
TECHNICAL INFORMATION
EXPLANATION

This technical information portion of your CP/M-85 documentation
package is intended for users who wish to modify the CP/M Operating
System or examine the internal components of the system.

Knowledge of this information is not necessary for most CP/M-85 users
who only wish to use CP/M resident commands and to run uti l i t ies
and application programs with the CP/M system.

This technical information consists of the following documentation
items bound within three booklets:

• CP/M 2 System Interface: Chapter 5
• CP/M 2 Alteration: Chapter 6
• Ap p endix A: The MDS Basic I/O System (BIOS)
• Ap p endix B: A Skeletal CBIOS
• Ap p endix C: A Skeletal GETSYS/PUTSYS Program
• Ap p endix D. The MDS-800 Cold Start Loader for CP/M 2
• Ap p endix E: A Skeletal Cold Start Loader
• Ap p endix F: CP/M Disk Definition Library
• Ap p endix G: Blocking and Deblocking Algorithms.

This technical information was written by Digital Research Corporation,
the original producers of CP/M Version 2. The source listings in the
appendices are for il lustration purposes only and do not correspond
to the modules actually supplied with your system.

The CP/M-85 software products you have purchased are modifications
of CP/M Version 2. In these modifications, the Basic Input/Output Sys
tem (BIOS) has been customized for your hardware by Zenith Data
Systems and Heath. Source listings for the actual modules used by
your system are contained on the disks supplied with the system.

CP M'
OPERATING SYSTEM

llSVVUAI.

CP/I 2 System Interface
Chapter 5

>< DIGITAL RESEARCH"
P.O. Box 579
Pacific Grove, California 93950

595-2838

COPYRIGHT

Copyright ae 1976, 1977, 1978, 1979, and 1982 by Digital Research. All rights reserved.
No part of th is publication may be reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or computer language, m any form or by
any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise,
without the prior wnt ten permission of Digital Research, Post Office Box 579, Pacific
Grove, California 93950.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantabihty or f itness for
any particular purpose. Further, Digital Research reserves the ngh t to revise this pubhca
tion and to make changes from t ime to t ime in the content hereof wi thout obhgation of
Digital Research to notify any person of such revision or changes

TRADEMARKS

CPIM is a registered trademark of Digital Research. MPIM, MAC, and SID are trade
marks of Digital Research. Z-80 is a trademark of Zilog, Inc

First Printing July 1982

CP/M 2 System Interface

5.1 In troduction
This chapter describes CP/M, release 2, system organization including the structure

of memory and system entry points. The intention is to provide necessary information
required to write programs that operate under CP/M and that use the peripheral and disk
I/O Facilities of the system.

CP/M is logically divided into four parts, called the Basic I/O System (BIOS), the Basic
Disk Operating System (BDOS), the Console Command Processor (CCP), and the
Transient Program Area (TPA). The BIOS is a hardware-dependent module that defines
the exact low level interface with a particular computer system that is necessary For
penpheral device I/O. Although a standard BIOS is supphed by Digital Research, explicit
instructions are provided For field reconFiguration oF the BIOS to match nearly any
hardware environment (see Chapter 6). The BIOS and BDOS are logically combined into
a single module with a common entry point and referred to as the FDOS. The CCP is a
distinct program that uses the FDOS to provide a human-oriented interface with the
mformation that is cataloged on the backup storage device. The TPA is an area of memory
(i.e., the portion that is not used by the FDOS and CCP) where various nonresident
operating system commands and user programs are executed The lower port ion of
memory is reserved for system information and is detailed in later sections. Memory
organization of the CP/M system is shown below

High
Memory
FBASE:

FDOS (BDOS+BIOS)

CCP
CBASE:

TPA
TBASE:

System Parameters

BOOT

S9ALL INFORIVIATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

The exact memory addresses corresponding to BOOT, TBASE, CBASE, and FBASE
vary from version to version and are described fully in Chapter 6. All standard CP/M
versions, however, assume BOOT = 0000H, which is the base of random access memory.

The machine code found at location BOOT performs a system "warm start,"which loads
and initializes the programs and variables necessary to return control to the CCP. Thus,
transient programs need only jump to location BOOT to return control to Cp/M at the
command level Further, the standard versions assume TBASE = BOOT+0100H, which is
normally location 0100H. The p n ncipal entry po int t o t h e F DO S i s a t l ocation
BOOT+0005H (normally 0005H) where a jump to FBASE is found. The address field at
BOOT+0006H (normally 0006H) contains the value of FBASE and can be used to
determine the size of available memory, assuming that the CCP is being overlayed by a
transient program

Transient programs are loaded into the TPA and executed as follows. The operator
communicates with the CCP by typing command lines following each prompt. Each
command line takes one of the forms:

command

command file1

command fi/e1 fi/e2

where "command" is either a built-m function such as DIR or TYPE or the name of a
t ransient command or program. If the command is a built-in function of CP/M, i t is
executed immediately. Otherwise, the CCP searches the currently addressed disk for a
file by the name

command COM

If the file is found, it is assumed to be a memory image of a program that executes in the
TPA and thus implicitly onginates at TBASE in memory. The CCP loads the COM file
from the disk into memory startmg at TBASE and can extend up to CBASE.

If the command is followed by one or two file specifications, the CCP prepares one or
two file control block (FCB) names in the system parameter area. These optional FCBs are
in the form necessary to access files through the FDOS and are descnbed in the next

The transient program receives control from the CCP and begins execution, usmg the
I/O facihties of the FDOS The transient program is "called" from the CCP Thus, it can
simply return to the CCP upon completion of its processing or can lump to BOOT to pass
control back to CP/M In the f i rst case, the transient program must not use memory
above CBASE, while in the latter case, memory up through FBASE-1 can be used.

The transient program can use the CP/M I /O f ac i l i t ies to communicate with the
operator's console and penpheral devices, including the disk subsystem The I/O system
is accessed by passing a function number and an information address to CP/M through
the FDOS entry point at BOOTF0005H. In the case of a disk read, for example, the
transient program sends the number corresponding to a disk read, along with the address
of an FCB to the CP/M FDOS. The FDOS, in turn, performs the operation and returns
with either a disk read completion mdicat ion or an error number indicating that the disk

section

read was unsuccessful.

90 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

5.2 Operating System Call Conventions
This sect ion p r i i v iJ< S JCt i<le<i inf ii rmat l r l l< l i l t ' pe i ' f u r m i n a i lit ci t upe i i t i i<R system

i i l ls f rom user proprams M <ny u f thc f u nc t ions l i . teJ beluw, however, ,<i <,<ries.cd

<i<ill e simply t hruui'h the I 0 m <i ru libra < y pi uv tiled with the MAC' n< i<1'u i.. crit ble<,1<1<f
listed <n the Dia it if Reseat ch m inu if < ntit leJ, MAC A t <<i, A , ai l I i I i vi i i i< A ' I < «< il <i I

/Ipt'l ie<i<en (i<I<I
CpiM fir<I<ties that sic av <<fable f<ir « c c s b y t t i n » < nt p tup<,ims I <II <it to tivu Rcni < il

iatca<lrli's s<iitple Jev i ic I ' 0 ii<J J l . k fi l i ' I 0 T l i<' s<l<lf I<' J<'v<i<' ut <'I i l l u<1 u l i h < I t

Read a Console Character

Wnte a Console Character

Read a Sequential Tape Character

Write a Sequential Tape Character

Wnte a List Device Character

Get or Set I/O Status

Print Console Buffer

Read Console Buffer

Interrogate Console Ready

I h< I'ITOS < p< i,itiuns th i t p i < fur m J»k I L) ,<< c

Disk System Reset

Dnve Selection

File Creation

File Open

File Close

Directory Search

File Delete

File Rename

Random or Sequential Read

Random or Sequential Write

Interrogate Available Disks

Interrogate Selected Disk

Set DMA Address

Set/Reset File Indicators

9tALL INFORMATION PRESENITD HERE IS PROPRIETARY TO DIGITAL RESEARCH

As mentioned above, access to the FDOS functions is accompl ished by passing a
function number and information address through the pnmary point at location
BOOT+0005H In general, the function number is passed in register C w ith the info'rma
tiun,iddress in the dnuble byte pair DE Sinyle byte values are returned in register A, with
double byte values returned in HL (,i zero value is returned when the functmn number is
oilt ilf ranye). For reasons i!f compatibil i ty, register A = L and register B — H upon return
Ill il l cases. The user shiiuld note that the reyis ter passing conventions of CP/M agree
with those uf Intel's PL/M systems pruyramming languaye CV/M functmns and their
number~ are listed below.

0 S y s tem Reset
Cnn sole In pu t

2 C o n sole Output
3 R e ader Input
4 P u nch Output
5 L i s I O u t p i i t

7 C 'e t I/O Byte
t t S c t I /O By te

Vnnt Slnng

Direct C'unsule I/O

19 D e l ete File
20 R ead Sequential
21 Wr i t e Sequential
22 M a k e Fi le
23 R e n ame File
24 R e t u r n Login Vector
25 R e t u r n Cu r rent D isk
2o Set DMA Address
27 Ge t Addr(Alloc)
2II W ri t e Protect Disk
2o C e t R / 0 V e c t i ! r
30 S e t F i le At t r ibutes
31 (. et Addr(Disk P,irms)
32 S e t /Get User Code
33 R ead Random
34 W ri t e Random
35 C o m p ute File Size
3o Se t Random Record
37 R e set Dr ive
40 W r i t e Random with Zero Fill

(Functuins 2(I and 32 should be avoided in application pl ' i lgl !ms tu ma in tain upward
ioinpatibi l ity w i th CI ' /M)

U pon entry tu a t r ! n s ient p rogram, the CCP leaves the ~tack pointer set to t n
eight level stack,irea with the CCV return address pushed unto the stack, leaving seven
levels befuie nverf low occur~ A l thuuyh this st !ck is usually not used by 4 t ransient
pl(igl if ll (i e, n!ost tl i l l s ie l l tv i etl lrn tu the CCP thn !u yh 4 Iump to location OOOOH), it is
sufficiently large to mike CPiM system calls since the FDOS switches tu a local stack at
system entry The assembly language program segment below, for example,reads
ehi l i c ters cont inuously unti l an astensk isencountered, at which timecontrol returns to
the CCV (,issuming a standard CP/M system with BOOT = OOOOH)

10 Re,id Console Buffer
I I L e t C o n sole St,i tus
12 R e t u r n V e rs ion Number
i3 Re set D isk System
14 S e lect Disk
15 O p en Fi le
I o C l o~e File
17 S ei n . h h i r F i r s t

Se,irch tur Nex t

BDOS
CONIN

EQU
EQU

0005H
1

NEXTC
ORG
MVI
CALL
DPI
JNZ
RET
END

0100H
C,CONIN
BDOS

;STANDARD CP/M ENTRY
;CONSOLE INPUT FUNCTION

;BASE OF TPA
;READ NEXT CHARACTER
;RETURN CHARACTER IN (A>
;END OF PROCESSING/
;LOOP IF NOT
;RETURN TO CCP

NEXTC

92 ALL INFORMATION PRESENTED HERE 15 PROPRIETARY TO DIGITAL RESEARCH

CP/M implements a named file structure on each disk, providmg a logical organization
that allows any particular file to contam any number of records from completely empty to
the full capacity of the drive. Each drive is logically distinct with a disk directory and file

data area. The disk file names are in three parts: the drive select code, the filename
consisting of one to eight nonblank characters, and the filetype consisting of zero to three
nonblank characters. The filetype names the generic category of a particular file, while
the filename distinguishes individual files in each category. The filetypes listed below
name a few generic categories that have been estabhshed, although they are somewhat
arbitrary.

Assembler Source
Printer Listing
Hex Machine Code
Basic Source File
Intermediate Code
Command File

ASM
PRN
HEX
BAS
INT
COM

Source files are treated as a sequence of ASCII characters, where each "line" of the

source file is followed by a carriage-return line-feed sequence (ODH followed by 0AH).
Thus one 128-byte CP/M record could contain several lines of source text. The end of an
ASCII file is denoted by a control-Z character (1AH) or a real end-of-file returned by the
CP/M read operation. Control-Z characters embedded within machine code files (e g.,
COM files) are ignored, however, and the end-of-file condition returned by CP/M is used
to terminate read operations.

Files in CP/M can be thought of as a sequence of up to 65536 records of 128 bytes each,
numbered from 0 through 65535, thus allowing a maximum of 8 megabytes per file.
However, the user should note that although the records may be considered logically
contiguous, they may not be physically contiguous in the disk data area. Internally, all
files are divided into 16K byte segments called logical extents, so that counters are easily
maintained as 8-bit values. The division into extents is discussed m the paragraphs that
follow; however, they are not particularly significant for the programmer, since each
extent is automatically accessed in both sequential and random access modes.

In the Ble operations starting with function number 15, DE usually addresses a file
control block (FCB). Transient programs often use the default f i le control block area
reserved by CP/M at location BOOT+005CH (normally 005CH) For simple file opera
tions. The basic unit of file information is a 128-byte record used For all file operations;
thus, a default location for disk I/O is provided by CP/M at location BOOT+0080H
(normally 0080H), which is the initial default DMA address (see function 26). All direc
tory operations take place in a reserved area that does not affect wnte buffers as was the
case in release I, with the exception of Search First and Search Next, where compatibi/ity
is required

The FCB data area consists of a sequence of 33 bytes for sequential access and a senes

of 36 bytes m the case when the file is accessed randomly. The default FCB normally
located at 005CH can be used for random access files, since the three bytes starting at
BOOT+007DH are available for th is purpose. The FCB format is shown w i th t he
following fields

PLI
REL
TEX
BAK
SYM
$$$

PL/I Source File
Relocatable Module
TEX Formatter Source
ED Source Backup
SID Symbol File
Temporary File

(dr (ff (f2 (/ f g (t1 (t2 (t3 (ex 81 (82 rc,d0 (/ d n (cr (FO (rf (r2(
0 0 01 02 . . . 0 8 0 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 . . . 3 1 3 2 3 3 3 4 3 5

93ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

where

dr

S1

S2

ex

ff .../8

tt,t2,t3

drive code (0-16)
0 => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,

16=> auto disk select dnve P.

contam the file name in ASCII upper case, with
high bit = 0

contain the file type in ASCII upper case, with high
bit = 0 t l ' , t 2 ' , and t3 ' denote the bi t o f t h ese
positions,
t l ' = 1 = > Read/Only file,
t2' = I = > SYS file, no DIR list

contams the current extent number, normally set
to 00 by the user, but in range 0-31 during file I/O

reserved for internal system use

reserved for internal system use, set to zero on call
to OPEN, MAKE, SEARCH

record count for extent "ex," takes on values fromrc
0-127

dO...dn

cr

filled-in by CP/M, reserved for system use

current record to read or write in a sequential file
operation, normally set to zero by user

optional random record number in the range 0
65535, with overf low to r2, r0, r l const i tute a 16
bit value with low byte r0, and high byte rt

rd,r1,r2

Each file being accessed through CP/M must have a corresponding FCB, which
provides the name and allocation information for all subsequent file operations. When
accessing files, it is the programmer's responsibility to fill the lower 16 bytes of the FCB
and initialize the cr field. Normally, bytes 1 through 11 are set to the ASCII character
values for the file name and file type, while all other fields are zero.

FCBs are stored in a directory area of the disk, and are brought into central memory
before the programmer proceeds with file operations (see the OPEN and MAKE func
tions). The memory copy of the FCB is updated as file operations take place and later
recorded permanently on disk at the termination of the file operation (see the CLOSE
command).

The CCP constructs the f i rst 16 bytes of two opt ional FCBs for a t ransient by
scanning the remainder of the line following the transient name, denoted by filel and
file2 in the prototype command line described above, with unspecified fields set to ASCII
blanks. The first FCB is constructed at location BOOTF005CH and can be used as is for
subsequent file operations. The second FCB occupies the de ... dn portion of the first FCB
and must be moved to another area of memory before use. If, for example, the operator
types

PROGNAME B:X.ZOT Y.ZAP

94 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

the file PROC NAME COM is loaded mto the TPA and the default FCB at BOOT+005CH
is initialized to drive code 2, file name X, and file type ZOT The second drive code takes
the default value 0, which is placed at BOOT+006CH, with the File name Y placed into
location BOOT+006DH and f ile type ZAP located 8 bytes later at BOOT+0075H. All
remaining fields through cr are set to zero. The user should note again that it is the
programmer's responsibility to move this second file name and type to another area,
usually a separate file control block, beFore opening the File that begins at BOOT+005CH,
bee~use the open operation will overwrite the second name and type.

If no f i le names are speciFied in the ouginal command, the f ields beginning at
BOOT+OOSDH and BOOT+006DH contain blanks In all cases, the CCP translates lower
case alphabetics to upper case to be consistent with the CPIM file naming conventions

As an added convemence, the default buffer area at location BOOT+0080H is initial
ized to the command line tail typed by the operator followmg the program name. The first
position contains the number of characters, with the characters themselves following the
character count G iven the above command line, the area beginning at BOOT+0080H is
initialized as Follows:

BOOT+0080H.

+00 i 01 s02 a03+04+05+08 t07 +08+09 +A +B +C +D +E
E ' ' 'B ' " . 'X' ' . ' 'Z' 'O' 'T' ' ' 'Y' ' . ' 'Z' 'A' 'P'

where the characters are translated to upper case ASCII with uninit iahzed memory
following the last valid character Again, it is the responsibility of the programmer to
extract the information from this buFfer before any file operations are perFormed, unless
the deFault DMA address is explicitly changed

Individual functions are descnbed in detail in the pages that Follow.

Function O: System Reset

Entry Parameters:
R egister C: OO H

The system reset function returns control to the CPIM operating system at the CCP
level. The CCP reinitializes the disk subsystem by selecting and logging in disk drive A.
This function has exactly the same effect as a Iump to location BOOT

Function 1: Console Input

Entry Parameters:
R egister C: 0 1 H

Returned Value:
Register A: A S CI I Character

The console input function reads the next console character to register A. Graphic
characters, along with carriage return, line feed, and back space (ctl-H) are echoed to the

95ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

console. Tab characters (ctl-I) move the cursor to the next tab stop. A check is made for
start/stop scroll (ctl-S) and start/stop printer echo (ctl-P). The FDOS does not return to
the calling program until a character has been typed, thus suspending execution if a
character is not ready.

Function 2: Console Output

Entry Parameters:
R egister C: 0 2 H
Register E: A S CII Character

The ASCII character from regtster E is sent to the console device. As in function I ,
tabs are expanded and checks are made for start/stop scroll and printer echo.

Function 3: Reader Input

Entry Parameters:
R egister C: 0 3 H

Returned Value:
Register A: A S CI I Character

The Reader Input function reads the next character from the logical reader into
register A (see the IOBYTE definition in Chapter 6). Control does not return until the
character has been read.

Function 4: Punch Output

Entry Parameters:
R egister C: 0 4 H
Register E: A S CII Character

The Punch Output function sends the character from regtster E to the logtcal punch
device.

Function 5: List Output

Entry Parameters:
R egister C: 0 5 H
Register E: A S CII Character

The List Output functton sends the ASCII character in register E to the logical listing
device.

96 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Function 6i Direct Console I/O

Entry Parameters:
R egister C: 0 6 H
Register E: DFFH (input) or

char (output)

Returned Value:
Register A: c h a r or status

Direct console I/O is supported under CP/M for those specialized app/ications where
basic console input and output are required Use of this function should, in general, be
avoided since it bypasses all of CP/M's normal control character functions (e g., control-S
and control-P). Programs that perform direct I/O through the BIOS under previous
releases of CP/M, however, should be changed to use direct I/O under BDOS so that they
can be fully supported under future releases of MP/M and CP/M.

Upon entry to funct ion 6, register E either contains hexadecimal FF, denoting a
console input request, or an ASCII character. If the input value is FF, function 6 returns
A = 00 if no character is ready, otherwise A contains the next console input character.

If the input value in E is not FF, function 6 assumes that E contains a valid ASCII
character that is sent to the console

Function 6 must not be used in conjunction with other console I/O functions.

Function 7: Get I/O Byte

Entry Parameters:
R egister C: 0 7 H

Returned Value:
Register A: I / O Byte Value

The Get I/O Byte function returns the current value of IOBYTE in reg ister A. See

Chapter 6 For IOBYTE defimtion

Function 8: Set I/O Byte

Entry Parameters:
R egister C: 0 8 H
Register E: I / O Byte Value

The Set I/O Byte function changes the IOBYTE value to that given in register E

97ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIPOITAL RESEARCH

Function 9: Print String

Entry Parameters:
Register C: 09H
Registers DE: S t r ing Address

The Print String function sends the character string stored in memory at the location
given by DE to the console device, until a $ is encountered in the str ing. Tabs are
expanded as in function 2, and checks are made for startlstop scroll and printer echo.

Function 10: Read Console Buffer

Entry Parameters:
Register C: DA H
Registers DE: Buffer Address

Returned Value
Console Characters in Buffer

The Read Buffer function reads a line of edited console input into a buffer addressed
by registers DE. Console input is termmated when either input buffer overflows or a
carriage return or line feed is typed. The Read Buffer takes the form:

DE:+0 +1 +2 + 3 + 4 + 5 + 6 + 7 +8 . . .+n
Imx Inc Ic) 102 I c3 Ic4)05 I cg) cy /.../29/

where mx is the maximum number oF characters that the buFFer will hold(i to 255) and nc
is the number of characters read (set by FDCFS upon return), followed by the characters
read from the console (F nc (mx, then uninitialized positions Follow the last character,
denoted by zz in the above Figure. A number oF control functions are recognized during
line editing:

rub/del rem oves and echoes the last character

ctl-C

ctl-E

ctl-H

ctl-J

ctl-M (return) terminates input l ine

et)-R

ctl-U

et(-X

reboots when at the beginning of line

causes physical end of hne

backspaces one character position

(line feed) terminates input l ine

retypes the current l ine after new l ine

removes current line

same as ctl-U.

The user should also note that certain functnins that return the carnage to the leftmost
position (e.g., ctl-X) do so only tn the column position where the prompt ended (in earlier

98 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

releases, the carriage returned to the extreme left margin). This convention makes
operator data input and line correction more legible.

Function 11: Get Console Status

Entry Parameters:
Register C: OBH

Returned Value:
Register A: Co n sole Status

The Console Status function checks to see if a character has been typed at the console.
lf a character is ready, the value OFFH is returned m register A. Otherwise a OOH value is
returned

Function 12: Return Version Number

Entry Parameters:
Register C: OCH

Returned Value:
Registers HL: V e r s ion Number

Function 12 provides information that allows version independent programming. A
two-byte value is returned, with H = 00 designating the CP/M release (H = 01 for MP/M),

and L = 00 for all releases previous to 2 0. CP/M 2.0 returns a hexadecimal 20 m register L,
with subsequent version 2 releases in the hexadecimal range 21, 22, through 2F. Using
function 12, for example, the user can wnte application programs that provide both
sequential and random access functions

Function 12R Reset Disk System

Entry Parameters:
R egister C: OD H

The Reset Disk Function is used to program matically restore the file system to a reset
state where all disks are set to read/write (see functions 29 and 29), only disk drive A is
selected, and the default DMA address is reset to BOOT+OOSOH. This function can be
used, for example, by an application program that requires a disk change without a
system reboot.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 99

Function 14: Select Disk

Entry Parameters:
Register C: OEM
Register E: S e lected Disk

The Select Disk function designates the disk drive named in register E as the default
disk for subsequent hie operations, with E = 0 for drive A, 1 for dove B, and so on through
15, corresponding to drive P in a full 16 drive system. The drive is placed in an on-line
status, which activates its directory unti l the next cold start, warm start, or disk system
reset operation. If the disk medium is changed while it is on-line, the drive automatically
goes to a read/only status in a standard CP/M environment (see function 25). FCBs that
specify dnve code zero (dr = OOH) automatically reference the currently selected default
drive. Drive code values between 1 and 16, however, ignore the selected default dnve and
directly reference drives A through P.

Function 15: Open File

Entry Parameters:
Register C: OFH
Registers DE: FCB Address

Returned Value:
Register A : D ir e c tory Code

The Open File operation is used to activate a file that currently exists m the disk
directory for the currently active user number. The FDOS scans the referenced disk
directory for a match in positions 1 through 14 of the FCB referenced by DE (byte sl is
automatically zeroed), where an ASCII question mark (3FH) matches any directory
character in any of these positions. Normally, no question marks are mcluded, and bytes
ex and s2 of the FCB are zero.

If a directory element is matched, the relevant directory information is copied into
bytes do through dn of the FCB, thus allowing access to the files through subsequent read
and write operations. The user should note that an existing file must not be accessed until
a successful open operation is completed. Upon return, the open function returns a
directory code with the value 0 through 3 i f the open was successful or OFFH (255
decimal) if the file cannot be found If question marks occur in the FCB, the first matching
FCB is activated. Note that the current record (cr) must be zeroed by the program if the
file is to be accessed sequentially from the first record.

100 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Function 16: Close File

Entry Parameters:
Register C: 10H
Registers DE: FCB Address

Returned Value:
Register A : Dire c tory Code

The Close File function performs the inverse of the open file function. Given that the
FCB addressed by DE has been previously activated through an open or make function
(see functions 15 and 22), the close function permanently records the new FCB in the
referenced disk directory. The FCB matching process for the close is identical to the open
function. The directory code returned fora successful close operation is 0, 1, 2, or 3, while
a DFFH (255 decimal) is returned if the file name cannot be found in the directory. A hie
need not be closed if only read operations have taken place If wr i te operations have
occurred, however, the close operation is necessary to record the new directory informa
tion permanently.

Function Ty: Search for First

Entry Parameters
Register C. 11H
Registers DE: FCB Address

Returned Value:
Register A : Directory Code

Search First scans the directory for a match with the file given by the FCB addressed
by DE. The value 255 (hexadecimal FF) is returned if the file is not found; otherwise,0, 1,
2, or 3 is returned indicatmg the file is present. When the file is found, the current DMA
address is Riled with the record containing the directory entry, and the relative startmg
position is A * 32 (i.e, rotate the A register left 5 bits, or ADD A Five times). Although not
normally required for application programs, the directory information can be extracted
from the buffer at this position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any position from fi through
ex matches the corresponding field of any directory entry on the default or auto-selected
disk drive. If the dr field contains an ASCII question mark, the auto disk select function is
disabled and the default disk is searched, with the search function returning any matched
entry, allocated or f r ee, belonging to any user number T h i s la t ter funct ion is not
normally used by application programs, but it allows complete Flexibility to scan all
current directory values If the dr field is not a question mark, the s2 byte is automatically
zeroed

101ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Function 18: Search for Next

Entry Parameters:
R egister C: 1 2 H

Returned Value:
Register A: Di r ectory Code

The Search Next function is similar to the Search First function, except that the
directory scan continues from the last matched entry. Similar to function 17, function 18
returns the decimal value 255 in A when no more directory items match.

Function 19: Delete File

Entry Parameters:
Register C: 13H
Registers DE: FCB Address

Returned Value:
Register A : Di re c tory Code

The Delete File function removes files that match the FCB addressed by DE. The
filename and type may contain ambiguous references (i.e., question marks in various
positions), but the drive select code cannot be ambiguous, as in the Search and Search

Function 19 returns a decimal 255 if the referenced file or f i les cannot be found;
otherwise, a value in the range 0 to 3 is returned

Next functions.

Function 20: Read Sequential

Entry Parameters:
Register C: 14H
Registers DE: FCB Address

Returned Value:
Register A: Dire c tory Code

Given that the FCB addressed by DE has been activated through an open or make
function (numbers 15 and 22), the Read Sequential function reads the next 128-byte
record from the file into memory at the current DMA address. The record is read from
position cr of the extent, and the cr field is automatically incremented to the next record
position. lf the cr field overflows, the next logical extent is automatically opened and the
cr field is reset to zero in preparation for the next read operation. The value 00H is
returned in the A register if the read operation was successful, while a nonzero value is
returned if no data exist at the next record position (e.g., end-of-file occurs).

102 ALL INFORMATION PRESENTED HERE 15 PROPRIETARY TO DIGITAL RESEARCH

Function 21: Write Sequential

Entry Parameters:
Register C: 15H
Registers DE: FCB Address

Returned Value:
Register A : D ir e c tory Code

Given that the FCB addressed by DE has been activated through an open or make
function (numbers 15 and 22), the Write Sequential function wr i tes the)21)-byte data
record at the current DMA address to the file named by the FCB. The record is placed at
position cr of the fi le, and the cr field is automatically incremen ted to the next record
position. If the cr held overflows, the next log ical extent is automatically opened and the
cr field is reset to zero in preparation for the next wnte operation Wnte operations can
take place into an existing f i le, m which case, newly wr i t ten records overlay those that
already exist in the file. Register A — 00H upon return from a successful write operation,
while a nonzero value indicates an unsuccessful wnte caused by a full disk.

Function 22: Make File

Entry Parameters
R egister C : 16H
Registers DE: FCB Address

Returned Value:
Register A: D i r ec t o ry Code

The Make File operation is similar to the open file operation except that the FCB must
name a hie that does not exist in the currently referenced disk directory (i e, the one
named explicitly by a nonzero dr code or the default disk if dr is zero). The FDOS creates
the file and init ializes both the directory and main memory value to an empty f i le. The
programmer must ensure that no duplicate file names occur, and a preceding delete
operation is sufficient if there is any possibihty of duplication. Upon return, register A = 0,

1, 2, or 3 if the operation was successful and 0FFH (255 decimal) if no more directory space
is available. The make function has the side effect of activating the FCB and thus a
subsequent open is not necessary.

Function 23: Rename File

Entry Parameters:
R egister C : 17H
Registers DE: FCB Address

Returned Value:
Register A : Di re c tory Code

The Rename function uses the FCB addressed by DE to change all occurrences of the
hie named in the first 16 bytes to the file named m the second 16 bytes. The dnve code dr

103ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

at position 0 is used to select the drive, while the drive code for the new file name at
position 16 of the FCB is assumed to be zero Upon return, register A is set to a value
between 0 and 3 if the rename was successful and OFFH (255 decimal) if the first file name
could not be found m the directory scan.

Function 24: Return Log-in Vector

Entry Parameters:
Register C: 18H

Returned Value:
Registers HL: Log-in Vector

The log-in vector value returned by CP/M is a 16-bit value in HL, where the least
significant bit of L corresponds to the first drive A and the high order bit of H corresponds
to the sixteenth drive, labeled P. A 0 bit indicates that the drive is not on-line, whi/ea 1 bit
marks a drive that is actively on-line as a result of an explicit disk drive selection or an
implicit dnve select caused by a file operation that specified a nonzero dr field. The user
should note that compatibility is maintained with earlier releases, since registers A and L
contain the same values upon return.

Function 25: Return Current Disk

Entry Parameters:
R egister C; 1 9 H

Returned Value:
Register A: C u rrent Disk

Function 25 returns the currently selected default disk number m register A. The disk
numbers range from 0 through 15 corresponding to drives A through P.

Function 26i Set DMA Address

Entry Parameters:
Register C : 1A H
Registers DE: D M A Ad dress

DMA is an acronym for Direct Memory Address, which is often used m connection
with disk controllers that directly access the memory of the mainframe computer to
transfer data to and from the disk subsystem. Although many computer systems use
non-DMA access (i.e., the data are transferred through programmed)/CI operations), the
DMA address has, in CP/M, come to mean the address at which the 128-byte data record
resides before a disk write and after a disk read. Upon cold start, warm start, or disk

104 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

system reset, the DMA address is automatically set to BOOT+008OH. The Set DMA
function, however, can be used to change this default value to address another area of
memory where the data records reside. Thus, the DMA address becomes the value
specified by DE until it is changed by a subsequent Set DMA function, cold start, warm
start, or disk system reset.

Function 27: Get ADDR(A)inc)

Entry Parameters:
Register C: TBH

Returned Value:
Registers HL: A L LOC Address

An allocation vector is maintained in main memory for each on-line disk drive.
Various system programs use the information provided by the allocation vector to
determine the amount of remaining storage (see the STAT program). Function 27
returns the base address of the allocation vector for the currently selected disk drive.
However, the allocation information may be invalid if the selected disk has been marked
read/only. Although this function is not normally used by application programs, addi
tional details of the allocation vector are found in Chapter 6.

Function 28: Write Protect Disk

Entry Parameters:
R egister C: I C H

The disk write protect functton provides temporary write protection for the currently
selected disk. Any attempt to wr i te to the disk before the next cold or warm start
operation produces the message:

BDOS ERR on d: R/0

Function 29: Get Read)Only Vector

Entry Parameters:
Register C : 1DH

Returned Value:
Registers HL: R / 0 V ector Value

Function 29 returns a bit vector in register pair HL, which indtcates drives that have
the temporary read-only bit set. As in function 24, the least significant bit corresponds to
drive A, while the most significant bit corresponds to drive P. The RIO bit is set either by
an explicit call to function 28 or by the automatic software mechanisms within CPIM that
detect changed disks.

ALL INTORMA11ON PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 105

Function 30: Set File Attributes

Entry Parameters:
Register C: I EH
Registers DE: FCB Address

Returned Value:
Register A ; D ir e c tory Code

The Set File Attributes function allows programmatic manipulation of permanent
indicators attached to files In particular, the R/0 and System attributes (tl' and t2') can
be set or reset. The DE pair addresses an unambiguous file name with the appropriate
attributes set or reset. Function 30 searches for a match and changes the matched
directory entry to contam the selected indicators. Indicators fl ' t h rough f4' are not
currently used, but may be useful for applications programs, since they are not involved
in the matching process during file open and close operations. Indicators fS' through fg'
and t3' are reserved for future system expansion.

Function 31: Get ADDR(Disk Parms)

Entry Parameters:
Register C: 1FH

Returned Value:
Registers HL: D P B Address

The address of the BIOS resident disk parameter block is returned in HL as a result of
this function call. This address can be used for either of two purposes. First, the disk
parameter values can be extracted for display and space computation purposes, or
transient programs can dynamically change the values of current disk parameters when
the disk environment changes, if required. Normally, application programs wil l not
require this facility.

Function 32: Set/Get User Code

Entry Parameters:
R egister C: 2 0 H
Register E: OFFH (get) or

User Code (set)

Returned Value:
Register A: Cur r ent Code or

(no value)

An application program can change or interrogate the currently active user number
by calling function 32. If register E = OFFH, the value of the current user number is

106 ALL INFORIVIAllON PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

returned in register A, where the value is in the range of 0 to 15. If register E is not OFFH,
the current user number is changed to the value of E (modulo 16).

Function 33: Read Random

Entry Parameters:
Register C: 21H
Registers DE: FCB Address

Returned Value:
Register A : Ret u r n Code

The Read Random function is similar to the sequential file read operation of previous
releases, except that the read operation takes place at a particular record number, selected
by the 24-bit value constructed from the 3-byte field followmg the FCB (byte positions rO
at 33, rl at 34, and r2 at 35). The user should note that the sequence of 24 bits is stored
with least significant byte first (rO), middle byte next (r1), and high byte last (r2) CP/M
does not reference byte r2, except in computing the size of a file (function 35). Byte r2
must be zero, however, since a nonzero value indicates overflow past the end of file.

Thus, the rO, rl byte pair is treated as a double-byte, or "word" value, which contains
the record to read. This value ranges from 0 to 65535, providing access to any particular
record of the 8-megabyte file. To process a file using random access, the base extent
(extent 0) must first be opened. Although the base extent may or may not contain any
allocated data, this ensures that the file is properly recorded in the directory and is visible
in DIR requests. The selected record number is then stored in the random record field (rO,
rl), and the BDDS is called to read the record. Upon return from the call, register A either
contains an error code, as listed below, or the value 00, indicatmg the operation was
successful. In the latter case, the current DMA address contains the randomly accessed
record. The user should note that contrary to the sequential read operation, the record
number is not advanced. Thus, subsequent random read operations continue to read the

Upon each random read operation, the logical extent and current record values are
automatically set. Thus, the file can be sequentially read or written, starting from the
current randomly accessed position. However, the user should note that, in this case, the
last randomly read record will be reread as one switches from random mode to sequential
read and the last record will be rewritten as one switches to a sequential write operation.
The user can, of course, simply advance the random record position following each
random read or write to obtain the effect of a sequential I/CI operation.

Error codes returned in register A following a random read are listed below.

same record.

01

02

03

04

05

06 seek past physical end of disk

Error codes 01 and 04 occur when a random read operation accesses a data block that
has not been previously wr i t ten or an extent that has not been created, which are
equivalent conditions. Error code 03 does not normally occur under proper system

reading unwrit ten data

(not returned in random mode)

cannot close current extent

seek to unwrit ten extent

(not returned in read mode)

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 107

operation. If it does, it can be cleared by simply rereading or reopening extent zero as long
as the disk is not physically write protected. Error code 06 occurs whenever byte r2 is
nonzero under the current 2.0 release. Normally, nonzero return codes can be treated as
missing data, with zero return codes indicating operation complete.

Function 34: Write Random

Entry Parameters:
Register C : 22H
Registers DE: FCB Address

Returned Value:
Register A . Retu r n Code

The Write Random operation is initiated similarly to the Read Random call, except
that data are wri t ten to the disk from the current DMA address. Further, if the disk
extent or data block that is the target of the write has not yet been allocated, the allocation
is performed before the write operation continues As in the Read Random operation, the
random record number is not changed as a result of the wnte. The logical extent number
and current record positions of the file control block are set to correspond to the random
record that is being written. Again, sequential read or write operations can begin follow
ing a random write, with the notation that the currently addressed record is either read or
rewritten again as the sequential operation begins. The user can also simply advance the
random record position fol lowing each write to get the effect of a sequential wr i te
operation. The user should note that, in particular, readmg or writing the last record of an
extent in random mode does not cause an automatic extent switch as it does in sequential

The error codes returned by a random write are identical to the random read opera
tion with the addition of error code 05, which indicates that a new extent cannot be
created as a result of directory overflow.

mode.

Function 35: Compute File Size

Entry Parameters:
Register C: 23H
Registers DE: FCB Address

Returned Value:
Random Record Field Set

When computing the size of a file, the DE register pair addresses an FCB in random
mode format (bytes r0, rl, and r2 are present). The FCB contains an unambiguous file
name that is used in the directory scan. Upon return, the random record bytes contain the
"virtual" file size, which is, in effect, the record address of the record following the end of

the file. Following a call to function 35, if the high record byte r2 is 01, the file contains the
maximum record count 65536. Otherwise, bytes r0 and rl constitute a 16-bit value (r0 is
the least significant byte, as before), which is the file size.

108 ALL INI'ORMAllON PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Data can be appended to the end of an existing file by simply calling function 35 to set
the random record position to the end of file and then performing a sequence of random
writes starting at the preset record address.

The virtual size of a file corresponds to the physical size when the file is written
sequenttally. If the file was created in random mode and "holes" exist in the allocation, the
file may in fact contain fewer records than the stze indicates. For example, if only the last
record of an 5-megabyte file is written in random mode (i.e., record number 65535), the
vtrtual size is 65536 records, although only one block of data is actually allocated.

Function 36: Set Random Record

Entry Parameters:
Register C: 24H
Registers DE: FCB Address

Returned Value:
Random Record Field Set

The Set Random Record function causes the BDOS automatically to produce the
random record position f rom a f t le that has been read or wr i t ten sequentially to a
particular point. The functton can be useful in two ways.

First, it is often necessary initially to read and scan a sequential file to extract the
positions of various "key" fields. As each key is encountered, function 36 is called to
compute the random record positton for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record posttion is placed into a table with the key for
later retrieval. After scanning the entire file and tabulating the keys and thetr record
numbers, the user can move instantly to a particular keyed record by performing a

random read, using the corresponding random record number that was saved earlier. The
scheme is eastly generalized for variable record lengths, since the program need only
store the buffer-relative byte position along with the key and record number to fmd the
exact starting position of the keyed data at a later time.

A second use of function 36 occurs when switching from a sequenttal read or write
over to random read or write. A file is sequentially accessed to a particular point m the file,
function 36 is called, which sets the record number, and subsequent random read and
write operations contmue from the selected point in the fi le.

Function 3/: Reset Drive

Entry Parameters:
Register C: 25H
Registers DE: Dr i v e Vector

Returned Value:
Register A : DOH

The Reset Drive function allows reset ting of specified drives. The passed parameter is
a 16 bit vector of dnves to be reset; the least significant bit is drive Ax

To maintain compattbi/ity with MP/M, CP/M returns a zero value.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 109

Function 40: Write Random With Zero Fill

Entry Parameters:
Register C: ZSH
Registers DE: FCB Address

Returned Value:
Register A : Ret u r n Code

The Write Random With Zero Fill operation is similar to Function 34, with the
exception that a previously unallocated block is filled with zeros before the data are
written.

5.3 A Sample File-to-File Copy Program
The program shown below provides a relatively simple example of file operations. The

program source file is created as COPY.ASM using the CP/M ED program and then
assembled using ASM or MAC, resultmg in a HEX file. The LOAD program is used to
produce a COPY.COM file, which executes directly under the CCP. The program begins
by sett mg the stack pointer to a local area and proceeds to move the second name from the
default area at 006CH to a 33-byte file control block called DFCB. The DFCB is then
prepared for file operations by clearing the current record field. At this point, the source
and destination FCBs are ready for processing, since the SFCB at 005CH is properly set
up by the CCP upon entry to the COPY program. That is, the first name is placed into the
default FCB, with the proper fields zeroed, including the current record field at 007CH.
The program continues by opening the source file, deleting any existing destination file,
and creating the destmation file. lf all this is successful, the program loops at the label
COPY until each record has been read from the source file and placed into the destination
file. Upon completion of the data transfer, the destination file is closed and the program
returns to the CCP command level by jumping to BOOT.

sample file-to-file copy program

at the ccp level, the command

copy a:x.y b:u.v

0000 =

0005 =
005c =
005c =

006c =

0080 =

0100 =

boot
bdos
fcbi
sfcb
fcb2
dbuff
tpa

printf
openf
closef

copies the file named x y from drive
a to a file named u.v. on drive b.

equ 0000h
equ 0005h
equ 005ch
equ fcbl
equ 006ch
equ 0080h
equ 0100h

equ 9
equ 15
equ 16

; system reboot
; bdos entry point
; first file name
; source fcb
; second file name
; default buffer
; beginning of tpa

; print buffer func¹
; open file func¹
; close file func¹

0009 =

000f =

0010 =

110 ALL INTORMAllON PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

0013 =

0014 =

0015 =
0016 =

deletef
readf
writef
makef

equ 19
equ 20
equ 21
equ 22

; delete file func¹
; sequential read
; sequential write
; make file func¹

org tpa , beginning of tpa
Ixi sp ,stack ; l ocal stack

0100
0100 311I302

0113 af
0114 32faol

0124 lldaol
0127 cd7301

0137 115coo
013a cd7801
013<j b7
013e c25101

012a lldaol
012d cd8201
0130 119601
0133 3c
0134 cc6101

0117 115coo
011a cd6901
011<j 118701
0120 3c
0121 cc6101

0103 oelo
0105 116coo
0108 21daol
olob la
oloc 13
010<j 77
010e 23
olof od
0110 c20b01

copy:

mfcb:

move second
mvi c,16
Ixi d , fcb2
Ixi h ,d fcb
Idax d
I ox 6
mov m,a
inx h
dc I' c
jnz mfcb

file name to dfcb
; half an fcb
; source of move
; destination fcb
; source fcb
, ready next
; dest fcb
; ready next
; count 16...0
; loop 16 times

name has been removed, zero cr
xra a ; a = OOh
sta dfcbcr ; current rec = 0

source and destination fcb's ready

I xi d ,sfcb
call open
Ixi d , nof i le
inr a
cz f i n i s

source file open, prep destination
Ixi d ,dfcb ; destination
call delete ; remove if present

Ixi d ,dfcb
call make
Ixi d ,nodir
inr a
cz f i n is

source file open, dest file open
copy until end of file on source

Ixi d ,sfcb
call read
ora a

; source file
, error if 255
; ready message
; 255 becomes 0
; done if no file

; source
; read next record
; end of file?
; skip write if so

write the record
destination
write record

, ready message
; 00 if write ok
; end if so

0141 lldaol
0144 cd7dol
0147 lla901
014a b7
014b c46101

jnz eofile

not end of file
Ixi d ,dfcb
call write
Ixi d ,space

cnz finis

; destination
; create the file
; ready message
; 255 becomes 0
' done if no dir space

ora a

ALL INFORMAllON PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 111

014e c33701

01fb

01da
01fa =

017d Oe15
017f c30500

0182 Oe16
0184 c30500

0178 Oe14
017a c30500

0173 Oe13
0175 c30500

015e 11cc01

016e Oe10
0170 c30500

0169 OeOf
016b c30500

0151 11da01
0154 cd6e01
0157 21bI301
015a 3c
015b cc6101

0161 Oe09
0163 cd0500
0166 c30000

0187 6e6f20f
0196 6e6f209
01a9 6f7574f
01bb 7772695
01cc 636f700

read:

finis:

write:

open:

make:

close:

dfcb:
dfcbcr

delete

eof i I e:

nofile:
nodir:
space:
wrprot:
normal:

jmp copy

; end of file, close destination
Ixi d ,dfcb ; de s t ination
call close ; 25 5 i f error
Ixi h ,wrprot ; ready message
inr a ; 255 becomes 00
cz f i n i s ; shouldn't happen

copy operation complete, end
Ixi d ,normal ; ready message

; write message given by de, reboot
mvi c,pnntf
call bdos ; write message
jmp boot ; reboot system

system interface subroutines
(all return directly from bdosj

mvi c,openf
jmp bdos

mvi c,closef
jmp bdos

mvi c,deletef
imp bdos

mvi c,readf
jmp bdos

mvi c,writef
jmp bdos

mvi c,makef
jmp bdos

console messages
db 'no source file$'
db 'no directory space$'
db 'out of data space$'
db 'write protected? $'
db 'copy complete$'

data areas
ds 33 ; destination fcb
equ dfcb+32 ; current record

; 16 level stack

; loop until eof

ds 32
stack:

021 b end

112 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

The user should note that there are several simplifications in this particular program.
First, there are no checks for invahd file names that could, for example, contain ambigu
ous references. This situation could be detected by scanning the 33-byte default area
starting at location 005CH for ASCII question marks. A check should also be made to
ensure that the file names have, in fact, been included (check locations 005DH and 006DH
for nonblank ASCII characters). Finally, a check should be made to ensure that the source
and destination file names are different. An improvement in speed could be obtained by
buffering more data on each read operation. One could, for example, determine the size
of memory by fetching FIIASE from location 0006H and using the entire remaining
portion of memory for a data buffer. In this case, the programmer simply resets the DMA
address to the next successive 128-byte area before each read Upon wr i t ing to the
destination file, the DMA address is reset to the beginning of the buffer and incremented
by IZ8 bytes to the end as each record is transferred to the destination file.

5A A Sample File Dump Utility
The file dump program shown below is slightly more complex than the simple copy

program given in the previous section. The dump program reads an input file, specified in
the CCP command hne, and displays the content of each record in hexadecimal format at
the console. Note that the dump program saves the CCP's stack upon entry, resets the
stack to a local area, and restores the CCP's stack before returning directly to the CCP.
Thus, the dump program does not perform and warm start at the end of processing

; DUMP program reads input file and displays hex
data

0100
0005 =

0001 =

0002 =

0009 =

000b =

000f =

0014 =

005c =

0080 =

0068 =

005c =

005<j =
0065 =

006b =

000<j =
Oooa=

ci'

If

buff

fcbrl

fcbrc

fcbcr

bdos
cons

fcbdn
fcbfn
fcbft

typef
printf
brkf

openf
readf

fcb

org 100h
equ 0005h
equ 1
equ 2
equ 9
equ 11

equ 15
equ 20

equ 5ch

equ 80h

;bdos entry point
;read console
;type function
;buffer print entry
;break key function
;(true if char
;file open
;read function

;file control block
;address
;input disk buffer
;address

non graphic characters
equ Odh ;carnage return
equ Oah ;line feed

file control block definitions
equ fcb+0 ;disk name
equ fcb+1 ;file name
equ fcb+9 ;disk file type (3

equ fcb+12 ;file's current reel

equ fcb+15 ;file's record count (0 to

equ fcb+32 ;current(next) record

;number

;128)128)

;number(0

;characters)

007c =

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 113

007d = fcbln

0112 111301
0115 cd9c01
0118 c35101

011b 3e80
Olid 321302

010a cdc101
010d feff
010f c21b01

0104 221502

0107 315702

0100 210000
0103 39

openok.

return

equ fcbF33 ;fcb length

set up stack
Ixi h 0
dad sp
entry stack pointer in hl from the ccp
shld oldsp
set sp to local stack area (restored at
finis)
Ixi sp ,stktop
read and print successive buffers
call setup ,set up input file
cpi 255 ,255 if file not present
jnz openok ,sk ip if open is ok

file not there, give error message and

Ixi d ,opnmsg
call err
jmp fin is ;to re turn

;open operation ok, set buffer index to
;end
mvi a,80h
sta i b p ;set b u f fer pointer to 80h
hl contains next address to pnnt
I xi h ,0 ;start with 00000120 210000

gloop:
0123 e5
0124 cda201
0127 e1
0138 da5101

012b 47

012c 7d
012d e60f
012f c24401

0138 01
0139 da5101

0135 cd5901

0132 cd7201

push h
call gnb
pop h
I c f i n i s

mov b,a
print hex values
check for line fold
mov a,l
ani Ofh ;check low 4 bits
Inz nonum
print line number
call cr lf

check for break key
call break
accum Isb = 1 if character ready
rrc ;into carry
jc finis ;don' t p nnt any more

mov a,h
call phex
mov a,l
call phex

;save line position

,recall line position
,carry set by gnb if end
fi le

013c 7c
013d cd8f01
0140 7d
0141 cd8f01

nonum
0144 23 I ox h :to next line number

114 ALL INFORMATION PRESENTED HERE IS PROPRIETART TO DIGITAL RESEARCH

0145 3e20
0147 cd6501
014a 78
014b cd8f01
014e c32301

mvi a, ' '

call pchar
mov a,b
call phex
jmp gloop

finis:

0158 c9

0151 cd7201
0154 2a1502
0157 f9

end of dump, return to cco
(note that a Imp to 0000h reboots)
call cr lf
Ihld oidsp
sphl
stack pointer contains ccp's stack
location
ret to the ccp

0164 c9

015c Oeob
015e cd0500
0161 cld1e1

0165 e5d5c5
0168 Oe02
016a 5f
016b cd0500
016e c1dle1
0171 c9

0159 e5d5c5

break:

pchar.

mov e,a

subroutines

;check break key (actually any key will
;do)
push h' push di push b, environment
;saved
mvi c,brkf
call bdos
pop b' pop d! pop h; environment
restored
ret

;pnnt a character
push h! push d' push b, saved
mvi c,ty pef

call bdos
pop bi pop d' pop h; restored
ret

crlf.
0172 3egd
0174 cd6501
0177 3ega
0179 cd6501
017c c9

mvi a,cr
call pchar
mvi a. If
call pchar
ret

pnib.

0189 c637

0184 c630
0186 c38b01

017d e60f
017f feOa
0181 d28901

;print nibble in reg a
ani Ofh ,low 4 bits
cpi 10
In c p10
less than or equal to 9
adi '0'

jmp pm

greater or equal to 10
adi 'a' — 10p10.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 115

018b cd6501
018e c9

pm. call pchar

p hex.

ret

;pnnt hex char in reg a
push paw018f f5

0190 Of
0191 Of
0192 Of
0193 Of
0194 cd7d01
0197 f1
0198 cd7d01
019b c9

rrc
I' I' C

l ic
I I'C

019c Oe09

err:

call pnib
pop psw
call pnib
ret

,print error message
d,e addresses message ending with "$"
mvi c,pnntf ,pnnt buffer

call bdos
ret

pnnt nibble

,function
019e cd0500
01a1 c9

gnb ;get next byte
Ida ibp
cpi 80h
jnz g0
read another buffer

01a2 3a1302
01a5 fe80
01 a 7 c2 b301

01aa cdce01
01ad b7
01ae cab301

call diskr
ora a ;zero value if read ok
l z g g ,for another byte
end of data, return with carry set for eof

01 b1 37
01b2 c9

01 b3 51
0164 1600

Olba 218000
01 bcl 19

01b6 3c
OID7 321302

gO

stc
ret

,read the byte at buff+reg a
mov e,a ;Is byte of buffer index
mvi d,O ,double precision

i nr a ;index =index+1
sta i b p ;back t o memory
pointer is incremented
save the current file address
Ixi h , b u f f
dad d
absolute character address is in hl
mov a,m

; index to de

01be 7e

01bf I37
01c0 c9

setup

byte is in the accumulator
ora a ,reset carry bit
ret

;set up file
open the file for input
xra a zero to accum01c1 af

116 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Olc2 327c00

Olcd c9

Olc5 115c00
Olcg Oegf
Olca cd0500

diskr:

sta fcbcr ;clear current record

I xi d , f cb
mvi c,openf
call bdos
255 in accum if open error
ret

;read disk file record
push h! push d! push b
I xi d , f cb
mvi c,readf
call bdos
pop b! pop d! pop h

Olce e5d5c5
Oldl 115c00
Old4 Oe14
Old6 cd0500
Old9 cldlel
Olde c9 ret

fixed message area
Oldd 46494cO
Olf3 OdOa4eO

s ignon: d b 'file dump version 2.0$'
opnmsg: db c r , l f,'no input f i le p resent on

disk$'

0213
0215

ibp:
o I de p:

variable area
cia 2 ;input buffer pointer
cia 2 ;entry sp value from ccp

stack area
ds 64 ; res e rve 32 I ev el st ac k0217

stktop:

0257 end

5.5 A Sample Random Access Program
This chapter concludes with an extensive example of random access operation The

program listed below performs the simple function of reading or writing random records
upon command from the terminal. Given that the program has been created, assembled,
and placed into a file labeled RANDOM.COM, the CCP level command

RANDOM X.DAT

starts the test program. The program looks for a f i le by the name X.DAT (in th is
particular case) and, if found, proceeds to prompt the console for input. If not found, the
file is created before the prompt is given Each prompt takes the form

next command?

and is followed by operator input, terminated by a carriage return. The input commands
take the form

nW n R Q

where n is an mteger value in the range 0 to 65535, and W, R, and Q are simple command
characters corresponding to random write, random read, and quit processing, respec
tively. If the W command is issued, the RANDOM program issues the prompt

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

type data:.

The operator then responds by typing up to 127 characters, followed by a carriage return.
RANDOM then writes the character string into the X.DAT f i le at record n. If the R

command is issued, RANDOM reads record number n and displays the string value at the
console. If the Q command is issued, the X.DAT file is closed, and the program returns to
the CCP. In the interest of brevity, the only error message is

error, try again.

The program begins with an initialization section where the (nput file is opened or
created, followed by a continuous loop at the label "ready" where the individual com
mands are interpreted. The deFault file control block at 00SCH and the deFault buffer at
0080H are used in all disk operations. The utility subroutines then follow, which contain
the principal input l ine processor, called "readc." Th(s particular program shows the
elements of random access processing, and can be used as the basis for further program
development.

Sample Random Access Program for CPIM 2.0

0100 100h

0001 =

0002 =

0009 =

Oooa=

000c =

000f =

0010 =

0016 =

0021 =

0022 =

000(j =

Oooa=

0080 =

005c =

007(j =
007f =

0000 =

0005 =

CI'

If

fcb

buff

ranrec
ran ovf

conout

reboot
bdos

coninp

pat ring
rstring
version
openf
closef
makef
readr
writer

erg

equ

equ

equ
equ

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

equ
equ

1

12
15
16
22
33
34

2 9 10

0(jh
Oah

005ch

0080h

0000h
0005h

fcb+33
fcb+35

;base of tpa

;system reboot
;bdos entry point

;console input function
;console output function
;print string until '$'
;read console buffer
;return version number
;file open function
;close function
;make file function
;read random
;write random

;default file control
; block
;random record position
;high order loverf low)
; byte
;buffer address

;carriage return
;line feed

equ
equ

Load SP, Set-Up File for Random Access

0100 31bc00 Ixi sp,stack

version 2.0
mvi c,ve r s ion0103 Oegc

118 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

0105 cd0500
0108 fe20
010a d21600

c a I I b d o s
c pi 20h
jnc versok
bad version, message and go back
Ixi d,badver
call print
j mp rebo o t

version 2 0 or better9

010(j 111b00
0110 cdda00
0113 c30000

versok'

0122 Oe16
0124 115c00
0127 cd0500
012a 3c
012b c23700

0116 Oegf
0118 115c00
011b cd0500
011e 3c
011f c23700

Ill I

mvl
I x I
call

jnz

cannot
Ixi
ca II
Imp

cannot
mvl
Ixi
ca I I
inr
jnz

correct

a

a

version for random access
c,openf ; o pen default fcb
d,fcb
bdos

ready

open file, so create it
c,makef
d,fcb
bdos

ready

create file, directory full
d, nospace
pnnt
reboot ;ba ck to ccp

err 255 becomes zero

err 255 becomes zero

012e 113a00
0131 cdda00
0134 c30000

Loop Back to Ready After Each Command

ready
file is ready for processing

0137 cde500
013a 227d00
013(j 217100
0140 3600
0142 fe51
0144 c25600

0147 Oe10
0149 115c00
014c cd0500
014f 3c
0150 cab900
0153 c30000

c a I I
s h Id
I x I
mvl
cpi
lilz

quit processing, close file
mvi c,closef
Ixi d fcb
c a I I b do s
Irl I a
lz error
Imp reboot

readcom;read next command
ranrec ;st o re input record¹
h,ranovf
m,0
'CI'

notq

clear high byte if set
qu(t9

err 255 becomes 0
error message, retry
back to ccp

tt9ALL INFORMATION PRESENTED HERE IS PRQ¹RIETARY TQ DiC(TAL RESEARCH

End of Quit Command, Process Write

notq:

0172 77
0173 23
0174 0(j
0175 c26600

0166 c5
0167 e5
0168 cdc200
016b e1
016c c1
016d feOd
016f ca7800

0156 fe57
0158 c28900

015I3 114(joo
015e cdda00
0161 Oe7f
0163 218000

rloop

erloop

not the quit command, random write?
cpi 'W'

Inz notw

this is a random write, fill buffer until cr
I xi d,datmsg
call pnnt ,data prompt
mvi c ,127 ,up to 127 characters
IXI h,buff ;des t ination
;read next character to buff
push b ;save counter
push h ;next destination
call getchr ;character to a
pop h ,restore counter
pop b ;restore next to fill
c pl cl ,end of line?
lz erloop
not end, store character
mov m,a
inx h ;next to fill
dcI' c ,counter goes down
Inz rloop ,end of buffer>

end of read loop, store 00
mvi m,O0178 3600

017a Oe22
017c 115c00
017f cd0500
0182 I37
0183 c2b900
0186 c33700

write
mvi
Ixi
call

the record to selected record number
c,writer
d,fcb
bdos
a ;error code zero?
error , mes sage if not
ready , fo r another record

ora
lllz
jmp

End of Write Command, Process Read

notw:

018e Oe21
0190 115c00
0193 cd0500
0196 I37
0197 c2b900

0189 fe52
018b c2b900

not a wnte command, read record?
cpi 'R'

jnz error ;s kip i f no t

read random record
mvi c,readr
Ixi d fcb
call bdos
ora a
jnz error

read was successful, write to console

return code 00?

120 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

019a cdcf00
019d Oe80
019/ 218000

call
mvi
Ixi

crlf
c,128
h,buff

01a2 7e
01a3 23
01a4 e67f
01a6 ca3700

01a9 c5
01aa e5
01ab fe20
01ad d4c800
01b0 e1
01b1 c1
01I32 Od
01b3 c2a200
01b6 c33700

wloop:

cnc
pop
pop
dcr
jnz
Imp

ITI OV

I ITX

ani

lz

push
push
DPI

a,m
h
7fh
ready

putchr
h
b

w loop
ready

,count =count-1

,new line
,max 128 characters
;next to get

;next character
;next to get
;mask parity
;for another command
; if 00
;save counter
;save next to get
;graphics
;skip output if not

c

End of Read Command, All Errors End Up Here

error
01 I39 115900
Olbc cdda00
01bf c33700

Ixi d,errmsg
c all pr int
jmp ready

Utility Subroutines for Console I/O

getchr:
,read next console character to a
mvi c,coninp
call bdos
ret

01c2 Oegl
01c4 cd0500
01c7 c9

putchr:

01c8 Oe02
01ca 5f
01cb cd0500
01ce cg

,write character from a to console
mw c,conout
mov e,a
call bdos
ret

character to send
send character

crlf:
,send carriage return line feed
mvi a,cr .carriage return
c all putc hr
mw a, lf , line feed
c all putc hr
ret

01cf 3egd
01d1 cdc800
01d4 3ega
01d6 cdc800
01d9 c9

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH I 21

pnnt
the buffer addressed by de until $;print

push
call
pop
mvi
call
ret

d
crlf
<j ;new line
c, pstring
bdos ;pnn t the stnng

01da d5
01db cdcf00
01de d1
01df Oe09
01e1 cd0500
01e4 c9

readcom:

01f3 210000
01f6 117c00
01f9 la

01e5 116b00
01e8 cdda00
01eb OeOa
01ed 117a00
01fO cd0500

,read the next command line to the conbuf
Ixi d,prompt
call pr int , command?
m vi c ,rst n ng
IXI d,conbuf
call bdos ,read c ommand line
command line is present, scan it
Ixi h,0 ;start with 0000
Ix< d,contin , c o mmand line
Id ax d ,next commandreadc

Olfa 13 In x d ;to next command

ora a ;cannot be end of

,character

; position

;command
01fb I37

Olfe c8

0213 c630
0215 fe61
0217 88

0204 29
0205 4(j
0206 44
0207 29
0208 29
0209 09
020a 85
020b 61
020c d2f900
020f 24
0210 c3f900

01fd (1630
01ff feOa
0201 d21300

endrd:

I'C

I'2

not zero, numeric?
sui '0'

cpi 10
jnc endrd
add-in next digit
dad h
mov c I
mov b,h
dad
dad h
dad b
add
mov l,a
jnc readc
In I I1
jmp readc

end of read, restore value in a
adi '0' .command
CPI 'a' ,translate case?

lower case, mask lower case bits
ani 101$1 111b
ret

.'2

,carry if numeric

bc = value * 2

,

'4

, 8
. 2 + ' 8 = '10
,+digit

,for another char
,overflow
for another char

0218 e65f
021a c9

122 ALL INFORMATION PRESENTED HERE IS PROPRIETARY 10 DIGITAL RESEARCH

String Data Area for Console Messages

badver:
021b 536179 (II3

023a 4e6f29

0259 457272

024cl 547970

026b 4e6570

errmsg:

prompt:

nospace:

datmsg:

(jb

db

dl3

'sorry, you need cp/m version 2$'

'no directory space$'

'type data: $'

'error, try again.$'

'next command? $'ljb

Fixed and Variable Data Area

027a 21
027b
027c
0021 =

conbuf:
COIISIZ'

co nlin:
conlen

db
ds
ds
equ

029c

conlen ;lengttt of console buffer
1 ;resulting size after read
32 ;length 32 buffer
$-consiz

32 ';16 level stackcia
stack:

02 bc

Again, major improvements could be made to this particular program to enhance its
operation. In fact, with some work, this program could evolve into a simple data base
management system. One could, for example, assume a standard record size of 12B bytes,
consisting of arbitrary fields within the record A program, called GETKEY, could be
developed that first reads a sequential file and extracts a specific field dehned by the
operator. For example, the command

end

GETKEY NAMES.DAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES DAT and extract the "LAST
NAME" f ield f rom each record, starting in position lo and ending at character 20.
GETKEY builds a table in memory consistmg of each particular LASTNAME field, along
with its Ts-bit record number location within the file. The GETKEY program then sorts
this list and writes a new file, called LASTNAME.KEY, which is an alphabetical list ol
LASTNAME fields with their corresponding record numbers. (This hst is called an (i(reeled
index m information retrieval parlance.)

If the programmer were to rename the program shown above as QUERY and massage
it so that it reads a sorted key file into memory, the command line might appear as

QUERY NAMES.DAT LASTNAME.KEY.

Instead of reading a number, the QUERY program reads an alphanumeric string that is a
particular key to find in the NAMES.DAT data base Since the LASTNAME.KEY list is
sorted, one can find a particular entry rapidly by performing a "binary search," similar to
looking up a name in the telephone book. That is, starting at both ends of the list, one
examines the entry halfway in between and, if not matched, splits either the upper half or

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 123

the lower half for the next search. The user will quickly reach the item he or she is looking
for and find the corresponding record number. The user should fetch and display this
record at the console, just as was done in the program shown above.

With some more work, the user can allow a fixed grouping size that differs from the
126-byte record shown above. This is accomplished by keeping track of the record
number as well as the byte offset wi thin the record. Knowing the group size, one
randomly accesses the record contaimng the proper group, offset to the begmning of the
group within the record read sequenttally until the group size has been exhausted.

finally, one can improve QUERY considerably by allowing boolean expressions,
which compute the set of records that satisfy several relationships, such as a LASTNAME
between HARDY and LAUREL and an AGE lower than 4S. Display all the records that fit
this descr|puon. Ftnally, if the user's lists are getting too btg to fit into memory,he or she
should randomly access key files from the disk as well.

5.6 System Function Summary
FUNCTION
NUMBER

Decimal

FUNCTION
NAME

INPUT OUTPUT

Hex

0 1

2 3 4

System Reset
Console Input
Console Output
Reader Input
Punch Output
List Output
Direct Console I/O

C = OOH
C =01H
E = char

E = char
E = char
C = 06H
E = OFFH (input) or

OFEH (status) or
char (output)

none
A = ASCII char
none
A = ASCII char
none
none
A = char or status
(no value)

5 6

8
9

10

11
12

13
14
15
16

7 G e t I/O Byte

8 S e t I/O Byte
9 P r int String
A Read Console Buffer

B Get Console Status
C Return Version Number

D Reset Disk System
E Select Disk
F Open File

10 Close File

none
none

none

E = I/O Byte
DE = Buffer Address
DE = Buffer

A = I/O Byte
Value

none
none
Console

Characters
in Buffer

A = 00/non zero
HL: Version

Number
none
none
FF If not found
FF if not found

none
E =Disk Number
DE = FCB Address
DE = FCB Address

124 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP M'
OPERATING SYSTEM

MANUAL

CP/M 2 Alteration
Chapter 6

» DICilTAL RESEARCH"
P.O. Box 579

Pacific Crove, California 93950

595-2839

COPYRIGHT

Copyright © 1976, 1977, 1978, 1979, and 1982 by Digital Research. All r ights reserved.
No part o f t h i s pub l ication may be reproduced, transmitted, t ranscribed, stored in a
retrieval system, or translated into any language or computer language, in any form or by
any means, electronic, mechanical, magnetic, optical, chemical, manual or o therwise,
without the pr ior wr i t ten permission of Dig i tal Research, Post Of f ice Box 579, Pacific
Grove, California 93950.

DISCLAIMER

Digital Research makes no representations or warrant ies with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or f i tness for
any particular purpose. Further, Digital Research reserves the right to revise this publica
tion and to make changes from t ime to t ime in the content hereof without obligation of
Digital Research to not i fy any person of such revision or changes.

TRADEMARKS

CPI M is a registered trademark of D ig i tal Research. MPI M, MAC, and SID are trade
marks of Dig i tal Research. Z-80 is a trademark of Z i log, lnc.

First Print ing: July 1982

CP M 2 Alteration

6.1 Introduction
The standard CP/M system assumes operation on an Intel MDS-800 microcomputer

development system, but is designed so the user can alter a specific set of subroutines that
define the hardware operating environment.

Although s tandard CP/M 2 i s c o n f igured fo r s i ngle density f l oppy d isks, f ield
alteration features allow adaptation to a wide variety of disk subsystems from single drive
minidisks through high-capacity,"hard disk" systems. To simplify the fol lowing adapta
tion process, it is assumed that CP/M 2 wi l l f i rst be configured for single density floppy
disks where minimal edit ing and debugging tools are available. If an earlier version of
CP/M is available, the customizing process is eased considerably. In this latter case, the
user may wish to review the system generation process and skip to later sections that
discuss system alteration for nonstandard disk systems.

To achieve device independence, CP/M is separated into three distinct modules:

BIOS basic I/O system, which is environment dependent

BDOS basic disk operating system, which is not dependent upon the hard
ware configurat ion

CCP the console command processor, which uses the BDOS

Of these modules, only the BIOS is dependent upon the particular hardware. That is,
the user can "patch" the d is t r ibut ion version of CP/M t o p r ov ide a new B IOS tha t
provides a customized interface between the remaining CP/M modules and the user's
own hardware system. This document provides a step-by-step procedure for patching a

All disk-dependent portions of CP/M 2 are placed into a BIOS, a resident "disk parameter
block," which is either hand coded or produced automatically using the disk definit ion
macro library provided with CP/M 2 . The end user need only specify the maximum
number of active disks, the start ing and ending sector numbers, the data allocation size,
the maximum extent of the logical disk, directory size information, and reserved track
values. The macros use this in format ion to generate the appropriate tables and table
references for use during CP/M 2 operation. Deblocking information is provided, which

new BIOS into CP/M.

ALL wFoRMATioN PREsuv TED Hmc is r Ror RioARv To DiaTAL REsEARcH 127

aids in assembly or disassembly of sector sizes that are mult iples of the fundamental 128
byte data unit, and the system alteration manual includes general purpose subroutines
that use the deblocking information to take advantage of larger sector sizes. Use of these
subroutines, together w i t h t h e t able-drive data access algorithms, makes CP/M 2 a
universal data management system.

File expansion is achieved by providing up to 512 logical file extents, where each logical
extent contains 16K bytes of data. CP/M 2 is structured, however, so that as much as
128K bytes of data are addressed by a single physical extent (corresponding to a single
directory entry) maintaining compatibil ity w i th previous versions while taking advan
tage of directory space.

I f CP/M is be ing ta i lored to a computer system for the f i rs t t ime, the new BIOS
requires some simple software development and testing. The standard BIOS is listed in
Appendix A and can be used as a model for the customized package. A skeletal version of
the BIOS given in Appendix B can serve as the basis for a modified BIOS. In addition to
the BIOS, the user must wr i te a simple memory loader, called GETSYS, that brings the
operating system into memory. To patch the new BIOS into CP/M, the user must wr i te
the reverse of GETSYS, called PUTSYS, which places an altered version of CP/M back
onto the diskette. PUTSYS can be derived from GETSYS by changing the disk read
commands into disk wr ite commands. Sample skeletal GETSYS and PUTSYS programs
are described in Section 6.4 and listed in Appendix C. To make the CP/M system load
automatically, the user must also supply a cold start loader, similar to the one provided
with CP/M (l isted in Appendices A and D). A skeletal form of a cold start loader is given in
Appendix E, which serves as a model for the loader.

6.2 First Level System Regeneration
The procedure to patch the CP/M system is given below. Address references in each

step are shown with "H" denot ing the hexadecimal radix, and are given for a 20K CP/M
system. For larger CP/M systems, a "bias" is added to each address that is shown with a
"+b" fol lowing i t , where b is equal to the memory size — 20K. Values for b in var ious

standard memory sizes are

b = 24K — 20K = 4K = 1000H

b = 32K - 20K = 12K = 3000H

b = 40K — 20K = 20K = 5000H

b = 48K - 20K = 28K = 7000H

b = 56K - 20K = 36K = 9000H

b = 62K — 20K = 42K = A800H

b = 64K — 20K = 44K = BOOOH

24K:

32K:

40K:

48K:

56K:

62K:

64K:

It should be noted that the standard distribut ion version of CP/M is set for operation
within a 20K memory system. Therefore, the user must f i rst br ing up the 20K CP/M
system, then configure i t for actual memory size (the user should see Section 6.3).

The user should:

1. Read Section 6.4 and write a GETSYS program that reads the first two tracks of a
diskette into memory. The program f rom the d iskette must be loaded start ing at
location 3380H. GETSYS is coded to start at location IOOH (base of the TPA), as
shown in Appendix C.

128 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

2. Test the GETSYS program by reading a blank diskette into memory and check to
see that the data have been read properly and that the diskette has not been altered in
any way by the GETSYS program.

3. Run the GETSYS program using an init ialized CPIM diskette to see if GETSYS
loads CPIM start ing at 3380H (the operating system actually starts 128 bytes later at
3400H).

4. Read Section 6.4 and write the PUTSYS program. This wri tes memory start ing
at 3380H back onto the first two tracks of the diskette. The PUTSYS program should
be located at 200H, as shown in Appendix C.

5. Test the PUTSYS program using a blank, unini t ialized diskette by wr i t ing a
portion of memory to t h e f i r s t tw o t r acks; clear memory and read i t back using
GETSYS. Test PUTSYS completely, since this program will be used to alter CP/M on
disk.

6. Study Sections 6.5, 6.6, and 6.7 along with the distribut ion version of the BIOS
given in Appendix A and wr i te a simple version that performs a similar function for
the customized environment. Use the program given in Appendix B as a model. Call
this new BIOS by the name CBIOS (customized BIOS). Implement only the primit ive
disk operations on a single drive and simple console input/output funct ions in th is
phase.

7. Test CBIOS completely to ensure that it properly performs console character
I/O and disk reads and writes. Be careful to ensure that no disk write operations occur
during read operations and check that the proper track and sectors are addressed on all
reads and writes. Failure to make these checks may cause destruction of the initialized
CPIM system after it is patched.

8. Referring to the table in Section 6.5, note that the BIOS is placed between
locations 4AOOH and 4FFFH. Read the CP/M system using GETSYS and replace the
BIOS segment by the CBIOS developed in step 6 and tested in step 7. This replace
ment is done in memory.

9. Use PUTSYS to place the patched memory image of CPIM onto the f i rst two
tracks of a blank diskette for test ing.

10. Use GETSYS to br ing the copied memory image from the test diskette back
into memory at 3380H and check to ensure that i t has loaded back properly (clear
memory, if possible, before the load). Upon successful load, branch to the cold start
code at location 4AOOH. The cold start rout ine wil l in i t ialize page zero, then jump to
the CCP at location 3400H, which wil l call the BDOS, which will call the CBIOS. The
CBIOS will be asked by the CCP to read sixteen sectors on track 2, and CPIM will type
"A) " , the system prompt .

If diff icult ies are encountered, use whatever debug facilit ies are available to trace
and breakpoint the CBIOS.

11. Upon completion of step 10, CPIM has prompted the console for a command
input. Test the disk wr i te operation by typing

SAVE 1 X.COM

129ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

(All commands must be followed by a carriage return.) CP/M responds with another
prompt (after several disk accesses)

A)

I f it does not, debug the disk wr i te funct ions and retry .

12. Test the directory command by typing

DIR

CP/M responds with

A: X COM

13. Test the erase command by typing

ERA X.COM

CP/M responds with the A p r o m pt . This is now an operational system that on ly
requires a bootstrap loader to funct ion completely.

14. Write a bootstrap loader that is similar to GETSYS and place it on t rack 0,
sector 1 using PUTSYS (again using the test diskette, not the distr ibut ion diskette).
See Sections 6.5 and 6.8 for more information on the bootstrap operation.

15. Retest the new test diskette with the bootstrap loader installed by executing
steps 11, 12, and 13. Upon completion of these tests, type a control-C (control and C
keys simultaneously). The system executes a "warm start" that reboots the system,
and types the A prompt .

16. At this point, there is probably a good version of the customized CP/M system
on the test diskette. Use GETSYS to load CP/M f rom the test diskette. Remove the
test diskette, place the distr ibut ion diskette (or a legal copy) into the drive, and use
PUTSYS to replace the distribut ion version with the customized version. The user
should not make this replacement if unsure of the patch because this step destroys the
system that was obtained from Dig i tal Research.

17. Load the modif ied CP/M system and test i t by typ ing

DIR

CP/M responds with a list of fi les that are provided on the initialized diskette. One file
is the memory image for the debugger

DDT.COM

Note that f rom now on, i t is important always to reboot the CP/M system (ctl-C is
sufficient) when the diskette is removed and replaced by another diskette, unless the
new diskette is to be read only.

18. Load and test the debugger by typing

DDT

(See Chapter 4 for operating procedures.)

130 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

19. Before making fu r ther CBIOS modi f ications, practice using the editor (see
Chapter 2), and assembler (see Chapter 3). Recode and test the GETSYS, PUTSYS,
and CBIOS programs using ED, ASM, and DDT. Code and test a COPY program that
does a sector-to-sector copy from one diskette to another to obtain back-up copies of
the original diskette. (Read the CP/M Licensing Agreement specifying legal responsi
bilities when copying the CP/M system.) Place the copyright not ice

Copyright ©, 1979
Digital Research

on each copy that is made with the COPY program.

20. Modify the CBIOS to include the extra funct ions for punches, readers, and
sign-on messages, and add the facilit ies for addit ional disk drives, if desired. These
changes can be made with the GETSYS and PUTSYS programs or by referr ing to the
regeneration process in Section 6.3.

The user should now have a good copy of the customized CP/M system. Although the
CBIOS portion of CP/M belongs to the user, the modified version cannot be legally copied
for anyone else's use.

I t should be no ted that the system remains f i le-compatible with al l o ther CP/M
systems (assuming media compatibil i ty), which allows transfer of nonproprietary soft
ware between CP/M users.

6.3 Second Level System Generation
Once the system is running, the user wil l want to conf igure CP/M for the desired

memory size. Usually a memory image is first produced with the "MOV C PM" program
(system relocator) and then placed into a named disk file. The disk file can then be loaded,
examined, patched, and replaced using the debugger and the system generation program.

(The user should refer to Chapter 1.)
The CBIOS and BOOT are modif ied using ED and assembled using ASM, producing

files called CBIOS.HEX and BOOT. HEX, which contain the code for CBIOS and BOOT
in Intel hex format .

To get the memory image of CP/M into the TPA configured for the desired memory
size, the user should type the command

MOVCPM xx *

where xx is the memory size in decimal K bytes (e.g., 32 for 32K). The response will be

CONSTRUCTING xxK CP/M VERS 2.0

READY FOR "SYSGEN" OR

"SAVE 34 CPMxx.COM"

An image of CP/M in the TPA is configured for the requested memory size. The memory
image is at location 0900H th rough 227FH (i .e., the BOOT is at 0900H, the CCP is at
980H, the BDOS starts at 1180H, and the BIOS is at 1F80H). The user should note that
the memory image has the standard MDS-800 BIOS and BOOT on it. It is now necessary
to save the memory image in a file so that the user can patch the CBIOS and CBOOT into
it:

SAVE 34 CPMxx.COM

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DICilTAL RESEARCH 131

Upon completion of the read, the user should reexamine the area where the CBIQS has
been loaded (use an "L1F80" command) to ensure that i t was loaded properly. When
satisfied that the change has been made, the user should return f rom DD T u s ing a
control-C or , "GO" command.

SYSGEN is used to replace the patched memory image back onto a diskette (the user
should utilize a test diskette until sure of the patch), as shown in the following interaction:

SYSGEN

SYSGEN VERSION 2.0 Sign-on message from SYSGEN

SOURCE DRIVE NAME
(OR RETURN TO SKIP)

Start the SYSGEN program

Respond with a car r iage return to sk ip the
C P/M read operat ion s ince the system i s
already in memory

Respond with "B" to wr i te the new sys' tem to
the diskette in dr ive B

Place a scratch diskette in dr ive B, then type

DESTINATION DRIVE NAME
(OR RETURN TO REBOOT)

DESTINATION ON B,
THEN TYPE RETURN

FUNCTION COMPLETE
DESTINATION DRIVE NAME
(OR RETURN TO REBOOT)

The user should place the scratch diskette in drive A and then perform a cold start to
bring up the newly conf igured CP/M system.

The new CP/M system is then tested and the Digi tal Research copyright not ice is
placed on the diskette, as specified in the Licensing Agreement:

return.

Copyright ©, 1979
Digital Research

6A Sample GETSYS and PUTSYS Programs
The following program provides a framework fo r the GETSYS and PUTSYS pro

grams referenced in Sections 6.1 and 6.2. The READSEC and WRITESEC subroutines
must be inserted by the user to read and wr ite the specific sectors.

GETSYS PROGRAM — READ TRACKS 0 AND 1 TO MEMORY AT 3380H
REGISTER USE

A (SCRATCH REGISTER)

TRACK COUNT (0, 1)

SECTOR COUNT (1,2,.. .,26)

(SCRATCH REGISTER PAIR)

LOAD ADDRESS

SET TO STACK ADDRESS

C

DE

HL

SP

START: LX I S P,3380H

LXI H, 3380H
MVI B, O

;SET STACK POINTER TO S C RATCH
;AREA
;SET BASE LOAD ADDRESS
;START WITH TRACK 0

134 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

RDTRK:

RDSEC:

MVI C,1
;READ NEXT TRACK (INITIALLY 0)
;READ STARTING WITH SECTOR 1

;READ NEXT SECTOR
;USER-SUPPLIED SUBROUTINE
;MOVE LOAD ADDRESS TO NEXT 1/2
;PAGE
;HL = HL + 128
;SECTOR = SECTOR + 1
;CHECK FOR END OF TRACK

;CARRY GENERATED IF SECTOR (27

CALL R EADS EC
LXI D , 128

DAD D
INR C
MOV A,C
CPI 27
JC RDSEC

ARRIVE HERE AT END OF TRACK, MOVE TO NEXT TRACK
INR B
MOV AB ;TEST FOR LAST TRACK
CPI 2
JC RDTRK ;CARRY GENERATED IF TRACK (2

ARRIVE HERE AT END OF LOAD, HALT FOR NOW
HLT

I

USER-SUPPLIED SUBROUTINE TO READ THE DISK

ENTER WITH TRACK NUMBER IN REGISTER B,
SECTOR NUMBER IN REGISTER C, AND

ADDRESS TO FILL IN HL

READSEC:

PUSH B
PUSH H

perform disk read at this point, branch to

label START if an error occurs

;SAVE B AND C REGISTERS
;SAVE HL REGISTERS

POP H
POP B
RET

;RECOVER HL
;RECOVER B AND C REGISTERS
;BACK TO MAIN PROGRAM

END START

This program is assembled and listed in Appendix B for reference purposes, with an
assumed origin of 100H. The hexadecimal operation codes that are listed on the left may
be useful if the program has to be entered through the panel switches.

The PUTSYS program can be constructed from GETSYS by changing only a few
operations in the GETSYS program given above, as shown in Appendix C. The register
pair HL becomes the dump address (next address to wr i te), and operations upon these
registers do not change within the program. The READSEC subrout ine is replaced by a
WRITESEC subroutine, which performs the opposite function: data from address HL are
written to the track given by register B and sector given by register C. It is often useful to
combine GETSYS and PUTSYS into a single program during the test and development
phase, as shown in Appendix C.

135ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DICilTAL RESEARCH

4A24H+b

4A27H+b

4A2AH+b

4A2DH+b

4A30H+b

JMP SETDMA ; SET D M A A D DRESS

JMP READ ; READ SELECTED SECTOR

JMP WRITE ; WRITE SELECTED SECTOR

JMP LISTST ; RETURN LIST STATUS

JMP SECTRAN ; SECTOR TRANSLATE
SUBROUTINE

Each jump address corresponds to a particular subrout ine that performs the specific
function, as outlined below. There are three major divisions in the jump table: the system
(re)initialization, which results from calls on BOOT and WBOOT; simple character I/O
performed by calls on CONST, CONIN, CONOUT, LIST, PUNCH, READER, and
LISTST; and diskette I/O performed by calls on HOME, SELDSK, SETTRK, SETSEC,
SETDMA, READ, WRITE, and SECTRAN.

All simple character I/O operations are assumed to be performed in ASCII, upper and
lower case, with high order (parity bit) set to zero. An end-of-f i le condition for an input
device is given by an ASCII control-z (1AH). Peripheral devices are seen by CP/M as
" logical" devices and are assigned to physical devices within the BIOS.

To operate, the BDOS needs only the CONST, CONIN, and CONOUT subrout ines
(LIST, PUNCH, and READER may be used by PIP, but not the BDOS). Further, the
LISTST entry is currently used only by DESPOOL, the print spooling uti l i ty. Thus, the
initial version of CBIOS may have empty subrout ines for the remaining ASCII devices.

The characteristics of each device are

CONSOLE

LIST

PUNCH

The principal interactive console that communicates with the
o perator, accessed through CONST, CONIN, and CONOUT ;
typically, the CONSOLE is a device such as a CRTor teletype.

The principal listing device, if it exists on the user's system, is
usually a hard-copy device, such as a printer or te letype.

The principal tape punching device, if it exists, is normally a
high-speed paper tape punch or teletype.

The principal tape reading device, such as a simple opt ical
reader or teletype.

READER

A single peripheral can be assigned as the L IST, PUNCH, and READER device
s imultaneously. If no per ipheral device is assigned as the LIST, PUNCH, or READER
device, the CBIOS created by the user may give an appropriate error message so that the

system does not "hang" i f the device is accessed by PIP or some other user program.
Alternately, the PUNCH and L IST rou t ines can just simply return, and the READER
routine can return w i th a 1AH (c t l -Z) in register A to indicate Immediate end-of-f i le.

For added f lexibi l i ty, the user can opt ionally implement the " IO BYTE" f unct ion,
which allows reassignment of physical and logical devices. The IOBYTE function creates
a mapping of logical to physical devices that can be altered during CP/M processing (the
user should see the STAT command). The defini t ion of the IOBYTE funct ion corres
ponds to the Intel standard as follows: a single location in memory (currently location
0003H) is maintained, called IOBYTE, which defines the logical to physical device map
p ing that is in e f fect at a par t icular t i me. The mapping is performed by spl i t t ing the

138 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

IOBYTE AT 003H

least significant

P UNCH READER CONSO L E

bits 0, 1

The value in each f ield can be in the range 0-3, def ining the assigned source or
destination of each logical device. The values that can be assigned to each field are given
below

IOBYTE into f ou r d i s t inct f ie lds of tw o b i t s each, called the CO N SOLE, READER,
PUNCH, and LIST f ields, as shown below.

most significant

LIST

bits 6, 7 b its 4, 5 b i ts 2, 3

CONSOLE field (bits 0,1)
0 console is assigned to the console printer device (TTY:)
1 console is assigned to the CRT device (CRT:)
2 batch m o c le: use the READER as the CON SOLE input, and the

3 user def i ned console device (UC1:)
L IST device as the CONSOLE output (BAT:)

READER field (bits 2,3)
0 REA D ER i s the te letype device (TTY:)
1 REA D ER i s the h igh speed reader device (PTR:)
2 user defined reader ¹ 1 (URI :)
3 user def i ned reader ¹ 2 (UR2:)

PUNCH field (bits 4,5)
0 PUN C H is t h e te letype device (TTY:)
1 PU N C H is t h e h igh speed punch device (PTP:)
2 user defined punch ¹ 1 (UP1:)
3 user defined punch ¹ 2 (UP2:)

LIST field (bits 6,7)
0 LIST is t h e te letype device (TTY:)
1 LIST is t h e CRT device (CRT:)
2 LIST is t h e l ine pr in ter device (LPT:)
3 user def i ned l ist device (UL1:)

The implementation of the IOBYTE is optional and affects only the organization of
the CBIOS. No CP/M systems use the IOBYTE (although they tolerate the existence of
the IOBYTE at location 0003H), except for P IP, wh ich al lows access to the physical
devices, and STAT, wh ich al lows logical-physical assignments to be made or displayed
(for more information, the user should see Chapter 1). In any case the IOBYTE imple
mentation should be omitted unti l the basic CBIOS is fully implemented and tested; then
the user should add the IOBYTE to increase the facilit ies.

Disk I/O is always performed through a sequence of calls on the various disk access
subroutines that set up the disk number to access, the track and sector on a particular
disk, and the direct memory access (DMA) address involved in the I/O operation. After all
these parameters have been set up, a call is made to the READ or WRITE funct ion to
perform the actual I/O operation. There is often a single call to SELDSK to select a disk
drive, fol lowed by a n u mber o f r ead or w r i t e operat ions to the selected disk before
selecting another drive for subsequent operations. Similarly, there may be a single call to
set the DMA address, followed by several calls that read or write from the selected DMA
address before the DMA address is changed. The track and sector subroutines are always
called before the READ or WRITE operations are performed.

The READ and WRITE rout ines should perform several retries (10 is standard) before
reporting the er ror condit ion to the BDOS. I f the er ror condit ion is returned to the
BDOS, i t w i l l r epor t the e r ro r t o the user. The HOM E subrout ine may or may no t

139ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

actually perform the track 00 seek, depending upon controller characteristics; the impor
tant point is that track 00 has been selected for the next operation and is often treated in
exactly the same manner as SETTRK w i th a parameter of 00.

The exact responsibilit ies of each entry point subrout ine are given below.

BOOT The BOOT entry point gets control from the cold start loader
and is responsible for basic system in i t ial ization, including
sending a sign-on message (which can be omitted in the f i rst
version). If the IOBYTE funct ion is implemented, it must be
set at this point. The various system parameters that are set
by the WBOOT entry point must be initialized, and control is
transferred to the CCP at 3400+b for further processing. Note
that register C must be set to zero to select drive A.

The WBOOT en t ry po in t gets control when a warm s tar t
occurs. A warm start is performed whenever a user program
branches to location 0000H, or when the CPU is reset from
the front panel. The CPIM system must be loaded from the
first two tracks of drive A up to, but not including, the BIOS
(or CBIOS, i f t h e u ser has completed the patch). System
parameters must be ini t ialized as shown below:

WBOOT

location 0,1,2

location 4

location 3

S et to JM P W B O O T f o r w ar m
starts (OOOH: JMP 4A03H+b)

S et in i t ia l va lue o f I OB Y T E, i f
implemented in the CBIOS

High nibble = current user no; low
nibble = current dr ive

S et to JMP BD OS, w h ich i s t h e
p rimary entry po in t to CPIM f o r
transient programs. (0005H: JMP
3C06H+b)

location 5,6,7

CONST

(The user should refer to Section 6.9 for complete details of
page zero use.) Upon completion o f t h e i n i t ia l ization, the
WBOOT program must branch to the CCP at 3400H+b to
(re)start the system. Upon entry to the CCP, register C is set
to the drive to select after system init ialization. The WBOOT
routine should read location 4 in memory, ver ify that i t is a
legal drive, and pass it to the CCP in register C.

The user should sample the status of the currently assigned
console device and return OFFH in register A if a character is
ready to read and OOH in register A if no console characters are
ready.

The next console character is read into register A, and the
parity bit is set (high order bit) to zero. If no console character
is ready, the user wa i ts un t i l a character is t yped before

CON IN

returning.

140 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

LIST

HOME

PUNCH

READER

SELDSK

CONOUT The user sends the character from register C to the console

output device. The character is in A SCII , w i th h igh o rder
parity bit set to zero. The user may want to include a time-out
on a line feed or carriage return, if the console device requires
some time interval at the end of the line (such as a TI Silent 700
terminal). The user can filter out control characters that cause
the console device to react in a strange way (a control-z causes
the Lear Seigler terminal to clear the screen, for example).

The user sends the character from register C to the currently
assigned listing device. The character is in ASCII w i th zero
parity bi t .

The user sends the character from register C to the currently
assigned punch device. The character is in ASCII w i th zero
parity.

The user reads the next character from the currently assigned
reader device into register A with zero parity (high order bit
must be zero); an end-of-f ile condition is reported by return
ing an ASCII control-z(1AH).

The user moves the disk head of the currently selected disk
(initially disk A) t o t h e t r ack 00 posit ion. I f the cont ro l ler
allows access to the t rack 0 f lag f rom the dr ive, the head is
stepped until the track 0 flag is detected. If the controller does
not support this feature, the HOME call is translated into a call
to SETTRK wi th a parameter of 0.

The user selects the disk drive given by register C for fur ther
operations, where register C contains 0 for drive A, 1 for drive
B, and so on up to 15 for drive P (the standard CPIM distr ibu
tion version supports f ou r d r i ves). On e ach d isk se lect,
SELDSK must return in HL the base address of a 16-byte area,
called the Disk Parameter Header, described in Section 6.10.
For standard floppy disk drives, the contents of the header and
associated tables do not change; thus, the program segment
included in the sample CBIOS performs this operation auto
matically. If there is an attempt to select a nonexistent drive,
SELDSK returns HL =0000H as an error indicator. Al though
SELDSK must re turn the header address on each call, i t is
advisable to postpone the physical disk select operation unt i l
an IIO fu nc t ion (seek, read, or wr i te) is actually performed,
s ince disk selects often occur wi thout u t imately performing
any disk IIO, and many controllers will unload the head of the
current disk before selecting the new drive. This would cause
an excessive amount of noise and disk wear. The least signifi
cant bit of register E is zero if this is the first occurrence of the
drive select since the last cold or warm star t .

Register BC contains the track number for subsequent disk
accesses on the currently selected drive. The sector number in

BC is the same as the number returned from the SECTRAN
entry point. The user can choose to seek the selected track at

SETTRK

141ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

SETS EC

SETDMA

this time or delay the seek until the next read or write actually
occurs. Register BC can take on values in the range 0-76

corresponding to valid track numbers for standard floppy disk
drives and 0-65535 for nonstandard disk subsystems.

Register BC contains the sector number (1 through 26) for
subsequent disk accesses on the currently selected drive. The
sector number in BC is the same as the number returned from
the SECTRAN entry point. The user can choose to send this
information to t h e con t ro l ler a t t h i s po int o r de lay sector
selection unti l a read or wr i te operation occurs.

Register BC contains the DMA (disk memory access) address
for subsequent read or wr i te operations. For example, if B =

00H and C = 80H when SETDMA is called, all subsequent read
operations read their data into 80H t h r ough OFFH and al l
subsequent write operations get their data from 80H through
OFFH, until the next call to SETDMA occurs. The initial DMA
address is assumed to be 80H. The controller need not actually
s upport d i rect m e mory a ccess. I f , f o r example, al l d a ta
t ransfers are t h rough I / O p o r ts , th e C B IO S t ha t i s con
structed wil l use the 128-byte area start ing at the selected
DMA address for the memory buf fer dur ing the subsequent
read or wr i te operations.

Assuming the drive has been selected, the track has been set,
the sector has been set, and the DMA address has been speci
fied, the READ subrout ine attempts to read one sector based
upon these parameters and returns the following error codes

READ

in register A:

0 no er r o r s occurred

1 n onrecoverable error condition occurred

WR ITE

Currently, CP/M responds only to a zero or nonzero value as

the return code. That is, if the value in register A is 0, CP/M
assumes that the disk operation was completed properly. If an
error occurs, however, the CBIOS should attempt at least 10
retries to see i f the er ror i s recoverable. When an error i s
reported the BDOS will print the message "BDOS ERR ON x:
BAD SECTOR". The operator then has the option of typing
carriage-return to ignore the error, or ct l-C to abort .

The user wr i tes the data f rom the currently selected DMA
address to the currently selected drive, track, and sector. For
floppy disks, the data should be marked as "nondeleted data"
to maintain compatibil ity with other CP/M systems. The error
codes given in the READ command are returned in register A,

with error recovery attempts as described above.

The user returns the ready status of the list device used by the
DESPOOL program to improve console response during i ts
operation. The value 00 is returned in A if the list device is not
ready to accept a character and 0FFH if a character can be sent

LISTST

142 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

to the printer. A 00 value should be returned if LIST status is
not implemented.

The user performs logical to physical sector t ranslation to
improve the overall response of CP/M. Standard CP/M sys
t ems are sh ipped w i t h a "s kew f a c tor " o f 6 , where six
physical sectors are skipped between each logical read opera
tion. This skew factor allows enough time between sectors for
most programs to load their buffers without missing the next
sector. In part icular computer systems that use fast proces
sors, memory, and disk subsystems, the skew factor may be
changed to improve overall response. However, the user

should mtaintain a single density IBM-compatible version of
CP/M for in format ion transfer into and out of the computer
system, using a skew f ac tor o f 6 . I n g e neral, SECTRAN
receives a logical sector number relative to zero in BC and a
translate table address in DE. The sector number is used as an
index into the t r anslate table, w i th th e r esul t ing physical
sector number in HL. For standard systems, the table and

i ndexing code is prov ided in th e C B IOS and need no t be
changed.

SECTRAN

6.7 A Sample BIOS

simplest functions are assumed in this BIOS, so that the user can enter it through a front
panel, if absolutely necessary. The user must alter and insert code into the subrout ines
for CONST, CONIN, CO N O UT , READ, WRITE, and WAITIO subrout ines. Storage is
reserved for user-supplied code in these regions. The scratch area reserved in page zero

(see section 6.9) for the BIOS is used in this program, so that it could be implemented in

Once operational, this skeletal version can be enhanced to pr int the in i t ial sign-on
message and perform better error recovery. The subroutines for LIST, PUNCH, and

READER can be fi l led out and the IOBYTE funct ion can be implemented.

6.8 A Sample Cold Start Loader

The program shown in Appendix B can serve as a basis for a user's first BIOS. The

ROM, if desired.

The program shown in Appendix E can serve as a basis for a cold start loader. The disk
read function must be supplied by the user, and the program must be loaded somehow
starting at location 0000. Space is reserved for the patch code so that the total amount of
storage required for the cold start loader is 128 bytes. Eventually, the user will probably
want to get this loader onto the first disk sector (track 0, sector 1) and cause the controller
to load it into memory automatically upon system start up. Alternatively, the cold start
loader can be placed into ROM , and above the CP/M system. In th is case, it w i l l be
necessary to originate the program at a higher address and key in a jump instruct ion at
system start up that branches to the loader. Subsequent warm starts will not require this
key-in operation, since the entry point WBOOT gets control thus bringing the system in
from disk automatically. The skeletal cold start loader has minimal error recover, which
may be enhanced in later versions.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DICITAL RESEARCH 143

6.9 Reserved Locations in Page Zero
Main memory page zero, between locations OOH and OFFH, contains several segments

of code and data that are used during CPIM processing. The code and data areas are given
below for reference

ContentsLocations
from to

0000H-0002H

0003 H-0003 H

0004H-0004 H

0005 H-0007 H

0008H-0027H

0030H-0037 H

0040 H-004 F H

0038H-003AH

003BH-003FH

0050H-005 BH

005CH-007CH

Contains a jump inst ruct ion to the w arm s tar t en t r y
point at location 4A03H+b. This al lows a simple pro
grammed restart (JMP OOOOH) or manual restart f rom
the front panel.

Contains the Intel standard IOBYTE, which is optionally
included in the user's CBIOS, as described in Section 6.6.

Current default dr ive number (O=A,...,15=P).

Contains a jump instruction to the BDOS and serves two
purposes: JMP 0005H provides the primary entry point
t o the BD OS, as described in Chapter 5, and LH L D
0006H brings the address field of the instruction to the
HL register pair . Th is va lue is the lowest address in
memory used by CP IM (a ssuming the C CP i s b e ing
overlaid). The DD T p r o gram w i l l change the address
field to reflect the reduced memory size in debug mode.

(Interrupt locations 1 through 5 not used.)

(Interrupt location 6, not currently used; reserved.)

Restart 7; contains a jump instruct ion into the DDT or
S ID program when r u n n ing i n d ebug mode for p ro
grammed breakpoints, but i s no t o t h e rw ise used by
CPI M

(Not currently used; reserved.)

A 16-byte area reserved for scratch by CBIOS, but is not
used for any p u r pose in t h e d i s t r ibut ion version o f
CPI M.

(Not currently used; reserved.)

Default f i le control block produced for a transient pro
gram by the Console Command Processor.

Optional default random record position.

Default 128-byte disk buf fer (also fi l led with the com
mand line when a transient is loaded under the CCP).

007DH-007FH

0080H-00FF H

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH144

This information is set up for normal operation under the CP/M system, but can be
o verwri t ten by a t r ansient p rogram i f t h e B D O S f ac i l i t ies are not required by t h e

If, for example, a par t icular p rogram per forms only s imple I/O and must begin
execution at location 0, it can first be loaded into the TPA, using normal CPI M facilities,
with a small memory move program that gets control when loaded (the memory move
program must get control f rom location 0100H, which is the assumed beginning of all
transient programs). The move program can then proceed to move the entire memory
image down to location 0 and pass control to the starting address of the memory load. If
the BIOS is overwr i t ten or i f l o cat ion 0 (containing the warm s tar t en try po int) i s
overwri t ten, the operator must br ing the CPIM system back into memory wi th a cold

transient.

start sequence.

6.10 Disk Parameter Tables
Tables are included in the BIOS that describe the particular characteristics of the disk

subsystem used with CP/M. These tables can be either hand-coded, as shown in t he
sample CBIOS in Appendix B, or au tomatically generated using the DISKDEF macro
library, as shown in Appendix F. The purpose here is to describe the elements of these

In general, each disk dr ive has an associated (16-byte) disk parameter header that
contains information about the d isk dr ive and provides a scratchpad area for certain
BDOS operations. The format of the d isk parameter header for each dr ive is shown

tables.

below.

Disk Parameter Header
XLT 0000 0000 0000 D IR BUF DPB CSV ALV
16b 16b 16b 16b 16b 16b 16b 16b

where each element is a word (16-bit) value. The meaning of each Disk Parameter Header
(DPH) element is

XLT

CSV

DPB

0000

DIRBUF

block.

Address of the logical to physical translation vector, if used for
this particular drive, or the value 0000H if no sector transla
t ion takes place (i.e., the physical and logical sector numbers
are the same). Disk dr ives with identical sector skew factors
share the same translate tables.

Scratchpad values for use wi thin the BDOS (in i t ial value is
unimportant).

Address of a 128-byte scratchpad area for directory operations
within BDOS. Al l DPHs address the same scratchpad area.

Address of a disk parameter block for this drive. Drives with
identical disk characteristics address the same disk parameter

Address of a scratchpad area used for sof tware check for
changed disks. This address is different for each DPH.

Address of a scratchpad area used by the BDOS to keep disk

storage allocation information. This address is different for
each DPH.

ALV

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 145

Given n d isk dr ives, the DPHs are arranged in a table whose f i rst row o f 16 by tes
corresponds to dr ive 0, w i th the last row cor responding to dr ive n-1. The table thus
appears as

DPBASE:
00 ~ XLT 00 OOOO
01 i XLT 01 0 0 00

0000 0000 DIRBUF DBP 00 CSV 00 ALVOOI
0000 00 0 0 D I RBUF DBP 01 CSV 01 ALV01

n-1 ~ XLTn-1 0000 0000 0000 DIR BUF DBPn-1 CSVn-1 ALVn-1
(and so on through)

where the label DPBASE defines the base address of the DPH table.
A responsibility of the SELDSK subrout ine is to return the base address of the DPH

for the selected drive. The fol lowing sequence of operations returns the table address,
with a 0000H returned if the selected drive does not exist.

NDISKS EQU 4 ;NUMBER OF DISK DRIVES

SELDSK: ;S EL ECT D IS K G I V EN BY B C
LXI H ,O OOOH ;ERROR CODE
MOV A,C ;DRIV E OK?
CPI NDISKS ;C Y IF SO
RNC ;RET IF ERROR
;NO ERROR, CONTINUE
MOV L,C ;LOW(DI S K)
MOV H,B ;HI GH(D I SK)
DAD H ;"2
DAD H ;"4
DAD H ;*8

DAD H ;*16

LXI D,DPB ASE;FIRST DPH
DAD D ;DPH(DISK)
RET

The translation vectors (XLT 00 through XLTn-1) are located elsewhere in the BIOS,
and simply correspond one-for-one with the logical sector numbers zero through the
sector count 1 . The D isk Parameter Block (DPB) for each dr ive is more complex. A
particular DPB, which is addressed by one or more DPHs, takes the general form

~ SPT BSH ~ BLM ~ EXM ~ DSM ~ DRM ~ ALO ~ AL1 CKS ~ OFF ~
16b 8b 8b 8b 16b 16b 8b 8b 16b 16b

where each is a byte or word value, as shown by the 8b or 16b indicator below the field.

SPT

BSH

BLM

EXM

is the total number of sectors per track.

is the data allocation block shift factor, determined by the data block
allocation size.

is the data allocation block mask (2[BSH-1]).

is the extent mask, determined by the data block allocation size and
the number of disk blocks.

determines the total storage capacity of the disk dr ive.DSM

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH146

DRM determines the total number of directory entr ies that can be stored
on this drive. (ALO,AL1 determine reserved directory blocks.)

is the size of the directory check vector.

is the number of reserved tracks at the beginning of the (logical)

CKS

OFF
disk.

The values of BSH and BLM determine (implicit ly) the data allocation size BLS, which is
not an entry in the DPB. Given that the designer has selected a value for BLS, the values
of BSH and BLM are shown in the tabulation below.

BLS
1 024
2048
4096
8192

16 384

3 4

BSH BLM
7

15
31
63

127
5 6 7

where all values are in decimal. The value of EXM depends upon both the BLS and
whether the DSM value is less than 256 or greater than 255. For DSM (2 5 6 the value of
EXM is given by:

BLS
1 024
2 048
4096
8192

16384

0 1

3 7

EXM

15

For DSM) 2 5 5 the value of EXM is g iven by:

BLS
1 024
2048
4096
8192

16384

EXM
N/A

0 1 3 7

The value of DSM is the maximum data block number supported by this particular
drive, measured in BLS uni ts. The product BLS t imes (DSM+1) is the total number of
bytes held by the drive and, of course, must be within the capacity of the physical disk, not
counting the reserved operating system tracks.

The DRM entry is the one less than the total number of directory entr ies that can take
on a 16-bit value. The values of AL0 and AL1, however, are determined by DRM. The

values ALO and AL1 can together be considered a string of 16-bits, as shown below.

ALO AL1

00 0 1 02 03 04 05 06 07 08 09 10 11 12 1 3 14 15

where position 00 corresponds to the h igh order bi t o f the byte labeled ALO and 15
corresponds to the low order bit of the byte labeled AL1. Each bit position reserves a data
block for number o f d i rectory en t r ies, thus al lowing a to ta l o f 16 data blocks to be

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 147

assigned for directory entr ies (bits are assigned starting at 00 and filled to the right unt i l
position 15). Each directory entry occupies 32 bytes, resulting in the tabulation below.

BLS
1024
2048
4096
8192

16384,

Directory Entries
32 t i mes ¹ b i t s
64 t i mes ¹ b i t s
128 times ¹ b i ts
256 times ¹ bi ts
512 times ¹ bi ts

Thus, if DRM = 127 (128 directory entr ies) and BLS = 1024, there are 32 directory entries

per block, requir ing 4 reserved blocks. In this case, the 4 high order bits of AL0 are set,
resulting in the values ALO = OFOH and AL1 = 00H.

The CKS value is determined as follows: if the disk dr ive media is removable, then
CKS = (DRM+1)/4, where DRM is the last directory entry number. If the media are fixed,
then set CKS = 0 (no directory records are checked in this case).

F inally, the OFF f ield determines the number o f t r acks that are sk ipped at t he
beginning of the physical disk. This value is automatically added whenever SETTRK is
called and can be used as a mechanism for skipping reserved operating system tracks or

for part i t ioning a large disk into smaller segmented sections.
To complete the discussion of the DPB, several DPHs can address the same DPB if

their dr ive characteristics are identical. Further, the DPB can be dynamically changed
when a new drive is addressed by simply changing the pointer in the DPH since the BDOS
copies the DPB values to a local area whenever the SELDSK funct ion is invoked.

Returning back to the DPH for a part icular dr ive, the two address values CSV and
ALV remain. Both addresses reference an area of unini t ialized memory fo l lowing the
BIOS. The areas must be unique for each drive, and the size of each area is determined by
the values in the DPB.

The size of the area addressed by CSV is CKS bytes, which is sufficient to hold the
d irectory check informat ion for t h is part icular dr ive. I f CK S = (DRM+1)/4, one must
reserve (DRM+1)/4 bytes for directory check use. If CKS = 0, no storage is reserved.

The size of the area addressed by ALV is determined by the maximum number of data
blocks allowed for th is part icular disk and is computed as (DSM/8)+1.

The CBIOS shown i n A p p endix B d emonstrates an instance of these tables for
standard 8-inch single density dr ives. It may be useful to examine this program and
compare the tabular values with the defini t ions given above.

6.1 1 The DISKDEF Macro Library
A macro library is shown in Appendix F, called DISKDEF, which greatly simplif ies the

table construction process. One must have access to the MA C m a cro assembler, of
course, to use the DISKDEF facility, while the macro library is included with all CP/M 2
d is t rib u ti on disks.

A BIOS disk defini t ion consists of the fol lowing sequence of macro statements:

DISKDEFMAC LIB

DISKS
DISKDEF
DISKDEF

n
0,...
1,...

148 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARGH

DISKDEF n-1

ENDEF

where the MACLIB statement loads the DISKDEF.LIB file (on the same disk as the BIOS)
into MAC's internal tables. The DISKS macro call follows, which specifies the number of
drives to be configured with the user's system, where n is an integer in the range 1 to 16.
A series of DISKDEF macro calls then follow that define the characteristics of each logical
d isk, 0 th rough n-1 (corresponding to logical dr ives A t h r ough P). The D I SKS and
DISKDEF macros generate the in-l ine fixed data tables described in the previous section
and thus must be p laced in a n o n executable port ion of t h e B IOS, t yp ically directly
following the BIOS jump vector.

The remaining port ion of the BIOS is defined following the DISKDEF macros, with
the ENDEF macro call immediately preceding the END statement. The ENDEF (End of
Diskdef) macro generates the necessary unini t ialized RAM areas, which are located in
memory above the BIOS.

The form of the DISKDEF macro call is

DISKDEF dn,fsc,lsc,[skf],bls,dks,dir,cks,ofs,[0]

where

dn

fsc is the first physical sector number (0 or 1).

i s the logical disk number, 0 to n- l .

is the last sector number.

is the optional sector skew factor.

is the data allocation block size.

Isc

skf

bls

dks is the number of blocks on the disk.

dir

cks

ofs

[o] is an optional 1.4 compatibil ity f lag.

is the number of d i rectory entr ies.

is the number of "checked" directory entr ies.

is the track offset to logical track 00.

skew.

The value dn is the dr ive number being defined with this DISKDEF macro invocation.
The fsc parameter accounts for dif fer ing sector numbering systems and is usually 0 or 1.
The Isc is the last numbered sector on a track. When present, the skf parameter defines
the sector skew factor, which is used to create a sector translation table accodrding to the

If the number of sectors is less than 256, a single-byte table is created, otherwise each
translation table element occupies two bytes. No t ranslation table is created if the skf
parameter is omit ted (or equal to 0). The bls parameter specifies the number of bytes
allocated to each data block, and takes on the values 1024, 2048, 4096, 8192, or 16384.
Generally, performance increases with larger data block sizes since there are fewer
directory references and logically connected data records are physically close on the disk.
Further, each directory entry addresses more data and the BIOS-resident ram space is

The dks parameter specifies the total disk size in bls units. That is, if the bls = 2048 and
dks = 1000, the total disk capacity is 2,048,000 bytes. If dks is greater than 255, the block
size parameter bls must be greater than 1024. The value of dir is the total number of
directory entr ies, which may exceed 255, if desired. The cks parameter determines the

reduced.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DICilTAL RESEARCH 149

number of directory items to check on each directory scan and is used internally to detect
changed disks during system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks the disk read/only
so that data are not subsequently destroyed).

As stated in the previous section, the value of cks = dir when the medium is easily
changed, as is the case with a floppy disk subsystem. If the disk is permanently mounted,
the value of cks is typically 0, since the probability of changing disks without a restart is
low. The ofs value determines the number of tracks to skip when this particular drive is
addressed, which can be used to reserve additional operating system space or to simulate
several logical drives on a single large capacity physical drive. Finally, the [0] parameter is
included when file compatibility is required with versions of 1.4 that have been modified
for higher density d isks. This parameter ensures that only 16K is al located for each
directory record, as was the case for previous versions. Normally, this parameter is not

For convenience and economy of table space, the special form

DISKDEF I,J

included.

gives disk i the same characteristics as a previously defined drive j. A standard four-dr ive
single density system, which is compatible with version 1.4, is defined using the following
macro invocations:

DISKS
DISKDEF
DISK DEF
DISKDEF
DISKDEF

4
0,1,26,6,1024,243,64,64,2
1,0
2,0
3,0

ENDEF

with al l disks having the same parameter values of 26 sectors per track (numbered I
through 26), with 6 sectors skipped between each access, 1024 bytes per data block, 243
data blocks for a total of 243K-byte disk capacity, 64 checked directory entr ies, and two
operating system tracks.

The DISKS macro generates n DPHs, start ing at the DPH table address DPBASE
generated by the macro. Each disk header block contains sixteen bytes, as described
above, and correspond one-for-one to each of the def ined dr ives. In the fou r -dr ive
s tandard system, for example, the DISKS macro generates a table of the form:

DPBASE
DPEO:
DPE1:
DPE2:
DPE3:

EQU $
DW X LTO,OOOOH,OOOOH,OOOOH, D I R B U F, D P BO, C SVO,ALVO
DW X LTO,OOOOH,OOOOH,OOOOH, D IR BU F, DP BO, CSV1,ALV1
DW XLT0,0000H,OOOOH,OOOOH,DIRBUF,DPBO,CSV2,ALV2
DW XLT0,0000H,0000H,0000H,DIRBUF,DPBO,CSV3,ALV3

where the DPH labels are included for reference purposes to show the beginning table
addresses for each drive 0 through 3. The values contained within the DPH are described
in detail in the previous section. The check and allocation vector addresses are generated
by the ENDEF macro in the ram area following the BIOS code and tables.

The user should note that if the skf (skew factor) parameter is omitted (or equal to 0),
the translation table is omitted and a OOOOH value is inserted in the XLT position of the
DPH for the d isk. In a subsequent call to perform the logical to physical translation,
SECTRAN receives a translation table address of DE = OOOOH and simply returns the
original logical sector from BC in the HL register pair. A t ranslate table is constructed
when the skf parameter is present, and the (nonzero) table address is placed into the

150 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

corresponding DPHs. The tabulation shown below, for example, is constructed when the
standard skew factor skf = 6 is specified in the DISKDEF macro call:

XLTO: DB 1,7,13, 19 ,25,5,11,17,23,3,9,15,21
DB 2,8,14, 20 ,26,6,12,18,24,4,10,16,22

Following the ENDEF macro call, a number of un in i t ial ized data areas are defined.
These data areas need not be a part of the BIOS that is loaded upon cold start, but must be
available between the BIOS and the end of memory. The size of the unini t ialized RAM
area is determined by EQU statements generated by the ENDEF macro. For a standard
four-drive system, the ENDEF macro might produce

4C72 = BEGDAT EQU $
(data areas)

ENDDAT EQU $

DATSIZ EQU $-BEGDAT

4DBO =

013C =

which indicates that unini t ialized RAM begins at location 4C72H, ends at 4DBDH-I, and
occupies 013CH bytes. The user must ensure that these addresses are free for use after

the system is loaded.
After modification, the user can util ize the STAT program to check drive characteris

t ics, since STAT uses the disk parameter block to decode the dr ive informat ion. The
STAT command form

STAT cI:DSK:

decodes the disk parameter block for dr ive d (d-A , . ..,P) and displays the values shown
below.

r: 1 2 8 -byte record capacity
k: k i l obyte dr ive capacity
d: 32 -byte directory entr ies
c: checked directory entr ies
e: r ecords/extent
b: records/block
s: sectors/track
t: r e served tracks

Three examples of DISKDEF macro invocations are shown below wi th corresponding
STAT parameter values (the last produces a full 8-megabyte system).

r=4096,

r=16384,

D IS K D E F 0,1,58„2048,256,128,128,2
k=512, d =128, c =128, e =256, b =16, s =58, t =2

DISKDEF 0,1,58„2048,1024,300,0,2
k=2048, d =300, c =O, e=128, b =16, s =58, t=2

DISKDEF 0,1,58„16384,512,128,128,2
k=8192, d =128, c =128, e =1024, b =128, s =58, t=2r =65536,

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 151

6.12 Sector Blocking and Deblocking
Upon each call to the BIOS WRITE entry point, the CPIM BDOS includes information

that allows effective sector blocking and deblocking where the host disk subsystem has a
sector size that is a mult iple of the basic 128-byte unit. The purpose here is to present a
general-purpose algorithm that can be included within the BIOS and that uses the BDOS
information to perform the operations automatically.

On each call to WRITE, the BDOS provides the following informat ion in register C:

normal sector wr i te
write to directory sector
write to the f i rst sector
of a new data block

Condition 0 occurs whenever the next wr i te operation is into a previously wr i t ten area,
such as a random mode record update, when the write is to other than the first sector of
an unallocated block, or when the write is not into the directory area. Condition 1 occurs
when a wr i te into the d i rectory area is performed. Condit ion 2 occurs when the f i rst
record (only) o f a n e w l y a l located data block is w r i t t en . In m os t cases, application
programs read or w r i t e m u l t iple 128-byte sectors in sequence; thus, there is l i t t l e
overhead involved in e i ther operation when b locking and deblocking records, since
preread operations can be avoided when writing records.

Appendix G l ists the blocking and deblocking algorithms in skeletal form (this f ile is
included on your CPIM disk). enerally, the algorithms map all CPIM sector read opera
tions onto the host disk through an intermediate buffer that is the size of the host disk
sector. Throughout the program, values and variables that relate to the CPIM sector
involved in a seek operation are pref ixed by sek, while those related to the host disk
system are prefixed by hst. The equate statements beginning on l ine 29 of Appendix G
define the mapping between CPIM and the host system, and must be changed if other
than the sample host system is involved.

The entry points BOOT and WBOOT must contain the initialization code starting on
line 57, while the SELDSK entry point must be augmented by the code starting on line 65.
The user should note that although the SELDSK entry point computes and returns the
Disk Parameter Header address, it does not physically select the host disk at this point (it
i s selected later a t R E A D H S T o r WR I T E H ST). Fu r ther , SETTRK, SETTRK, an d
SETDMA s imply s tore the va lues, but do no t t ake any o t her ac t ion a t t h i s po in t .
SECTRAN performs a t r iv ial funct ion of re turn ing the physical sector number.

The pr incipal entry po ints are READ and WRITE, start ing on l ines 110 and 125,
respectively. These subrout ines take the p lace of your p rev ious READ and WRIT E
operations.

The actual physical read or wr i te takes place at either WRITEHST or READH ST,
where all values have been prepared: hstdsk is the host disk number, hsttrk is the host
track number, and hstsec is the host sector number (which may require translation to a
physical sector number). The user must insert code at this point that performs the ful l
host sector read or wr i te into or out of the buf fer at hstbuf of length hstsiz. All other
mapping functions are performed by the algori thms.

This particular algori thm was tested using an 80-megabyte hard disk unit that was
originally conf igured for 128-byte sectors, producing approximately 35 megabytes of
formatted storage. When configured for 512-byte host sectors, usable storage increased

to 57 megabytes, with a corresponding 400% improvement in overall response. In this
situation, there is no apparent overhead involved in deblocking sectors, with the advan
tage that user programs still maintain 128-byte sectors. This is primarily because of the
information p r ov ided b y t h e B DO S , w h i ch e l i m inates the n ecessity fo r p r e read
operations.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DICilTAL RESEARCH152

CP M'
OPERATING SYSTEM

MANUAL

Appendices A-G

i~ DIGITAL RESEARCH"
P.O. Box 579

Pacific Crove, California 93950

595-2843

COPYRIGHT

Copyright > 1976, 1977, 1978, 1979, and 1982 by Digital Research. All r ights reserved.
No part o f t h i s publ ication may be reproduced, transmitted, t ranscribed, stored in a
retrieval system, or translated into any language or computer language, in any form or by
any means, electronic, mechanical, magnetic, optical, chemical, manual or o therwise,
without the pr ior wr i t ten permission of Dig i tal Research, Post Of f ice Box 579, Pacific
Grove, California 93950.

DISCLAIMER

Digital Research makes no representations or war rant ies with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or f i tness for
any particular purpose. Further, Digital Research reserves the right to revise this publica
tion and to make changes from t ime to t ime in the content hereof without obligation of
Digital Research to not ify any person of such revision or changes.

TRADEMARK S

CPIM is a registered trademark of D ig i tal Research. MPIM, M AC , and SID are t rade
marks of Digi tal Research. Z-80 is a trademark of Z i log, Inc.

First Print ing: July 1982

Appendix A: The MDS Basic I/O System (BIOS)

1
2
3

Z
0

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

8 9

4 5 6 7
0016 = vers

mds-800 i/o drivers for cp/m 2.2
(four drive single density version)

version 2.2 february, 1980

equ 22

copyright (c) 1980
digital research
box 579, pacific grove
california, 93950

0
O
Q

Z m

0
Z

ll

1600
0000 =

0806 =

0000 =

1600 =

ffff =

0000 =

0000 =

bias

bias

true
false
test

if
equ
endif
if
equ
endif

patch equ

org
equ
equ

equ
equ
equ

test
03400h

not test
0000h

offffh
not true
false

;version 2.2

;value of "true"
;"false"
; true if test bios

1600h

patch
$-patch ;base of cpm console processor
806h+cpmb;basic dos (resident portion)

;base of ccp in test system

;generate relocatable cp/m system

cpmb
bdos

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

I

0 0

0

I7

Z z m

0 Z

Z 0

1600 =

002c =

0002 =

0004 =

0080 =

oooa =

cpml
nsects
offset
cdisk
buff
retry

$-cpmb
cpml/128
2
0004h
0080h
10

equ
equ
equ
equ
equ
equ

perform following functions
boot col d s t a r t
wboot warm start (save i/o byte)
(boot and wboot are the same for mds)
const co ns o le status

reg-a = 00 if no character ready
reg-a = ff if character ready
console character in (result in reg-a)
console character out (char in reg-c)
list out (char in reg-c)
punch out (char in reg-c)
paper tape reader in (result to reg-a)
move to track 00

read track/sector to preset dma address

conan
conout
list
punch
reader
home

(the following calls set-up the io parameter block for the
mds, which is used to perform subsequent reads and writes)
seldsk sel ec t disk given by reg-c (0, 1, 2...)
settrk set t r ack address (0, . . . 76) for subsequent read/write
setsec set s ector address (1, . . . , 26) for subsequent read/write
setdma s e t subsequent dma address(initially 80h)

(read and write assume previous calls to set up the io parameters)

write t rack / sector from preset dma address

jump vector for individual routines
jmp boot

;length (in bytes) of cpm system
;number of sectors to load
;number of disk tracks used by cp/m
;address of last logged disk on warm start
;default buffer address
;max retries on disk i/o before error

1600 c3b316

P

I

0
O
Q

0

I~

Z

0

Z

P7

Z Z m

I

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

1603 c3c316
1606 c36117
1609 c36417
160c c36a17
160f c36d17
1612 c37217
1615 c37517
1618 c37817
161b c37d17
161e c3a717
1621 c3ac17
1624 c3bb17
1627 c3c117
162a c3ca17
162d c37017
1630 c3b117

1633+ =

1633+82160000
1637+00000000
163b+6e187316
163f+Od19ee18
1643+82160000
1647+00000000
164b+6e187316
164f+3c191d19
1653+82160000
1657+00000000
165b+6e187316
165f+6b194c19
1663+82160000
1667+00000000

dpe2:

dpe1:

dpbase
dpeO:

w boote: j m p
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp

maclib
disks
equ
dw
dw
clw
dw
Clw
dw
dw
dw
clw
dw
dw
dw
dw
dw

; list status

wboot
const
conin
conout
list
punch
reader
home
seldsk
settrk
setsec
setdma
read
write
listst
sectran

diskdef ; load the disk definition library
4 ;four disks
$;base of disk parameter blocks
xlt0, 0000h ;translate table
0000h, 0000h ;scra t ch area
dirbuf, dpb0 ;dir buff, parm block
csv0, alv0 ;check, alloc vectors
xlt1, 0000h ;translate table
0000h, 0000h ;scra t ch area
dirbuf, dpb1 ;dir buff, parm block
csv1, alv1 ;check, alloc vectors
xlt2, 0000h ;translate table
0000h, 0000h ;scra t ch area
dirbuf, dpb2 ;d ir bu f f , parm block
csv2, alv2 ;check, alloc vectors
xlt3, 0000h ;translate table
0000h, 0000h ;scratch area

d pe3:

98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

1673+ =

1673+1a00
1675+03
1676+07
1677+00
1678+f200
167a+3f00
167c+c0
167d+00
167e+1000
1680+0200
1682+ =

1682+01
1683+07
1684+Od
1685+13
1686+19
1687+05
1688+Ob
1689+11
168a+17
168b+03
168c+09
168d+Of
168e+15
168f+02
1690+08
1691+Oe
1692+14
1693+1a
1694+06

166b+6e187316
166f+9a197b1 9

xlt0

dpb0

dw
dw
diskdef
equ
dw
db
db
db
dw
dw
db
db
dw
dw
equ
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db

2 $ 1

0 16

7 13

5 11

19
25

21

17
23

3 9 15

2 8 14

dirbuf, dpb3
csv3, alv3
0, 1, 26, 6, 1024,
$
26
3
7
0
242
63
192

;check, alloc block
;dir buff, parm vectors

243, 64, 64, offset
;disk parm block
;sec per track
;block shift
;block mask
;extnt mask
;disk size-1
;directory max
;alloc0
;alloc1
;check size
;offset
;translate table

20
26
6

9

m

0
O

8
Z

Z
0

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

Oofd =

00fc =

1673+ =

001 f+=

0010+ =

1682+ =

1673+ =

001 f+=

0010+ =

1682+ =

1673+ =

001 f+=

0010+ =

1682+ =

1695+Oc
1696+12
1697+18
1698+04
1699+Oa
169a+10
169b+16

dpb1
als1
css1
xlt1

dpb2
als2
css2
xlt2

dpb3
als3
css3
xlt3

db 12
db 18
db 24
db 4
rib 10
db 16
db 22
d iskdef 1, 0
equ d pb0
equ als0
equ cssO
equ xlt0
d iskdef 2, 0
equ d pb0
equ alsO
equ css0
equ xlt0
d iskdef 3, 0
equ dpb0
equ alsO
equ css0
equ xlt0
endef occurs at end

end of controller — independent code, the remaining subroutines
are tailored to the particular operating environment, and must
be altered for any system which differs from the intel mds.

the following code assumes the mds monitor exists at Of800h
and uses the i/o subroutines within the monitor

we also assume the mds system has four disk drives
equ Ofd h ;interrupt revert port
equ Ofch ;interrupt mask port

;equivalent parameters
;same allocation vector size
;same checksum vector size
;same translate table

;equivalent parameters
;same allocation vector size
;same checksum vector size
;same translate table

;equivalent parameters
;same allocation vector size
;same checksum vector size
;same translate table

of assembly

revrt
intc

Vl
J

8

U Z
rn

I

0 0

Z
0

Z

I2
Q

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

f800 =

ffof =

f803 =

f806 =

f809 =

f80c =

fsof =

f812 =

Oof3 =

007E =

0079 =

OO7a =

0078 =

0078 =

0079 =

007b =

0004 =

0006 =

0003 =

0004 =

oood =

oooa =

169c Odoaoa

CI

rI
co
po
lo
csts

icon
inte

base
dstat
rtype
rbyte

ilow
ihigh

readf
writf
recal
I 0 I'dy
CI'

If

signon

mon80
rmon80

equ
equ

equ
equ
equ
equ
equ
equ

;signon message
db cr, I f , I f
if test
(jb '32'

endif

4h
6h
3h
4h
Odh
Oah

base+1
base+2

;iopb low address (output)
;iopb high address (output)

;read function
;write function
; recalibrate drive
;i/o finished mask
;carriage return
;line feed

xxk cp/m vers y.y

e qu Of 3 h ;interrupt control port
equ 011 1$1110b ;enabl e rst 0 (warm boot), rst 7 (monitor)

mds monitor equates
equ Of 8 0 0 h ;mds mo n i tor
equ Of f o f h ;resta r t mon80 (boot error)
equ Of 8 0 3 h ;conso le character to reg-a
equ Of 8 0 6 h ;read e r in to reg-a
equ Of 8 0 9 h ;conso le char from c to console out
equ Of80ch ;punch char from c to punch device
equ Of 8 0 f h ;list f rom c to list device
equ Of 8 1 2 h ;conso le status 00/ff to register a

disk ports and commands
equ 78h ;base of disk command io ports
e qu bas e ;disk status (input)
equ bas e + 1 ;resu l t type (input)
equ bas e + 3 ;resu l t byte (input)

;32k example bios

0
CI

-"c
- I

m

z m

8
0
Z

Z
0

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

169f 3030

16c3 318000

16c6 OeOa
16c8 c5

16c9 010000
16cc cdbb17
16cf Oe00
16d1 cd7d17
16d4 Oe00
16d6 cda717
16d9 Oe02
16db cdac17

16b3 310001
16b6 219c16
16b9 cdd317
16bc af
16bd 320400
16c0 c30f17

16a1 6b2043502f
16ad 322e32
16bO OdOa00

1

boot:

wboot:;

endif

xra a

wboot0: ;enter here on error

start

I xi sp, b u f f

mvi c, r e t ry
push b

Ixi b, cpm b
c all set d m a
mvi c, 0
c all se l d s k
mvi c, O
c all set t r k
mvi c, 2
call set s ec

i f not tes t
db '00' ;memory size filled by relocator

db 'k cp/m vers '
db vers / 10+'0',',' vers mod 10+'0'
d b cr, I f , 0

;print signon message and go to ccp
(note: mds boot initialized iobyte at 0003h)
Ixi sp, b u f f+80h
I xi h, s ig n on
c all prms g

sta cdisk
j mp gocp m

loader on track 0, sector 1, which will be skipped for warm
read cp/m from disk — assuming there is a 128 byte cold start

;print message
;clear accumulator
;set initially to disk a
;go to cp/m

retries
;set dma address to start of disk system

;boot from drive 0

;using dma — thus 80 thru ff available for stack

;max retries

;start with track 0
;start reading sector 2

I

Z jQ

Z
0

0

Z 0 m

P7

jO

n
0 0

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

16de c1
16df 062c

16e1 c5
16e2 cdc117
16e5 c24917
16e8 2a6c18
16eb 118000
16ee 19
16ef 44
16fo 4d
16f1 cdbb17
16f4 3a6b1 8
16f7 fe1a
16f9 da0517

16fc 3a6a1 8
16ff 3c
1700 4f
1701 cda717
1704 af
1705 3c
1706 4f
1707 cdac17
170a c1
170b 05
170c c2e116

rd1:

rdsec:

inr a

read sectors, count nsects to zero
pop b ;10-error count
mvi b, n s ects
;read next sector
push b ;save sector count
call read
j nz boot e r r
Ihld iod
Ixi d, 128
dad d
m ov b, h
m ov c, I
c all set d m a
Ida ios
cpi 26
jc rd1
must be sector 26, zero and go to next track
Ida iot ;get track to register a

mov c, a ;ready for call
c all set t r k
xra a ;clear sector number
inr a ;to next sector
mov c, a ;ready for call
call set s ec
pop b ;recall sector count
dcr b ;done?
j nz rdse c

done with the load, reset default buffer address
;(enter here from cold start boot)
enable rst0 and rst7

;retry if errors occur
;increment dma address
;sector size
;incremented dma address in hl

;ready for call to set dma

;sector number just read
;read last sector?

gocpm:

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

170f f3
1710 3e12
1712 d3fd
1714 af
1715 d3fc
1717 3e7e
1719 d3fc
171b af
171c d3f3

0
O

8
0
Z

Z

0

1738 323800
173b 2100f8
173e 223900

1724 3ec3
1726 320000
1729 210316
172c 220100
172f 320500
1732 210608
1735 220600

171e 018000
1721 cdbb17

dl
mvi
out
xra
out
mvi
out
xra
out

a
icon

a, 12h
revrt
a
intc
a, inte
intc

set default buffer address to 80h
I xi b, buf f
c all set d m a

reset monitor entry
m vi a, j m p
sta 0
I xi h, wbo o te
s hid 1
sta 5
I xi h, bdo s
s hid 6
i f not tes t
sta 7 *8

I xi h, mon 8 0
s hid 7*8+1

endif
leave iobyte set
previously selected
Ida cd is k
m ov c, a
ei
j mp cpmb

points

; interrupt control

; initialize command

;cleared
;rst0 and rst7 bits on

;jump wboot at location 00

disk was b, send parameter to cpm
;last logged disk number
;send to ccp to log it in

;jmp bdos at location 5

;jmp to mon80 (may have changed by ddt)

1741 3a0400
1744 4f
1745 fb
1746 c30000

z
0

O V)

0
CI

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

174e c5
174f c3c916

1761 c312f8

1764 cd03f8
1767 e67f
1769 c9

1749 c1
174a Od
174b ca5217

176a c309f8

1752 215b17
1755 cdd317
1758 c30fff

175b 3f626f6f74

I

I

I

t

list:

const:

conin:

booterr:

booter0:

bootmsg:
db '? boot', 0

otherwise too many retries
Ixi h, boo t msg
c all prms g
jmp rmon80

console status to reg-a
(exactly the same as mds call)
j mp csts

;console character to reg-a
call c i
ani 7fh
ret

jmp co

;list device out
(exactly the same as mds call)
jmp lo

conout: ;c o nsole character from c to console out

error condition occurred, print message and retry

p op b
dcr c
j z boote r O
try again
push b
j mp w boo t 0

; recall counts

;remove parity bit

;mds hardware monitor

176d c30ff8

0
U
Q

- I

A)

Z 0

0 z

m
I/1

O Z jU

335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

1770 af
1771 c9

1792 47

1772 c30cf8

1775 c306f8

1778 Oe00
177a c3a717

177d 210000
1780 79
1781 fe04
1783 do

1784 e602
1786 326618
1789 79
178a e601
178c b7
178d ca9217
1790 3e30

I

I

I

I

listst:

home:

seldsk:

punch:

reader:

setdrive:

rnc

ani
sta
mov
ani
ora
lz
mvi

mov b , a

;return list status

10b
dbank
a,c
1b

a,c
n disks

a
setdrive
a, 00110000b

xra a
ret

;punch device out
(exactly the same as mds call)
jmp po

;reader character in to reg-a
(exactly the same as mds call)
jmp ri

;move to home position
treat as track 00 seek
mvi c, 0
j mp set t r k

;select
Ixi
mov
cpl

disk given by register c
h, 0000h ;ret u r n 0000 i f er ror

;always not ready

;selects drive 1 in bank

;too large?
;leave hl = 0000

;00 00 for drive 0, 1 and 10 10 for drive 2, 3
;to select drive bank
;00, 01, 10, 11
;mds has 0, 1 at 78, 2, 3 at 88
;result 00?

;save the function

I:
Z
0

0
Z

9

I

Z

6

0 ci

CI

Z m

jO

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402

17a7 216a18
17aa 71
17ab c9

17ac 216b18
17af 71
17bo c9

1793 216818
1796 7e
1797 e6cf
1799 bo
179a 77
179b 69
179c 2600
179e 29
179f 29
17ao 29
17a1 29
17a2 113316
17a5 19
17a6 c9

17b1 0600
17b3 eb
17b4 09
17b5 7e
17b6 326b18
17b9 6f
17ba c9

I

settrk:

setsec:

sectran:

mov
sta
mov
ret

Ixi
mov
ani
ora
mov
mov
mvi
dad
dad
dad
dad
Ixi
dad
ret

mvi
xchg
dad

a, rn
los

h, iof
a, m
11001111b
b
m,a
I, c
h, 0
h
h
h
h
d, dpbase
d

;set track address given by c
Ixi h , iot
m ov m, c
ret

;set sector number given by c
Ixi h, ios
mov m, c
ret

;translate sector bc using table at de
b,o ;double precision sector number in bc

b ;translate (sector) address
;translate table address to hl

;io function

,mask out disk number
;mask in new disk number
;save it in iopb

;hi =disk number
;*2
, *4

;*8

;*16

;hi =disk header table address

;translated sector number to a

;return sector number in II, a

0
0
Q

8

m

Z

0

0
Z

403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436

17d3 7e
17d4 b7
17d5 c8

17c1 Oe04
17c3 cde017
17c6 cdf017
17c9 c9

17bb 69
17bc 60
17bd 226c18
17c0 c9

17ca Oe06
17cc cde017
17cf cdf017
17d2 c9

1

read:

write:

prmsg:

setdma:

m ov a , m
o ra a
rz
more to print
push h
mov c, a
c all co no u t
pop h
inx h
j mp prm s g

;disk write funct ion
mvi c, w r i t f
call set f u nc
c all wai t i o
ret

utility subrout ines
;print message at h, I to 0

zero?

;set dma address given by regs b, c
mov I, c
m ov h, b
s hid i o d
ret

;read next disk record (assuming disk/trk/ sec/dma set)
mvi c, r e adf ;set to read function
call set f u nc
call wai t io
ret

;set to write function

;may have error set

;perform read function
;may have error set in reg-a

17d6 e5
17d7 4f
17d8 cd6a17
17db e1
17dc 23
17dd c3d317

setfunc:

I~

z
0

0
z

ln

jo

U Q

z

O Z rn

'E
0

437
438
439
440
441
442
443
444
445
446
447
448
449

450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470

17f0 Oe0a

180b d389

17eO 216818
17e3 7e
17e4 e6f8
17e6 b1
17e7 77

17f2 cd3f18
17f5 cd4c18

17e8 e620
17ea 216b18
17ed b6
17ee 77
17ef c9

17f8 3a6618
17fb b7
17fc 3e67
17fe 0618
1800 c20b18
1803 d379
1805 78
1806 d37a
1808 c31018

I

I

waitio:

rewait:

ret

iodr1: ;d ri v e bank 1

Ida
ora
mvi
mvi
jnz
out
rn ov
out
jmp

a

out ilow + 10h

dbank

a, iopb and offh
b, iopb shr 8
iodr1 ;drive
ilow
a, b
ihigh
waito

;high address

mvi c, r e t r y ;max r e t r ies before perm error

start the i/o function and wait for completion
c all intyp e ; in rt yp e
c all inby t e ;clears the controller

;set bank flags
;zero if drive 0, 1 and nz if 2, 3
;low address for iopb
;high address for iopb
bank 1?
;low address to controller

set function for next i/o (command in reg-c)
Ixi h, iof ;io function address
m ov a , m ;get it to accumulator for masking
ani 111 1 1000b ; r e move previous command
ora c ;set to new command
mov m, a ;replaced in iopb
the mds-800 controller requires disk bank bit in sector byte
mask the bit from the current i/o function
ani 001 0 0000b ;mask the disk select bit
Ixi h, ios ;address the sector select byte
o ra m ;select proper disk bank
mov m, a ;set disk select bit on/off

;to wait for complete

;88 for drive bank 10

471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504

Q

jQ

0 O

Z O rn

0
z

Z
0

1831 c9

180cl 78
180e d38a

1818 cd3f18

1832 cd4c18
1835 c33818

1824 cd4c18
1827 17
1828 da3218
182b 1f
182c e6fe
182e c23818

1810 cd5918
1813 e604
1815 ca1018

1820 b7
1821 c23818

181b fe02
181d ca3218

I

I

waito:

w ready:

o ra a

11111110b
werror

i/o error bits
inbyte

w ready
rar
ani
jnz

read or write is ok, accumulator contains zero
ret

;not ready, treat as error for now
c all in by t e ;clear result byte
jmp t ryc o unt

m ov a , b
o ut ih ig h+ 1 0h

c all ins t a t
ani io rdy
jz waito

check io completion ok
c all inty p e ;must be io complete (00) unlinked
00 unlinked i/o complete, 01 linked i/o complete (not used)
io disk status changed 11 (no t used)
cpi 10b ;ready status change?
jz w ready

must be 00 in the accumulator

j nz werr o r

check
call
ral
lc

;wait for completion
; ready?

;some other condition, retry

;unit not ready

;any other errors? (deleted data ok)

werror: ;return hardware malfunction (crc, track, seek, etc.)

Z
0

0

z Z jO

m

m

P7

0
O

505
506
507
508
509
510
511
512
513
514
515
516
517
518
519

520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537

183c 3e01
183e c9

1838 Od
1839 c2f217

183f 3a6618
1842 b7
1843 c24918
1846 db79
1848 c9
1849 db89
184b c9

intyp1:

intype:

trycount:

jnz
in
ret
in
ret

intyp1 ;skip to bank 10
rtype

rtype+10h

inbyte, instat read drive bank OOor10
dbank
a

the mds controller has returned a bit in each position
of the accumulator, corresponding to the conditions:
0 — deleted data (accepted as ok above)
1 — crc error
2 — seek error
3 — address error (hardware malfunction)
4 — data over/under flow (hardware malfunction)
5 — write protect (treated as not ready)
6 — write error (hardware malfunction)

l — not ready
(accumulator bits are numbered 7 654321 0)

it may be useful to filter out the various conditions,
but we will get a permanent error message if it is not
recoverable. in any case, the not ready condition is
treated as a separated condition for later improvement

register c contains retry count, decrement 'til zero
dcr c
j nz rewa i t ;for another try

cannot recover from error
mvi a, 1 ;error code
ret

intype,
Ida
ora

;78for0,1 88 for 2, 3

Q

6

0 0

Pll

8
z

Z

538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570

1866 00

1867 80
1868 04
1869 01
186a 02
186b 01
186c 8000

1859 3a6618
185c b7
185d c26318
1860 db78
1862 c9
1863 db88
1865 c9

184c 3a6618
184f b7
1850 c25618
1853 db7b
1855 c9
1856 db8b
1858 c9

t

I

iof:
ion:
iot:
Ios:
Iod:

inbyt1

instat:

dbank:

iopb:

insta1:

inbyte

ret

Ida
ora

Ida
ora a

jnz
in
ret
i n dst at+ 1 0 h
ret

jnz
in
ret
in rbyte+10h

;io parameter block

dbank
a
insta1
dstat

dbank

inbyt1
rbyte

define ram areas for bdos operation

data areas (must be in ram)
db 0 ;disk bank 00 if drive 0, 1

10 if drive2,3

d b 80h ;normal i/o operation
d b readf ;io function, initial read
db 1 ;number of sectors to read
d b offse t ;track number
db 1 ;sector number
dw buff ;io address

endef

0

571
572
573
574
575
576
577
578
579
580
581
582
583

186e+ =

186e+
18ee+
190d+
191d+
193c+
194c+
196b+
197b+
199a+
19aa+ =

013c+ =

19aa

beg dat
dirbuf:
alvO:
csvO:
alv1:
csv1:
alv2:
csv2:
alv3:
csv3:
enddat
datsiz

equ
ds
ds
ds
ds
ds
ds
ds
ds
ds
equ
equ
end

$
128
31
16
31
16
31
16
31
16
$
$-begdat

;directory access buffer

Z U Z m

m

m

0
CI
Q

6

als1
als2
als3
alv0
alv1
alv2
alv3
base
bdos
begdat
bias
boot
booterO
booterr
'aootmsg
buff
cdisk
CI

co

001f
001f
001 f
18ee
191d
194c
197b
0078
0806
186e
0000
16b3
1752
1749
175b
0080
0004
f803
f809

141¹
146¹
151¹
87 573¹
91 575¹
95 577¹
99 579¹

180¹ 181 182 183 185 186
29¹ 287

571¹ 582
19¹ 22¹
63 207¹

305 310¹
241 302¹
312 316¹

34¹ 209 221 278 566
33¹ 213 296

172¹ 325
174¹ 330

Z

conin
conout
const
cpmb
cpml

0 0

m
rn

Z

Z

0 Z

8

cr
css1
css2
css3
csts
csvo
csv1
csv2
csv3
datsiz
dbank
dirbuf
dpbo
dpb1
dpb2
dpb3
dpbase
dpeo
dpe1
d pe2
d pe3
dstat
enddat
false
gocpm
home
icon
ihigh

1764
176a
1761
0000
1600
oood
0010
0010
0010
f812
190cl
193c
196b
199a
013c
1866
186e
1673
1673
1673
1673
1633
1633
1643
1653
1663
0078
19aa
0000
170f
1778
oof3
OO7a

66
67
65
28¹
30¹

192¹
142¹
147¹
152¹
177¹
87
91
95
99

582¹
361
86
86
90
94
98
83¹
84¹
88¹
92¹
96¹

181¹
581¹

15¹
214

71
166¹
186¹

322
574¹
576¹
578¹
580¹

16
265¹
349¹
275
466 472

550 552

324¹
329¹ 432
320¹
29 30 226 299
31

196 205

459 531 539 547
90 94 98 572¹

101¹ 140 145 150
140¹
145¹
150¹
380

558¹

Z

i low
inbyt1
inbyte
insta1
instat
intc
inte
intyp1
intype
I od
iodr1
iof
ion
iopb
lordy
los
iot
If
list
li stst
lo
mon80
n sects
offset
patch
po
prmsg
punch
rbyte
rd1
rdsec
read
reader
readf

0079
1856
184c
1863
1859
00fc
007e
1849
183f
186c
180b
1868
1869
1867
0004
186b
186a
oooa
176d
1770
f80f
f800
002c
0002
1600
f80c
17d3
1772
007b
1705
16e1
17c1
1775
0004

185¹
541
457
549
474
165¹
167¹
533
456
242
463
369
563¹
461
191¹
248
252
193¹
68
78

176¹
170¹
31¹
32¹
25¹

175¹
211
69

183¹
250
238¹
76
70

188¹

462
475
391
386
196
332¹
336¹
334
291
237
100
27

343
313
341¹
542
257¹
262
240
345¹
411

464
544¹
490
552¹
547¹
271
272
536¹
479
407
469¹
439

544

564
28

470

273

410¹

560¹

562¹

531¹
566¹

425¹ 435

501 539¹

400 447 565¹
564¹
196 205

562

I

ip

0
CI

m

m

0

Z m O Z m

0
Z

recal
retry
revrt
rewait

wready
write
writf
xltO
xlt1
xlt2
xlt3

vers
waito
waitio
wboot
wbootO
wboote
werror

I'I

rmon80
rtype
sectran
seldsk
setdma
setdrive
setfunc
setsec
settrk
sign on
test
true
trycount

0003
Oooa
Oofd
17f2
f806
ffOf
0079
17b1
177d
17bb
1792
17eO
17ac
17a7
169c
0000
ffff
1838
0016
1810
17fo
16c3
16c9
1603
1838
1832
17ca
0006
1682
1682
1682
1682

190¹
35¹

164¹
454¹
173¹
171¹
182¹
79
72
75

365
412
74
73

195¹
16¹
14¹

502
6¹

467
413
64

225¹
64¹

487
483
77

189¹
84
88
92
96

223
269
524
347
314
534
394¹
229
227
367¹
419
233
231
210

18
15

521¹
204
474¹
420
217¹
308
284
495
492
417¹
418
112¹
143¹
148¹
153¹

453

536

204
476
452¹

504¹
500¹

354¹
247 279 404¹

437¹
259 390¹
255 352 385¹

21 197 200 289

143 148 153

Appendix B: A Skeletal CBIOS

l~

Z
0

0
z

ln

1 2

0014 = msize

skeletal cbios for first level of cp/m 2.0 alteration

equ 20 ;cp/m version memory size in kilobytes

"bias" is address offset from 3400h for memory systems
than 16k (referred to as "b" throughout the text)

3 4 5 6 7 8

Z x
0000 =

3400 =

3c06 =

4aoo =

0004 =

0003 =

bias
ccp
bdos
bios
cdisk
iobyte

0
O

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

4aoo
002c =

4a00 c39c4a
4a03 c3a64a
4a06 c3114b
4a09 c3244b
4a0c c3374b
4aOf c3494b
4a12 c34d4b
4a15 c34f4b
4a18 c3544b

nsects

wboote

equ
equ
equ
equ
equ
equ

org bios ;origin of this program
equ ($-ccp)/128 ;warm start sector count

jump vector for
j mp boot
jmp wboot
j mp co ns t
j mp co ni n
j mp co no u t
j mp list
j mp punc h
j mp rea d e r
jmp home

individual subroutines

(msize-20) *1024
3400h+bias ;ba se of ccp
ccp+806h ;base of bdos
ccp+1600h ;base of bios
0004h ;current disk number O =a, .

. . , 15 =p

0003h ;intel i/o byte

;cold start
;warm start
;console status
;console character in
;console character out
;list character out
;punch character out
;reader character out
;move head to home position

Q Z

I

Z

0

0
Z

8
Z

Vl

Z

D
0

0 0

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

4a1b c35a4b
4a1e c37d4b
4a21 c3924b
4a24 c3ad4b
4a27 c3c34b
4a2a c3d64b
4a2d c34b4b
4a30 c3a74b

4a33 734a0000
4a37 00000000
4a3b f04c8d4a
4a3f ec4d704d

4a43 734a0000
4a47 00000000
4a4b f04c8d4a
4a4f fc4d8f4d

4a53 734a0000
4a57 00000000
4a5b f04c8d4a
4a5f Oc4eae4d

4a63 734a0000
4a67 00000000
4a6b f04c8d4a
4a6f 1c4ecd4d

dpbase:

jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp

seldsk
settrk
setsec
setdma
read
write
listst
sectran

;select disk
;set track number
;set sector number
;set dma address
;read disk
;write disk
;return list status
;sector translate

fixed data tables for four-drive standard
ibm-compatible 8" disks
disk parameter header for disk 00
dw t ran s , 0000h
dw 0000 h , 0000h
dw dirb f , dpblk
dw chk0 0 , all00
disk parameter header for disk 01
dw t ran s , 0000h
dw 0000 h , 0000h
dw dirb f , dpblk
dw chk0 1 , all01
disk parameter header for disk 02
dw t ran s , 0000h
dw 0000h , 0000h
dw dirb f , dpblk
dw chk0 2 , all02
disk parameter header for disk 03
dw t ran s , 0000h
dw 0000 h , 0000h
dw d irb f , dpblk
dw chk0 3 , all03

sector translate vector

I

0
CI
Q

gl

~C

P7
m
V)

O Z

Z

0
Z

l

Z
0

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

4a8d 1a00
4a8f 03
4a90 07
4a91 00
4a92 f200
4a94 3f00
4a96 cO
4a97 00
4a98 1000
4a9a 0200

4aa6 318000
4aa9 Oe00
4aab cd5a4b
4aae cd544b

4a9c af
4a9d 320300
4aaO 320400
4aa3 c3ef4a

4a73 01070d13
4a77 19050b11
4a7b 1703090f
4a7f 1502080e
4a83 141a060c
4a87 1218040a
4a8b 1016

I

I

boot:

trans:

wboot:

dpblk:

db
db
db
db
db
db
db

disk parameter
dw 26
db 3
db 7
d b 0
dw 242
dw 63
d b 192
db 0
dw 16
dw 2

1, 7, 13, 19
25, 5, 11, 17
2 3,3, 9 , 1 5
2 1,2, 8 , 1 4
20, 26, 6, 12
18,24,4 , 10
16, 22

xra a ;zero in the accum

;sectors
;sectors
;sectors
;sectors
;sectors
;sectors
;sectors

end of fixed tables

individual subroutines to perform each function
;simplest case is to just perform parameter initialization

s ta ioby t e ;clear the iobyte
sta cd isk ;select disk zero
j mp gocp m ;initialize and go to cp/m

;simplest case is to read the disk until all sectors loaded
I xi sp, 8 0 h ;use space below buffer for stack
mvi c, 0 ;select disk 0
cal I se I dsk
call home

block, common to all disks
;sectors per track
;block shift factor
;block mask
;null mask
;disk size-1
;directory max
;alloc 0
;alloc 1
;check size
;track offset

1 ,2,3 , 4
5, 6, 7, 8
9, 10, 11, 12
13, 14, 15, 16
17, 18, 19, 20
21, 22, 23, 24
25, 26

;go to track 00

F

m

0 O

Q

Z

z
0

8
0
Z

95
96
97
98
99

100
101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

121
122
123
124
125
126
127

4ab1 062c
4ab3 Oe00
4ab5 1602

4ace e1
4acf 118000
4ad2 19
4ad3 d1
4ad4 c1
4ad5 05
4ad6 caef4a

4ab7 210034

4ac6 cdc34b
4ac9 fe00
4acb c2a64a

4aba c5
4abb d5
4abc e5
4abd 4a
4abe cd924b
4ac1 c1
4ac2 c5
4ac3 cdad4b

load1:

to next sectorno error, move
pop h
lxi d, 128
dad d

pop
pop b
dcr b
jz gocpm

more sectors remain to load, check for track change
inr d

mvi b, n s ects ;b counts ¹ of sectors to load
mvi c, 0 ;c has the current track number
m vi d, 2 ;dhasthenextsectorto read
note that we begin by reading track 0, sector 2 since sector 1
contains the cold start loader, which is skipped in a warm start
Ixi h, ccp ;base of cp/m (initial load point)
;load one more sector
push b ;save sector count, current track
push d ;save next sector to read
push h ;save dma address
mov c, d ;get sector address to register c
call set se c ;set se c tor address from register c
pop b ;recall dma address to b, c
push b ;replace on stack for later recall
c all set d m a ;set dma address from b, c

drive set to 0, track set, sector set, dma address set
call read
cpi 00 h
j nz wboot

;any errors?
;retry the entire boot if an error occurs

;recall dma address
;dma =dma+128
;new dma address is in h, I
; recall sector address
;recall number of sectors remaining, and current trk
;sectors =sectors-1
;transfer to cp/m if all have been loaded

4ad9 14

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

Z

Z

Z m

Q z

0
0

Z
0

4b09 fb

4aeo 1601
4ae2 Oc

4aef 3ec3
4af1 320000
4af4 21034a
4af7 220100

4ae3 c5
4ae4 d5
4ae5 e5
4ae6 cd7d4b
4ae9 e1
4aea d1
4aeb c1
4aec c3ba4a

4afa 320500
4afd 21063c
4b00 220600

4b03 018000
4b06 cdad4b

4ada 7a
4adb fe1b
4add daba4a

gocpm:

ei

Ixi
call

sta
Ixi
s hid

mvi
sta
Ixi
s hid

5
h, bdos
6

b, 80h
setdma

a, Oc3h
0
h, wboote
1

m ov a , d ;sector =27?, if so, change tracks
cpi 27
jc load1 ;carry generated if sector(27

end of current track, go to next track
mvi d, 1 ;begin with first sector of next track
inr c ;track =track+1

save register state, and change tracks
push b
push d
push h
c all set t r k
pop h
pop d
pop b
j mp lo ad 1

end of load operation, set parameters and go to cp/m

;for another sector

;track address set from register c

;c3 is a jmp instruction
;for jmp to wboot
;wboot entry point
;set address field for jmp at 0

;for jmp to bdos
;bdos entry point
;address field of jump at 5 to bdos

;default dma address is 80h

;enable the interrupt system

z
Pl
8 $

0 O

H

8 z

6 z

z

I

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

4b4b af
4b4c c9

4b49 79
4b4a c9

4b37 79
4b38
4b48 c9

4b24
4b34 e67f
4b36 c9

4b11
4b21 3e00
4b23 c9

4bOa 3a0400
4bod 4f
4bOe c30034

I

I

list:

listst:

conin:

const:

conout:

Ida cdis k
mov c, a
j mp ccp

ret

;list character from register c
mov a, c ;character to register a
ret ; null subroutine

;return list status (0 if not ready, 1 if ready)
xra a ;0 is always ok to return
ret

ret

;console character output from register c
mov a, c ;get to accumulator
ds 10 h ;space for output routine

simple i/o handlers (must be filled in by user)
in each case, the entry point is provided, with space reserved
to insert your own code

;console status, return Offh if character ready, 00h if not
ds 10 h ;space for status subroutine
m vi a, 0 0 h
ret

;console character into register a
ds 10h ;space for input routine
ani 7 fh ;strip parity bit

get current disk number
;send to the ccp
;go to cp/m for further processing

punch: ;punch character from register c

Z

9

0
O

-"c
- I

z
0

6

Z m

z

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

4b64

4b4d 79
4b4e c9

4b4f 3e1 a
4b51 e67f
4b53 c9

4b6e 3aef4c
4b71 6f
4b72 2600
4b74 29

4b5a 210000
4b5d 79
4b5e 32ef4c
4b61 fe04
4b63 do

4b54 Oe00
4b56 cd7d4b
4b59 c9

I

home:

seldsk:

reader:

ret

mov a, c
ret

mov a,c .

i/o drivers for the disk follow
for now, we will simply store the parameters away for use
in the read and write subroutines

;move to the track 00 position of current drive
translate this call into a settrk call with parameter 00
mvi c, 0 ;select track 0
c all set t r k
ret

;select disk given by register c
Ixi h , 0000h ;error return code

sta d is k no
cpi 4 ;must be between 0 and 3
rnc ;no carry if 4, 5,. . .

disk number is in the proper range
ds 10 ;space for disk select
compute proper disk parameter header address
I da disk n o
mov l, a
mvi h , 0
dad h

;read character into register a from reader device
m vi a, 1 a h ;enter end of file for now (replace later)
ani 7fh ;remember to strip parity bit

;character to register a
; null subroutine

;we will move to 00 on first read/write

;I=disk number 0, 1, 2, 3
;high order zero
;"2

4b75 29
4b76 29
4b77 29
4b78 11334a
4b7b 19
4b7c c9

h
h
h
d, dpbase
0

II

Z

0

8
Z

z m
m

I

n
0 CI

0 Z

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

4ba7 eb
4ba8 09
4ba9 6e
4baa 2600
4bac c9

4I37d 79
4b7e 32e94c
4b81
4b91 c9

4b92 79
4b93 32eb4c
4b96
4ba6 c9

I

I

1

settrk:

setsec:

sectran:

mov a, c

mov a, c
s ta sect o r
ds 10h
ret

dad
dad
dad
Ixi
dad
ret

;set track given by register c

sta t rack
ds 10 h
ret

;set sector given by register c

mov I, c ;low order address

;translate the sector given by bc using the
;translate table given by de
xchg ;hl =.trans
dad b ;hl=.trans(sector)
m ov I , m ;I = trans(sector)
mvi h, 0 ;hl = trans(sector)
ret ;with value in hl

setdma: ; set dma address given by registers b and c

mov h, b ;high order address
shld dmaa d ;save the address
ds 10h ;space for setting the dma address

;space for track select

;space for sector select

. *4

;*8

;*16 (size of each header)

hl= dpbase(diskno *16)

4bad 69
4bae 60
4baf 22ed4c
4bb2

Z
Fl

E

0
0
Q

8

rn
m

Z

0
Z

z
0

F

260
261
262
263
264
265
266
267
268
269
270
271
272

273
274
275
276

277
278
279
280
281
282
283
284

285
286
287
288
289
290

4bd6

4ce9
4ceb
4ced

4bc2 c9

4be6
4ce6 3e01
4ce8 c9

4bc3
4bd3 c3e64b

1

I

l

write:

read:

waitio:

ds 256
mvi a, 1
ret

the remainder of the cbios is reserved uninitialized
data area, and does not need to be a part of the
system memory image (the space must be available,
however, between "begdat" and "enddat").

d $ 2 ;two bytes for expansion
ds 2 ;two bytes for expansion
d $ 2 ;direct memory address

ret

;perform read operation (usually this is similar to write
so we will allow space to set up read command, then use
common code in write)
ds 10h ;set up read command
j mp wai t i o ;to perform the actual i/o

;perform a write operation
ds 10h ;set up write command

;enter here from read and write to perform the actual i/o
operation. return a 00h in register a if the operation completes
properly, and 01h if an error occurs during the read or write

in this case, we have saved the disk number in 'diskno' (0, 1)

the sector number in 'sector' (1-26)
the dma address in 'dmaad' (0-65535)
;space reserved for i/o drivers
;error condition
;replaced when filled- in

the track number in 'track' (0-76)

track:
sector:
dmaad:

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

4cef

ip

Z

z m

0
z

4cfo =

4cfo
4(j70
4d8f
4dae
4dcd
4dec
4dfc
4eoc
4e1 c

4e2c
013c =

4e2c

enddat
datsiz

begdat
dirbf:
alloo:
allO1:
all02:
all03:
chkoo:
chk01:
chk02:
chk03:

diskno: ds 1

scratch ram area
e qu $
ds 128
ds 3 1
ds 3 1
ds 3 1
ds 3 1
ds 16
ds 16
ds 16
ds 16

e qu $
equ $-begdat;

;disk number 0-15

for bdos use
beginning of data area

;scratch directory area
;allocation vector 0
;allocation vector 1
;allocation vector 2
;allocation vector 3
;check vector 0
;check vector 1
;check vector 2
;check vector 3

;end of data area
;size of data area

end

H

0
O

n 8

A Z

alloo
all01
all02
all03
bdos
begdat
bias
bios
boot
ccp
cdisk
chkoo
chk01
chk02
chk03

4d70
4(j8f
4dae
4dcd
3c06
4cf0 294¹ 306
0000
4aOO
4a9c
3400
0004
4dec
4dfc
4eoc
4e1c

43 296¹
48 297¹
53 298¹
58 299¹
10¹ 154

8¹ 9
11¹ 15
19 84¹
9¹ 10 11

12¹ 87 161
43 300¹
48 301¹
53 302¹
58 303¹

16 101 163

I

Z

H

m

0
CI

8
0
Z

conin
conout
const
datsiz
dirbf
diskno
dmaad
dpbase
d pblk
enddat
gocpm
home
iobyte
list
listst
load1
msize
nsects
punch
read
reader
sector
sectran
seldsk
setdma
setsec
settrk
track
trans
waitio
wboot
wboote
write

4b24
4b37
4b11
013c
4cf0
4cef
4ced
4a33
4aBd
4e2c
4aef
4b54
0003
4b49
4b4b
4aba
0014
002c
4b4d
4bc3
4b4f
4ceb
4ba7
4b5a
4bad
4b92
4b7d
4ce9
4a73
4be6
4aa6
4a03
4bd6

22
23
21

306¹
42

217
258
40¹
42

305¹
88
27
13¹
24
34

102¹
3¹

16¹
25
32
26

242
35
28
31
30
29

236
40

266
20
20¹
33

124
94
86

185¹
189¹
130

8
96

193¹
113
198¹
289¹
246¹
93

110
107
140
288¹
45

271¹
90¹

150
268¹

175¹
180¹
170¹

47
223
290¹
230

47

144

262¹

147¹
208¹

52
291¹

50 55

52 57

214¹
158 255¹
240¹
211 234¹

57 295¹

61¹

69¹

115

0 0 0

0 0 0
CD 4) 0
O fQ G O
CD
O CO CO
0 0 0

GO 4)
GO GO

4) GO 0
Q) O A O
0 0 0 0
0 0 0 0

0 0
0

O 0

z
0

0

Z Z m
CL U U O U

VI 0 ~ V)
0 a o g

VI

V)

U'

0 O
O

3 x

0
U
n

'U I

0
0
CO
0

(0
l3

O O U I

0
0
CO

~ — e
VI « CL O U

V)
U (D (Q

GO (0co e
CO

« VI
+ ~

m
3

VI

m (D (D (D

C C C C

O O
O O

+ +
Q

CD CO
0 0
0 0

~ m

GJ

O V I
0

+
U fo
(D
VI

N

~ (D

0
0

0
Q)
VI 0

(D
U CL

- CL

e ~
(D g)

e 3
a 0

C

(D 0

C

IQ 0
0

0
0

(D
X

(D
V)

g> (O
Q. ~

~

0
(D

g) V)

VI O Vl

«
(

(D 0 g

«.m 0

(D (0
m
VI

(0

0 g)

g)
O

g) Vl
CL
CL (D

(D
V)

V)

O
Q

a O
g a

0 V >
(D O

o
O 0
0 C
C

e g~)
O

V)
O
(D

I

O C
« VI

(D (Q
(Q m
VI

(D

(D

0
3(o m

O O
VI 0

(D

fD
O

0
(D

CL

O
(D

I

0 (O

(D

(D

C
(Q

0 (D

0 g)

V)

(D
VI

0

0 O

(O
N
(D

3

m

«
m

3 (n

C (

m 0 0

g) V)
VI U

Q) Co O
(D Q
o 3
0) U

(D (D
CL

(Q
0 m

(Q

0 U ((D 0

3

V)

PQ

O O
hD

O O O O
P O M M P O

n Q) (0 OQ

CD C

O O O O
h3 PQ PQ PQ

Ul G3 M

O O O
M
~ O O
O Q S D

n
(0 ~ CL

0) O
O O
O O
O 4

0)
O ~ U

O O PO

Q . ~~ V O

O Cr
Ql

co n

O M O «0

O (D
O

O O O
M M
O O O
0) 4) O
O IQ G 3

O 00 CO
O O O

G3
G3 G3

fV
O O O

O O

cn ~
O

O
PQ

O O O O

O Ql (D Q)

CD «Q0 P V O 0 CD
O 0
Ql
O

0 O

Ol G3

O O

O
(0 O

O O O

O O
O Cl

(g ~ « L
CQ O
O O
O O
O G3

n

O O «CI

O
(D
O

O h3

Z
0

0
Z

U CQ
m
(D (D

Q)

M m O

EA

U Z m

m 0 jO

U Cl
(D 0

(D CD

—. 0
n '~o 3 U '

CD

m m Q)

0 IQ

CD

«5. E&

(D
O

PQ

O
n CL 0. $

IV
CD

N
CD
OU C M

O I

O
O
CO O O «0

O 0 (

0 CL

C 3
O CD

O 0

3 x

O O

C M M

M O O I

ER 3

Q)

O o C D

U)0 M G3

(0+
U

O N
U- (0

CD Q)

CD

0
(CI

Q)

C

(

CD
(D

CD

«L

0 0 I D

0 ID

0 (D

n

E&

PO

Q (

Ql

CD

0 Q)

O

CD
(D
Q>

(D

CL

G
U

'C
N

0

O 0 ID

Q)

(D

0 CD

CL

ID nQ)

M
m g~)
m n

Q)
O

+

O

(D
0 (

0 CD

X Q)

O m

0 Q>

0.

Q)

0 0

(D

M

CD
m o

+

Q ~ m

A P U

V (D

p
U w (D

QI m
+ O O

0

M Q)

M CD

M M

CD

CD

O

O

Cl ID

m
m

0

O Ql

X M

O
Ql

(D
U
0
C

CL
CD

3

0

3 3
O 0 CQ

CQ

CL

0 Ql

Ql
CL O

IQ

M

n
m o
O

CD
O

+

0 (
CD

0

CD
n

(D

n
X Ql

O
0 M (D

4 m m

Ql

0 mm m
(D —. D.

3
0 M
CD

fQ ID

n

Q

M m O 0

m z
OC

OC

N
m

-~ m

M CD

IQ
«0 U

m

0 (0
(D

CD
M CD
m o
O

0

O

Q)

n

CD

(D
X

Q

CD
O

n

CD

n

O CD

(0
(0

O o o
C C

O hQ

O O
C.
O O
~ O

e n
Ul U l

o
o
o

O o o
Gi GD GQ

C C
Gi M

n n e
(0

O
G3
o

O 0
Gl 4)
O O

O
e n
Ul U l

o
G3
ooC Gi M

n n e
(0

Z
0

0

Z z m
(D

CL

0

(Qio

C N

CD

Q.
CD

C N CD

CL
(D

N CD

(D
(D
CL

N C

C N CD

n

ia
0

CL Y

e ~ p
N e 0

Q.
N (D

CL
Q C M
M N CD

z 3M 0 p

0

(Q

'p
R 0 0

Q
cn N

0 CD

(D

p

(D

CLl

+
«D
C

Q.
N (D

CL

0 CD

(Q 0 CD

N CD

Q.

Q Q

p
Q

3' P,

P V

V

(D Q.

Q. N
CD

0

CL — '

(Dn M

CD

CD 0

CD

+ 0
O

o e

0

p Cl (0

fD
3

N N 0

(0

N (D

0 (D

(D

0

(D
(D

(D

(D

3

f&

CD
n

R Q.

p Dl
p

O

o
O

CL

O

O
o

(D

(D

(D

0 CD

n 0

CD

O

O
O

0 3

Y

X

D
Dl

CD

0

(D
0

(D
N

p 0 Q

0 N CD

n 0 CD

M C

0

CD
CL

CD

(D
Q.
(D

CLY
(D
(Q (D

CD

Appendix D: The MDS-800 Cold Start Loader for CP/M 2

1

z
0

title mds c o ld start loader at 3000h'

mds-800 cold start loader for cp/m 2.0

version 2.0 august, 1979

0

2 3 4 5 6 7 8

Z Z m

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

0000 =

ffff
0000 =

0000 =

bias

0
O

- I
g7

3000

0000 =

0806 =

1880 =

1600 =

1603 =

1880 =

0002 =

0031 =

0019 =

0018 =

bias

cpmb
bdos
bdose
boot
rboot

bdosl
ntrks
bdoss
bdoso
bdos1

false
true
testing

equ
equ
equ

equ
equ
equ
equ
equ

if
equ
endif
if
equ
endif
equ
equ
equ
equ
equ

o rg 030 0 0 h

bias
806h+ bias
1880h+ bias
1600h+bias
boot+3

bdose-cpmb
2
bdosl/128
25
bdoss-bdoso

0
not false
false if t ru e , then go to mon80 on errors

testing
03400h

not testing
0000h

;base of dos load
;entry to dos for calls
;end of dos load
;cold start entry point
;warm start entry point

;loaded down from hardware boot at 3000H

;number of tracks to read
;number of sectors in dos
;number of bdos sectors on track 0
;number of sectors on track 1

t4

0

-"C

O Q

0 -I

I~ z

0

m

0
Z

Z

z

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

0078 =

0079 =

007a =

00ff =

0003 =

0004 =

0100 =

f800 =

ffof =

0078 =

0079 =

007b =

007f =

300e d37f

3003 (jb79
3005 db7b

3000 310001

3010 0602
3012 214230

3007 dbff
3009 e602
300b c20730

I

I

dstat
ilaw
ihigh
bsw
recal
readf
stack

rstart:

mon80
rmon80
base
rtype
rbyte
reset

co I dsta rt:

equ
equ
equ
equ
equ
equ
equ

e qu of8 0 0h
e qu of f o f h
e qu 078 h
equ bas e +1
equ bas e +3
equ bas e +7

base
base+1
base+2
offh
3h
4h
100h

in bsw
ani 02 h ;switch on?
jnz cold s tart
clear the controller
o ut rese t ; logic cleared

Ixi sp,s t ack ; ; i n case of call to mon80
clear disk status
in rtype
in rbyte
check if boot switch is off

;intel monitor base
;restart location for mon80

base' used by controller
;result type
;result byte
;reset controller

;disk status port
;low iopb address
;high iopb address
;boot switch
; recalibrate selected drive
;disk read function
;use end of boot for stack

m vi b ,nt rk s ;number of tracks to read
I xi h,iop b o

A Z

6 $

Q
O O

z m

Z

l

Z
0

132: blkshf
133: blkmsk
134:
135:
136:
137:
138.;;
139: blkshf
140: blkmsk
141: blkval
142:
143:;;
144: blkval

145: extmsk
146:
147:
148:
149:
150:;;
151: extmsk
152: blkval
153:
154:;;
155:
156: extmsk
157:
158:;;
159:
160: extmsk
161:
162:;;
163: dirrem
164: dirbks
165: dirblk
166:
167:
168:
169:

set b lkshf+1

0
0
16
blkval =1

set
set
rept
if
exitm
endif
otherwise, high order 1 not found yet

set (blkmsk shl I) or I
set b lkva l/ 2
endm
generate the extent mask byte
set bls/1024 ;;number of kilobytes/ block
set 0 ;;fill from right with I' s
rept 16
if blkval =1

exitm
endif
otherwise more to shift
set (extmsk shl I) or I
s et b lkva l / 2
endm
may be double byte allocation
if (dks)) 256
set (extmsk shr I)
endif
may be optional [0] in last position
if not nul k16
set k16
endif
now generate directory reservation bit vector
set dir ;;¹ remaining to process
set bls/32 ;;number of entries per block
set 0 ;;fill with I's on each loop

;;counts right 0's in blkval
; ;fills with I's from r ight
;;once for each bit position

rept 16
if dirrem =0

exitm
endif

z

m

8
Z

8

0
0

170:;;
171:;;
172: dirblk
173:
174: dirrem
175:
176: direem
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:;;
191:
192: xlt8 dn
193:
194:
195: xlt&dn
196:
197:;;
198: nxtsec
199: nxtbas
200:
201:;;
202: neltst
203:;;

if nul skf

not complete, iterate once again
shift right and add 1 high order bit
set (dirblk shr I) or 8000h
if dirrem > dirbks
set dirrem - d i rbks
else
set 0
endif
endm
d pbhdr dn ;;generate equ $
ddw %sect o rs,<;sec per track>
ddb %blks h f ,<; block shift)
ddb %blkm s k ,<; block mask)
ddb %extm s k ,<;extnt mask>
ddw %(d ks) -1,<;disk size-1)
ddw %(d ir) -1,<; directory max>
ddb %dirb l k shr 8,<;alloc0)
ddb %d irb l k and Offh,<;allocl)
ddw %(cks) /4 ,<;check size>
ddw %ofs, < ; offset>
generate the translate table, if requested

equ 0 ;no xlate table
else
if skf =0

equ 0
else
generate the translate table
set 0
set 0
gcd %sect o rs,skf
gcdn = gcd(sectors, skew)
set sectors/gcdn
neltst is number of elements to generate

;no xlate table

;;next sector to fill
;;moves by one on overflow

A Z

Q jQ

m

0 o

Im Z

0

0

Z Z O Z m

m

204:;;
205: nelts
206: xlt&dn
207:
208:
209:
210:
211:
212:
213: nxtsec
214:
215: nxtsec
216:
217: nelts
218:
219: nxtbas
220: nxtsec
221: nelts
222:
223:
224:
225:
226:
227:;
228: defds
229: lab:
230:
231:;
232: Ids
233:
234:
235:;
236: endef
237:;;

macro

macro
ds
endm

before
set
equ
rept
if
ddb
else
ddw
endif
set
if
set
endif
set
if
set
set
set
endif
endm
endif
endif
endm

macro Ib, d n ,val
defds lb & dn,%val & dn
endm

nelts-1
nelts = 0

nxtbas+1
nxtbas
neltst

lab,space
space

;;end of nul fac test
;;end of nul bls test

we overlap previous elements
neltst ;;counter
$ translate table
sectors ;;once for each sector
sectors (256
%nxtsec+(fsc)

%nxtsec+(fsc)

nxtsec+(skf)
nxtsec)- sectors
nxtsec-sectors

generate the necessary ram data areas

t4
O
CO

0
z

I
I

Z
0

238: begdat
239: dirbuf:
240: dsknxt
241:
242:
243:
244: dsknxt
245:
246: enddat
247: datsiz
248:;;
249:

equ
ds
set
rept
Ids
Ids
set
endm
equ
equ
dbO at
endm

128
0
ndisks
alv,%dsknxt,als
csv,%dsknxt,ccs
dsknxt+1

$
$-begdat

this point forces hex record

;directory access buffer

;;once for each disk

CI

0
0

9 $
A z

Appendix G: Blocking and Deblocking
Algorithms

1

2 3
sector deblocking algorithms for cp/m 2.0

4

5 6 7 8 9
smask macro hblk

utility macro to compute sector mask

compute log2(hblk), return @x as result
(2 **

@x = hblk on return)10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

0800 =

0200 =

0014 =

0004 =

0050 =

@y
@x

@y
@x

b lks iz
hstsiz
hstspt
hstblk
cpmspt

equ
equ
equ
equ
equ

cp/m to host disk constants

set hblk
set 0
count r ight shifts of @y unt i l = 1
rept 8
if @y = 1

2048
512
20
h st s iz/1 28
hstblk * hstspt

exitm
endif
@y is not 1, shift right one position
set @y shr 1
set @x+1
endm
endm

;cp/m allocation size
;host disk sector size
;host disk sectors/trk
;cp/m sects/host buff
;cp/m sectors/track

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 209

34
35
36

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

0000 =

0001 =

0002 =

0012 c9

0013 79
0014 326101
0017 6f
0018 2600

0000 af
0001 326a01
0004 326c01
0007 c9

001a+29
001 b+29
001c+29
001d+29
001e 110000

0008 3a6b01
000b b7
000c c21200
000f 326a01

0002 = secshf

0000 = dpbase

0003 = secmsk

I

I

wrall
w I'd I r
wrual

home:

home:

boot:
wboot:

seldsk:

homed:
ret

jnz
sta

Ida
ora

equ
equ
equ

mov
sta
mov
mvi
rept
dad
endm
dad
dad
dad
dad
Ixi

equ
smask
equ

;select

h h h h

;home the selected disk

disk
a,c
sekdsk
l,a
h,o
4
h

hstwrt
a
homed
hstact

hstblk-1
hstblk
@x

d,dp base

bdos constants on entry to write

the bdos entry points given below show the
code which is relevant to deblocking only.

;enter here on system boot to initialize
xra a ;0 to accumulator
sta hstact ;host buffer inactive
sta unacnt ;clear unalloc count
ret

diskdef macro, or hand coded tables go here
equ $;disk param block base

;clear host active flag

;check for pending write

;write to allocated
;write to directory
;write to unallocated

;sector mask
;compute sector mask
; log2(hstblk)

;selected disk number
;seek disk number
;disk number to hl

;multiply by 16

;base of parm block

210 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

0034 60
0035 69
0036 c9

0021 19
0022 c9

002e 60
002f 69
0030 227501
0033 c9

0029 79
002a 326401
002d c9

0023 60
0024 69
0025 226201
0028 c9

0037 af
0038 326c01
003b 3e01
003d 327301
0040 327201
0043 3e02
0045 327401
0048 c3b600

I

I

1

read:

write:

settrk:

sets ec:

setdma:

sectran:

ret

xra
sta
mvi
sta
sta
mvi
sta
jmp

;read

dad d
ret

mov a,c

a
unacnt
a,1
readop
rsf lag
a,wrual
wrtype
rwoper

;translate sector number bc
mov h b
mov I,c
ret

;set dma address given by bc
mov h,b
mov I,c
s hid d maad r
ret

;set track given by registers bc
mov h b
mov I,c
shld sekt rk
ret

the selected cp/m sector

the read entry point takes the place of
the previous bios definition for read.

the write entry point takes the place of
the previous bios definition for write.

;set sector given by register c

sta seksec ;sector to seek

;write the selected cp/m sector
xra a ;0 to accumulator

;track to seek

;read operation
;must read data

;hl=.dpb(curdsk)

;treat as unalloc
;to perform the read

004b af

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DICilTAL RESEARCH 21I

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

004c 327301
004f 79
0050 327401
0053 fe02
0055 c26f00

009e 3600
00a0 2a6e01
00a3 23
00a4 226e01

008d 3a6401
0090 217001
0093 be
0094 c2ae00

0097 34
0098 7e
0099 fe50
009b daa700

0076 3d
0077 326c01
007a 3a6101
007d 216d01
0080 be
0081 c2ae00

0058 3e10
005a 326c01
005d 3a6101
0060 326d01
0063 2a6201
0066 226e01
0069 3a6401
006c 327001

006f 3a6c01
0072 b7
0073 caae00

0084 216e01
0087 cd5301
008a c2ae00

noovf:

chkuna:

ora a

mov am

a,c
sta
mov
sta
cpl
jnz

write to unallocated, set
mvi a,blk s iz/128
sta unacnt
Ida sekdsk
sta unadsk
Ihld sekt rk
shld u nat rk
Ida seksec
sta unasec

readop

wrtype
wrual
chkuna

;match found, mark as unnecessary read
xra a ;0 to accumulator

;check for write to unallocated sector
Ida unacnt ;any unalloc remain?

Iz alloc

more unallocated records
dcr a
sta unacnt
Ida sekdsk
Ixi h,unadsk
cmp m
jnz alloc

disks are the same
Ixi h,unatrk
call sekt rk c mp
jnz all oc

tracks are the same
Ida seksec
Ixi h,unasec
cmp m
jnz alloc

match, move to next sector
inr m

cpi cpmspt
IC noovf

overflow to next track
mvi m,o
Ihld unat rk
inx h
shld unat rk

remain

parameters

;unasec = o

;sektrk = unatrk?
;skip if not

;same sector?

;seksec = unasec?
;skip if not

for future ref
;unasec = unasec+1
;end of track?
;count cp/m sectors
;skip if no overflow

;next unalloc recs

;disk to seek
;unadsk = sekdsk

;unatrk = sectrk

;unasec = seksec

;unatrk = unatrk+1

;unacnt = unacnt-1

;same disk?

;sekdsk = unadsk?
;skip if not

;not a read operation
;write type in c

;write unallocated?
;check for unalloc

00a7 af

212 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

200
201
202
203
204
205
206
207
208
209

.210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

00e1 3a6901
00e4 216801
00e7 be
00e8 caOf01

00bd+b7
00be+1f
00bf+b7
00c0+1 f
00c1 326901

00c4 216a01
00c7 7e
00c8 3601
00ca b7
00cb caf200

Oods 216601
00db cd5301
00de c2eb00

00b6 af
Oob7 327101
00ba 3a6401

00ce 3a6101
Ood1 216501
00d4 be
00d5 c2eb00

00ae af
00af 326c01
00b2 3c
00b3 327201

00ab 327201
00ab c3b600

alloc:

rwoper:

ora
rar
ora
rar
sta

xra
sta
Ida
rept
ora
rar
endm

;enter

ora a

sta rsf lag
jmp rwo per

;not an unallocated
xra a
sta unacnt
inr a
sta rsf lag = 1

a

a

sekhst

here to perform

erf lag
seksec
secshf

active host sector?
Ixi h,hstact
mov a,m
mvi m,1

Jz filhst

host buffer active, same as seek buffer?
Ida sekdsk
Ixi h,hstdsk
cmp m
jnz no match

same disk, same track?
Ixi h,hsttrk
call sekt rk c mp
jnz no match

same disk, same track, same buffer?
Ida sekhst
Ixi h,hstsec
cmp m
Jz match

common code for read and write follows

the read/write

record, requires pre-read
;0 to accum
;unacnt = 0

;1 to accum
;rsf lag = 1

;sektrk = hsttrk?

sekhst = hstsec>

;skip if match

;same disk?
;sekdsk = hstdsk?

;host actIve flag

;always becomes 1
;was it already?
;fill host if not

;rsf lag = 0

;to perform the write

;zero to accum
;no errors (yet)
;compute host sector

;carry = 0

;shift right

;carry = 0

;shift right
;carry = 0

;shift right
;host sector to seek

no match:

ALL INFORMAllON PRESENTED HERE IS PROPRIETARY TO DICiiTAL RESEARCH 213

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

0117+29
0118+29
0119+29
011a+29
011b+29
011c+29
011d+29

010f 3a6401
0112 e603
0114 6f
0115 2600

00f2 3a6101
Oof5 326501
00f8 2a6201
Oofb 226601
00fe 3a6901
0101 326801
0104 3a7201
0107 b7
0108 c46001
010b af
010c 326b01

011e 117701
0121 19
0122 eb
0123 2a7501
0126 Oe80
0128 3a7301
012b b7
012c c23501

00eb 3a6b01
00ee b7
00ef c45f01

012f 3e01
0131 326b01
0134 eb

t

filhst:

match:

rwmove:

ora a

ora a

xra a
sta hstwrt

ora a
cnz writehst

;may have to fill the host buffer
Ida sekdsk
sta hstdsk
Ihl d sekt rk
s hid hstt rk
Ida sekhst
sta hstsec
Ida rsf lag

cnz readhst

;copy data to or from buffer
Ida seksec
ani secmsk
mov l,a
mvi h,0
rept 7
dad h
endm
dad h
dad h
dad h
dad h
dad h
dad h
dad h
hl has relative host buffer address
Ixi d,hstbuf
dad d
xchg
Ihld dmaadr
mvi c,128
Ida readop

jnz rwmove ;skip if read

write operation, mark and switch direction
mvi a 1
sta hstwrt
xchg

;proper disk, but not correct sector
Ida hstwrt ;host written?

;clear host buff

;c initially 128, de is source, hl is dest
Idax d ;source character
Inx d
mov m,a ;to dest

;need to read?

;yes, if1
;0 to accum
;no pending write

;hl = host address
;now in de
;get/put cp/m data
;length of move
;which way?

;hstwrt = 1

;source/dest swap

;mask buffer number
;least signif bits
;ready to shift
;double count
;shift left 7

0135 1a
0136 13
0137 77

214 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGlTAL RESEARCH

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364

015f c9

015a 13
015b 23
015c 1a
015d be
015e c9

0153 eb
0154 216201
0157 1a
0158 be
0159 c0

0146 b7
0147 c0
0148 af
0149 326b01
014c cd5f01
014f 3a7101
0152 c9

0138 23
0139 od
013a c23501

013d 3a7401
0140 fe01
0142 3a7101
0145 c0

I

readhst:

writehst:

sektrkcmp:

ret

In x

ret

rnz

rnz

disk.

ora a
rnz
xra a
sta hstwrt
c all w riteh s t
Ida erf lag

h
c
rwmove

inx
dcr
jnz

data has been moved to/from
Ida wrtype
cpI wrdIr
Ida erf lag

clear host buffer for directory

utility subroutine for 16-bit compare

writehst performs the physical write to
the host disk, readhst reads the physical

;hstdsk = host disk ¹ , hst trk = host t rack ¹ ,
;hstsec = host sect ¹ . wr i te "hstsiz" bytes
;from hstbuf and return error flag in erf lag.
;return erf lag non-zero if error

;hl = .unatrk or .hsttrk, compare with sektrk
xchg
Ixi h,sektrk
Idax d
cmp m

low bytes equal, test high 1s

inx h
Idax d
cmp m ;sets flags
ret

;loop 128 times

; low byte compare
;same?
;return if not

host buffer
;write type
;to directory?
;in case of errors
;no further processing

write
;errors?
;skip if so
;0 to accum
;buffer written

; hstdsk = host disk ¹ , hst t rk = host track ¹ ,
;hstsec = host sect ¹. read "hstsiz" bytes

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 2I5

365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403

0171
0172
0173
0174
0175
0177

0160 c9

016c unacn t : ds
016d unads k : ds
016e unatrk: ds
0170 unas ec : ds

erf lag: ds
rsf lag: ds
r eadop: d s
w rtype: d s
dmaadr: ds
hstbuf: ds

0 169 sekhs t : ds
016a hsta c t : ds
016b hstwr t : ds

0165 hstds k : ds
0166 hstt r k : ds
0168 hsts ec : ds

0161 sekd sk : ds
0162 sektr k : ds
0164 seks ec : ds

ret

end

1 1 1 1

2 hstsiz

uninitialized ram data areas

the endef macro invocation goes here

;into hstbuf and return error flag in erf lag.

;seek disk number
;seek track number
;seek sector number

;host disk number
;host track number
;host sector number

;seek shr secshf
;host active flag
;host written flag

;unalloc rec cnt
;last unalloc disk
;last unalloc track
; last unalloc sector

;error reporting
;read sector flag
;1 if read operation
;write operation type
;last dma address
;host buffer

0377

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH216

alloc
blksiz
boot
chkuna
cpmspt
dmaadr
dpbase
erf lag
filhst
home
homed
hstact
hstblk
hstbuf
hstdsk
hstsec
hstsiz
hstspt
hsttrk
hstwrt
match
nomatch
noovf
read
readhst
readop
rsf lag
rwmove
rwoper
secmsk
secshf
sectran
sekdsk
sekhst
seksec
sektrk
sektrkcmp
seldsk
setdma
setsec
settrk
unacnt
unadsk
unasec
unatrk
wboot
wrall
wrd Ir
write
writehst
wItype
wrual

00ae
0800
0000
006f
0050
0175
0000
0171
00f2
0008
0012
016a
0004
0177
0165
0168
0200
0014
0166
016b
010f
00eb
ooa7
0037
0160
0173
0172
0135
00b6
0003
0002
0034
0161
0169
0164
0162
0153
0013
002e
0029
0023
016c
016d
0170
016e
0000
0000
0001
004b
015f
0174
0002

164
29¹
57¹

148
33¹

109
55¹

218
235
65¹
70
61
32¹

291
239
250
30¹
31¹

244

68
252
241
189
124¹
270
129
130
298
133
34¹
36¹

112¹
78

228
102
96

176
75¹

105¹
99¹
92¹
62

154
158
156
58¹
43¹
44¹

141¹
258
132
45¹

325
146
131

316

127
170
181
175

153
249
157
155
245

172
151

362¹
144
200
305¹
201
277
220

160¹
188
294

88
317
260¹

67¹
72¹
71
33

396¹
263
267
32
33

265
256
274¹
246
197¹

379¹
272

378¹
380¹
396

395¹

254¹

152 162
387¹
389¹
193 195

169 238
266 382¹
180 219
264 337
334¹

231 383¹
34 35

326 39 1¹

296 393¹
208 268
312
215¹

177 183 203¹

388¹

392¹

302 324 384¹

262 374¹

276 376¹
375¹

168 206 386¹

355¹
315 394¹
147

217ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

17 11 Searc h For First

18 12 Searc h For Next

19 13 Delet e Fi le
20 14 Read S e quential
21 15 Write Sequential
2 2 16 Make F i l e

23 17 Renam e File

24 18 Ret urn Login Vector

25 19 Ret urn Current Disk

none

26 1A Set DMA A ddress
27 1B Get AD D R (ALLOC)

28 1C Wnte Pr o tect Disk
29 I D Get Re ad/only Vector

30 1E Set Fi l e At tr ibutes
31 1F Get AD D R (Disk Parms)

32 20 Set/ G e t User Code

none

DE = FCB Address

DE = FCB Address

none

DE = FCB Address
DE = FCB Address
DE = FCB Address
DE = FCB Address

none

none

none
none

DE = FCB Address

DE = DMA Address

A = Directory
Code

A = Directory
Code

A = none
A = Error Code
A = Error Code
A= FF if no DIR

Space
A = FF if not

found
HL = Login

Vector *

A = Current Disk
Number

none
HL = ALLOC

Address
*

none
HL = R/0

Vector Value *

A= none
HL = DPB

Address
User Number

33 21
34 22
35 23
36 24
37 25
38 26
39 27
40 28

Read Random
Wnte Random
Compute File Size
Set Random Record
Reset Drive
Access Drive
Free Dnve
Write Random with Fill

E = OFFH for Get
E = 00 to OFH for Set
DE = FCB Address
DE = FCB Address
DE = FCB Address
DE = FCB Address
DE = Drive Vector
not supported
not supported
DE = FCB

A = Error Code
A = Error Code
r0, r1, r2
rO, r1, r2
A = 0

A = Error Code

*Note that A = L, and B = H upon return.

125ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

