enable error trapping, 8-2

enable trace flag, 8-14
Ending and Restarting Edit Mode, 9-10
END, 4-7
enter Edit Mode, 3-5
entry address for USR routine, 7-24
EOF, 10-9
ERASE, 4-5
ERL variable, 8-5
ERR variable, 8-5
Error Codes, 8-6
error simulation, 8-4
Error Trapping, 8-2
ERROR, 8-4
examine contents of memory location, 7-15
Example of

Error Trap, 8-3
input from terminal, 4-19
INPUT$, 5-7
integer to string conversion, 10-32
LINE INPUT, 4-20
numeric input, 10-12
RESTORE statement, 4-24
WHILE/WEND loop, 4-17
BASIC-80 Variables Names, 2-5
FOR/NEXT loop, 4-9
IF statements, 4-14
Nested IF statement, 4-16
Nested Loops, 4-9
numeric output, 4-22

excess 128 storage format, E-5

exchange variable values, 4-6
execute program, 3-12
exit BASIC-80, 3-13
Expressions and Operators, 2-8
Expressions, 2-1
EXP, 7-6
extend line (Edit Mode), 9-5

generate error, 8-4
GET, 10-30
GOSUB, 4-11
GOTO, 4-12

numeric fields, 8-9

output, 8-8
output errors, 8-13
string fields, 8-8

formatting characters, 8-7
FRE, 7-13
function, user-defined, 7-23
Functional Operators, 2-14
Functions, 7-1

hack and insert (Edit Mode), 9-6
hard copy device output, 4-21

HEX$, 5-6
high-order byte, 7-18
hints, programming, C-1
hyperbolic cosecant, 7-11

FIELD, 10-27
Field overflow, A-6,10-27
fields in sequential f i les, 10-13
File already exists, A-6
File already open, A-6
File Management Statements, 10-4
File Manipulation Commands, 10-2
File not found, A-6
FILES, 3-6
Finding Text (Edit Mode), 9-7
FIX, 7-6
FOR without NEXT, A-5
FOR/NEXT, 4-8
formatted

cosine, 7-11
cotangent, 7-11
secant, 7-11

sine, 7-11
tangent, 7-11

I-4 INDEx

I/O port, monitor ing of, 7-21
I/O port, input from, 7-13
I/O Statements (Non-Disk), 4-18
IF/THEN/ELSE, 4-14
Illegal direct, A-3
I llegal function call , A-2
illegal input, 4-19
incremental value of loop counter, 4-8
infinite l ine wid th, 7-22
initial value of loop counter, 4-8
initial ize variables, 3-3
INKEY$, 5-6
INP, 7-13
INPUT, 4-19
INPUT¹ , 10-11
INP UT$,5-7
input

byte from I/O port, 7-13
data from sequential f i le, 10-11
entire line from sequential f i le, 10-16
entire line, 4-20
from terminal, 4-19
past end, 10-9

insert (Edit Mode), 9-4
insert remark, 4-6
inserting del imeters in sequential f i les, 10-17
Inserting Text (Edit Mode), 9-4
Installation Guide, 1-2
INSTR, 5-8
Integer, 4-2
Integer Division, 2-9
Integer Storage Format, D-5
Internal error, A-6

INT, 7-7
Invalid Input, 4-19
inverse cosine, 7-11
inverse sine, 7-11
Initial ization of BASIC-80, 1-8
invoke assembly language subroutine, 7-25
invoking Edit Mode, 9-2

largest record number, 10-10
least significant byte (LSB), 7-18
LEFT$, 5-8
left-justify and place in random buffer, 10-29
LEN, 5-9
length of f i le, 10-9
LET, 4-5
Line buffer overflow, A-5
Line Format, 1-9
LINE INPUT, 4-20
LINE INPUT¹ , 10-16
Line numbers, 1-10
line printer, outputt ing data to, 4-21

list line (Edit Mode), 9-9
list names of fi les, 3-6
list program on l ine pr inter, 3-7
list program on terminal, 3-7
listing a program, 3-7
LIST, 3-7
LLIST, 3-7

load and execute program, 3-13
load overlay, 8-15
load program file from disk, 3-8

LOAD, 3-8
LOC, 10-10
LOF, 10-9

LOG, 7-7
Logical Operators in Relational Expressions, 2-14
Logical Operators, 2-11

logical record size, 10-27
logical records, 10-27
loop counter, 4-8
loop, 4-8
low-order byte, 7-18

LPOS, 7-14
LPRINT, 4-21
LSET, 10-29

Input past end, A-7,10-19

INDEx I-5

make numeric value into spring, 10-32
Manual Scope, 1-7
Mathematical functions, 7-11
Matrix

maximum record number, 10-10

(

Addition, 6-8
Input Subroutine, 6-6
Manipulation, 6-6
Multip l ication, 6-8

Memory Al location D-2
memory location, examining contents of, 7-15
memory space conservation C-1
MERGE, 3-9
merge programs, 3-9
MID$ function, 5-9

MID$ statement, 5-10
minimum subscript, 6-3
Missing operand, A-5

MKD$, 10-32
MKI$, 10-32
MKS$, 10-32
mode string, 10-5
M odes of Operation, 1-9
Modulus Arithmetic, 2-9
monitor port, 7-21
most significant byte (MBS), 7-18
move data to random buffer, 10-29

Moving the Cursor (Edit Mode), 9-3
Multi-dimensional arrays, 6-5
multi-dimensional array subscripts, 6-5
multiple statements in an IF, 4-14

OCT$, 5-10
ON ERROR GOTO, 8-2

ON/GOSUB, 4-13
ON/GOTO, 4-13
one-dimensional arrays, 6-4
ON, 4-13

open disk data fi le, 10-5
OPEN, 10-5
Operator

Arithmetic, 2-8
Logical, 2-11
Functional, 2-14
Relational, 2-10

Option Base statement, 6-3
OPTION BASE, 4-4
Other Edit Mode Features, 9-11
Out of data, A-2,4-23
Out of memory, A-2
Out of string space, A-3,3-3
output byte to I/O port, 7-15
output data to l ine pr inter, 4-21
output data to terminal, 4-25
Overflow, A-3,2-9,7-4,7-6
Overlay Management, 8-15

passing variables to a chained program, 8-16

PEEK, 7-15

pending character at terminal, 5-6
POKE, 7-15
port, output to, 7-15
port, input from, 7-13
port, monitoring of, 7-21
POS, 7-16
Precedence of Ari thmetic Operators, 2-8
Preparing the Diskette 1-8
print banks, 7-16
print l ine number as its executed, 8-14'

natural logarithm base value, 7-6
natural logarithm funct ion, 7-7
Nested IF statements, 4-16
Nested Loops, 4-8
NEW, 3-10
NEXT without FOR, A-1,4-10
NEXT, 4-8
No RESUME, A-4

NULL, 7-14
numeric fields, formatted, 8-9
Numeric Input (from sequential disk file), 10-12
Numeric Storage Format, D-5

PRINT¹ U SING, 10-17
Print Positions, 4-21
PRINT USING, 8-8

print zones, 4-21
printed l ine longer than terminal w id th, 4-21

I-6 INDEx

RESET, 3-12
RESTORE, 4-24
RESUME, 8-3
RESUME without error, A-4,8-3
return

printer l ine wid th , 7-22
printing data on the l ine pr in ter, 4-21
printing numeric values, 4-22
program edit ing, 9-1
Program Statements, 4-1
Programming Hints, C-1

prompt string, 4-19
protected files, 10<f

random access

Protected File, 3-14
PUT, 10-31

file, creation of, 10-34
record size, 10-5
Statements, 10-26
Techniques, 10-34

return substring, 5-9

address of FIELD buffer, 7-20
address of variable, 7-18
amount of free memory, 7-13
current cursor position, 7-16
current record number, 10-10
from subroutine, 4-11
leftmost characters, 5-8
length of str ing, 5-9
number of records, 10-9
number of sectors accessed, 10-10
numerical representation, 5-13
position of pr int head, 7-14
rightmost characters, 5-11
string of spaces, 5-11
string representation, 5-12

RETURN without GOSUB, A-2
RETURN, 4-11
RIGHT$, 5-11
right-justify and place in random buffer, 10-29

RND, 7-8
round to integer, 7-6
RSET, 10-29
RUN, 3-13

random number generator, 7-8
random record, reading, 10-30
random record, wri t ing, 10-31
RANDOMIZE, 7-8
range of a FOR/NEXT loop, 4-8
READ, 4-23
read one character from keyboard, 5-6
read random record, 10-30
read values from DATA statement, 4-23
reading a random access file, 10-34
record length, 10-5
Redo from start, 4-19

register values, D-4
Relational Expressions using Logical Operators, 2-14
Relational Operators, 2-10
REM, 4-6
renumber program l ines, 3-11
RENUM, 3-11
repetive execution loop, 4-8
replace portion of a string, 5-10
Replacing Text, 9-8
reserved words, A-8
reset data pointer, 4-24

save changes and exit (Edit Mode), 9-9
SAVE, 3-14
Saving Execution Time, C-1

Scalar Mult ip l i cation, 6-7
scaled format, 4-22
search (Edit Mode), 9-7
search and " kill "(Edit Mode), 9-7
search for substring, 5-8
secant, 7-11
seed random number generator, 7-8
send special character to terminal, 5-5
Sequence of Execution, 4-7

INDEx I-7

sequence of random numbers, 7-8
Sequential

Access Statements, 10-10
Access Techniques, 10-21
data pointer, 10-11
disk fi le, wri t ing to, 10-16
disk file, reading from,10-11
file, accessing a, 10-22

file, I/O buffer, 10-22

sequential f i le, creation of, 10-21
sequential f i le input , 10-12

String Storage Format, D-h
String too long, A-4
STRING$, 5-12
Strings, 5-1
string, 4-3
Subscript out of range, A-3,4-4,6-2

substring search, 5-8
suspend execution, 4-14
SWAP, 4-5
Syntax error, A-2,4-3,10-5
SYSTEM, 3-14
System Software Requirements,1-7

set
l ine width 7-22
random access record size, 10-5
random file buffer, 10-27

TAB 7-17
tab carriage, 7-17
tangent function, 7-10
TAN, 7-10
terminal

set-up array, 4-4
SGN, 7-9
sign of expression, 7-9
simulate occurrence of error, 8-4

sine function, 7-10
Single-Precision Storage Format, 0-5
single-precison, 4-2
SIN, 7-10
SPACE$, 5-11

SPC, 7-16
Special Features, 8-1
Special functions, 7-12

SQR, 7-10
square root function, 7-10
stack space allocation, 3-3
STEP, 4-8
STOP, 4-14
store constants, 4-18
STR$, 5-12
stream of ASCII chararacters, 10-10

string

line width, 7-22
value of loop counter, 4-8
width, 4-21

terminators in sequential f i les, 10-13
text insertion (Edit Mode), 9-4
THEN, 4-14
'I'oo many fi1es, A-7

Trace Flags, 8-14
Transposition of a Matr ix , 6-7
trapping error, 8-2
TROFF, 8-14
TRON, 8-14
truncate supplied argument, 7-6
Type Conversion, 2-h
Type mismatch, A-4,4-5,7-23

uncondit ional branch, 4-12
Undefined l ine number, A-3,4-16,4-12,8-2
Undefined user function, A-4
unmatched WEND, 4-17
unmatched WHILE, 4-17
Unprintable error, A-5,8-4
unscaled format, 4-22
user-defined errors, 8-4
User-Defined Functions, 7-23

USR function calls, 0-3
USR function data type conversions, D-h
USR, 7-25

arrays, 6-5
fields, formatted, 8-8
formula too complex, A-4
Functions, 5-4
Input (from sequential disk file), 10-14
Input/Output, 5-2
of spaces, 5-11
Operations, 5-3
space allocation, 3-3

I-8 INDEx

WHILE without WEND, A-5,4-17
WHILE/WEND, 4-17

WIDTH LPRINT, 7-22
WIDTH, 7-22
write

data to sequential disk f i le, 10-19
directory information to disk, 3-12

program to disk, 3-14
random record, 10-31
to sequential disk f i le, 10-16

VAL, 5-13
variables, 2-4
Variable Names and Declaration Characters, 2-4
variable pointer, 7-18
VARPTR, 7-18
Vertical Arrays, 6-4

WRITE, 4-25
WRITE¹ , 10-19

WAIT, 7 -21

WEND without WHILE, A-5,4-17
WEND, 4-17

