
COPYRIGHT 1980 FairCom. All Rights Reserved.

MICRO B+ Function Calls: Language C Implementation
O ctober 1 9 8 0

The type and storage declarations used in the following material
are based on the Whitesmiths Ltd implementation of t h e l an g uage
ff C TI

VOID intree(nbufs,nkeys)

C OUNT nbuf s , n k e y s ;

intree initializes the MICRO B+ routines for use with nbufs
I /O buffers, an d n ke y s d is t i nc t i nde x f il e s . I n t h e
remaining functions, the references to the index files (or
keys) is done via the numbers 0 to nkeys-l. intree m ust b e
called prior to any other functions.

COUNT access(keyno,idxnam,keylen,keytyp,keyval,nsectr,prdsup)

COUNT keyno,keylen,keyval,nsectr;
T EXT * i d x n am,k e y t y p , p r d s u p ;

access opens and/or creates the index file with name pointed
to by idxnam and assigns keyno as its refence number: 0
keyno < nkeys. keylen gives the length of key values in
bytes . k ey t y p == ' a' f or alphanumeric keys and keytyp == ' i '
for two-byte integer key values. Additional key types can be
added. keyval specifies the maximum number of key values per
B-Tree node. keyval must be an even integer in the range 0
k eyva l <= 128. nsectr specifies the number o f 1 2 8 b y t e
sectors comprising each index file record. Note that each
index file record holds one B-Tree node. Currently, 1
n sect r <= 4 . p r d s u p = = 'y' forces the leaf nodes of the B

Trees to be linked in both directions enabling sequential
access either forwards or backwards. prdsup ! = 'y ' d i sa bl e s
this feature; hence only forward sequential access is sup
p ort e d .

Assuming that the pointers associated with each key value
will require two bytes (see addkey), the maximum value for
keyval is given by the largest even integer less than or
equal t o :

((nsec t r * 1 2 8) - 12) / (key l en + 2)

COPYRIGHT 1980 FairCom. All Rights Reserved.

access returns the following:

1 if successful;
2 if keyno already assigned;

For previously created index files, access returns the fol
lowing values if the corresponding parameters do not agree
with the values used when the index file was created:

6 nsect r
7 prdsup

3 keylen
4 keytyp
5 keyva l

COUNT addkey (k e y n o , e n t r y , pn t r)

COUNT keyno ;
TEXT *e n t r y ;
POINTER pn t r ;

addkey inserts the key value pointed to by entry into the
index file referenced by keyno. The value of pntr is asso
ciated with the key value. Presumably, pntr represents a
relative record number in a data file which contains the key
value. addkey assumes that the key value pointed to by entry
is of the exact length specified by keylen in access. Note
that '%0' is legitimate character in a key value string; it
is not interpreted as a string terminator. These assumptions
about key values are made by all the MICRO B+ func tions.

PQTgggg r e f e r s t o e i t h e r t wo or f ou r b y t e in teg e r s ,
depending on the implementation specifications. Note that it
is not advisable to pass a value of zero (0) for pntr since
some functions return a zero to indicate that a key value
h as no t be e n f oun d .

addkey returns the following:

0 if entry already exists in the index file;
1 if successful.

POINTER rtriev(keyno,entry)

COUNT keyno ;
TEXT *e n t r y ;

rtriev searches the index file referenced by keyno for an
exact instance of the key value pointed to by entry. rtriev
returns the associated pointer (see addkey) for the key
value if successful, or zero if the key value is not found.

COPYRIGHT 1980 FairCom. All Rights Reserved.

POINTER search(keyno,target, entry)

COUNT keyno ;
TEXT * t a r g e t , * en t r y ;

search searches the index file referenced by keyno for the
first key value greater than or equal to the value pointed
to by target. If such a value is found, the string pointed
to by entry is set equal to the key value found in the index
file and search returns its associated pointer. If no such
key value is found in the index, then the first character
pointed to by entry is set to ' %0' , a n d se a r c h r e t u r n s a
zero.

POINTER nxtkey (keyno, entry)

COUNT keyno ;
TEXT *en t r y ;

nxtkey r e turns the pointer associated with the n ext k e y
value in the index file r ef e r e n ce d b y key n o , an d t he s t r i n g
pointed to by entry is set equal to the next key value. If
no next key value exists, then nxtkey returns a zero an d t he
character pointed to by e n try is set to '%0'. Note t h a t
"next" is taken in the c o ntext of i n creasing k ey v a l u e
order. Note also that before the first call to nxtkey will
work, a call to either rtriev or search for the same index
file must have been made.

POINTER prv k e y (k e y n o , e n t r y)

COUNT keyno ;
TEXT *en t r y ;

prvkey returns the pointer associated with the previous key
value in the index file referenced by keyno, and t h e s t r i ng
pointed to by entry is set equal to the previous key value.
If no previous key value exists, t hen p r v key r e t u r n s a zer o
and the character pointed to by entry is set t o '%0'. As
with nxtkey, prvkey will not work unless a ca l l h a s b e e n
made previously to either rtriev or search for the same

index file. Note that calls to rtriev, sear ch , n x t k e y , a n d
prvkey can be freely intermixed both for the same index file
and for different index files.

COPYRIGHT l980 FairCom. All Rights Reserved.

prvkey will terminate catastrophically if prdsup ! = ' y ' (s e e
access) .

COUNT delchk(keyno,entry,pntr)

COUNT keyno ;
TEXT *en t r y ;
P OINTER pnt r ;

delchk re m oves the key value pointed to by entry from the
index file referenced by keyno. Before the removal is made,
the pointer associated with the index entry is compared with
pntr. If they do not ag ree, no removal takes place and
delchk returns a value of two (2). If they do agree, delchk
returns a one (1) to signal a successful deletion. I f t h e
value pointed to by entry is not found in the index, delchk
r etu rn s a ze r o (0) .

POINTER delbld (keyno, entry)

COUNT keyno;
TEXT *en t r y ;

delbld behaves like delchk except that the deletion is
performed blind — that is no verification of the associated
pointer is performed. If the key value pointed to by entry
is found in the index, the removal is performed and delbld
returns the value of the associated pointer. If the key
value is not found, delbld returns a zero.

POINTER idxent(keyno)

COUNT keyno;

idxent returns the number of key values in the index file
r efe r e n ce d b y k ey n o .

C OUNT tr e h g t (ke y n o)

COUNT keyno •

trehgt returns the height of the B-Tree stored in the index
file referenced by keyno. A value of zero implies an empty
t r ee .

COPYRIGHT 1980 FairCom. All Rights Reserved.

C OUNT rs t r c t (key n o)

COUNT keyno ;

rstrct closes the index file referenced by keyno. If the
k eyno ha s n o t b e e n ac c e s s ed , r s t r c t c aus e s no a ct i o n a n d
returns a value of zero (0). If successful, rstrct returns a
v alue o f one (1) .

VOID intseq(keyno,maxent)

C OUNT keyno ,maxen t ;

intseq is used to initialize the virgin index file re
ferenced by keyno prior to sequentially adding key values
(and their associated pointers) to the index file. access
must be called prior intseq.

maxent specifies the maximum number of key values to be
loaded into each leaf node of the B-Tree. maxent must be in
t he r a n g e : k eyv a l / 2 <= max en t <= keyva l (see ac ce s s) .

COUNT seqkey (e n t r y , pn t r)

TEXT *e n t r y ;
POINTER pn t r ;

seqkey adds the key value pointed to by entry to the index
file previously referenced in intseq. seqkey returns a one
(1) for a successful addition or a zero (0) if the key value
is out of order (i.e., less than or equal t o any p r ev i ous
entry). Note that calls to seqkey cannot be intermixed for
different index files.

COUNT bld i n d ()

Once all the s e quentially ordered key values have been
e ntered via s e q k ey, a c al l to b ld in d m u s t b e made t o
actually construct the B-Tree. bldind returns the height of
the resulting B-Tree structure. Note that rstrct must be
called to properly close the index file.

