
10

DICITAL
RESEARCH'"

Concurrent CP/M™

Programmer's
Reference guide

Operating System



COPYRIGHT

Copyright © I984 by Digital Research Inc. AH rights reserved. No part of this publication
may be reproduced, trananutted, transcribed, stored in a retrieval system, or translated into
any language or computer language, in any form cr by any means, electronic, mechanical,
magnetic, optical, chemical, nlnml or otherwiae, without the prior written permiaion of
Digital Research, Post Of5ce Box S79, Pacific Orove, Califorma, 93950.

DISCLAIMHt

Digital Reaetuch makes no representations or warrantiea with nepect to the contents hereof
and specificall disciaims any implied warrsntiea of ~ tabil i ty or fitneaa for any par
ticular purpose. Purther, Digital Research reserves the right to revise this puMication and
to make changes from time to time in the content hereof wiihout obligation of Digital Research
to notify any person of such revision or changes.

TRADEMARK

CP/M acd CP/M-86 axe registered trademarks of Digital Research. ASM-86, Concurrent
CP/M, DDT, DDT-86, MP/M, MP/M-86, and PM are ttadetnarks of Digital Reseuch. Intel
and MCS are registered trademarks of Intel Corporation.ISIS-ll is a trademark af Intel
Corporation. IBM is a registered trademark of Interntaoaal Business Machines.

'Ihe Concurrknt CP//M Opkruring Syntagm Pro//remmkf"k Rkferknkk GuiCk Waa printed in the
United States of hnerica.

First Edition: January 1984



Foreword

Concurrent CP/M'® is a multi- or single-user operating system targeted specifically for
the Intela' 8086/8088/80186 family of micropiocessors. It supports inultiple CP/M program
ming environtnents each implemented on a virtual console. A different task runs concurrently
in each environment.

This manual describes the invariant ptogramming interface to Concurrent CP/M. It sup
ports the applications programmer who must create applications programs that run in the
Concurrent CP/M environment.

Secfion l offers an overview of the entire operating systtmt.

Section 2 describes the structure of thc Concurrent CP/M file system.

Section 3 explains the format, structute, and uses of transient commands in thc Concurrent
CP/M environment.

Section 4 explains the creation of transient command files in the Concurrent CP/M envi
ronment.

Section 5 documents the structure and creation of resident system processes or resident
command files permanently installed in the Concurrent CP/M environment.

Section 6 describes all the Concurrent CP/M system calls.

Concurrent CP/M is supported and documented through four manuals.

• The Concurrent CP/M Operutittg System Ussr s Guide (hereinafter cited as Cott current
CP/Af Users Guide) documents the user's interface to Concurrent CP/M, explaining
the various features used to execute applications programs and Digital Research utility
programs.

8 The Concurrent CP/I Operating System Progrummers Reference Guida (hereinafter
cited as Concurrent CPNf Progrrtmmer's Reference Guide) documents the applications
programmer's interface to Concurrent CP/M, explaining the internal file structure
and system entry points, information that is essential for creating applications pro
grams that run in the Concurrent CP/M environment.



a 'Ibe Concrrrrerrr CPIN Operatirrg System Prognunmer's Utilities Giddy Oaaaiaaftar
cited as Programmer's Utilities Guide) documents the Digital Research utility lao
giaras that programmers use to write, debug, aad verify applicstioas prognuns written
for the Concunant CP/M environment.

• The Connrrrerrr CPIN Openztiag System System Grride (hereinafter cited as Concrrr
nnr CPIM System Gauk) docuineots the internal, hardwaxeWpeadeat structures of
Concunent CP/M.



Table of Contents

1 Concurrent CP/M Systent Ovarvtaw

1.1
1.2
1.3

1.4
l.5
1,6
1.7
1.8
1.9
1.10
1,11
1,12

2 The C

2.1

2.2
2.3
2.4

Introduction.
Supervisor (SUP) .
Real-time Monitor (RTM)
1.3.1 Process Dispatching
1.3.2 Queue Management.
i .3.3 System Tinnng Functions „..... . . . , ,

Basic Disk Operating Systcin (BDOS) I \ I • I I '. . \ l l • \ ' l l ' , I I \

Character VO Module (CIO).
Virtual Console Screen Management
Extcndcd Input/Output System (XIOS)
lbrminal Message Pmcesscs (TMP) .
Iinnslcnt ~ s
System Call Ceiling Conventions,.......,.. . . . . . ... „. . .., .. „. „„ „
SYSTAT; System Status

oncnrrent CP/M File System

File System Overview
2.1.1 File-access System Calls.
2.1.2 Drivwrelated System Calls
Fi1e Naming Conventions.
Disk Drive and File Organization.
File Control Block Definition
2.4.1 FCB Initialization aud Usage
2 4.2 File Attributes
2.4.3 Interface Attributes
User Number Conventions.
Directory Labels and XFCBs
File Passwords,
File Date and Time Stamps: SFCBs .
FHe Open Modes
File Security.
Extended File Locking,
Coinpatibiiity Anributes
Multisector VO

l-l
1-5
1-5
1-5
1-7
l-g
1-9
1-9

1-10
1-10
1-11
1-12
1-12
1-12
1-] 3

2-1
2-2
2-3
2-5
24
2-9

2-12
2-14
2-16
2-17
2-1$
2-22
2-24
2-26
2-27
2-30
2-31
2-34

2,5
2,6
2.7
2,8
2,9
2,10
2,11
2.12
2.13



Table of Contents (continued)

2.14
2.15
2.16
2.17
2.18

Concurrent File Access
File Byte Counts .
Record Bloclring and Deblocking.
Reset, Access, and Free Drive
BDOS Error Handlirrg

2-35
2-37
2-38
2-39
2-43

3 Ttsrirrdait Canunands

3.1 Ihnsisnt Progrrrm Load snd Exit
3.1.1 Shared Code
3.1.2 8087 Support
3.1.3 8087 Exception Handling
Connnand File Format........ . . . . , .
Base Page initialization
Parent/Child Relationships.
Direct Video Mapping.

4 Contmarsd Iril» Gerweafka

4.1

3.2
3.3
3,4
3.5

lhaaient Hxearrnon Modeh
4.1.1 The 8080 Memory Madel
4.1.2 The Small Memory Model
4.1.3 The Compact Memory Model .
GENCMD
intel Hexadecimal File Format

5 Resident System ~ G enersrdan

5.1
5.2

4.2
4.3

introduction to RSPs .
RSP MemoryModels..
S,2.1 8080 Model RSP .
S,2.2 Small Model RSP .
Multiple Copies of RSPs .
5.3. 1 8080 Model„
5.3.2 Small Model
5.3.3 Small Model with Shared Code
Creating and Initializing sn RSP
5.4.1 The RSP Header.

4-1
4-2
44
4-5

4-9

5.3

54
SR
5-7

5-1
5-1
5-2
5-2
5-3
S-3

3-1
3-2
3-2
3-3
3-3
3-5
3-8
3-8

5.4



Table of Contents (continued)

5.4.2 The RSP Process Descriptor.
5.4.3 The RSP User Data Area
5.4.4 The RSP Stack
5.4.5 The. RSP Corntnand Queue
5.4.6 Multiple Processes witkin an RSP ., „„,

5Q
5-9
5-9
5Q

5-10
5-115.5 Developing and Debugging an RSP .

6 System Calls

6.1 System Call Summary.
6.2 Concurrent CP/M System Calls.

6.2.1 Console VO System Calls
6.2.2 Device System Calls.
6.2.3 Disk Drive System Calls.
6.2.4 File-access System Calls.. . . . . . . . . . . . . . . . .

6.2.5 List Device VO System Cal/s
6.2.6 Memory SystemCalls .
6.2.7 Process/Prognun System Calls.
6.2.8 Queue System Calls,
6 .2.9 System Information System Calh... , . . .

6-13
6-20
6-21
641
6-44
664

....... . . . 6-122
. 6-128

....... 6-139
. 6-162

„. , „ . 6-174

Appendixes
A. 6ystem Call Sunnnary by Function Number,

B ASCII and Hexadecimal Conversions

C Error Codes.

D ECHO.A86 Listing.

E 8087 ExcepNon Handling .

Glossary

Index ......

B-I

I • I • • I C I

E-I

Glossary- I

Index-1



Table Of COntentS (continued)

1-1

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9

Tables

Registers Used by System CaHs.....

File System Calls
Valid Fflenane DeHmiters ...,,
Filctype Conventions,....
Drive Capacity s • • o • • • • I I

FCB FieM Definitions .
File httrfbute Defhitions .........
BDOS Interface Attributes F5' and F6'.. .
Direcurry Label FieM Definitions..... . . .
XFCB Field Definitions .

2-10. Password Protectirm Modes.
2-11. CompstibiHty Attribute Defhitions .
2 -12. BDOS Physical Ermrs....,........ . . . . . .
2-13. BD08 Extended Ermrs.
2-14. BDOS Ermr Codes
? 15. BDOS Physical and Extended Ermrs.

3-1
3-2

4-1
42

6-1.
6-2.
6-3.

Gmup Descriptms .
Gmup Descriptor Fields .

Concurrent CP/M Memory Models.
Intel Hex Field Definitions

System CaH Categories.
Concurrent CP/M System Calls,
System CaH Sunnnary,
Data Strucmres Indtst.
CX Error Code Reports
ACB FieM Definitfons,
~W IO CaIHng Values.
Console Buffer Field Definitions .
C~ SI R Li n e~ t ing Characters.

2A7
2M

6-$,
6-6.
6-7,
6-8.
6-9,
6-10. DPB Field Definitfons
6-1 l. PFCB Field Definitions
6-12. FCB Initialization..
6-13. MCB Field Definitions
6-14. MPB Field Definitions.

4-1
4-11

6-2
&4

6-13
6-18

6-31

6-87

1-13

2-3
24
2-7
24

2-11
2-1$
2-16
2-i9
2-21
2-22
2 32

6-129
6-130



Table of Contents (continued)

Tables

6-15. APB Field Definitions
6-16. Command Line Bufler Field Definitions.
6-17. PD Field Definitions,
6-18. UDA Field Definitions.
6-19. CPB Field Definitions
6-20. QPB Field Definitions
6-21. QD Field Definitions
6-22. SYSDAT Table Dais Fields.
6-23. TOD Field Definitions

A-1. System Call Summary by Function Number.

B-1. ASCII Symbols.
B-2. ASCII Conversion 'fitble

C-1. Concurrent CP/M Ermr Codes

6-140
6-143
6-147
6-152
6-160
6-163
6-169
6-1&0
6-1&6

h-I

B-I
B-I

C-I

Figures

I-I
1-3

2-10
2-18
2-20
2-24
2-24
241

3-3
3-3
3-6

4-2
43

1-1. Concurrent CP/M V~ ysic a l Environments
1-2. Concurrent CP/M Functional Modules .

2-1. FCB - File Control Block
2-2. Directory Label Format
2-3. XFCB - Extended File Conizol Block
2R. D i rectory Record with SFCB.
2-5. SFCB Subfields.
24. D isk System Reset.

3-1. CMD File Header Format .
3-2. Group Descriptor Format .
3-3. Concurrent CP/M Base Page Values

4-1. I n i t ial Program Stack
4-2, Concurrent CP/M 8080 Memory Model



Table Of COllteNtS (continued)

Concurrent CP/M Small Memory Madel..
Concurrent CP/M Compact Memory Madel
intel Hexadecimal File Formata

8080 and Small RSP Modcla .
RSP Head Farnuu .
RSP Commend Queue Meaaqtc
RSP Data Segment

ACB - Aaaign Contml Block .
Console Buffer Format
Drive, R/0, ar Lagin Vector Structure ..
DPB - Diak Parameter Black ...
Diak Free Space Field Format.
PFCB - Puree Filename Control Block ...
MCB - ~ Cont ro l Block.
MPB - Memory Paranreter Black.
MFPB - hL3rREE Parameter Block

4-S
4-10

S-2
5-3
5-S
5-7

6-21
6.33
644
648
M3
686

6-128
6-129
6-132
6 139
6-142
6 146
6-151
6-159
6-163
6 168
6-174
6-175
6 176
6-177
6-179
6-185

5-1
5-2
5-3
5-4

6-1
6.2
6-3
64
6-5
64
6-7
6-8
6-9
6-10. APB - Abort Parameter Block
6.11. CU Canumnd Line Buffer
6-12. PD - Pruceaa Deacriptor
6-13. UDA - Uaer Data Area
6-14. CPB - Call Parameter Block.
6-15. QPB - Queue Parmnerer Black
6-16. QD - Queue Deacripbx
6-17. BDOS Verairm Nmnber Format
6-18. BIOS Deacriptor Format
6-19. Operating Syatem Vendan Number Format
6-20. SERIAL Number Format
& 2L SYSDAT Vd)le. . . . .
6-22. TOD Time-af-Day Structure.



Table Of Coatents (continued)

Listings

6-l29
6-130
6-164

D-l

6.l. Me m ory Control Block Definition
6-2. M e mory Paraineter Block Definition .
6-3. Queue Paraineter Block Definition..

D-l. ECHO.A86.

E- i. 8087 Exception Handling.



Section I
Concurrent CP/M System Overview

1.1 Entrodacthm

Concurrent CP/M is a multi- or sing&user, muftftaking operathg system that lets you
run nmltiple programssinewy by initiadng tasks on two or more terminals or virtual
consoles. Applications programs have access to system calls used by Concurrent CP/M to
control the muftfprogramnung envimument. As a result, Concuneut CP/M supports extended
fesnnm, such es conunmncstion among snd synchronization of independently running processes.
Pigure l-l depicts the relationships between applications progrsms, virtual environments,
vutusl coasotes, and the user ~

Il l IVVT
T

lITUCkhIVI
• VCVVTTH

h Chlu.
HM CSSMIT

• TITVVL
OPS. •

T T

l hVIClh Ih I
• TOCCATA

CCICW.
WIIIVVVCVT VIITCCCI

~ T
I

T TV~ V L
lmlVCTT
• VCIKVV

VI • I U TL
CIhCCVC

VRTVIT
• NITIEVRCVI

T

QI TV
IVV VV IVIIICCOVT

Ill ITIC I •

Figure 1-E. Concur rent CP/M Virtu~ ice } Envfronntents

ss QIGlrAR RERARCtfh
1-t



l. I Zasrachc5aa

ln the Gmcurxent CP/M envhunxlnt there is an important distinction betvem a program
snd a process. A program ia simply a block of cade residing soxxlmhexe in memory or on
disk; it is essentially static. A process, cu the other hand, ia a dynamic entity. You can think
of it as a logical machine that executes not only the Sxxgnun code, but also the operating
system xuutmea necessary to support the prognun's functions.

When Concurxent CP/M loads a program, it creates a process associated with the loaded
prograxn. Subsequently, it ia the praceu, rather than the program, that obtains access to the
system's resources. 'Ihus, Contnuzent CP/M monitxns thc pxxxesa, not thc program.'ibis
distinction is a subtle one, but vital to your understanding of systemoptation as a whole.

Pmceaaes running under Concurrexu CP/M Ml into two categoriea: transient processes
and Resident System Processes gtSPs).'Iixtnaient processes run prolpxuxxs loaded into mem
ory fxxllB djlkk ln response to 4 user corrunsnd or system ckHs made by RK4% process.
Resident System Pmcessea run code that ia a part of tbe operating system itseE RSPs
become an integral part of the opua8g system image during system generation. 'Ihey sre
immediately evadable to perform operating system tasks. Pcr exanxple. the CLOCK procetu
is an RSP that maintains thc time of day within tbe ~ g sys tem.

The following liat brie6y summarilss Concurrent CP/M's capabilities.

e Intexprccess camtxsnxicahon, ayntdtrtutization, aud mutual exclusion functions are
pmvided by aystssn queues.

• A logical interrupt rxechsnism utdng iiags allows Concurrent CP/M to interface with
any physical interrupt structure.

u System timing functions enable processes running under Concurxent CP/M to com
pute elapsed times, delay execution for speciged intervals, and to access and aet the
current date and time.

I Sbaxed tile system allows multiple programs to access common data iilea while
maintaining data integrity.

• Shared code support eliminates tuugram loading of another copy of the same program
and conserves memory space.

a 8087 support takes advantage of fast 8087 math ~o ns.

• Virtual console handling lets a single user run muMple programs, each in its own
console envixonmeut.

a Real-time process contml allows communications and data acquisition without loss
of information.

• usctrhL axsL%cHs



1. k hstroduetisn

Functionally, Concurrent CP/M is composed of several distinct modules, as shown in
Figure 1-2.

Omaacrasia
ISXlLI

• 11% NOHI IKl STSTLM
I

I

SfIRIhPT
CESITRtk

LO4C

B I TT E
OEM

Figure 1-2. Concurrent CP/M ShncUonnl Modules



• The Supervisor (SUP)
• The Real-time Monitor (RThQ
• 'Ihe Memory Maaageuent Module (MEM)
• 'Hm Character VO Module (CIO)
• The Virtual Console Screen Manager
• The Basic Disk Operanug System (BDOS)
• The Extmded I/O System (XIOS)
• 'lhe 'Il!rmu|al Message ProcesRK (TMP)

The SUP module huxQes miscellmeous system calls such as returning tbs version eunlm
cr the address of the System Data Area. SUP sho csHs oker system cells when necessary.

'Ibe RTM module monitors the execution of running processes and arbitrates ~ for
the system's resources.

'Ae MEM modus allocates and frees memory upon demand from executing processes.

le CIO module hmUes all character I/O fcr console and list device in the system.

1be Virtual Console Screen Manasextends the CIO to support virtual console envi
ronments.

The BDOS is the hardware-independent module that ~ t h e IogicaHy invariant portion
of the tile system fcr Coramrrent CP/M. 'Ilm BDOS tile system is explained in detail in
Section 2.

Thc XIOS is thc hardware-dcpendent module that defines the interface of Concurrent
CP/M to a specif) c hardware environment. See the Concurrent CP j Af System Gutde for
an explanation of the XIOS.

%hen Concurrent CP/M is executing a single program on a single virtual console, its
speed approximates that of CP/M-86. But when nmitiple processes are rmniug on several
virtual consoles, the execution of each individual process slows according to the pfoixutIou
of I/O to CPU resources it requires. A proces that perfornN a large amount of VO in
psoportiou to computing exhibits only minor speed dagrsdsthu. This also applies to a process
that performs e huge amount of computing, but runs concunently with other pmcesses that
sre largely VO-bound. On the other hand, significan speed degradation occurs where more
than ouc compute-bound process is running.

SDGTAL alsEAaCH+



Lg Supervisor (SUP)

1.2 Supen4sor (SUP)

The Supervisor module (SUP) manages the interface between processes and the operating
system kernel, It also manages internal communication between operating system modules.
All system calls, whether they originate from a transient process or internally from allotlier
system module, go through a common tabl~ ven function interface in SUP. SUP also
handles the P LOAD (Load Process) and P CLI (Call Comnumd Line Interpreter) system
calls.

1.3 Real-time Mottitor (RTM)

The Real-time Monitor (RTM) is the real-time multitasking nucleus of Concurrent
CP/M. The RTM performs process dispatching, queue management, flag management,
device polling, and system timing tasks. User programs can also call many of the RTM
system calls used to perform these tasks.

1.3.1 Process Dispatching

Although Concurrent CP/M is a multipmcess operating system, only one process has
access to the CPU resource at any given time. Unless you specifically write a progmm to
communicate or synchronize execution with other processes, a process is unaware of other
prot':sacs competing for system resources,

The primary task of the RTM is to transfer, or dispatch, the CPU resource from one
process to another. 'IIte RTM module called the Dispatcher performs this task, The RTM
maintains two data structures, the Process Descriptor (PD) and the User Data Area (UDA),
for each process running under Concurrent CP/M. The Dispatcher uses these data structures
to save snd restore the current state of each running process.

Each process in the system resides in one of thee states: ready, running, or suspended.
A ready process is one that is waiting for the CPU resource only. A running process is one
that the CPU is currently executing. A suspended process is one that is waiting for a system
resource or a specified event, such as the occurrence of an interrupt, an indication that polled
hardware is ready, or the expiration of a delay period.

Any existing process is represented on a system list. The Dispatcher removes a process
from one list and places it on another. The Process Descriptor of the currently running
process is the first entry on the Ready List. Other processes ready to run are represented on
the Ready List in order of priority. Suspended processes are on other systein lists, depending
on why the processes were suspended.

sl nKitrAL RESEARCH+
I-5



Crlrcurrerrt CP fM ProgramrnaA Cuhk1.3 RmMuae Moettor (RTM)

A dispatch operation can be summsrixed as follows:

I. The Dispatcher suspends the pmcess from execution and stores its currerrt state in
tbe Process Descriptor and thc UDA.

2. The Dispatcher places the process on an appropriate system liat, depending cn why
the Dispatcher was caned. For example, if a process is to delay for a certain rsrrnber
of system ticks, its Process Descriptor is placed on the Delay List. When a process
releases a resource, the process is usually placed back on the Ready List. If another
pmcess is waiting for the resource, that process is taken off its currentsystem list
and also placed on the Ready List.

3. The highest priority process on the Ready List is chosen tor execution. If two cr
ruore processes have the sarm priority, the process that has waited the longest executes

4. The Dispatcher restores the state of the selected procern from its Process Descriptor
and UDA, and gives it the CPU resource.

5. The process executes undl it needs a busy resource, a resource needed by another

proces becomes available, or an interrupt occurs. At this point, a dispatch occurs,
aHowing ~ process to run.

ilrat.

Only processes on the Ready List are eligible for selection during dispatch. By degnition,
a process is cn the Ready List if it is waithrg only frrx the CPU raaourtrs. Pruamsaa waithrg
for other system resources cannot execute until the resources they mquire are available.
Concurrent Cp/M blocks a process Sm execution lf lt la wrdthrg fbr.

• a queue mesa' so it can complete a Q~ o per ation.
• space to brNrnne available in a queue so it can complete a Q WRITE operation.

• a console or bst device to become available.

• a alreciiied number of system clack ticks before it can be removed irum the systrrrn
Delay Liat.

5 an VO event to complete.

These situations am discussed in greater detail in the following sections.

h ruiming process uot needing a resource and not releasing one runs until an interrupt
causes a dispatch. While not all interrupts cause dispatches, tll system clock generates
interrupts every dock tick and forces a dispatch each time. Clock ticks usually occur 60
limes a second (approximately every 16.67 milliseconds), and allow time sharing within s
real-tine environrrrnt,

• DIQrAL RESfARCH+
]-6



t.3 Real-time Monitor (RTM)Concurrent CP/hl Progranimer's Guide

Concurrent CP/M is a priorityMven system. This means that during a dispatch, the
operating system gives the CPU resource to the process with the best priority. The Dispatcher
allats equal shares of the system's resources to processes with the same priority. With priarity
dispatching, the systein never passes control to a lower-priority process if there is a higher
priority process on thc Ready List. Because high-priority, compute-bound processes tend to
monopolize the CPU resource, it is best to reduce their priority to avoid degrading overall
system performance.

1.3.2 Queue Nianagement

Queues perform several critical functions for processes running under Concurrent CP/M,
A process can use a queue for communicating with another process, synchronizing its
execution with that af another process, and for exclusion of other processes from protected
system resources. A process can make, open, delete, read from, or write ta a queue with
system calls similar to those used to manage disk files.

Each system queue consists of twa parts: the queue descriptor, and the queue buffe,
Concurrent CP/M implements these special data structures as memory files that contain
room far a specified number of fixed-length messages.

When the Q MAKE system call creates a queue, this queue is assigned a unique S
character name. As the name queue implies, messages are read fram a queue on a first-in,
first-out basis.

A process can read from ar write ta a queue conditional! y ar unconditionally. If the queue
is empty when a conditional read is performed, or full when a conditional write is performed.
the system returns an error code to the calling process. On the ather hand, if a process
anempts an unconditional queue operation in these circumstances, the system suspends it
fram execution until the operation becomes possible.

Mare than one pmcess can wait to read ar write a queue message from the same queue
at the same time. When these operations become passible, the system restores the highest
priority process first; processes with the same priority are restored on a first-coine, first
served basis.

Mutual exclusion queues are a special type of queue under Concurrent CP/M. They contain
one message of zero length and their names follow a convention, beginning with the upper
case letters MX, A mutual exclusion queue acts as a binary semaphore, ensuring that only
one process uses a resource at any time.

ss DIQTAL ssssxsot+
i-7



Caacunmt CP/M Pragrsnauer's CaMe

Access to a resource protected by a nNtuaI exclusion queue ttdtes place as follows:

l. A process issues an unconditional Q READ call to the MX queue protecdng the
resource, thereby suspending itself if the message is not available.

2. When the n»ssage becomes available, the process acceases the protected resource.
Note that hum the tune the process issues tbe unconditional read, any other pracess
attempting to access the same resource is suspended.

3. The process writes the zem-length message back to thc queue when it has finished
using the protected resource, thus freeing the resource for other processes.

13 Rss~ M a n ttar (RTM)

As an example, thc system mutual exclusion queue, MXdisk, ensures that pocus cannot
access the file sys»m simuiameously. Note that the BDOS, not the applicadoa software,
executes the precohng series of queue calls. Therefore the mutual exclusion process is
trans panmt to the programn»r, wbo is aaly responsible for originafing the disk system calls.

Mutual exclusion queues differ from normal queues in another way. When a process reads
a message from a mutual exclusion queue, the RTM notes tbe Process Descriptor address
within the Queue Descriptor. This establishes the owner of tbe queue message. If the operating
system charts the process while it owns the mutual exclusion message, the RTM mtoraxtically
writes thc message back to all mutual exclusion queues whose messages are owned by the
aborted process. This grants other processes access to protected resources owued by ihe
aborted process.

1.3.3 System Thahg Functions

Concurrent CP/M's timing system calls include keeping the time of day and delaying the
execution of a process for a specificd period of time. An internal process called CUKK

tbe time of day for the syetem, This process issues DHV WAITFL/iG systsan calls
on thc system's one second flag, Flag 2. When the XIOS Tick Interrupt Handler sets this
fiag, it tnitiates the CLOCK palms, which then lncremenh the internal mme and date.

Subsequently, the CLOCK pmccss males another DBV WAI'I%LAG call end suspends
itself until thc flag is set again. Concurrent CP/M provides system calbt that allow you to
set snd access the internal date aad Qme, In addltQ5, the file syateln uNN thc Interlud brae
NMl date to record when a file is updated, created, or last accessed.

5 tKilrN I%SEARCH~
1-8



1.3 Realrtlme Monitor (RT<)Cancurrmt CP/M Pragrainlnsr's Guide

The P DELAY system call replaces the typical piograriuned delay loop for delaying
process execution. P DELAY requires that Flag I, the system tick flag, be set approximately
every 16.67 milliseconds, or 60 times a second; the XIOS Pick Interrupt Handler also sets
this flag. When a process makes a P DELAY system call, it specifies the number of ticks
far which the operating systein is to suspend it from execution. The system maintains the
address of the Process Descriptor for the process on an internal Delay List along with its
current delay tick count. When a DEV SE~ call occurs, setting Flag I, the tick count
is decremented. When the delay count goes to zem, the system removes the pracess from
the DeIay List and places it on the Ready List.

Note: The length of a tick inight vary fmin installation ta installation. For instance, in
Europe, s tick is commonly 20 milliseconds, yielding 50 ticks per second. The description
of the P DELAY systetn call in Section 6 describes how ta determine the correct number
of ticks to delay I second.

1.4 Memory Module (MF1VQ

Conclurent CP/M supports an extended, fixed partition model of memory management;
the Memory Module handles all memory management system calls. In practice, the exact
method that the operating system uses to allocate and free memory is transparent to the
application program. Therefore yau should take care ta write code independent of the memory
manageinent model; use only the Concurrent CP/M specific memary system calls described
in Section 6.

1.5 Basic Disk Operatiug System (BDOS)

Except for auxiliary device support, Concurrent CP/M BDOS is an upward-compatible
version of the single-tasking CP/M-86 BDOS, It handles fiIe comtian and deletion, facilitates
sequential or random file access, and allocates and frees disk space. In most cases, CP/lVI-86
programs that make BDOS calls for I/O can run under Concurrent CP/M without modifi
cation. Concurrent CP/M's BDOS is extended to provide support for mulfiple virtual consoles
and list devices. In addition, the file system is extended to provide services required in a
multitasking environment, The major extensions to the file system are

• File locking, Files opened under Concurrent CP/M cannot be opened or deleted by
other tasks. This festtue prevents accidental confiicts with other tasks.

SS DIGITAL RESEARCH+
i-9



Gwsivwa Cp/M Pragramm& Gwlds

I Shared access to fiies. As a special option, independent users can openthe same fil
in shared or unlocked mode. Cats:urrent CP/M supports record la:king and unlocking
commands for filcs opened in this made and protects files opeMd in shared mode
fram deletioa by other tasks.

W Dare Stamps. The BDOS optionally supports two tbne sad date stamps, one recording
when a file ls updated, and the other recording when thc file was created or last
accessed.

a Password Protection. The password protection feature is optional at either the file or
drive level. 'Ihe aperator or applicatioas pragtsun assigns disk drive passwords, while
application programs can assign file protecdan passwords in several modes.

I Extended Error Module. Besides the default errar made, Concurrent CP/M has two
optional error-handling modes that return an error cade to the calling proces in the
event of an uarecoverable disk error.

1.6 Character VO Module (CIO)

The Character VO modu! e handles all console and list I/O Under Cancurrent CPM, every
characttu VO device is associated with a data struchue called a Console Control Block (CCB)
ar a List Control Block ~ ) . These data structures reside in the XIOS. lie CCB contains
tha cuneat owner, status information, line editing variables, srtd tha rtot af a Iinkssd list of
Process Descriptars (PDs) that ara waiting for access. More than one process can wait far
access to a single console. 'Ihesc processes are maintained on a linlmi list of Process
Dcscriptors in priority order. The LCBs contain similar information about the list devices.
Sce the Cancurrsn/ CP//// System Gulds for more information about LCBs and CCBs.

1.7 Vh'tnal Console Sneen Maaagement

Virtual coi l s screen management is coordinated by four separate modules: the CIO,
thc PIN (Physical INput) end VOUT (Virtual OUTput) processes, and the XIOS. The line
editing associated with the C RBADSIR call is performed in the CIO. Thc PIN process
handles keyboard input for ail the virtual consoles; tt atso traps and implements the CTRL-C,
CTRL-S, CTRL-Q, CIRL-P, and CHU 0 functians. The VOUT process spools console
output from processes running on background buffered mode consoles, and handshakes with
thc PIN process to display spooled cansole output when the backgtaund console is brought
to the foreground. 'Ibe XIOS decides which special keys represent the virtual consoles. and
returns a special cade from IO CONIN when you request a screen switch. The XIOS also
implements any screen saving and restoring when scteens are switched. See the Concurrent
CP/M System Gu/dr and the discussion of thc IO SWITCH function.

e tsar+. anal~
I-IO



L7 VIrtual Caaeole Serves bfanagaiaaitt

The PIN process reads the keyboard by directly calling the XIOS IO CONIN hnction.
This is the only place in the operating system IO CONIN is called. The PIN scans the input
stream fram the keybaard for switch screen requests and the special function keystmkes
CTRL-C, CTRL-S, CIRI Q, ClRL-P, and CfRL-0. All other keyboard input is written
to the VINQ (Virtual Console INput Queue) associated with the foreground virtual console.
The data in the VINQ becomes a type-ahead buffer for each virtual console, and is returned
to the process attached to that console as it performs console input.

When PIN sees a CTRL-C it calls P ABORT ta abort the process attached to the virtual
console, i)ushas the type-ahead buffer in the VINQ, turns off CTRI S, and performs a
DRV RESET call for each logged-in drive. The P ABORT call succeeds when the Process
Keep flag is not on, saving the Terminal Message Processes (refer ta P CREATE for
information on the process descriptor). The DRV RESET caUs affect anly the removable
media drives, asspecifiedin the CKS geld af the Disk Parameter Blocks in the XIOS (refer
ia the Co/rcurren/ CP/M Syetem Guide for further details on Disk Parameter Blocks).

CIRL-S stops any output ta the screen. CfRL-S stays set when a virtual console is
switched ta the background.

CIRL-0 discards any console output to the virtual console. CTRL-0 is turned off when
any ather key is subsequently pressed, except for the keys retuesenting the virtual consoles.

CHURL-P echoes console output ta the default list device specified in the LIST field of the
process descriptor attached to the virtual console. If the list device is attached ta a process,
a PRINTER BUSY message appears.

AH of the above cautral keys can be disabled by the C MODE call. When one of the
above control characters is disabled with C MODE or when the pracess owning the virtual
console is using the C RAWIO call, the PIN does not act on the control character but instead
writes it ta the VINQ. It is thus possible ta read any af the abave control characters from
an application program. These central keys are discussed in depth in the Coricurrerit CP/M
User k Guide.

1.$ Extended 1nput/Output System (XIOS)

The XIOS module is similar to the CP/M-86 Basic Input/Output System (BIOS) module,
but it is extended in several ways. Primitive operations, such as console I/O, are modiTied
to support multiple virtual consoles. Several new primitive system calls, such as
DEV POLL, support Concurrent CP/M's additional features, including elimination of wait
loops for rea)-time VO operations,



1.9 'Ihrmhal Message Praseees (TMP)

The Concurrent CP/M 1brminal Message Pmcesses g1NPa) src residentsystem proccsscs
that accept command lines from the virtual consoles and calI the Command Line hterprcter
(CLI) to execute them. The TMP prints the pox' on the vinuai consoles.

Each virtual console hss an independent TMP defining that console's cnvircemmt, includ
ing default disk, user number, printer, and console.

1.10 Xhmsient Frogrsuns

Under Concurrent CP/M, a transient pmgnm is one that is not system-resident. Re
system natst load such programs from disk into availabh memory each thne they execute.
The command file of a transient program is identified by the fiktype CMD. When ycu enter
a command at the console, dM operating system sears on disk for the appropriate CMD
file, loads it, and initiates it. Concurrent CP/M supports three diferent execution models
for transient programs: the 8080 Model, the Small Model, and the Compact Model.
Sections 4.l.l through 4.1.3 ~ thes e models in detail.

1.11 System CaH CaHing Conventions

When a Concurrent CP/M process makes a system call, it loads values into the registers
shown in 1hble l-l and initiates Interrupt 224 (via the INT 224 instructkn), reserved by
the intel Corporadon for this purpose.

• DKilrAL RESEARCHI
W2



Cmesrrresrt CP/lrl PrrIgranansrb Grdde 1.11 Systrm Csi ~ Caa vea5aas

'lhble 1-1. Registers Used by System Calls

ENTRY PARAMETERS

CL: System Call Number
DL: Byte Parametric

DX: Ward Parameter

DX: Address - Offset
DS: Address - Segment

RETURN VALUES

AL: Byte Return

AX: Word Return

AX: Address - Offset
ES: Address - Segment

BX: Same as AX
CX: Error Code

Concurrent CP/M preserves thc contents of registrzs SI, DI, BP, SP, SS, DS, and CS
through the operating system calls.'He ES register is preserved when it is not used tu hold
a return segment value. Error codes returned in CX are shown in 'Ihble 6-5, CX Error Codes.

l.l2 SYSTAT: System Stattrs

Thc SYSTAT utility is a development tool that shows the internal state of Concurrent
CP/M. S YSTAT describes memory allocation, current processes, system queue activity,
and many informative parameters associated with these system data structures. Further
more, SYSTAT presents two views: either a static snapshot of system activity, or a
continuous, real-time window into Concurrent CP/M.

sr OIGITAL REsEARcH' •
1-13



1.12 SV8YATt Syatsn SMhs Cuneunent CP/M Progrsntmer'a GaMe

YNt csn gedfy SYEThT in ore of two medea. If ycu know which display ycu want, you
can ~ i t In t he irtvocatim, using an option shown'in the menu below. If you do not
specf7y an option, select a display ftnm thta menu by typing

A)SFSThT ~

'lhe screen clears and the main menu appears:

Which OptionT

H(elp)
AI(emory)
0 (vervlau)
P(rocssses — All )
Q(ueues)
U(ser Prcoesses)
C(onsoles)
E(xit )

When you select H(elp), the HHLP 5Ie demonstrates the proper syntax and available
Optionst

To use SISTAT rith tha aenu: At the aystea proapt type SISTAT (CR>

Ta uae SISTAT rithout the aauu: At the systaa proapt type ths coaaand

SIS?AT [option] -or
SISTAT [option C) -or
SISTAT [option C kfj

• DlotrAL ILESEhRCH+
I-ta



Concurrent CP/M Pragrammar's Guide 1.12 SYSTAT: System Ststrn

-shere
-) option =

g(eaory) P(rocesses) 0(vervier) C(onsolss)
U(ser Processes) tl(usues) H(elp)

C = Continuous display
rit = 1-2 digits indicating the period,

in seconds, betseen display refreshes.

Type any letter to return to the neuu.

The M, P, Q, and U and C options ask you if you prefer a continuous display. If you
type y, Concurrent CP/M asks for a time interval, in seconds, and then displays a real-time
window of information, If you type n, a static snapshot of the requested informationappears.
ln either case, press any key to return to thc menu.

The M(emory) option displays all memory potentudly available to you, but it does not
display restrictedmemory. The partitions are listed in memory-address order, Length param
eter is shown in paragraph values.

The O(verview) option displays an overview of the system parameters. as specifted at
system generation time. The display is not continuous,

The P(rocess) option displays all system processes snd the resources they are using,

The Q(ueues) option displays aB system queues, listing queue readers, writers, and owners.

The U(ser Processes) option displays only user-initiated processes in the same format as
tbe P(rocess) option.

The C(onsoles) option displays console information; that is, background, foreground,
buffered, suspended, purging, CTRL-Q, and so on.

The E(xit) option returns you to system level from the menu, as does CTRL-C.

Errd of Seenorr I

8 DIGITAL RESEARCH' •
I-l5



Section 2
The Concurrent CP/M File System

2.1 1ile System Overview

The Basic Disk Operating System (BDOS) file system supports from oue to sixteen logical
drives. Each logical drive has two regions: a directory area and a data szea. The dhectoiy
area defines tbc file that exist on the drive snd identifies thc data area space that belongs
to each file. lhc data area contains the filc data dcfincd by the directory,

The dhcctory area consists of sixteen logically independent directories. These directories
are idcntified by user numbers 0 through 15. During execution, a process runs with R systctn
parameter called the user number sct to a single value. %bc user nuiuber specifies the current
active directories for all drives on the systenL For example, the Concurient CP/M DIR
utility displays only files within a directory selected by the curicnt user number.

The file system automatically allocates directory and data area space when a ptoccss
creates or extends a file, and returns previously allocated space to fice space when a process
deletes or truncates a file, If no directory or data space ia available for a requested operation,
the BDOS returns an error code to the calling process. The allocation and retrieval of
directory and data space is transparent to tbc calling pmcess. As s. result, you need not be
concerned with directory and drive organization when using the file system calls.

An cigbtwbaractcr filcnanie and a ~ c h aracter filetypc field identif'y each filc in s
directory. Together, these fields must be unique for each file within a directory. However,
files with the same filename and filctype can reside in different user dhectories without
coufiict. Processes can also assign au eight-character password to a file to protect it from
unauthorized access.

2-1



All system calls fiiat involve file operafions specify the requested fiie by filename and
fiictype. For some system caUs, naiitipie filcs can be specified by a technique called arnbig
uoiis reference. This ~ ue u ses question rnarlrs aud asterisks as wildcard characters to
give the flic system a pattern to match as it searches a dirts~y,

The file system supports two categories of system calls: fil-access system calls and drivc
related system cafis, The file-access system calls have mnemonics beghning with F, and
tbe drive-related systmn cafis have mnemonics beghmug with DRV . Tlw next two sections
introduce the file system caUs.

2.1.1 Ffie.access System Calls

Mast of the file-access system calls can bc divided into two groups: system calle that
operate on files vrithin a d~ and s ystem calls that opcram on records within a flle.
However, the filaaccess category also inchdcs scvcrid miscQanem functions that either
affect the execufiou of other file-access system calls or me commonly used with them.

System caRs in the first file-access group include caUs to search for one or more files,
delete om or more files, rename or truncate a file, set file attributes, assign a password to
a file, and coinpute the size of a file. Also included in this group are system caUs to open
a file, to create a 5le, and to close a file.

Tbe second fiie-access group includes system calla to read or write recceh to a 5le, either
aetluentislly or randomly, by record position. BDOS read and writesystem calls transfer
data in 128-byte units, which ia the basic record size of the file systcin, This group also
includes system calls to lock and unlock reach and thereby allows multiple processes to
have coordinated access to records within a commonly accessed fil.

Before rnahng read, write, lock, or unlock system calls for a file, you must first open or
create the file. ~ a f ile has the side effect of opening the file far record access.!n
addition, because Concurrent CP/M supports thee different modes of opening flles ~ ,
Unlocked, and Read-Only), there can be other restrictions on system calls in this group that
are related to thc open mode. For erample, you cannot write to a file that you have opened
in Read-Only mode.

After a process has opened a file, access to the fil by other processes is restricted until
thc filc is closed. Again, thc exact uatme of the restrictions depends on the open mode.
Howcvcr, in all cases thc file system does not allow a process to delete, rename, or change
a file's attributes if another process has opened ihe fil. Thus, thc F CLOSE system call
performs two steps to terminate record access to a fiie. It permanently records thc current
status of the file in the directory and removes the open-file restrictions limiting access to
the file by other processes.

• DIGrAL REM/uKH~
2-2



2.1 ltNs Systaaa Oaarviaw

The miscellaneous file-atxesa syausn calls include calla to set the current user number,
set the DNA address, parse an ASCII file specification and aet a default password. This
group also includes system calls to aet the BDOS Multisector Count and the BDOS Error
Mode. The BDOS Multiaector count deternunes the number of 128-byte records to be
processed by the teed, write, lock, and unlock system calls. The Multisector count can range
from I to l28; the default value is one, The BDOS Error Mode determines whether the file
system intercepts certain errors or returns on all errors to the calling process.

2.1.2 Drive-related System Calls

BDOS drive-related system calls select the default drive, compute a drive'a free space,
interrogate drive status, and assign a directory label to a drive, A drive's directory label
controls whether the file system enforces file password ptotecnon fcr files in the directory.
It also specifies whether the file system is to perform date and time stamping of filea on the
drive.

This category also includes system calls to reset specified drives and to control whether
other processes can reset particular drives. When a drive is reset, the next operation on the
drive reacuvates it by logging it in. Logging in a drive initializes the drive for directory and
file operations. 'Ihe purpose of a drive reset call is to prepare for a media change on drives
that support removable media. Under Concunent CP/M, drive reset calls are conditional.
A process cannot reset a drive if another process haa a file open on the drive.

The following table sununarizea the BDOS file system calls.

lhbIe 2-1. File System Calls

DescriptionMnemonic

DRV ACCESS
DRV ALLOCVEC
DRV ALLRESET
DRV DPB
DRV GET
DRV GETLABEL
DRV FLUSH
DRV FREE
DRV LOGINVEC
DRV RESET
DRV ROVEC
DRV SETLABEL

Access Drive
Get Drive Allocation Vector
Reset All Drives
Get Disk Farameter Block Address
Get Default Drive
Get Directory Label
Hush Dais ButTera
Free Drive
Return Logged In Vector
Reset Drive
Return R/0 Vector
Set Diro;tory Label

DIQrhL RESFARCH4
2-3



Tkbk 2-1. (continued)

hfacmonic Dsscrtption

DRY ET
DRV SHTRO
DRV SPACE

Sct (Select) Drive
Set Drive 1b Read-Only
Get Free Space On Drive

Sct File's Auributes
Close File
Delete File
Set DMA Segmeat
Get DMA Address
Set DMA Offaet
Set BDOS Error Mode
Iud' Record In File
Make A New File
Set BDOS Multisector Count
Open File
Fane Filename
Set Default Password
Return Record Number For Pile Read-Write
Read Record Sequentially Prom PHe
Read Random Record Pmm File
Rename Pile
Compute File Size
Directory Search First
Directory Search Next
Return File Iline'Date Stamps Ftissword Mode
Truncate File
Unlock Record h File
Set/Gct Directory User Number
Write Record Sequentially Into File
Write Random Recnrd Into File
Wiitc File's XFCB
Write Random Record With Zero Fill

F ATTRIB
F CLOSE
F DELETE
XMAS EG
F DMAGEI'
F DMAOFF
F~ ODE
F~
F LA K E
F~ULTISEC
P OPEN
PEARSE
F PASSWD
P ~ DRH C
P~
F~ RAND
F RENAME
F SIZE
F SHRSf
F SNEXT
P TIMBDATE
P TRUNCATE
F UNLOCK
F USERNUM
P WRITE
F WRITERAND
F WRITEXPCB
F WRITEZF

• olccrAL arathacH~



Cesmtrrssk CP/M Praltmnamr's GaMe

The following sections contain information on important topics related to the fi!e system.
Read these sections carefully before attempting to use the system calls described individually
in Section 6.

2.2 F i le NtsmiIng Coaventkins

Under Concurrent CP/M, a file specification consists of four parts: a drive specifier, the
filename field, the filetype field, and the file password field. The generaI format for a com
mand line file specification is shown below;

(d: j filename (.typ) (; password)

The drive specifier field specifies the drive where the file is located. The filename and filetype
fields identify the file. 'Ihe password field specifies the password if a file is password pro
tected.

The drive, type, and password fields are optional, and delimiters are required only
when specifying their associated fields. The drive specific r can be assigned a letter from A
to P, where the actual drive letters supported on a given system are determined by the
XIOS implementation. When the drive letter is not specified, the current default drive is
assumed.

The filename and password fields can contain one to eight non-delimiter characters. The
filetype field can contain one to thine non-delimiter characters, All three fields are left justified
snd padded with blanks, if necessary. Omitting the optional type or password fields implies
a field specification of all blanks,

8 DIGITAL atsEARCH+
2-5



2.2 Ws %eWI Cmvmthim

Under Concurrent CP/M, the P CLI system call interprets ASCII command lires snd
loads prognuns. The P CLI system call makes PARSE system caUs ta parse fiic specifi
catians from a command line. F PARSE recognizes certain ASCII characters as delimiters
when it parscs a filc specification. These characters tue shown in Table 2-2.

'Able 2-2, ValM FUennme Delimiters

ASCII Hcr Equivrdsnt

nuU
space
ieturn
tab

[
]

OOOH
020H
OODH
009H
03AH
02EH
03BH
03DH
02CH
05BH
05DH
03CH
03EH
07CHI

The F PARSE system call also excludes aU control characters from thc file specificatio
fields and ttanabates all lowercase letters to uppercase.

Avoid using parentheses snd the backslasb clisrncter, i, in tbc filename and filetype fields
because they tue commonly used delimiters. Vse asterisk and question mark chsractcts, ~
snd?, only to make an ambiguous file rcfeience. %ten PARSE encounters an asterisk in
a fiienamc ar filetype field, it pads the remainder of the fieid with question marks. For
cmnple, a filename of X~.~ is parsed to X???????.???. The BDOS F SFIRST, F SNEXT,
and DELETE system caUs match a question mark in the filcname or filetypc fields ta the
corresponding position of any diiectary entry belonging to the current user rember. Thus, a
search operation far X???'????.'/.? finds all the files ln tbc current user directory beginning
in X. Most other file-access BOOS systein calls treat thc presence of a question mark iii the
fileuame or filetype fields as an error.



Concurrent CP/M Prugramnssr's Gunk g2 Ega Naaibig Canven5ans

It is not mandatory to follow the file naming conventions of Concurrent CP/M when you
create or rename a file with BDOS system calls directly fmm an application program. How
ever, the conventions tnust be used if the file is to be accessed from a conunand line. For
example, the P CLI system call cannot locate a command file in the directory if its fiiensme
or filetype field contains a lowercase letter.

As a geiieraI rule, the filetype field names the generic category of a particular file, and the
filename fiel distinguishes individual files within each category. Although they are generally
iubitrary, Viable 2-3 lists some of the generic fiietype categories that have been established.

Ihble M. F l letype Conventions

Fi(erypc

A86
ASM
BAK
BAS
C
CMD
CON
CON
DAT
HEX
H86
INT

Descri priori
8086 Assembler Source
8080 Assembler Source
Text or Source Back-up
BASIC Source File
C Source Fiie
8086 Coinmand File
8080 Command File
CCP/M Modules
Data File
ASM80 HEX File
ASM86 HEX File
Intermediate File
Library File
Library File
List File
PL/[ Source File
page Relocatable
Relocatable Module
Resident System Process
System Page Relocatable
SUBMIT File
Symbol File
System File
Temporary File

L86
ISf
PLI
PRL
REL
RSP
SPR
SUB
SYM
SYS
$$$

III otorrAL RESEARCH~
2-7



i3 INsk Drive and Fgs OrgasstWhrsr

2.3 Disk Drive and FHe orgstttizstioa

The file system can support up to sixteen logical drives, identified by the letters A though
P. A logical drive usually corresponds to a physical drive on thc system, particularly for
physical drives thatsupport removable media such as fioppy disks. Highwapscity hard disks,
however, are commonly divided into multiple logical drives. If a disk contains system tracks
reserved for the boot loader, these tracks peccdc the tracks of the disk mapped by the 1ogicsl
drive. In this mararai, refereneea tO drives man logical driveS, unleSS explicitly snued Otherwisc.

The maximum filc size supported on a drive is 32 megabytes. The maximum capacity of
a drive is determined by the data block size specified for the drive in the XIQS. The data
block size is thc basic unit in which thc BDOS allocates space to file. Table 24 displays
the relationship between data block size and total drive capacity.

Table M. D d vs Capacity

Data Block Size hfazitrurtrr Drive Capacity

1K
2K
4K
8K

16K

256 ki! obytes
64 megabytes

128 megabytes
256 megabytes
512 nlgabytes

Each drive is divided into two regions: a directory area and a data area. ~ directory arcs
contains from one to sixteen blacks located at the beginning rrf the drive. The actual number
is set in the XIOS. Dhectory entries residing in this area define the file that eiist on the
drive. Jn addition, tbe directory entries belonging to a file identify thc data blocks in the
drive's data area that contain the fil's records. Tbc dhectary area is logically subdivided into
sixteen independent directories identified as user 0 through 15. Each indcpcndent directory
shares the actual directory area on the driv.

• ororiAL RESEARCH~
2-8



Coacarrcnt CP/M Programnsr'a Guide

Each disk file may consist of a set of up to 262,144 (40000H) 128-byte recoids. Each
record of a file is identified by its position in the file. This position is called the record's
Random Record Nuinber. If a fiie is created sequentially, thc first record has a position of
zero. while the last iecoid has a position one less than the number of records in the file. Such
a filc can be read sequentially, beginning at record zero, or randomly by record position,
Conversely, if a file is created randomly, records are added to the file by specified position,
A file created in this way is called sparse if positions exist within the file where a record has
not been written,

The BDOS automatically allocates data blocks to a file to contain the file's records on the
basis of the record positions consumed. Thus, a sparse file that contains two records, one at
position zero, the other at position 262,143, consumes oniy two data blocks in the data area,
Sparse files can be created and accessed only randomly, not sequentially. Note that any data
block allocated to a file is permanently allocated until the file is deleted or truncated. These
sre the only mechanisms supported by the BDOS for releasing data blocks belonging to a
file.

Source files under Concurrent CP/M are treated as a sequence of ASCII characters, where
each line of the source tile is followed by a carriage return/line-feed sequence, ODH fallowed
by OAH. Thus, a single 128-byte iecord oould contain several lines of source text. The end
of an ASCII file is denoted by a CTRL-Z character (IAH), or a real end-of-file, returned by
the BDOS read system call. Note that these source file conventions are not supported in thc
file system directly but are followed by Concurient CP/M utilities such as TYPE and
ASM-86su. In addition, CEL-Z characters embedded within other types of flies such as
CMD files do not signal end-of-file.

2.4 Fi le Control Block De5nition

The File Control Block (FCB) is a system data structure that serves as an important channel
for information exchange between a process and BDOS file-access system calls. A process
initializcs sn FCB to specify the drive location, filename and filctype ficlds, and other infor
mation that is requited to make a file-access call. For example, in an F OPEN system call,
the FCB specifies the name and location of the file to be opened. In addition, the file systein
uses the FCB to maintain the current state and record position of an open file. Some filc
acccss system calls use special fields within the FCB for invoking options. Other file-access
system calls usc the FCB to return data to the calling program. All BDOS random VO systein
calls require the calling process to specify the Random Record Number in a 3-byte field at
the cnd of the FCB.

is DloriAL RESEARCH+
2-9



XA Itis ~ I ks ak Oelaklm C cmn~ CP/M Prsgra~& ~

When a process mates a BDOS file-access system call, it passes an FCB address to the
BDOS, 'I%is addiess has two I &kit components: register DX, which contains the offset, and
register DS, which contains the segment, The length of the FCB data area depends on the
BDOS system call. For most system calls, the minimum length is 33 bytes. For the
F READRAND,F WRITERAND,F WRITEZF,FMOCK,F UNLOCK,FMAND
REC, FMIZE, and F TRUNCATE system calls, the minimum FCB length i • 36 bytes.
When the F OPEN or F MAKE system calle open a file in Vnloclred mode, the FCB inust
be at least 35 bytes Iong. Figure 2-1 displays the FCB data structure in two formats,

DR N AM E TY P E EX CS Rs R c DO-D15 CR RO R1 R2

0$. 12 1 3 1 4 15 18 32 33 S4 $500 01

h~ +
DR

Fs

D O D1 D2 D3 D A D5 De D7...10H
+

15H

I :I ~GR RQ R 1 R2

Figure 2-1. FCB - FIe Control Nock

• DGTAL 2555AKH' •
2- IO



Cenctrrrssd CP/M Prcgilinmsrs Gtdde

The fields in the FCB are defined as follows:

Table 24. FCB FleM Definjtians

DefinitionsField

IMve Cade (0-16).

0 = ) use default drive far file
I = ) auto disk select drive A
2 =) auto disk select drive B

16=) auto disk select drive P

Contain the filename in ASCII uppercase, with high bit = 0. Fl; . . . ,
F8' denote the high-order bit of these positions and are called attribute

Fl...F8

CS

RS

Tl, T2, T3

bits.

Contain the filetype in ASCII uppercase, with high bit = 0, Tl', T2',
and T3' denote the high bit of these positions and are also called
attribute bits.

Tl' = 1 => Read-Only filc,
T2' = I => System file,
73' = 1 = ) File hss been archived.

Contains the current cxtcnt number. This fiel is initis) ized to 0 by the
calling process, but it can range from 0 to 31 during file I/O

Contains the FCB checksum value for open FCBs.

Reserved for internal system use

Record count for extent EX. This field takes on values from 0 to 255
(values greater than 128 imply a record count of 128).

RC

> nlGITAL RESEhRCH~
2-11



'Ilute M. (condnned)

DePutionaFit/d

DO...Dl5 Normally filled in by Concurrent CP/M and rcscrvcd for system use.
Also used to specify ihe new filensme and fihtypc with tbe F~ A M E
system ceH.

Current record to read or write in a sequential file operation. This field
is normally set to zero by the calling process when a file is ope,ncd or
created.

Optional Random Record Number in thc range 0-262,143 (0- 3FFFFH).
R0, Rl, R2 constitute an 18-bit value with low byte RO. middle byte
Rl, and high byte R2.

RO,R1,R2

Note: The 2-byte Irile ID is returned in bytes RO and Rl of the FCB when s flle is suc
cessfuliy opened in Unlocked mode (refer to Section 2.10).

2.4.1 FCB InNalhatton and Usage

The calling process must initialize bytes 0 through 11 of the referenced FCB before
ma!ting the following file-access system calla: ATTRI B , D E L E T E , F M A K E,
F OPEN, RENAME , FM FIRST, F&IZE, FMNEXT, F TIMEDATE, F TRUN
CATE, and F WRITEXFCB. Normally, the DR ficM specified the drive location of the
file, and the name and type fields specify thc name of the file. You must also aet the EX
field of the FCB bcforc calling FLA KE, F OPEN, FMFIRST, and F WRITEXFCL
Except for thc F WRITEXFCB system call, you can usually sct this field to aero. Note
thai thc RENAME system call requires the calling process to place the ncw filename
and filetypc in bytes Dl through Di l.

Thc remaining file-access calla that uac FCBa require an FCB that has been initializcd
by a prior file-access system call. For exemple, thc FM NEXT system call expects an F CB
initialized by a prior FMFIRST calh In addition, the F LOCK, F READ, FMEAD
RAND, F UNLOCK, F WRITERAND, and F WRITEZF system calls require an
FCB that has been activated for record operations. Under Concurrent CP/M, only thc
F OPEN and F MAKE aystcin calla can activate an FCB.

• nioirhi assaAamiI
2-12



2.4 Hh Coutrci Nach Dcllnltkas

If yau intend to process a file sequentially from the beginning, using the F READ and
F WRITE system calls, yau must set the CR field ta zero before you inake your first read
or write calL In addition, when you make an F LOCK, F READRAND, F UNLOCK,
F WRITERAND, or F WRITEZF system call, you must set bytes RO through R2of the
FCB to the requested Random Record Number. The F TRUNCATE system call aiso
requires the FCB randan record field to be iniiializcd.

The F SFIRST, F SNEXT, and F DELETE system calls support multiple or ainbiguous
reference. In general, a question mark in the filename, filctype, ai EX fields matches sll
values in the corresponding positions of directary entries during a directory search operation.
Fi]c directory entries maintained in the directory area of each disk drive have the same format
as FCBs except for byte 0, which contains the fil's user number, and bytes 32 through 35,
which arenot present. The search system calls, F SFIRSTand F SNEXT, also recognize
a question mark in the FCB DR field, and, if specified, they return all directory entries on
the disk regardless of user number, including empty entries. A directary FCB that begins
with ESH is an einpty or erased diicctory entry.

When tbe F OPEN and F MAKE system calls activate an FCB for record operations,
they copy ihe FCB's matching directory entry from disk, excluding byte 0, into the FCB in
memory. In addition, these system calls compute snd stare a checksum value in the CS field
af the FCB. During subsequent record operations on the file, the file system uses this check
sum field to verify that the FCB hss not been modified by the calling process in an illegal
way. Thus, all read, write, lock, and unlockoperationson a file must specify a valid activate:d
FCB; otherwise, the BDOS returns a checksum error. The BDOS performs this checking to
protect the integrity of the file system. In general, you should nat modify bytes 0 thmugh 3l
of an open FCB, except to sct interface attributes (see Section 2.4.3). Other restrictions
related ta activated FCBs are discussed in Section 2. 10.

The BDOS update the memory copy af the FCB during file processing ta maintain the
current position within the file, During file write operations, the BDOS also updates the
memory copy of the FCB to record the allocation of data blocks ta the file. At the termination
of file processing, the F CLOSE system call permanently records this information on disk.

Note that the BDOS does nat record the data blocks allocated to a file during write
operations in the disk directory until the calling pmcess issues an F CLOSE call. Therefore.
a process that creates or madifies files must close the files at the termination of file processing.
Otherwise, data might be lost.

2-13



Gaea~ CPh N Prayer 'b G~

XA.2 Fle Attrilxrtsa

The high~ bit s of tbe FCB filename (FI',...,FS') and fiietype 6elds 9 1',T2;T3') are
called attribute bits. Attribute bits are 1-bit Boolean fields, where 1 indicates on or true, and
0 indicates off or false. Attribute bits indicate two hnds of attributes within the fiie system;
fde attributes and interface attributes. The file attributes are described in this section. Section
2.4.3 describes interface attributes.

'Ae file attribute bits, FI',...,F4' and Tl', T2', T3; indicate that a fiie has a deiined
attribute. These bits are ~ in a fi l e 's directory PCBs. File attributes can be set or reset
only by the ATTRI B system call. Wben the F MAKE system call creates a fiie, it
iaitializes all file attributes to zero. A process can interrogate 'file attributes in an FCB
activated by the F OPEN system call, or in d'uectory FCBs returned by the P SFIRST and
F SNEXT system calls.

Note: The lUe system ignotus the file attribute bits when it attempts to locate a file in the
dhectory.



2A File Casttrul Rack DethtlttsnCtateurrtatt CP/M Prugratauter's Guide

The file system defines file attributes Tl',T2',and T3' as follows:

'Isble M. H i e Attribute Mhaltfons

DgaitionA/tribal

Tl '. Read-Only Attribute

This attribute, if set, prevents vnite operations to a file.

T2". System Attribute

This attribute, if set, identifies the file as a Concurrent CP/M system
file. The Concunent CP/M DIR utility does not usually display Sys
tern files. In addition, user-zero system files can be accessed on a
Read-Only basis from other user numbers.

T3': Archive Attribute

User-written atchive programs use this auribute. When an archive
progratn copies a file to bsck-up storage, it sets the archive attribute
of the copied files. The file system automatically resets the archive
attribute of a directory entry when writing to the directory entry's
region of a file. An archive program can teat this attribute iu each of
the file's directory entries using the F SFIRSI' and F SNEXT sys
tern calls. If ail directory entries have the archive attribute set, the
file has not been inodified since the previous archive. The Concurrent
CP/M PIP utility supports file archiving.

File attributes Fl ' through F4' of command files are defined as Coinpatibillty Auributes
under Concurrent CP/M (see Section 2. I 2), However, for all other files, attributes F I ' through
F4' are availabie for definition by the user,

ss DIGirhL RESEAacH~
2-1S



C~arraat CPfM Programme'a Qd0a

X.4.3 Interface Attributca

The interface attributes are F5', F6', P7', and PS'.'Ibcse attributes cannot be used as file
attributes. Interface attributes FS' and F6' request options for BDOS file-access system calls.
Table 2-7 fats the F5' and F6' attribute definitions for thc system calls that define interface
attributes. Note that the F5' = 0 and F6' = 0 dcfinitions are not listed if their definition
simply implies the absence of the associated option.

'Itsble 2 7. BDOS Internee Attrihrstes IrS' and F6'

Sysrerrr Call

F AVIRIB

Arrriburs

F OPEN

F MAKE

F DELETE

FS' =0
FS' =1
F6' =0
F6' = I

P5' = 1: Maintain extended file lock
P6' = 1: Set file byte count

PS' = 1: Partial Close
F6' = 1: Extend fil lock

F5' = 1: Dclctc file XFCBs only anri
maintain extended file lock

; Exclrrsive Lock
: Shared Lock
: Lock existing records only
: Lock logical records

F5' = 0: Open in Lockedmode
FS' = I : Open in Unlocked mode
F6' = I : Assign password to file

FS' =0
FS' = 1
F6' = 0
F6' = 1

: Open in Locked rnodc
: Open in Unlocked mode
: Open in mode spccified by P5'
Open m Read-Only mode

FS' = 1: Maintain extended file lockF RENAME

F5' = 1: Maintain extended file Iock
F5' = l: Unlock all Iocired records

• ororrAL assrhacH+
2-l6



XA Pne Caatrul Neet IMdllaatCtaMstmstt CP/M Prugratnmar's Gtdde

Section 6 details the above interface attribute deflnitiona far each of the preceding system
calls. Note that the BOOS always tesets interface attributes F5' and F6' before returning to
the calling process. Interface attributes F7' snd Fg' are reserved far inta'nal use by the file
system.

2.5 User Number Conventions

The Concurrent CP/M user facility divides each drive dhectory inta sixteen logically
independent directories, designated as user 0 through user 15. Physically, all user directories
share the directory area of a drive. In most other aspects, hawever, they are independent.
For example, fiies with the same name can exist an different user numbers of the same drive
with no conflict. However, a single fiIe cannot extend across more than one user number.

Only one user number is active for a speciiic process at one time. For this process, the
current user number applies to all drives on the system. Furthermore, the FCB format does
aot contain a field that can override the current user number. As a result, all file and directory
operations tefetence anly directary entriea associated with the current user number.

However, it is possible for a process to access files an different user numbers by setting
the user tnmber to the file's user number with the F USERNUM system call before issuing
the BDOS call. However, if a process attempts to read or write to a file under a user number
different from the user number that wss active when the lile was opened, the file system
returns an FCB checksum error.

When the P CLI system call initiates a transient process ar Resident System Process
(described in detail in Section 5), it seta the user sutnber to the default value established by
the process issuing the P CLi system call. The sending process is usually the TMP. How
ever, the sending process can be another process, such as a transient program that makes
a P CHAIN call. A transient process can change its user number by making an
F USERNUM call. Changing the user number in this way does not affect the command
line user number displayed by the TMP. Thus, when a transient process that has changed
its user number terminates, the TMP restores and displays the original user number in the
cotntnand line prompt when it regains contml.

5 Dlalrhl. REMARCH~
2- i 7



User 0 has special prnpardea under Concurteat CP/M. 'Ibe 6le system autcmatically opens
Alas listed under user zera but requested under another user iaunber if the Ale ia not present
under the current user number, end if the A.Ie on user zero has the system attribute (T2')
set. This convention allows utilities, including overlays and sny othercommonlyaccessed
Ales, tc reside on use zero, but remain available to other users. This eliminates the need
to copy commonly used utilities to all uaar numbers on a dhectory, and gives the Concurrent
CPfM manager control over which Ales are directly accessible to the different user areas.

2.6 Directory Labels attd XFCSs

Thc file system includca three special types of FCBa: the directory label and the XFCB,
described io this section. and the SFCB, described in detail in Section 2.8.

The directory label specific> for its Nve whether password support is to be activated,
aitd if date and time stainping fcr files is to bc performed.The format of the directory label
is shown below in Figure 2-2.

OR Horne T y pe OL Sl 52 RG P eesworc T S1 TS2

00 0 1 . . . OQ. . . 12 13 ta 15 t B...

Figure 2-2. Directory Label ~



L6 Directory Labels and XFCIsConcurrent CP/M Programmer's Guide

Table 2-8, Directory Label Hdd Delbtithna

Field

DR

Definition

DL

TS1

Name

Sl,S2,RC

Password

drive code (0- i 6)

directory labe! name

directory label type

directory labei data byte

Bit 7 - enable password support
Bit 6 - performaccess time stamping
Bit S - perform update time stamping
Bit 4 - perform create time stamping
Bit 0 - Directory Label exists
(Bit references are right to left, rehttive to 0)

reserved for systein use

8-byte password field (encrypted)

4-byte creation tiine stamp field

4-byte update time stamp fieldTS2

Only one directory label can exist in a drive's directory area. The directory label naine
and type fields are not used to search for a ditectory label; they can be used to identify a
disk.

You can use the DRV SETLABEL systctn call to create a directory label or update its
fields. This system call can also assign a password to a directory label. The directory label
password, if assigned, cannot be circumvented, whereas file password protection on a ddve
is an option controlled by the directory label. Thus, access to the directory label password
provides the ability to bypass password protection on the drive.

ss DlGrrhL RE%ARCH+
2-i9



2.C Directory Labshi snd XFCIa Cooeurramt CP/M Prolnuntsisr'a Guide

Note: The file system provides no specific system call to tuad the directory label FCB
directly. However, you can read the ditectory label data byte directly with the BDGS system
call, DRV GETLABEL. In addition, you can use the BDOS search system calls F SFIRST
and F SNEXT to find a directory label. You can identify the directory label by a vahe of
32 (020H) in byte 0 of the ditectcsy FCB.

The XFCB is an extended FCB that can optionally be associated with a fil in the directory.
lf present, it contains the file'a password and password mode. Tbe format of the XFCB is
shown below iu Figure 2-3.

DR F i l e Type PM S1 S 2 R C Pa ssword RESE RVED

O o o l . 0 1. 12 15 l a 15 15. . .. . 25 29,

Flgttra 2-3, XFCB - Bx~ Hle Co u trol Rock

• uiQTAL aKSKAaC Ra
2-20



2.6 Directory Labels and XFCBaConcurrent CP/M Proymniaer's Guide

The fiields in the XFCB are defined in Table 2-9:

Table 2-9. XFCB irield Definitlans

DeJinitionField

DR

PM

Password

SI,S2,RC

drive code (0 — l6)

filename field

fiIetype Field

password made

Bit 7 - Read made
Bit 6 - Write made
Bit 5 - Delete made
(Bit references are right to left, relative to 0)

reserved for system use

8-byte passwatd field (encrypted)

8-byte area reserved for future useReserved

An XFCB can be created only on a drive that has a directory label, and only if the directory
label enables password protection. For drives in this state, there are twa ways to create an
XFCB far a file: with the F MAKE system call or the F WRITEXFCB system calI. The
F MAKE system call creates an XFCB if the calling process requests that a password be
assigned io the created File. The F WRITEXFCB system call creates an XFCB when it is
called ta assign a password to an existing file. You can identify an XFCB in the directory by
a value of l6 (OIOH) + N in byte Oaf the FCB, where N equals the user number.

8 aiafTAL sssrARCH+



L7 gne &ssnards

2.7 Ale Pnanvorcb

'I%ere are two ways to assign passwords to a file: by the F MAKE system call or by the
F WRITEXFCB system call. Yau can also change s fil's passwatd or password mode with
thk F WRITEXPCB system call if you can supply the original password. Nate that yau
cannot change a file's password or password mode if password protection for the drive is
disabled by the directory label. However. even if yau cannot supply a He's password, yau
caa delete a file's XFCB, thereby tctnoving its password protection, if password protection
is disabled os the drive.

Thc Concurrent CP/M BDOS provides password protection in anc of three mades when
password support is enable by the directory label. Thble 2-10 shows the difference in access
Icvki allowed to BDOSsystem calls when the password is nat supplied,

'IthIe 2-IO. Password Protection Mades

Access Level Allowed Without Password

Cannot he read, modified, ar deleted.

Can be read, but eat modifie or deleted,

Can be read and modified, but nat deleted.

(1) Read

(2) Write

(3) Delete

If s file is password protected in Read made, a process must supply the password ta open
the filC. Frakeaaes cannot write to a 51C protected in Write made without the pasaward. h
file protected in Delete mode allows read and write access, hut a process must specify thc
patsword ta delete ar trunkatC thC file, rknaxne thk fil, ar tOmodifythe Glc'S attributes.
Thus, pssaward protection in mOdC 1 implies mOde 2 snd 3 pratCCtian, and made 2 protection
implies mode 3 protection. All three modes require the user ta specify the password to delete
or truncate the file, rename thc file, or ta modify the Se's attributes.

• nKitrH, RL%AM+



If s process supplies the correct password or the directory label disables password protec
tion. then access to the BDOS system calls is the same as for a file that is not password
protected. In addition, the F SFIRST snd F SNEXT system calls are not affected by tile
passwords. The following BDOS system calls test for passwords.

DRY SETLABEL
F ATTRIB
F DELETE
F OPEN
F RENAME
F WRITEXFCH
F TRUNCATE

The BDOS maintains file passwords in the XFCB and directory label in encrypted form.
To make a BDOS system call for a file that requires a password, a process must place the
password in the first eight bytes of the current DMA, or make it the default password with
the F PASSWD system call, before making the system call.

Note: The BDOS maintains the assigned default password for each process. Processes
inherrt the default password of their parent process. You can set s given TMP's default
password using the SET command; all programs loaded by rhis TMP inherit the same default
password.

SS DIGITAL RESEARCHI

2-23



2.g Pas Bate aak 'Ibns Stasatl: 8PCas

2,.8 File Date antm Thne Stampe: SFCBs

The Concurrent CP/M file system uses a special type of directory entry called an SFCB
Io record date and time stamps for files. When a diiectory has been initializcd for date and
time stamping, SFCBs reside in every fourth position of the dhectory. Each SFCB inaintalns
Ihe date and thnc stainps for the previous thee directory entrics, as shown in Figure 2-4.

Coam~ C P/ht Praammaa'a Gahh

FGB 1

FGB 2

STAMPS
FOR FCB 1

FGB S

STAMPS STAMPS //
FOR FCB 2 FOR FGB 9 / /

21

BYTE It: 0 21 Sl S2

Figure 2-4. Directory Record with SFCB

This figure shows a 128-byte directory record containing an SPCB. Directory records have
four directory entries, each 32 bytes long; SFCBs always occupy the last 32-byte entry in
the directory record.

The SFCB itself contains five fields. Tbe first field is a single byte containing the value
021H; this field identifies tbe SFCB within thc directory. The next three fields, called thc
SFCB subfields, aie each 10 bytes in length and contain the date and time stamps for their
corresponding FCB entries in the directory record. 'Ihe last byte of tbc SFCB is reserved for
system use. Figure 2-5 shows the detail of thc SFCB subfields.

CREATE/AGGESB
TIME AND DATE

UPDATE PASSWORD RE S ERVED
TIME AND DATE MODE

9 10BYTE» o

Figure 2 5. SFCB Snbfielda



2.8 Pie Daae and Time Stasnys: SKIES

An SFCB subfiekl only contains valid information if its corresponding FCB in the directory
record is an extent zero FCB. This FCB is a file's first directory entry. For password protected
files, the SFCB subfield also contains the password made of the file; the password mode field
is zero for files without password protection. You can read SFCBs by making F SFIRST
snd F SNEXT system calls. In addition, you can make an F TIMEDATE system call to
retrieve the date and time stamps and password mode of a specified file. Refer to the T GET
system cail definition in Section 6 for the description of the format of a date and tiinc stamp
field.

Concurrent CP/M supports three kinds of file stainping: create, access, and update. Create
stainps record when thc file was created, access stamps record when the file was last opened,
and update stamps record the last time the file wss modified. Create and access stamps sharc
the seine field. As a result, file access stamps overwrite any create shmps.

Thc directory label of a properly initializcd disk detcnnincs the type of date and time
stamping for file on the drive. The INITDIR utility initializcs a dixectory for date and time
stampmg by placing an SFCB in every fourth directory entry. Disks not initialized in this
way cannot support date and time stamping, In addition, date and time stamping is not
perfbrmed if the disk's directory label is absent or docs not specify date and time stamping,
or if thc disk is Read-Only.

Note that the directory hbel is aho time stamped, but these stamps are not made in an
SFCB; time stamp fields in the last eight bytes of the directory label show when it was created
and last updated. Access stamping is not supported for directory labels.

'Ibe BDOS file system uses the system date snd time when it records a date and time
stamp. This value is maintained in a field in the SYSDAT part of the System Data Segment.
The DATE utility sets the system time snd date (refer to the Coacurivnr CPlhf Ussr's Guidr
for details of using DATE).

ss OKlrAL RESEARCH+
2-25



2.9 FHe Open Model

'Hrc file system provides tines different modes for opening files. ~ a re defined below,

Locked Made

A process can open a file in Locked mode only if the file is not currently opened by
another process and the file is not a Read&nly file (attribute Tl' set). Once open in
Locked mode, na other process can open thc file until it is closed. Thus, if a process
successfully apens a file in Locked mode, that process owns the file until the file is closed
or the process terminates. Files ap«ned in Locked made support read and write opera
tiara unless the file is. password-protected in Write mode, and the process issuing the
OPEN cafi cannot supply the password. In this case the BDOS allows only read
operations to the file.

lf a file opened in Locked mode is a Read-Only file, the F OPEN system call automati
cally changes the open mode to Read-Only mode. Read-Only mode is described below.

Note: Locked mode is the Default made far opening files under Concurrent CP/M.

Unlocked Mode

A process can open a file in Unlocked made if the file is not currently open, or if another
process hss already opened thc fil in Unlocked made. 'IItis made aUows mote than one

process ta open the same filc. Files opened in Unlocked mode support read and write oper
ations unless the file is a Read-Only fil (sttribute Tl' sct) or the file is password-protected
in Wiite mode and the process issuing thc F OPEN call cannot supply thc password.

When opening a file in Unlocked mode, a p m' u s tst reserve 39 b~ i n the FCB
because thc F OPEN system csH returns a 2-byte value celled the File ID in the RO and Rl
bytes af the FCB. The File ID is a required parameter for the F LOCK and F UNLOCK
system calls. 'These BDOS system calls work only for files opened in Unlocked mode.

Read-Only Mode

A process can open a file in Read-Only mode if the file is not currently opened by another
process or if another praaess has opened the file in Read-Only mode. 'IIris made allows more
than onc process to open the same file far Read-Only access.

8 arGlrAL sxsthacH I

2-26



C~ ra srt CP/M Programmer'aGidde

The F OPEN system call per farms the following steps for files opened in Locked or Read
Only mode. If the current user number is nonzero, and thc file to be apened does not exist
under the current user number, the F OPEN system call searches the user zero directory for
the lile. If the file exists under user zero and has thc system attribute T2' set, the BDQS
opens the file under user zero, The open mode is automatically forced to Read-Only when
this is done,

The F OPEN snd F MAKE system calls use FCB interface attributes F5' and F6' to
specify the open mode, The interface attribute definitions for these functions are listed in
Table 2-7.

Nots: The F MAKE system call does not allow opening the file in Read-Only made.

2.10 F i le Security

In general, the security measrues implemented in the file system prevent accidental col
lisions between running, processes, It is not possible to provide tatal security under Concurrent
CP/M because the file system maintains file allocation inforrnatian in open FCBs in rhe user's
memory region, and Concurrent CP/M does not requirememory protection. However, the
file system is designed to ensure that multiple processes can share the same filesystem without
interfering with each other by

8 performing checksum verification of a~ FCBs.
8 monitoring all apen files and locked records via the system Lock List.

The BDQS validates the checksum of user FCBs before all I/O operatians to protect
the integrity of the file system framcorrupted FCBs. The F OPENand F MAKEsystcrn
calls compute and assign checksums to FCBs, The F READRAND, F READ,
F WRITERAND, F WRITEZF, F WRITE, F LOCK, and F UNLOCK system calls
subsequently verify and recompute the chccksurns when they change the FCB. Thc
F CLOSE system call also veriTies FCB checksums, Note that FCB verification by these
system calh can be disabled (sce Section 2,12), but Concurrent CP/ M's file security is
reduced when this is done, If the BDOS detects an FCB checksum error, it does not
perform the requested command. Instead, it either returns to the calling process with an
error code. or if the system call is F CLOSE and the BDOS Error mode is in the default
state (see Section 2. IS). it terminates the calling process with an error message.

ss Drorrht RESEARcH' •
2-27



2.10 Hh Saca4y

Concurrent CP/M uses a system data structure, called the Lack List, ta manage file opening
and record locking by running processes. Each time a process opens a filc ar locks a record
successfully, Ihc file system alhcates an entry in the system Lock List ta record the fact.
The file system uses the following information to

a pnevent a tuoccss Qom deleting, trtmcsting, renaming, or updating the attributes of
another lxttcess's open flle.

• prevent a process fram opening e file currently apetted by another process, unless
both processes open the file in uuiocked or Read<nly mode.

sr prevent a process fiam resetting a drive on which another process har an open file.

• prevent a process fram reading, writing, or lacking a record currently lacked by
another process. Refer to Section 2.14 for more inftatnatian on record lacking aud
unlocking.

"Ilute file system only verifies whether another praccu has tbc FCB-specified file open for the
following ftie-access system calls: F OPEN. FL A K E, F DELETE, PRENAME,
F~TTRIB, and F TRUNCATE. Far file-accesssystem calls thattrxluirc an open FCB, dtc
FCB checksum controls whether the aalliug pracem can usc the FCB. By dcfinitian, a valid
FCB checluum implies that the file has been successfully opened and an entry far the fiie
resides in the system Lock List.

The most txzntnon way a prrtcess ruhtases a lack entry far an apen file is by cloafrtg the
file. A close operatiau is permanent if it causes the removal of the file's open Lack List entry.
The file system invalidates thc FCB checksum field an permanent close apendiotM to prevent
continued open file operations with the FCB.

However, nat ell close operations are pertt tenant. For example, if a proces makesmultiple
F OPEN or FLAKE calls to en open fiic, a matching munber of F CLOSE calla ttatst be
made before thc file system pcrmancntiy closes the file. Of course, if you only open a fiie
once, a single close operation permanently closes thc file. In addition, a process can optionally
make partial F CLOSE calla to a filc by setting interface attribute F5'. A partial close
operation does not affect thc open state of a fllc. In tbc above example, a partial close
tqeration would not count against an F OPEN or F MAKE call. A partial close operation
simply updates tbc directory ta mficct the current state af the file.

As a geucraI rulc, under Concurrent CP/M a process should close files ss soon as it no
longer rtccds them, even If it hss not modified them. While a process hss a filc open, access
by other processes to the fil is restricted. For example, aflcr a process has opened a file in
Locked made, the file cannot bc opened by other processes until the fil is closed or the
process terminates.

2-28



X10 Fle SecurityCaacssrraat CP/M Pssigrasiisaea's Golda

Furthermore, space in the system Lock List is limited. If a laocessattempts to open a file
and no space remains in the system Lock List, or if the process exceeds the open file limit,
the BDOS denies the open request and usually terminates tbe calling process. Yau can change
the way the file system handles this error by making an F ERRMODE system cail. Note
that the size of the system Lock List and the process open fiIe limit are GENCCPM parameters.

There are severaI other situations where the file system removes open file entries fram
the system Lock List far a process. For example, if a process makes an F DELETE call
for a file it has open in Locked mode, the file systera deletes the file and also purges the
file's entry fram the system Lock List. Deleting an open file is nat recommended under
Concucrent CP/M but it is supported for files opened in Locked made to provide
compatibility with software written under earlier releases of fvIP/M and CP/lvl+. The
file system does not a)low deletion of a file opened in Unlocked or Read-Only mode.

Ta ensure that the process does not use the apen FCB conesponding to the deleted fiie,
the fiie system subsequently checks all open FCBs for the process. Each open FCB is checked
the next tiime it is used with a fiie-access system call that requires an open FCB. If a Lock
List entry exists for the file, the BDOS snows the operation ta proceed; if nat, it indicates
that the file has been purged and the file system returns an FCB checksum error.

The file system performsthis verification of a process's open FCBs whenever it purges an
open file entry from the system Lock List. The following Iist describes these situations:

• A process makes an F ATTRIB, F DELETE, F RENAME. or F TRUNCATE
system cali to a file it has open in Locked mode. These operations cannot be performed
an a file open in Unlacked or Read-Only mode.

• A process issues a DRV FREE call for a drive on which it bas an open file.

• The BDOS detects a change in media on a drive that has open files, This is a special
case because a process cannot control the occurrence of this situation. and because it
can impact more than one process. Refer to Section 2.I7 for more details an this
situation.

Open FCB verifiication can affect performance because each verification operation requires
a directory seaich operation. In general, you should avoid such situations when creating new
programs for Concurrent CP/M.

b olGlrhl RESEAacH' •
2-29



C~ r sent CP/M Pww~ r ' a GsddeXI I Icscsnshsl I%a LoahLg

2.11 Extended FHe Lacking

Extended file Iackmg enables a Concurrent CP/M process to maintain a lock on a file
after the file is permanently closed. This facility allows a process to set the attributes, delete,
rename, or truncate a file without interference froia other processes. In sdditiaa, this tech
nique avoids the prablems nssaciated with using these syste~ calla on open files (sce Section
2. l0).

A process can also reopen a fiie with aa extended lack sad continue open file processing.
Ib illustrate haw extended file lacking might be used, a pmcess can close an open file,
reasme the fil, reopen the file under its new name, and contiaue with file operations without
ever losing ths file's Lock List iuaa and control over the 6le.

A process can only specify extended file locking far a file it has opened in Locked inade.
'Ib extend a file's lack, set interface attribute F6' when closiag the file. The F CLOSE
system call Interrogates this attribute only when it is closing a file permanently. Thus.
interface attribute F5', signifying a partial close, nast be reset when ths F CLOSE call is
made. In addition, the close operation must be perinsnent. If a process has opened a 61e N
times, the F~ E sy s tem call ignores the F6' attribute until the file is closed for the Nth
time.

Nate that the access rules far a file with an extended lock are identical to the rules for a
file open in Locked made. In addition, you cannot extend the lock of a Read-Only File
(attribute TI' set). because a Read-Only file cannot be opened in Locked made.

Ta maintain an extended file lock through an F ATTRIB, F RENAME, or F TRUN
CATE system call, set interface attribute F5' of thc referenced FCB when making the call.
'Hie BDOS honors this attribut only if the fila has been closed with an extended lack.
Setting attribute F5' also maintains an extended file lock for the F DELETE system call,
but setting this attribute alsa changes the natura of the delete operatic to an XFCB-anly
delete. If successful, all four of these systein calla delete a file's extended lock item if they
are called with attribute F5' reset. However, tbe extended lock item is not deleted if they
return with an error code.

• oiaiTAL xssMCM~
2-30



Camsrraist CP/M Programmer'S Gawk 2.11 Ibtsaadad Ffie Lusting

You can make an F OPEN calI to resume record operations on a fiile with an extended
lock. Nate that you can also change the open mode when you ~ the fi le. The following
example illustrates the use of extended locks.

I. Open file EXLOCK.TST in Locked mode.

2. Perform read and write operations on the file EXLOCK.TST using the open FCB.

3. Close file EXLOCK.TST with interface attribute F6' set to retain the file's lock
item.

4. Use (he F RENAME system caII to change the name of the fi! e to EXLOCK. NEW
with interface attribute F5' set to retain the file's extended lock itein.

5. Reopen the file EXLOCK.NEW in Locked mode.

6. Perform read and write operations on the file EXLOCX.NEW, using the open FCB.

7. Close file EXLOCK.NEW again with interface attribute F6' set to retain the file's
lock item.

8. Set the Read-Only attribute and release the file's lock item by making an F ATTRIB
system call with interface attribute FS' reset.

At this point. the file EXLOCK.NEW becomes available for access by another process.

2. 12 C0111Patibility Attrlb11tel

Coinpatibility attributes provide a mechanism tn modify some of the Concurrent CP/M
file security rules for specific coinmand files. Concurrent CP/M includes this facility because
some programs developed under earlier Digital Research operating systems do not run
properly under Concurrent CP/M. Most of the problems encountered by these programs
occur because they were designed for singletasking operating systems where file security
is not required. For example, a program might close a file and then continue reading and
writing to the file. Under CP/lvl-86, this does not cause a pmblem. However, under Con
current CP/M. the file systein intercepts open file operations with a deactivated FCB to
ensure the integrity of the file system. With compatibility attributes. you have a tool for
dealing with these kinds of situations.

You should use compatibility attributes only with existing programs that run properly
under CP/M or CP/M-86'~, Do not use compatibility attributes with new progra~s you
develop under Concurrent CP/M.

ss DIGITAL RESEARCH~
2-3 I



Compatibility attributes are defined as file attributes Fl' through F4' of program (CMD)
iles. Yau can use thc Concuncnt CP/M SET utility to set these ilc attributes fmm the
command line. However, setting a command filc's compatibility attributes has no effect
unless thc GENCCPM COMPATMODE option has been selected during system generation.
If this has been done, the P CLI system call intcrtagates file attributes Fl ' through F4' af
the command iie during program loading snd modifies the Concurrent CP/M ile security
rules for the loaded program.

The Concurrent CP/M BDOS defines the Compatibility Attributes as shown in Thble
2- l l.

Ibble 2-11. CampatlbSty Attrlhnt» Defbdthna

Dejinittott

Modify the rules for Loch@ made.

When a prttccss running with Fl ' sct opens a filc in Locked mode,
it can perform read and write operations to the file as normal. How
ever, to other processes on the systwn, it appears ss if the file was
opened in Readily mode. Thus, another pmcess rmmmg with Fl'
set can open the antre fUe in Locked ronde and also perform write
operations to the file. In addition, if a prricess with Fl ' reset attempts
to open the file in Locked or Read-Only mode, the open attempt is
allowed but the open mode is forced to Read-Only. Furthcrmarc,
write operadans are not allowed when the process has Fl' reset.

This compadbility mode is designed to afiaw multiple copies of the
same program to run concurrently, even though the program might
make read and write caUs ta a autumns file that it has opened in
Lacked mode. In addition, this compatibility mode allows other pro
grams not in this campatiMity mode ta access the file on a Read
Only basis. Note that record locking is notsupportedFor this tnodified
open mode. In addition, to be safe, maire all stafic files such as
prognun and help fiksi Readily if yau use this compatibility attribute,

There is an alternative to using this attribute if e program only
makes read calls to the common file. By setting the file's Read
Only attribute, you force the open mode ta Read-Only when the
file is opened in Locked mode.

Attribttte

Fl'

• utGITAL RR5KAKH~
2-32



'Table 2-11. (continued)

Arrribure

F3'

DeIiriition

Change F CLOSE to partial close.

Processes running with F2' set only make parlial F CLOSE system
caUs. This attribute is intended for piograms that close s Gle to update
the directory but continue to use the fil. A side effect of this attribute
is that files opened by a process are not released from the system
Lock List until the process terminates, When using this attribute, it
might be necessary to set the system Lock List paraineters to higher
values when you generate a system with GENCCPM.

Ignore close checksum errors.

This attribute changes the way the F CLOSE system cail handies
Ciase Checksum errors. Normally, the file system prints an error
message on the console and terminates the calling process. However,
if this attribute is set, the F CLOSE systetn call ignores the check
sum error and performs the ciose operation. This interface attribute
is intended for pmgrams that modify an open FCB before closing a
file.

Disable FCB Checksum verification for read and write operations.

Setting thisattribute also setsattributes F2'and F3'. Thisattribute
is intended for programs that modify open FCBs during read and
write operations. Use this attribute very carefuiiy, and only with
software known to work, because it effectively disables Concur
rent CPt M's file security.

F4'

Use the Concurrent CPIM SET utility to specify the cotnbination of compatibiiity attributes
you want set in the program's command file. For example.

A >SET fi l e s peo ( f ' l=anj
A >SET fi 2espec ( f l = ort, fr = on j
A>SET filespeo (f4=on j

ss DlorrAL RESEARCH+



Concurrent CP/M Progranuuar's Gstds1.11 CcmpatIMtty Attributsa

If you have a program that runs under CP/M or CP/M-86 but does not run properly under
Concurrent CP/M, use thc foliowmg guidelines to select the proper compatibility attributes
for the program.

• If th' .program ends with the "Fdc Currently Opcncd" message when nadtiple copies
of the program sxe run, sct compatibility attribute Fl', or place all common static
fjlca under User 0 with the SY8 and Read-Only attributes aet,

a If the program terminates with thc message "Close Checksum Error", sct compati
bility auribute F3'.

N If the program terminates with au VO error, try running the program with attribute
F2' sct. If the problem persists, then try attribut F4'. Uae attribute F4' only as a last
tcsort.

2.13 Multhector VO

The BDOS Se system provides the capability to read or write multiple 128-byte records
in e single BDOS system call. This multisector facility can be visualized aa s BDOS burst
mode, enabling a process to complete multiple VO operations without Intcrfcrcncc fmm ader
running proccssca. In addition, the BDOS 81c system bypasses, when possible„all inter
mediate mcord bufferin during aaQtisccta VO opettsions. Data ia transfcmul ~ bet ween
the calling process% memory and the drive. The BDQS also Informs the XIOS when it is
mading or writing multiple physical rexeh on a drive. Tlte XIOS can uae this infarrnauon
to further optimize the I/O operation resulting in even better perfortnance. As a tcsult, the
use of this facility in an application program can improve its perfonnance and also enhance
overall system throughput, particularly when performing sequential I/O.

The number of ~ tha t can be transferred with multiaector VO ranges from I to 128.
'ibis value, called the BDQS Multiaector Count, can be act by the F~ TIS EC system
caIL The P CLI system caU seta the Multiacctor Count to I when it initiates a transient
program for execution. Note that thc greatest potential performance increases are obtained
when thc Multisector Count is sct io 128. Of course, this requires a 16K buffer. The Con
current CP/M PIP utility performs its scqucntial VO with a Multisector Count of l28.

The Multisector Count determines thc number of operations to be pcH'ormcd by thc fol
lowing BDOSsystem calls:

• F READ and F WRITE system calls
• F READRAND, F %RITERAND, and F WRITEZF
• F LOCK and F UNLOCK

• MTAL arsEAscHa



2.12 Mnltfasctnr I/O

If the Multisecior Count is N, calling one of the above system calla is equivalent to making
N system calls. With the exception af disk VO errors encountered by the XIOS, if an ermr
interrupts a multisector read or write operation, the flle system returns the number of 128
byte recoitis successfully transferred in register AH. Section 2. I4 describes how the Multi
sector Count affects the F LOCK and F UNLOCK system calls.

2.14 Coacurreat File Access

Concurrent CP/M supports two open modes, Read-Only snd Unlocked, which allow con
currently running processes to access conunon files far record operations. The Read-Only
open mode allows multiple processes to read from a common file, but processes cannot write
to a file open ia this mode. Thus, Ales rernaitt static when they are opened in Read-Only
mode. The Unlocked open mode is mare complex because it allows multiple processes to
read and write iecards ta a common Ale. As a result, Unlocked mode has some important
differences fram the other open modes,

When a process opens s file in Unlocked mode, the file system mturns a 2-byte field called
the File ID in the RO and Rl bytes of the FCB. The File ID is a requited parameter of
Concurrent CP/M's record locking system calls, F~ K a n d F UNLOCK, which are only
supported for flies open in Unlocked made. Note that these system calls return a successful
error code if they are called for files opened in Locked made. However, they perfarin no
action in this case, because, by definition, the calling @+cess has the entire file locked.

The F LOCK and F UNLOCK system calls allow a process to establish and release
temparary ownership to particular records within a file, You must set the FCB Random
Record field and place the File ID in the first two bytes of the current DMA buffer befaie
making these calls. The file system locks and unlocks records in units of l28 bytes, which
is the standard Concurrent CP/M record size. The number af records locked ar unlocked
is controiled by the BDOS Multisector Count, which can range from I to 128 (see
Section 2.]3). In onier to simplify the discussion of recoid lacking and unlocking, the
following paragraphs assuine the Multisector Caunt is one. However, as discussed later in
this section, the more general case of multiple record locking and unlocking is a simple
extension of the single record case.

The F LOCK system call supports two types of lock operations: exclusive lacks and
shared locks. Interface attiibute F5' specifies the type of lock. F5' = 0 requests an exclusive
lock; F5' = I requests a shared lock. If a process locks a record with an exclusive lock,
other processes cannot read, write, or lock the record. The locking process, however, can
access the record with no restrictions. You should use this type of lock when exclusive control
aver a record is required.

ss olGfihL RESFARCH+
"-iC



LI4 Ca s se& 1%s Acct

If a process locks a record with a shared lock, other processes cannot write to thc record
or make an exclusive lack of rhc record. However, other processes are allowed to teed tbe
record and maire theh own shared locks an thc rccorrL No process, including dl locking
process, can write to a record with a shared lock. Shared locks are useful when you want to
ensure that a record does not change, but you want ta allow other prrxeases to read the record.

The F~ K sy stem call also lets you change rhe lack of a record if Sere is no convict.
For example, you can convert sn erclusive lock inta a shared lock with no restrictions. On
the other hand, a process cannot convert a rcccnd's shared lock to sn exclusive laclr. if another
process has a shared lack on the record.

The F LOCK system call has another option, specified by interface attribute F6',
which controls whether a record must exist in order to be locked. If you make an
FMOCK system call with F6' = 0, the file system returns an error cade if the specified
record docs not exist within the file. Setting F6' to l requests a logical lock operation.
Logical loclr. operations arc only limited by the maximum Concurrent CP/M file size of
32 megabytes, which corresponds ta a maximum Random Record Number of 262,143.
You can usc logical locks to control extending a shared file.

The F UNLOCK system cali is similar to thc FMOCK call except that it removes locks
instead of creating them. There are few restrictions on unlock operations. Of course a
praosas can only remove lacks that it bas made. Thc F UNLOCK system call has onc
option, controlled by interface attribute FS'. If F9'is set to one, tbc F UNLOCK system
call removes all locks for thc file made by the calling process, Otherwise, it removes tbc
locks specified by the Random Record field and the BDOS Multiscctor Count. Note that
the F CLOSE system call also removes all lacks far a file on permanent close operations.

If the BDOS Multisecror Count is greater than ane, the F~ and F U NLOCK system
calls perform multiple record lacking or unlocking, ln gtnieral, multiple iecord lacking and
unlocking can bc viewed as a sequerice of N independent operations, where N equals the
M uldsectar Count. However, if an error accurs an any recard within the sequence, na lacking
or unlocking is per formccL Far example, both F LOCK and F UNLOCK perform no action
and return an error cade if the sum of the PCB Randem Record Number and the BDOS
Multiscctor Count is greater that 262,144. As another example, the F LOCK system call
also returns an error cade if another process has sn exclusive lock on any record within the
Mquencc.

2-36



2.14 Ciuictirreitt Fne heesasCaueurrcat CP/M Pretirlmnsr'X Guide

When a process makes an F LOCK system call, the file system allocates a new entry in
the system Lock List to record the lock operation and associate it with the calling process.
A corresponding F UNLOCK system call removes the locked entry from the list. While the
lock entry exists in the system Lock List, the file system enforces the restrictions implied by
the lock item.

Because each lock item includes a record count field, a multiple lock operation norinally
results in the creation of a single new entry. However, if the file system must split an existing
lock entry to satisfy the lock operation, an additional entry is required. Similarly, an unlock
~a n c an require the creation of a new entry if a split is needed. Thus, in the worst case,
a lock operation can require two new lock entries and an unlock operation can require one.
Note that lack item splitting can be avoided by locking and unlocking records in consistent
units.

These cansideratious are important because the Lock List is a Iiinited resource under
Concurrent CP/M. The file system performs no action and returns an error code if insufficient
available entries exist in the system Lock List to satisfy the lock or unlock request. In addition,
the nuinber of lock items a single process is allowed to consuine is a GENCCPM parameter
established at SYSGEN time, The file system also returns an error code if this limit. is
exceeded.

The file system perfarms several special operations for read and write systein calls to a
file open in Unlocked mode. These operations are requited because &e file system maintains
the curient state of an open file in the calling process's FCB. When multiple processes have
rhe same file open, FCBs for the saine file exist in each process's memory. To ensure that all
processes have current information, the file systein updates the directory immediately when
an FCB for an unlocked file is changed. In addition, the file system verifies error situations
such as end-of-file, or mading unwritten data with the directory before returning an error.
As a resuk, read and write operations are less efficient for files open in Unlocked mode when
compared ta equivalent operations for files opened in 4x.'ked mode.

2.15 File Byte Counts

Although the logical record size of Concurrent CP/M is restricted to 128 bytes, the file
system does provide a mechanism to store and retrieve a byte count for a file, This facility
can identify the last byte of the last record of a file. The PRIZE system call returns the
Random Record Number, + I. of the last record of a ide.

ss Diairhi. RESEARCH' •
2-37



Cce»urrsnt CP/M Prepammer's Gable2.l5 FHs Byte Counts

The F~TIRIB system cell can set a file's byte count. 'Ibis is an aption controlled by
interface attribute F6'. Conversely, thc F OPEN system call can return a file's byte count to
the CR fleld of the FCB. The F SFIRPI' and F SNEXI' system calls also return a fil's byte
count. Mesc system calls return the byte count in thc CS Scid of thc FCB returned in thc
current DMA buffer,

Note that thc fllc system docs not access or update the byte count value in BDQS read or
write system calls. However, the FLAKE system call does sct the byte count vslu» ta zeta
when it creates a fil» in thc directory.

2.16 Record 8)ockhag and Deblockilsg

Under Cancurr»nt CP/M, the logical record size for disk I/O is 128 bytes. This is the basic
unit of data transfer betwc»n tbc aperadng system and running processes. However, on disk,
the record siz» is not mstrictcd to 128 bytes. These records, called physical rex' , csn
mage from 128 bytes ta 4K bytes in size. Record blacidng snd deblacking is required on
syst»ms that suppart drives with physical record sizes larger than l28 bytes.

The proc»ss af building up physical r»cords from 128-byte logical records is called record
blocking. This ptaccss is required in write operations. The reverse process af breaking up
physical records into their cotnpaaent 128-byte logical records is called record deblocking.
This process i • required in read operations. Under Coucurrent CP/M, record blocking and
dcblacMng is normally performed by the BDOS.

Record dcblocklng imp! ies a read-ahead operation. For example, if a process reads a logical
record that resides at the beginning of a physical record, thc entire physical record is read
into an intern@ buffer. Subsequent B DOS read calis for the remaining logical records access
thc buffer instead of the disk. Conversely, record blachng results in thc postponement of
physical write operations but only far data write operations. For example. if a transient
program makes a BDOS write call, the logical tucard is placed in a buffer equal in size to
thc physical record size. The write operation on the physical record buffer is postponed until
the buffe is needed in another I/O operation. Nate that under Concurrent CP/M, ditcctory
write operations are never postponed.

2-38



Ctisscarreul CP/M l~raimner's Guide Lls Rcesrd Blocking aad Dshlocklng

Fostponing physical record write operations has implications for some application pro
grains. For programs that involve file updating, it is often critical to gmuantee that the state
of the iiie on disk parallels the state of the file in memory after an update operation, This is
only an issue on drives where physical write operations are postponed because of record
blocking snd deblocking. If the system should crash while a physical buffer is pending, data
would be lost. To prevent this loss of data, the F FLUSH system call can be called to force
the write of any pending physical buffers associated with the calling process.

Note: The file system discards all pending physical data buffets when a process terminates,
However, the file system automaticaiiy makes an F FLUSH call in the F CLOSE system
call. Thus, it is sufhcient to make an F CLOSE systein call to ensure that all pending physical
buffers for that file are written to the disk,

2,17 Reset, Access, and Free Drive

The BDOS system calls DRV ALLRESET, DRV RESET, DRV ACCESS, and
DRV FREE allow a process to control when to reinitialize a drive direcmry for file opera
tions. This process of initializing a drive's directory is called logging-in the drive.

When you start Concurrent CP/M, all drives are initialized to the ieset state. Subsequently,
as processes rel'erence drives, the file systemautomatically logsthem in. Once logged-in, a
drive reinsi us in the logged-in state until it is reset by the DRV ALLRESET or DRV RESET
system calls or a media change is detected on the drive. If the drive is reset, the file system
automatically logs in the drive again the next time a process references it. The file system
logs in a drive immediately when it detects a media change on the drive.

Note that the DRV ALLRESET and DRV RESET systein calls have similar effects except
that the DRV ALLRESET system call affects all drives on the system. You can specify the
combination of drives to reset with the DRV RESETsystem cail.

Logging-in a drive consists of several steps. The inost important step is the initialization
of the drive's allocation vector. The allocation vector records the allocation and deallocation
of data blocks to iles, as files are created, extended, deleted and truncated, Another function
performed during drive log-in is the initialization of the directory checksum vector, The file
system uses the checksum vector to detect media changes on a drive. Note that permanent
drives, which do not support media changes. usually do not have checksum vectors.

Js DIGffAL RESEARCH~
2-39



2.l7 Reset. Acedia, sad Free Drive Concurrent CP/M PreNrajNasr's Guide

Under Concurrent CP/M, the DRV~ ET o peration i • conditional. The flle system
cannot react a drive for a process if another process has an open flle on the drive. However,
the exact ection talrcn by a DRV~ E T operation depends on whether the drive to be reset
is permanent or removablc.

Concurrent CP/M determines whether a drive is permanent or removable by interrogating
a bit in the drive's Disk Parameter Block (DPB) in the XIOS. A high-order bit of l in the
QPB Checksum Vector Size fleld designates the drive as permanent. A drive's Removable
or Nonremovable designation is critical to the reset operation described below.

The BDOS first determines whether there are any flles currently open on the drive to be
reset. If there are nore, the reset tahe place. If there are open flie, the action taken by the
reset operation depends on whether the drive is removable aud whether the drive is Read
Only or Read-Write. Note that only the DRV SETRO system call can sct a drive to Read
Only. Following log-in, a drive is always Read-Write.

If the drive is a permanent drive and if the drive is not Read-Only, the reset operanon is
not performed, but a successful result ls returned to tbe caUlng process.

However, if the drive is removablc or set to Read-Only, the filesystem determines whether
other processes have open fllcs on thc drive. If they do, then it*nics DRV RESET operation
and returns an error cade to thc calling process.

[f all the open flies on a removable drive belong to the calling process, the process is said
to own tbe drive. In this case, the fiie system performs a qualified reset on the drive snd
returns a successful result. This means that the next time a process accesses this drive, the
BDOS performs the log-in operation only if it detects a media change on the drive. The logic
flow of thc drive reset operation is shown in Figurc 2-6.

8 maTAL asMAacHi



Cosmtrre& CPDN Pragranmlr's Gatde 2.17 Reset, Aeeees, cail Free Drtve

YES
OPEN FILES
ON DRIVE?

DRIVE YES
REMOVABLE?

NO
YES

DRIVE R/0?

NO

RESET
DRIVE

DO NOT RESET OPEN FILES
BELONG TO
ANOTHER
PROCESS?

NO

YES
DRIVE

0 UAL I FIED
RESET

PERFORMED

DISK
RESET

SUCCESS

DISK
RESET
DENIED

Figure 2A. Is k System Reset

If the BDOS detects a media change on a drive after a qualified reset, it purges all open
files on the drive froin the system Lock List and subsequently verifies all open FCBs in file
operations for the owning process (refer to Section 2,10 for details of FCB verification),

In all other cases where the BDOS detects a inedia change on a drive, the file system
purges all open files on the drive from the system Lock List, and flags all processes owning
a purged file for automatic open FCB verification.

ts DIGITAL assiARCHI

2WI



LI7 Reset, Acesss, sod Fne Ihtva Gaaerek CPOK PtagraaneA GeNe

Note: lf s poccss refruenccs a purged file with a BDOS coinmsnd that ietluires an open
FCB, the file system returns ta the process with an FCB checksum error.

The printsry purpose af the drive reset functions is to prepare for a media chsrtgc on a
drive. Because a drive reset operation is conditional, it allows a process to test whether it is
safe to chrmge disks Thus, s process should make a successful drive reset caU before piampt
ing the user ta change disks. In addition, yau should close sU your open filcs on the drive,
particularly Ales you have written ta, before prompting the user ta change disks. Otherwisc,
you might lose data.

The DRV ACCESS and DRV FREE system calls performspecial actions tinder
Concurrent CPM TIte DRV ACCESS system call inserts a dummy open Alc item inta the
system Lock List for each specified drive. While that iiein exists in the system Lock List,
no other pzacess can reset the drive. The DRV~ syst em call purges the Lack List af
all items, including open file items, belonging ta the calling process on the specifisd drives.
Any subsequent reference to those files by a B DOS system call requiring an open FCB results
in sn FCB checksum error return.

The DRV FREE system calI hss twa important side effects. First of all, any pending
blackingrdeblocking buf8m on a spccified drive that belong to the calling process are dis
carded. Secondly, any data blacks that have baca allocated ta file that have not been closed
are lost. Be sure to close your fiies before makhig this system cali.

The DRV SEfRO system call is also tenditionsl under Concurrent CP/M. The fiiesystem
does nat allow a process to set a drive to Readily i f another process has an open flle on
rhe drive. This applies to both removable aol permanent drives.

A process can prevent oNer processes fmm resetdng a Readily drive by apesing a filc
on the drive ar by issuing a DRV ACCESS call for the drive and then eating a
DRV SETROsystem call. Executing DRVMEIRO before the F OPEN or DRV ACCESS
call leaves a window in which another process cauld set the drive back to Read-Wiite. Wiuie
the open file or dummy item belonging to thc process resides in thc system Lock List, no
other process can reset the drive ta take it out of Read-Only status.

• alQrht sssthscH~
242



2.1$ BDOS Krrur HandlingConcurrent CP/M Programmer's Guide

2.1$ SDOS Error Handling

The Concurrent CP/M file system has an extensive error handling capability. When an
error is detected, the BDOS responds in one of three ways:

l. It can return to the calling p m' w i th return codes in the AX register identifying

2. It can display an error tnessage on the console and terminate the process.

3. It can display an error tnessage on the console and teturn an error code to the caliing
process, as in method 1.

the ermr.

The file system handles the majority of errors it detects by method l. Two examples of this
kind of error are the "file not found" ermr for the F OPEN system call and the "reading
unwritten data" ermr for the F READ call. More serious errors, such as disk VO ermrs, sre
normally handled by method 2. Errors in this category, called physical and extended enurs,
can also be reported by methods l and 3 under program control.

The BDOS Error mode, which has three states, determines how the file system handles
physical snd extended errors. In the default state, the BDOS displays the error message and
terminates the calling process (method 2). In Return Error mode, the BDOS returns control
to the calling process with the error identified in the AX register (method I). In Return snd
Display Error mode, the BDOS returns coniml to the calling process with the error identified
in the AX register and also displays the error message at the console (method 3).

While both return modes protect a process from termination because of a physical or
extended error, the Return and Display mode also allows the calling process to take advantage
of the built-in error reporting of the file system. Physical and extended errors are displayed
on the console in the following forinat:

CP/M Error on d: engr message
BDOS Function = nn File = filename.typ

where d is the name of the drive selected when the error condition occurs: error message
identifies the ermr; nu is the BDOS hnction number, and filenanm.typ ideutifies the file
specified by the BDOS function. If the BDOS function did not involve an FCB, the file
information is omitted,

Tables 2-12 and 2-13 detail BDOS physical aud extended error messages.

iu niutriu. REsMcH+
2-43



Concurrent CP/M Programmer's Guide2.1$ BDOS Error HanttUng

Tithle 2-12. BDOS Physical Enora

hfeaainghfsnags

D isk I / O

llew "Disk 1/O" error results from an error condition returned to the
BDOS fmm the XIOS ngdule. Tbe file system makes XIOS read
and write calls to execute BDOS file-access system calls. If the XIOS
read or write routine detects an error, it returns an error code to the
BDOS, causing this error message.

Invalid Drive

The "Invalid Drive" ertrs also results frcsn an error condition returned
to the BDOS from the XIOS modtde.'Htc BDOS makes an XIOS
Select Disk call before accessing a drive to perform s requested
BDOS function. If the XIOS docs not support the selected disk, it
returns an error code fesuitUlg m thts error.

Read/Only File

The BDOS retLuns the Read/Only PIIe" error ~ whe n a process
attanpts to write to a file with the R/0 attribute set.

Read/Only Disk

'Ihe BDOS returns thc "Read/Only Disk error" message when a
process makes a write operation to a disk that is in Readily status.
A drive can be placed in Read-Only status explicitly with thc
DRV SBTRO system calI.



Concurrent CP/M Programmer's Guide 2.fg BDOS Error Haudffnl

Vahte 2-13. SDOS Extended Errors

Message Meaning

File Opened in Read/Only Node

The BDOS returns the "Fife Opened in Read/Only Mode" error
message when a process attempts to write to a iiie opened in Read
Only mode. A process can open a file in Read-Only mode explicitly
by setting FCB interface attribute F6'. In addition, if a pmcess opens
a flfe m Locked mode, the file system automatically forces the open
mode to Read-Only mode when:

• the process opens a file with the Read-Only attribute set.

n the current user number is not zero snd the process opens a user
zero file with the SYS attribute set.

The BDOS also returns this error if a process atteinpts to write to a
life that is passwotd-pmtected in Write mode, and it did not supply
the correct password when it opened the fife.

File Currently Open

The BDOS returns the "File Curtentfy Open" error message when
a process attempts to delete, rename, or modify the auributes of a
file opened by another process. The BDOS also returns this error
when a process attempts to open a file in a mode incompatible with
the mode in which the file was previousfy opened by another process
or by the calling process.

Close Checksum Error

The BDOS returns the "Close Checksum Error" message when the
BDOS detects a checksum error in the FCB passed tu the file system
with an F CLOSE call.

Password Er r o r

The BDOS returns the "Password Error" message when passwords
are required and the file password is not supplied or is incorrect.

ss DmlTAL RESEARCH' •
245



Concurrent CP/M Programmer's Gaf4e1.1$ BDQB Error HandMng

'Ihhk 2-13. (eoiitinued)

Message Msunfng

File A1ready Exiete

The BDOS returns the "File Aheady Exists" error message for the
F&8AFJi and F~ AME systein calls when the BDGS detects a
conflict on filename and filetype.

Illegal f in FCB

The BDOS ieturns the "Iilegal 7 in FCB" ermr massage when the
BDOS detects a? character in the filename or filetype of the passed
FCB for the F~THK3, F OPEN, F RENAME, F TIMEDATE,
F 'iHUI'EXFCB, F TRUNCATE, and F~K E system calls.

Open File Limit Exceeded

Tbe BDOS returns ths "Open File Limit E made@ error message
when a process exceeds the yraceu file lock limit specified by
GENCCPM. The F OPEN, F~ X E , snd DRY~ C ESS systein
calls can return this ertor.

No Room in System Look List

Tbe BDOS ieturns the "No Room in Systcni Lock List" error mes
sage when no room for new entries exists within the system Lock
List. The F OPEN, P~C R, a nd DRY ACCESS system calls
can return dns error.

The following paragraphs describe the erior return code convendons of the file system
calls. Most file system calls fall lllto three categories m regard to remrn codes; they return
an error code, a directory code, or an error Sag. The error conventions let programs written
for CP/M-86 run without modificadon.

• oiGTAL RssKAacH+



Concurrent CP/M Pragmmmer's Caida 2.18 BDOS En or Hand)tag

The following BDOS system calls return a logical error in register AL:

F LOCK
F READ
F READRAND
F UNLOCK
F WRITE
F WRITH(AND
F WRITEZF

'Ihble 2-14 lists error coda defmitians far register AL.

TaMe 2-14. BDOS Error Codes

DefinitionCock

OOH:
OI H:

02H:
03H:

05H:

08H:

Function successful
Reading unwritten data
Na available directory space (Write Sequential)
Na available data block
Cannot close current extent
Seek ta unwritten extent
Na avaibtble directory space
Random record number out of range
Record locked by another process
(restricted ta files opened in Unlocked mode)
Invalid FCB (previous BDOS F CLOSE system call
returned an error code and invalidated the FCB)
FCB checksum error
Unlocked Ale unallocated block verify error
Process record lock limit exceeded
Invalid File ID
Na room in System Lack List
Physical error: refer to register AH

' - returned only for Ales opened in Unlocked mode
~' - returned only by the F LOCK and F UNLOCK system caUs for

files opened in Unlocked mode

OAH:
OBH:
OCH:
ODH:
OEH:

OFFH:

B omITAL RES EARcH+
247



Cooemrenl CP/M Progranuner's Guide2.'lg 890g Error Handing

For BDOS read and write system calls, the fiie system also seta register AH when the returned
errar code is a value other than zczo or OFFH. Iu this case, register AH contains the isunber
af 128-byte records successfully read or written before the error was caco~ . No t e that
register AH can only contain a nonzem value if the calling process bas set the BDOS
Multisector Couiit to a value other than one; otherwise register AH is always set to zem. On
successful system calls grmr Code = 0), register AH is also aet to zero. If the Error Code
h OFFH, register AH contains a physical error code (see 'lhble 2-15).

The following BDOS system calls retnrn a directory code in register AL:

DRY SETLABEL
F AITRIB
F CLOSE
F DELETE
F MAKE
F OPEN
F RENAME
F SIZE
F SFIRST
F SNEXT
F TIMEDATE
F TRUNCATE
F WRITEXFCB

'IIe directory code definitions for register AL follow.

00H - 03H: successM function
OFFH: unsuccess function

With the exception of the F SFIRST sad F SNEXT aystetn calla, all functions in this
category return with the directory code set to zero upon a successful return. However, for
these two system calls, a mxmafui dhectory code identifies the rehtive starting position of
the directory entry h thc calling process's current DMA buffer,

0 oiQTAi asspNCHi
248



Concurrent CP/M Programmer's Guide 2.18 BDOS KiTar Haad8ng

If a ptocess uses the F ERRMODE system call to place the BDOS in Return Error mode,
the following system calls return an error tlag in iegister AL on physical errors:

DRV GETLABEL
DRV ACCESS
DRV SET
DRV SPACE
DRV~ U SH

The error tlag definition for register AL follows,

OOH: successful function
OFFH: physical error: refer to register AH

The BDOS returns nonzero values in register AH to idemify a physical or extended ertor
if the BDOS Error mode is in one of the return modes. Except for system calls that return a
Dhectory Code, register AL equal to OFFH indicates that register AH identifies the physical
or extended error. For functions that return a Directory Code, if register AL equals 255, and
register AH is uot equal to zero, register AH identifies the physical or extended ermr. Table
2-l5 shows the physical and extends error codes returned in register AH.

'Ihblc 2 15. BDOS Physical and Extended Errors

&pkrnutiori

OIH
02H
03H

Disk VO Ermr: perinauent ermr
Read/Only Disk
Read/Only File, File Opened in Read/Only Mode, or File Password Pro
tected in Write Made aud Correct Password Not Specified
Invalid Drive: drive select error
File Currently Open in an incompatible inode
Close Checksum Error
Password Ermr
File Already Exists
Illegal? in FCB
Open File Limit Exceeded
No Room in System Lock List

04H
05H
06H
07H
OSH
09H
OAH
OBH

ts DIGITAL xtsrtiacH'
249



2,1$ IDOS Error Handing Concurrent CP/M Progmamar's Gulds

The fallowing twO Syatem calls rupreasat a SpeCial Case becratse they return Sn addreN in
register AX.

DRVMLLOCVEC
DRV DBP

When the calling pmcess is in one of the BDOS return errar mades and the BDOS detects
a physical errar for these system calls, it returns ta the calling ptacess with registersAX snd
BX set to DFFIIFH. Otherwise. they return no ermr cade.

Under Concurrent CP/M, the fallowing systetn calls also represent a special case.

DRYS LLRE881'
DRV~ ET
DRY SEIRO

These system calls return to the calling process with registers AL and BL set to OFFH if
another process has an open @le ar has made a DRV ACCESS call that prevents the reset or
write pmtect operation. If the calling process is nat in Return Error made, these system calls
also display an error message identifying the process that prevented the requested operation.

End of Section 2

• DIalTAL RESEARCH +
2-50



Section 3
Transient Commands

3.1 Xiansient Program Load and Exit

A tnmsient program is a fi)e of type CMD that is loaded fram disk and resides in memory
only during its operation. A resident system program is a file of type RSP that is included
in Concurrent CP/M during GENCCPM. Section 4 describes the three system memory models
that determine thc initial values of segment registers in transient praccsses.

You can initiate a transient process by entering a command at a system console. The
console's TMP (Terminal Message Processor) then calls the Command Line Interpreter system
call (refer to the P CLI system call), and passes to it the connnand linc entered by the user.
If thc command is not an RSP, then thc P CLI system call locates and then loads the proper
CMD fi)e. P CLI then ca)is the F PARSE system call to parse up ta twa filcnamcs following
thc command, and place thc properly formatted FCBs at locations 005CH and 006CH in
the Base Page of the initia) Data Segment.

The P CLI system call initializes memory, the Process Descriptar, and the User Data
Area (UDA), and allocates a 96-bytc stack area, independent of the pmgram, ta contain the
process's initial stack. If 8087 processing is required (see Section 3.!.2) P CU allocates
an additional 96 bytes for the UDA. Concurrent CP/M divides the DMA address into the
DMA segment address and the DMA offset, P CLI initializcs the default DMA segment ta
the value of the initial data segment, and the default DMA offset to 0080H.

The P CLI system call creates the new process with a P CREATE system call and sets
the initial stack so that the process can execute a Far Return instruction to terminate. A
process also ends when it calls DRV ALLRESET or P TERM.

You can also terminate a process by typing a single CTRL-C during console input. Sec
C MODE for details of enabling/disabling CTRL-C. CTRL-C, when typed at the
prompt, forces a DRV RESET cali for each logged-in drive. This operation only affects
removable media drives.

Note: Additional UDA space is a)located for 8087 processing only if the process is ini
tialized by the P CLI or P LOAD system call. Other pmcesses (such as RSPs) that require
8087 processing and do not use P CLI or P LOAD must allocate this additional UDA space
themselves.

ss oK;rrht. ssssAncu~
3-l



C~ r rcet CP/I Ptugraama',s Guhle

3.1.1 Shared Code

Concurrent CP/M allows pmcesses to share program code. This capability of sharing
pmgxam code avoids unnecessary program loading of a code segnlxit aheady in memory
snd conserves meinory space since xnultlplc copies of the sane program code do not have
io occupy different memory space. Duxing pragxsm load of a "sharable" program code, thc
system allocates the code gmup separably fmm the rest of the pmgiam. Tliis code group
is maintained in memory even after the program hss terminated. Subsequent laading of thc
same program docs not load thc code gmup, but uses thc existing oae instead, Obviously,
programs written with separate code and data can take advsntuge af this feature.

The system maintains s shared code group in memory until a memory request or a reset
drive forces its release. The system maintains shared code groups in iaemary in Least
Rccendy Used (LRU) aider on the Shared Code List. If s memory request is made that
cannot bc satisfied, the list is drained, one at a time, until the memory request is sstisfied,
ar the Shared Code List is euxptled. If s drive ls reset, thc system purges all code groups
from the Shared Cade List loaded fram that drive.

A shared code program is flagged by the value 09H in the G Type field of the Code
Group Descriptar in the CMD file header (see Section 3.2). The user may set this field by
using the CH SET utility (see Concur rent CPI M Use 'x Gu/dr/. Note that programs using
the 8080memory model cannot be set to shared code.

3.1.2 86$7 Support

Cancnricnt CP/M provides optional 8087 support for systems that use the 8087 pmcessor.
This suppart is indicated by the Program Flag, byte 127 (07FH), of the CivID file header.
Setting bit 6 (bit 0 is least significant bit) of the Pmgrein Flag indicates optional 8087
• uppart, which means that if the 8087 is present, the pragrexn uses it; otherwise, the program
will emulate it. If bit 5 of the Pragxnn plug is set, it mdicates that the 808'/ nmk be present
in axder for the program to run. If na 8087 is present snd bit 5 of thc pmgrsm Flag is set,
the system returns an error when it tries to load the pmgrsm. The CHSHT utility can be
used to set the program's header record for aptianal ar xequixcd 8087 support.

lf yau use the P CLI or P~ syst ein call ta initiate sad execute a process, the system
allocates an extra 96 bytes to the UDA for 8087 support. If you require 8087 support and
do not use the P CLI or P LOAD system call, you must specifically allocate this additional
96 bytes to the UDA, turn on the 8087 flag in thc PD, and initialize the CW snd SW fields
in the 8087 UDA extensian (Me description of these fields in Section 6 under the P CREATE
system call).

3-2



COacarsaat CP/IVI Prograsmner'a GaMe 3.1 'Daastont IIrogrnm Load aad Ihlt

3.I.3 $087 Exception Handling

Although the system provides its own 8087 exception handling routine, the user might
want to write his own 8087 exception handler. Appendix E includes instructions and infor
rnation required by the user to write his own 8087 exception handler, with a sample listing
of an 8087 exception handler routine.

3.2 Command Fme Format

A CMD file consists of a l28-byte header record followed immediately by the inemory
image. The command file header record is composed of 8 group descriptors (GDs), each 9
bytes long. Each group descriptor describes a portion of the program to be loaded. The
format of the header record is shown in Figure 3-1.

GDI GD2 GD3 GD 4 GD 5 GD6 GD T GD S

128 BYTES

Figure 3-1. CMD IIIle Header Format

1n Figure 3-1, GD l through GD 8 tepresent group descriptors, Each group dcscriptor
corresponds to an independently loaded program unit and has the format shown in Fig
ure 3-2.

0I H 03H 05H 07H OQH

9 TYPE G.LENGTH A BASE 9 MIN G.MAX

Figure 3-2. Group Descriptor Format

G Type determineS the graup deSCriptcr type. The valid grOup deseriptors haVe a G 'Pjpe
in the range l through 8. as shown in Table 3-1. Ail other values are reserved for system
usc. For a given CMD file header only a Code Group and one of any other type can be
included.

a DIGITAL RKSEARCHi
3-3



If s pmgram uses either the Small or Compact Model, the code group is typically pure;
that is. it ts not modifie during pnogram etecution.

Table 3-1. Group Deaedptora

G~pr Group Qpr

OIH

02H
03H
04H
05H
06H
07H
08H
09H

Code Oroup (hulls
\laredd)
Data Group
Extra Group
Stack Group
Auxiliary Group 8 l
Auxihary Group 42
Auxfiiary Group 43
A.uxiliary Group de
Code Group (shsredl

All remaining values iu the group descriptor are given in iuctetuents of i6-byte paragraph
units with sn assumed low-order 0 nibble to complete the 20-bit address.

'Mile 3-2. Group Descrlptor Fields

DrscriprioaEirld

A Base

Gives the rsimber of psraiiraphs in the group. Given a 6 length
of 080H, forexample, the size of tbe group is 0800H (2048
decimal) bytes.

Defines the base paragraph address for a notuelocatable youp.

Define Ihe minimum aud maxinatnt size of thememory area to
allocate to the group.

G Min/G~

34



Cenenrrsstt CP/M Programtnerl GaMe 3.3 Base Fasts hdttalisatbn

The memory model described by a header record is implicitly determined by the group
descriptors (refer to Section 4.1). The 8080 Model is assumed when only a code group is
present, because no independent data group is named, The Small Model is assumed when
both a code and data group are present but no additional group descriptors occur. Otherwise.
the Compact Model is assumed when the CMD file is loaded.

3.3 Base Page htitiaiizatlott

The Concurrent CP/M Base Page contains default values and locations initialized by the
P CLI and P MAD system calls and used by the transient process.

The Base Page occupies the regions from offset 0000H through OOFFH relative to the
initial data segment, and contains the values shown in Figure 3-3.

ss o intra, atssaacH~



CODE BASECODE LENGTH

DATALENGTH
+ +
EXTRA LENGTH

+
STACK LENGTH
t

+

EXTRA BASE

STACK BASE

DATA BASE
+

+

RESERVED

RESERVED

RESERVED

12

AUX 1

AUX 2

AUX 1

AUX 2

RESERVED

RESERVED
t +

+ +
24 AIJX 3 RESERVEDAUX 3

AUX 4 AUX 4
+

2A RESERVED
+

BYTES 030H THROUGH 04FH ARE NOT CURRENTLY USED AND
ARE RESERVED FOR FIJTURE USE BY DIGITAL RESEARCH

30

DRIVE PASSWORD 1 ADOR P1 LEN PASS WORD 2 ADDRI
P2 LEN

+
RESERVED FOR FUTURE USE

DEFAULT FILE NAME15C

DEFAULT FiLE NAME2

7C I RANDOM RECORD NUMBER (OPT)
+ +

DEFAULT 125-BYTE OMA BUFFER

Figure 3-3. Conntrreut CP/M Base Page Values

u DIGITAL RESEARCH' •
3-6



The fields in the Base Page are defined as follows:

• The M80 byte is s flag indicating whether the 8080 MemoryModel was used during
losd. The values of the flag are defincd as:

I = 8080 Model

0 = not 8080 Model

If the 8080 Model is used, the code length never exceeds OFFRrH,

• The bytes marked Aux 1 through Aux 4 correspond to a set of four optional inde
pendent groups that might be required for programs that execute using the Compact
Memory Model. The initial values for these dcscriptors are derived from the header
record in the memory image file.

• Length is stored using the Intel convention. Iow, middle, and high bytes.

• Base refers to the paragraph address of the beginning of the segment.

a The drive byte identifies the drive from which the transient program wss read. 0
designates the default drive, while a value of 1 through 16 identifies drives A through
P.

5 Password I Addr (bytes 005IH-0052H) contains the address of the password field of
the first command tail opcnmd in the default DMA buffer at 0080H. 'Ihc P CLI
system call sets this field to 0 if no password is specified.

• PI Len (byte 0053H) contains the length of the password field for thc first command
tail operand. The P CLJsystem call sets this to 0 if no password is specified.

n Password 2 Addr (bytcs 0054H4055H) contains the address of the password field of
the second command tail operand in the default DMA buffer at 0080H. The P CLI
system calI sets this field to 0 if no password is specified,

• P2 Lcn (byte 0056H) contams the length of the password field for the second command
tail operand. The P CLI system call sets this field to 0 if no password is specified.

8 File Namel (bytes 005CH-0067H) is initializcd by the P CLI system call for a
transient program from the first command tail operand of the command line.

i File Namc2 (bytes 006CH-0077H) is initialized by the P CLI system call for a
transient program from thc second command tail operand of the command line.

Note: File Namel can be used as part of a File Control Block (FCB) beginning at
05CH. To preserve File Name2, copy it to another location before using the FCB in
file VO system calls.

• The CR field (byte 007CH) contains the current record position used in sequential
file operations with the FCB at 05CH,

> DIGITAL RESEARCH+
3-7



33 Sass Page InSaRsatba Ccucarr»stt CP/M Pr»grat»sacr'0 Ref»r»sc» Grade

e The optional Random Record Number (bytcs 007DHM7FH) is an extension of the
FC8 at 05CH, used in random record lance»sing.

a Tbc Default DMA buffer (bytes 0080H-OOFFH) contains the command tall when thr
P CLI system call loads a transient program.

3.4 Parent/Chnd Relatintssthipa

Under Concurt»nt CP/M when one pmcess creates another process, there is a parent/child
relationship between them. Ibc child process inherits most of the default values of the parent
process. This includes the default disk, user number, console, list device, snd password. lite
child pmccss also inherits interrupt vectors 0, I, 3, 4, 224, and 225, which the parent process
initial ized.

3.5 Direct Video Mapping

Froccsscs which bypass Concurrent CF/M Character I/0 system calls antt use a video
map or screen buffer directly cannot bc monitored by thc system and continue to display
characters on the screen even when running in the background. Consequently, any screen
displayed by the program in the foreground console is interspersed with characters
disphtyed by the program in the background wing direct video tnap I/O, To avoid the
screen problems created by using direct video I/O, sct bit 3 of thc Program Flag to
indicate to the systemthat the process is to be put in suspend mode whcncver it is running
in the background and may continue running only when it is switched to the foreground.
The CH SET utility (see thc Concurrenr CP/ M User 'z Guide) can be used to sct bit 3 of the
Program Flag.

Note that bypassing the system Character I/O system calls negates the concurrency ot a
process, since the system suspends it from running (if bit 3 of program Flag is set) unless it
is running in the forcgmund.

End of Secrio/t 3

0 csoirht axRQCH+



Section 4
Command FBe Generation

4.1 Xhmslent Execution Models

When the program is loaded, the initial values of the segment registers, the instruction
pointer, and the stack pointer are determined by the specific type of memory model used
by the transient process, indicated in the CMD IIIe header record.

There are thee memory models, the 8080 model, the Small Model, and the Compact
Model, summarized in Ikble 4-1.

Modd

8080 Model

'Ihhie 4 I • Concurrent CP/M Memory Modeh

Group Rslanonships

Code and Data Groups Overlap

Independent Code and Data Groups

Three or Mote Independent Groups

Small Model

Compact Model

The 8080 Model supports programs that are directly translated from an 8080 environment
where code and data are intermixed. The 8080 Model consists of one gmup that contains all
the code, data. and stack areas. Segment registers are initialized to thc starting address of
the region containing this group. 'The segment registers can, however, be tnanaged by the
application program during execution so that multiple segments in the code group can be
addressed.

TIM Small Model is sitnilar to that de5ncd by Intel, where the program consists of an
independent code group and a data group. The code and data groups often consist of, but
are not restricted to, single 64K byte segments,

8 DIGIrAL xESEARCH~



41 'bassist Isacaaim Mehta

The Compact Model occurs when any of the extra, sntck, or auxiliary gmups are present
in pmgnm, Each group can consist of one or nawe segments, but if any gmup exceeds are
segment in size, or if auxiliary groups are present, then the application program tmtst manage
its own segment registers during execution in order to address all code and data areas.

Thcsc three models differ primarily in how the operating system initializes the segment
rcgistcrs when it loads a transient proces. Iltc P~ D sy stem call dctcrmincs the memory
model used by a transient pmgram by examining thc pmgram gmup usage, as described in
the following sections.

For sll models, the system initislizcs an internal 96-bytc stack area. Thc first two words
of this stack are reserved for the double word return for termination by a RETF (Far Return)
instruction. Thc initial pmgram stack for all models is shown in Figure 41 below.

Ret 8ettment

Ret Oftsst

Far Return Address
88:8P

es eYrE8

Hgnre 41. Inlthl Program Stack

Thc transient pmgram can terminate by using the P TERMCPM or P 'IFORM system call
or by executing a RETF (Fsr Return) 'nstruction when thc SS and SP still point to the initial
program stack.

4.1 1 The SNN Memory Model

The 8080 Madel is assumed when thc transient pmgram contains only a code group. In
this case, the Command Line Interpreter (P CLII system call initializcs the CS, DS, and BS
rcgistcm ta the beginning of the code gmup and sets the SS and SP registers to a 96-byte
initial stack area that it allocates.

• ntOTAL ssarhacH+



41 'Ikanstsnt Esecrskrn ~

Note: 'Ilm P CLI system call initializes the stack so that if the process executes a Far
Return instruction, it terminates. This system caII sets the Instruction pointer (IP) Register
to lOOH, thus allowing Base Page values at the beginning of the code gmup. Following
program load, the 8080 Model appears as shown in Figure 4-2.

CODE/DATA

CODE/DATA

Ca: IP p 01 00H

BASE PAGE

CS:O,DS:O,E84 — ) 0000H

Hgnre 4-2. Concurrent CP/M 8080 Memory Model

Thc intermixed code and data areas are indistinguishable. The Base page values sre described
in Section 3.3. The foliowing ASM-86 example shows how to code an 8080 Model transient
assembly language program.

cscg
org I OOh

(code)
end cs equ

dscg
org oNset endcs

(data)
end

ss DKrrAL arasAaCHr
43



4.1.b The Sntlll Mssxtot7 Modd

The Small Model is assumed when the transient program contahs bath a code and data
group. (In ASM-K6, all code is generated folhwing a CSHG directive. Data is de5ned
following a DSEQ dinsctive, with the origin of the Data Segment independent of the Code
Segment.) In this inodel, the P CU system call sets the CS register to the beginning of the
code group, the IP to 0000H, the DS snd ES registers to the beginning of the data group,
and rhe SS and SP registers to s 96-byte initial stack area that it initislizes. Pc)lowing prognun
load, the Small Model appears as shown in Figure 4-3.

DATA

01 OOH

COOE BABE PAGE
DS:O,EBS ~0000H

CBst,lP:0 ~ 0000H

Figure 43. Ctatcnrrent CP/M Stnail Metnory Modd

The msclnnc code begins at CS+0000H, the Base Page values begin at DS+0000H, snd
the data area starts at DS+OlOQH. Ibe following ASM-86 essmplc shows how to code a
Small Model transient assembly language program.

(code)

org 1 0 0h

(dsta)

dseg



Coaearcmt CP/M Psagsararaar'b GaMe

4.1.3 The Compact Memory Model

l%e Compact Model is assumed when code and data groups are present, along with one
or more of the remaining stack, extra, or auxiliary groups. In this case, tbc P CU system
call sets the CS, DS, and ES registers to the base addresses of their respective areas. with
the IP set to 0000H, and the SS and SF registers sct to a 96-byte stack area allocated by this
system call.

Figure 4-4 shows the initial configuration of tbc segments in the Compact Model. The
values of the various segment registers can be changed during execution by loading fmrn the
initial vahes placed in 8ase Page. This allows access to the enthe memory space,

DATA

01 00H
CODE DATABABE PAGE

CB,IP
0000H DB:0000H

Figure 44. Concurrent CP/M Compact Memory Model

lf thc assembly language transient program intends to usc the stack group as a stack area,
the SS and SP registers must bc sct upon entry. The SS and SP registers remain in thc initial
stack area, even if a stack group is defined.

Although it appears that thc SS and SP registers should be set to address the stack group,
there are two contradictions. First, the assembly language transient programmight be using
the stack group as a data area. In that case, the stack values set by the P CLI system call to
allow a far return to terminate a transient program could overwrite data in the stack area.
Second. the SS register would logically be set to the base of the group, while the SP would
be set to thc offset of the end of the group. However, if the stack group rsrceeds 64K, the
address range from the base to the cnd of the group exceeds a 16-bit offset value.

sl DlCiirhL RESEARCH+
45



4.1 'Ament Execution Models ConcuIvsut CP/M Programnssr's GnÃs

The following ASM-86example shows how to code a Compact Model assembly language
nlnsient program.

cseg

(code)

org 1 00b

(data)

dseg

(stack area)

4.2 GENCMD

The (KNCMD ufility creates a CMD file frtnn an input H86 file. GENCMD does not alter
the original H86 file. 1be GENCMD invocation has the following form:

GENCMD filename ~ ter- l i st)

where the filename corresponds to the H86 input file with an assumed and unspecified filetype
of H86. GENCMD accepts optional parameters to specifically identify the 8080 Model and
to describe memory requirements of each segment group. The GENCMD parametets are
fisted following the filename, as shown in the command line above where the paratneter list
consists of a sequence of keywtnds (shown below) snd values separated by commas or blanks.

8080 CODE D A T A EX T R A ST ACK X l X2 X3 X4

The 8080 keyword forces a single code gmup so that the P~ system call sets up the
8080 Model for execution, RUowing intermixed code and data in a single segment. The form
of this command is

GENCMD filename 8080

• DIGITAL RBEARCH+



*2 GENCMD

Thc reinaining keywords fallow the filename ar the 8080 option and define specific memory
requirements for each segment group, corresponding ane-ta-one with the segment graups
defined in the previous section. In each case, the values corresponding to each group are
enclosed in square brackets and separated by oorruuas. Each value is a hexadecimal number
representing a paragraph address or segment length in paragraph units denoted by hhhh,
piefixcd by a single letter that dcfmcs each value:

Ahhhh
Bhhhh
Mhhhh
Xhhhh

Load the group at absolute location hhbh
The group starts at hhhh in thc hcx file
The group requires a minimum of hhhh ~ 16 bytes
The group can address a maximuin of hhhh s l6 bytes

Generally, the CMD file header record values are derived directly from the H86 file and the
psnuncters shown above need not bc included. The following situations, however, require
the usc of GENCMD parameters.

• The 8080 kcyword is included whenever ASM-86 is used in the canversian of 8080
programs to the 8086/8088 eaviianment when cade aud data are intermixed within a
single 64K segment, regardless of the usc of CSEG and DSEG directives in the source
program�.

• An absolute address (a hexadecimal value) must be given for any group that must be
located at an absolute location. This value is nat usual]y spccified, as Concurrent
CP/M cannot ensure that the required memory region is available. In that case the
CMD file cannot be loaded,

• The B value is used when GENCMD pmccsses a HEX file produced by Intel's OH86
or s. similar utility program that contains more than one group. The output fram OH86
consists of a sequence of data records with na information to identify code, data,
extra, stack. or auxiliary groups. In this case, the B value marks the beginning address
of the group muned by the keyword, causing GENCMD to load data following this
address ta the named group (rcfer ta the examples below). Thus, the B value is usually
used to mark the boundary between Code and Data Segments when no segment
information is included in the HEX file. Files produced by ASM-86 do not require
the use of the B value because segment information is included in the H86 file.

al aiGirAL RssfhitCH+



~ The mininatm memory value (M value) is included anly when the HEX ~ do
not dcfinc the mininem memory requitcmeats for the named group. GeneraUy, the
cade youp size is deternMned precisely by the data records loaded inta thc area. The
total space required for the group is defiaed by the range between the lowest and
highest data byte addresses. The data group, however, might contain uninitializcd
storage at the end of the group. Thus ao data records are present in the HEX file that
defin thc highest referenced data item. The highest address in the data group can be
defined within the source program by inciudhg the ASM86 ditcctive DB 0 as the
Isst data item in the assembly language source fil. Alternatively, the M value can
be included to allocate the additional space at the end of the group. Similarly, the
stack, cxtm, and auxiliary group sizes tnust bc defined using the M value unless thc
highest addresses within the groups are implicitly defincd by data records in thc HEX
file.

• The maximum memory size, given by the X value, is generally used when additional
ice mcmary might bc needed for such purposes as VO buffcrs or symbol tables. If
the data area size is fixcd, then the X parameter need nat be included. In this case.
thc X value is assumed to bc thc csee as the M value. 'Ill value XFFFF ailocstea
the largest memory region available but, if used, thc assembly language transient
program must bc aware that a three-byte length fielcl ls praduccd in the Base Page for
this group where the high-order byte might bc uonzcro. Programs converted directly
frcnn an 8080 environment or programs that usc a 2-byte pointer to addreM buffers
should restrict this value to XFFF or less, izeducfng a maxitratm allacation length of
OFFFOH bytes.

The fallawing GENCMD command line transforms the file X.H86 into the fiie X.CMD
with the proper header record:

A>CZvVCND r code(a40 j data(aSO,xf'f'f'j

In this case, the cade group is forced to parIqpnph address 40H or its equivalent, byte address
40OH. The data group requires a mininatm of 300H bytes, but can use up to OFFFOH bytes,
if available.

Assuming a file Y.H86 exists on drive B containing Intel HPX records with no interspersed
segment information. the command

A)GENCK) b: y da ta ( b 30, m20j e x t r a ( b 50j s t a c k ( i a40j x l ( a4 0 j

K DacrAL RESEARCH+



1.8 GENCMD

produces thc file Y.CMD on drive B by selecting records bcghming at address 0000H and
less than 0300H for the Code Segment, with records starting at 0300H and less than 0500H
allocated to the Data Segment. The Extra Segment is filled from records beginning at 0500H
and higher, while thc Stack and Auxiliary Segment 4 I are uninitialized areas requiring a
minimum of 0400H bytes each. In this example, the data area requires a minimum of 0200H
bytes. Note again that the B value need not bc included if the Digital Resesrch ASM-86
assembler is used.

4.3 Isttel Hegadedmal File Format

QENCMD input must be in Intel hexadecimal IUe format, produced by both the Digital
Research ASM-86 assembler and the standard Intel OH86 utility program. (Refer to Intel
MCS46 SoPware Dcvcioptnent Utilities OpcranngltLrtructionsfor ISIS-Its~ Users, published
by Intel.) The CMD file produced by GENCMD contains a header record defining the memory
model snd memory size requirements for loading and executing the CMD flic.

An Intel hexadecimal file consists of the traditional sequence of ASCII records where the
beginning of the record is marked by an ASCII colon, and each subsequent digit position
contains sn ASCII hexadecimal digit in the range 0-9 or A-P.

There arc four kinds of hexadecimal record formats. Thc Start Address Record
specifies the starting address of thc cxccution file, Thc Extended Address Record specifics
thc bits 4-l9 of the Segment Base Address, where bits 0-3 of thc SBA are zero. Thc Data
Record contains a string of hexadecimal ASCII code that represents a portion of the 8086
memory image. The Eudaf-File record specifies thc cnd of thc object file.

Figure 4-5 shows thc four record formats, their fields, and thc contents of thcsc fields.
The fields are defined in Table 42.

ssolGJTAL RESEAaCH~



C~mvmt CI'/M Prague~'2 Gnash

04 0000 03 HHHH B

REC MARK REC LEN Z EROES REC TYPE ~ EG CH ECKSUM

STARTING ADDRESS RECORD

02 0000 02 HHHH B

REC MARK REC LEN ZE ROES R EC TYPE U SBA CHECKSUM

EXTENDED ADDRESS RECORD

I IHH HHHH 00 DATA B

CHECKSUMREC MARK REC LEN L D ADDR R EC TYPE

DATA RECORD

00 0000 01 S

REC MARK REC LEN Z EROES R EC TYPE CHECKSUM

END OF FILE RECORD

Flgare M. In tel Heradedmal FHe Formals

8 QIGTAL %SEARCH'
4-IO



4d Intel Hesniteebnal Fne Format

'fable 4-2. In tel Hex Field De5tutions

Field

Rec MarL

Contents

C-Scg

USBA

Rec Len

Ld Addr

Rec 'Pype

Speciiies start of record

Record Length 00-FF (0-255 in decimal)

Extended Address Record: 0000H
Starting Address Record: 0000H
End-of-File Record: 0000H

Data Record: SBA offset defining address of byte 0 of data

00 = Data Record
01 = End-of-File Record
02 = Extended Address Record
03 = Starting Address Record

The following are output from ASM-86 only:

81 same as 00, data belongs to Code Segment
82 same as 00, data belongs to Data Segment
83 same as 00, data belongs to Stack Segment
84 same as 00, data belongs ta Extra Segment
85 paragraph address for absolute Code Segment
86 paragraph address for absolute Data Segment
87 paragraph address for absolute Stack Segment
88 paragraph sddtess for absolute Extra Segment

Four hexadecimal digits specifying the Code Segment address.
The high-order and low-order digits are the 10th and ! 3th char
acters of the record, respectively.

Four hexadecimal digits specifying the Upper Segment Base
Address. The high-order and low-order digits are the 10th and
13th characters of the record, respectively.

Pairs of hexadecimal digits representing the ASCII code for each
data byte. The high-order digit is the first digit of each pair.

data

tsi DIGITAL SESKASCH+
4-11



4.3 Intel Hmeitsebeal Ftte gisnuet Caseurreet CP/M Pragrseuner'a Rstsrersee GuNte

'Rbie 42. (eotrtlnued)

CorrrerrrsField

Extended Address Record: Checksum of Rec Len, zeros, Rec
~, and USBA fields.

Starting Address Record: Checksum of Rec Len, zema, Rec+pe,
C-Seg, and IP field.

Data Reixnd: Checiomrn of Rec Len, Ld Addr, Rec 7ype, and data
fields.

End-of-File Record: Contains ASCII code 4646H, checksum of
Rec Len, zeros, and Rec 7ype fields,

~ 85. 86, 87, and 88 are Digital Research Extensions,

All chsrrrcters preceding the colon for each record are ignored. See MCSev% Absolute
Object FiVe Formats, published by Intel, for additional information on hcxadcximsl file record
format.

End of Secriorr 4

• nlcirrhL IasKhacH+
4l2



Section 5
Resident System Process Generation

5.1 Introduction to RSPg

Resident System Processes are programs that becotne part of the Concurrent CP/lvf oper
ating system. They can be useful in several ways: to create a turnkey systein, autoloading
programs when Concunent CP/M is booted; to build customized user interfaces or shells at
the consoles, for monitoring hardware not supported in the XIOS; and to avoid disk loading
time for fiequently-used commands.

The source code for the ECHO RSP is included in Appendix D, Study this listing carefully
while reading this section, The discussion of the P CREATE system call in Section 6 is
also helpful in understanding RSPs.

Resident System Processes are included in Concurrent CP/M during system generation.
GENCCPM searches the directory for all files with the filetype RSP and prompts the user
to choose whether it is to be included in the generated system file, CCPM.SYS, An RSP
file is created by generating a CMD fi]e and renaming it with an RSP filetype. The GENCCPM
program is documented in the Concurrent CP//M System Guide.

5.2 RSP Memory Modeh

Under Concurrent CP/M. there are two basic memory models for RSPs. They are similar
to the 8080 Model and the Small Model of transient programs. However, several important
distinctions exist between the transient program and RSP memory models. The RSP has no
equivalent to the Base Page of the transient program's Data Segment. Tbc RSP is responsible
for its own Process Descriptor (PD) and User Data Area (UDA). The RSP must also allocate
an additional 96 bytes at the end of the User Data Area if 8087 processing is requued. The
system cieates and initializes these data structures for the transient programs automatically
at load time. RSPs, on the other hand, must initialize these structures within their own Data
Segments (See P CLI and P CREATE system calls for PD and UDA descriptions).

Note that Concurrent CF/M does not support compact model RSPs. Extra snd Stack
Segments must be part of the Data Segment.

ss DIGITAL RESEARCH+
5-t



Although there is no Base Page in an RSP. there is an RSP header that nest exist at offset
00H of the Data Segment. In tl» 8080 Model, this implies that the RSP l»ader is in the
Code Segment. The RSP header and the associated data structures are discussed in
Section 5.4.

5.2.1 8080 Model RSP

The 8080 Madel consists of mixed code and data. When the system gives cantroi af the
CPU to an 8080 Model RSP, it initislizes the Code, Data, Extra snd Stack Segment registers
to the same value. Use GENCMD with the 8080 option ta generate an 8080 Model RSP.
GENCCPM assumes the 8080 Madel if the CMD File Header Record of the RSP has a
single Cade Group Descriptar and no other Group Descriptars (refer to Section 3.2). When
discussing an 8080 Madel RSP, sny reference to the Data Segment also refers to the Code
Segment.

$.2.2 Snnsll Madel RSP

Tlic Small Model RSP implies separate Code and Data Segments. Before the system gives
control of the CPU ta a Stnsll Model RSP, it initializes the Data, Extra and Stack Segment
Registers to the Data Segment address, while the Code Segment register is initialized to the
Cade Seginent address. Tbere is no guarantee where GENCCPM will place the Code Segment
in memory relative to the Data Segment, The CMD Header Record for this kind of RSP
must have bath Data and Code Group Descriptors.

~ HIGH

DATAMIXED
CODE
AND
DATA

RSP HEADER

CODE
RSP HEADER

CS. LOWCS', DS

SISALL MODELseas EEOPEL

Figure 5-1. 8080 and Small RSP Models

0 IXGITAL RESEARCHI



5.3 M u l t iple Copies of RSPS

At system generation, GENCCPM can make up m 255 extra copies of an RSP, such that
each copy generates a separate process running under Concurrent CP/M. GENCCPM accom
plishes this by making muldple copies of the RSP, and initializing each to be a separate
RSP. The number of copies inade by GENCCPM can be fixed, or dependent on a byte value
in the System Data Area. To determine the number of copies to make, GENCCPM looks
at two fields in the RSP Header. The format of the RSP Header is shown in Figure 5-2.

BYTE: ODH 02H 04H 05H 010H
+ + +

LINK SDA TVAR NCP FIEBE RVEO
+ + +

Fiym. 5-2. ESP Header Fbrmat

If the SDATVAR field is nonzero, it is used as an ofTset of a byte value in the System Data
Area. which contains the number of copies to be generated. The offset should indicate a
value that is set by the user during GENCCPM. The TMP RSP uses this featuie by placing
the offset of the NVCNS (Number of Virtual Consoles) field into the SDATVAR field. This
way, a TMP is generated for each System Console specified by the user. If SDATVAR is 0
then the NCP byte in the RSP header is used as the number of extra copies to make, If both
of these fields in the RSP Header are 0 then no extra copies are made, and only s single
RSP is abated. The ECHO RSP is an example of the latter.

If the number of extra copies is determined by GENCCPM to be greater than 0, each
copy of the RSP is given a unique copy number. The copy number is placed in the NCP
field and the ASCII equivalent is appended to the end of the Pmcess Descriptor NAME field
of each copy. If there is not enough space for the number in the PD NAME, part of the PD
NAME is over written. For the exainple TMP RSP, GENCCPM makes the specified number
of copies and changes the NAME field in each copy to be TMPO, TMPl, TMP2,..., snd
sets the NCP field to 0, I, 2,..., respectively.

5.3.1 8080 Model

When GENCCPM makes copies of an 8080 Mode! RSP, the CS, DS, ES, snd SS fields
in each copy's User Data Area are set to the paragraph address where the RSP is in memory
after loading.

iS DiciiAL RESFASCHi
5-3



Concurrent CPM Pregraramar's Retarsncs GiddsL3 Mtdttpte Copies et RSFs

8.3.2 Small Model

If multiple copies of a Sinall Model RSP are to be generated, GENCCPM copies both
the Code and Data Groups of the RSP, if the MEM flcld of the Process Descriptor is 0. Scc
the F CREATE system caH for a description of the Process Desciiptor format. GENCCPM
sets the UDA fields CS m the Code Segment of the RSP and DS, ES and SS to the Data
Segment of the RSP.

5.3,3 Small Niodel with Shared Code

If a Small Model RSP has a nonzero MEM Beld in its Process Descriptor, the Code
Segment is assumed to be reentrant. When copies are made of this type of RSP only thc
Data Group is copied. GENCCPM sets the UDA CS Beld for each copy to the paragraph
eddnsss of the one Code Segment for the RSP's. The DS, ES, and SS, in aa:h copied Data
Segment, are set by GENCCPM to the paragraph address of the Data Segment for that
particular copy.

5.4 Creating and Ialtialhhg ea RSP

An RSP that is to bc invoked froin a console, or though the P CLI system call, must
create a special queue called an RSP Command Queue. Such an RSP is called a Command
RSP. This type of RSP usually performs some initialization routine and then goes into a
ioop. The initialization mutine consists of meath' and openmg an RSP Command Queue
as veil as changing the priority to the default transient process priority. (Priority values with
regard to RSPs are discussed below.)

flic first step of thc loop reads a message from the RSP Conunand Queue. Thc process
that wxites the message to the RSP Cormruutd Queue activates ths associated RSP. After the
RSP returns fnnn the Q READ system call, it obtains thc system resources it needs, such
• s the calling process' consah. Yypically, the RSP piocctI is assigned the console process
by thc CU after the CLI has succccded in wrldng thc ccsnmand tail to the RSP Queue. This
is only true if the RSP Process Dcscriptor name matches thc RSP Coinmand Queue name.
Refer to thc P CLI (Call Command Line Interpreter) system call description for information
about how the CLI handles a command.

• niotTAL RSEARCH+



SA Crsstlng and Inltlallxlng an RSPConcurrent CP/M Programmer's t'aids

When the RSP completes its activities for the given command, it releases any system
resources it has acquired, including the console, and restarts the loop by reading from its
RSP Command Queue, A Command RSP is a single process and is a serially reusable
resource; in other words, the RSP acts on one message at a time. When several processes
attempt to invoke a single Command RSP, they wait as described in the Q READ and
Q CREAD system call in Section 6. Refer to these and to the Q WRITE and Q CWRITE
system calls for further details.

Note: It is certainly possible to create RSPs that are invoked differently.

The format of the RSP Command Queue Message is shown in Figure 5-3.

02H .. 082kByte: DDH

PDADDREBS COMMAND TAIL (129 bytes)

Figure 5-3. RSP command Queue Mesa'

The PDADDRESS is the offset relative to the System Data Area segment of the Process
Descriptor of the process calling the RSP, A program that wants to invoke an RSP and is
forming an RSP Command Queue Message, can find its Process Descriptor address by
calling the P PDADR system call, The COMMAND TAIL usually contains what the TMP
sends to the CLl minus the command name, and is terminated with a zero byte.

When a command is entered at a console, the TMP performs a P CLI system call. The
P CLI system call attempts to open a queue that has the RSP Flag on and has the same
name as the command sent to the CLI, If the Q OPEN is successful, the P CLI system
call attempts to assign the calling pmcess's console to a process with the same name as the
command. The P CLI system call then creates an RSP Command Queue Message with the
command tail sent to the CLI from the TMP, and writes it to the RSP Command Queue
<refer to the discussion of the P CLI snd Q WRITE system calls in Section 6). A transient
pmgrsm can use a Command RSP in the saine manner by writing directly to the appropriate
RSP Cornrnand Queue. An advantage of using the P CLI system call is that it looks for an
RSP first and only searches on disk for a CMD file if the the RSP is not found.

SS DIGITAL RESEARCHe
5-5



5A Creating and Irdtialishrg an RSP Concurrent CP/M PrograrameA GaMe

When an RSP reads an RSP Command Queue Message, it ofLen needs information about
the calling process, such as which console, list device, drive, or user number to use. lf an
RSP is invoked thmugh the P CU system call, the RSP is assigned the calling process's
console, but if the RSP Command Queue is written to directly, the calling process might or
might not assign its console to the RSP. A Command RSP can use the PD address in the
Command RSP Mcssagc to 5nd out what thc default devices of the calling process sre. The
RSP should release any resources it assigns to itself when it is finished.

The beginning of the RSP Data Segment has a fhcd format starting at ofFset 0. This data
structure is the RSP Header. Note that in the 8080 Model, the, RSP Header is also in thc
Code Segment. After the RSP Header is a Process Descriptor starting at offset 01GH. A
User Data Area and a stack must also be within thc Data Scgmcnt, with thc UDA placed
at a paragraph boundary reladve to the bey'nning of the Data Segment. If system calls
assuming a default DMA buffer are used, a 128-byte DMA Buffer must also mist. The
DMA OFFSET Seld in the User Data Area should be set to the address of rhe DMA buffer.
When the process is created by Concurrent CP/M, the DMA SEGMENT field is initialized
to the same value as the DS register. The DMA SEGMENT and OFFSET can also be set
by calling F DMASEG and F DMAOFF once the RSP is running. The beginning of the
RSP Data Segment is shown in Figure 5-4.

I oioirAL R5KARN+



5A Creating and Inttlsllztng sII RSPConcttrrent CP/M Prograinmer's Guide

PROGRAM
DATA
AND
RSP

STACK

01A0H

Optlccsl 8057
UDA extsnsioII

0140H

USER
OATA
AREA

0040H

PROCESS DESCRIPTOR

RSP HEADER
0010ff

0000 HDS ~

Hgure 54. RS P Data Scgtnent

The RSP Header must bc located at offset zcto in the RSP Data Segment, thc RSP Process
Descriptor must be at offset 010H, and the RSP User Data Ares must begin on an even
paragraph boundary.

5.4.1 The RSP Header

As discussed in Section 5.2, the number of copies made of an RSP is dependent on the
values of the SDATVAR and NCP acids in the RSP Header. If no copies arc desired, these
fields must be mo. As a convenience, when Concurrent CP/M creates the RSP pmcess,
the LINK field in the RSP Header is set to thc paragraph address of the System Data Area.
Thc System Data Arcs can always bc obtained by an RSP or uInsient piogram with the
S SYSDAT system call.

g DIGITAL REsEAacRo
5-7



Conaarsnt CF/M Fregraiamsr's Guiits5A Creating a3ut Iulfialtsiug an RSP

$.4.2 Tbe RSP Process INaicriptor

The RSP Process Descrlptar should be initialed to zeros, except for the PRIORITY,
FLAGS, NAME, and UDA SEGMENT fields. The PRIORITY field is usually initialized
to 190. This is higher than tninsient programs and TMPs g00 and 198 respectively), but
lower than the INTI' pmoau, which has s priority of 1. The description of the P PRIORITY
system call in Section 6 contains more information about system priority assignments.

Starting an RSP at a priority of 190 ensures that the RSP is able to create snd open sn
RSP Comnuind Queue before it can be invoked through a TMP. RSPs such as ECHO usually
set their priority to 200 after crusting and opening tbeh' RSP Conunand Queue and before
attempting to read from the queue,

Nota: 'Iles are no gtuuunteim about the order in which the RSP proccssea are created by
the Concurrent CP/M operathtg system. If one RSP neat run before another, it must have
a bigber priority, Such is the case when one RSP uses a iesource created by a second RSP;
the second nstst run (at Ica'st during initialization) with s priority higher than the flnit.

The Process Dcscriptor SYS and KEEP Flags can be initialized in the RSP Data Segment
(ruler to P CREAT% in Section 6 for finther flag details). The SYS Flag allows a process
to read snd write to and f'rom restricted system queues. llus is discussed below with regard
to RSP Command Queues. Tbc KEEP fiag signals to the ~ g sys tem that this process
cannot be terminated. 'Ma fiag is necessary if an RSP is not to be terminated when a CTRL
is typed on a console bemg usli by the RSP. Thc 8087 fiag tells the system that a process
is actively using the 8087 processor.

The NAME field of the RSP's Process Descriptor is 8 bytes long. It is assumed to be Ielt
justified and padded with bleats on the right. If an RSP Command Queue is going to be
used to invobe the RSP through the CLI, the PD usist have the same uppercase iuune as
the Command Queue. Gee UDA field in the Process Descriptor inust be tbe offset in para
graphs of the UDA relative to the RSP datasegment. GBNCCPM restores the UDA Field
in the Pmcess Descriptor to the actual UDA ptuugrs ph address when the system is generated.

IF the PD field name is not the same as the Command Queue, the console is not assigned
to the RSP by the (LI.

• oKITN, RESEARCH+
9-8



SA Creathg and Intttattstng an RSPConcurrent CP/M Programiner's Gutde

5.4.3 The RSP User Data Area

The User Data Ares must have its SP fleld set to the offset of a thee-word IRET structure,
in the RSP's Data Segment. The offset is relative to the beginning of the Data Segment.
The firs of the three wards is the offset of the axle entry point for the RSP, relative to the
beginning af the RSP Code SegnMnt. Concurrent CP/M executes an IRET instruction to
start the RSP using these three words for the IP, CS and Flag registers respectively. The CS
value on the stack is initialized to be the CS field of the UDA, while the Flag value is set
to 0200H (interrupts on). The RSP stack must come immediately before these tinea words.

The initial values of the AX, BX, CX, DX, DI, Sl, and BP registers are taken froin the
appropriate gelds in the UDA.

The DMA OFFSET fleld shou! d be set to the offset of the DMA buffer in the RSP's Data
Segment. Except for the SP and DMA OFFSET fields, and possibly the AX, BX, CX, DX,
DI, SI, and BP fields, the remainder of the UDA fieids should be initialized to 0. The CS,
DS, ES, and SS fields are set by GENCCPM as discussed in Section 5.3.

If you include the 8087 extension in the UDA, you must initialize the CW field (Control
Word) to 03FFH and the SW (Status Word) fieid to 0 before system generation,

5.4.4 The RSP Stack

The RSP must reserve apace for its stack, which is assumed ta lie within the RSP's Data
Segntnt. This stack must be large enough to accoinmodate what the RSP code needs, plus
four levels (eight bytes) ta handle possible hardware interrupts. We highly recommend that
you reserve more than four extra levels of stack.

The SP field in the RSP's UDA points to the top of this stack; the top contains the three
word IRET instruction discussed above.

5.4.5 The RSP Contmand Queue

The RSP's Coinmand Queue contains information that determines when it begins
execution, and to which console it is attached. If an RSP is to be accessible from a console
via the TMP, the Command Queue name must be in uppercase. The FLAGS field in the
RSP Command Queue Descriptor must have the RSP bit on. If this flag is not on, the CLl
will not write a message to the RSP Command Queue, and instead attempts to load a
transient program. The KEEP flag shauld be set on to protect the RSP QUEUE from
inadvertent use of the Q DELETE system call.



5.4 Creathg aad initlalhtag sa RSP Co current CP/M PrograanMA Gush

'Ibe RESTRICTED Bag (refer to thc QUAKE system call in Section 6) makes s queue
acccssiblc only by privileged processes, Privileged processes have the SYS Hag un in Q»ir
Process Descriptor, If the RESPECTED Hsg is on in an RSP Command Queue, then only
privileged processes cae invoke the related RSP. A lowercase letter in thc RSP Command
Queue nine and thc RESTRICTED Flag pmvide two methods of flitting access to an RSP
QUEUE.

The Queue Descriptor of the RSP Command Qucuc must have a message length of 131
bytes. 'Ibe format of this ~ is sh own above.'Ihc mmber of messages is usually l.
If thc Queue Dcscriptor is within 64K bytes of the beginning of thc @stem Data Area,
buffer space far the Queue Descnptor must be aUocatcd in the RSP.'le BUFFER Beld in
thc Queue Dcmiptor must be thc offset of this buffer, relative ta the beginning of thc RSP's
Data SegmcnL The buffer size is the n»sssge length times the umber uf messages, usually
l3l bytes.

Note: The queue buffer should be before the Queue Deacrtptor wilhin the RSP Data
Segment.

Aa RSP can certainly create other quet»s besides the RSP Command Queue used with
Commend RSPs. However, any queue an RSP creates that lies within 64K of the System
Data Area must have a buffer area pointed to by the BUFFER Beld in its Queue Descriptor.
'ib l» safe, the buffer shouM coma befcse the Queue Descriptor in ths RSP's Dain Segment.
lt is assumed thc BUFFER Beld points to a buffer that is also within 64K of the System
Data Ares. If the Queue Descriptor is farther than 64K from the Systcta Data Area, Con
current CP/M uses buffer space in thc System Data Area. Refer to the Q MAKE system
call in Section 6 for further details.

In order to open the RSP ConMruuui Queue and subsequently read from it, s Queue
Panunctcr Block and its associated buffer must be allocated in the RSP's Data Scgrnent.
These structures axe treated just as in a transient process, Fur any queues created by sn RSP,
it is stressed that the queue buffer areas associated with the Queue Dcscriptor snd thc Queue
Psrlncto Block are separate, dislinct areas of stotugc.

5.4.6 Multis I ' roceaaa within an RSP
As RSP can create child processes by calling the P CREATE system call. Note thai if

the Process Descriptor of thc process being created is within 64K bytes of the beginning of
the Systejn Data Area, the PD structure is used directly by Concurrent CP/M. Otherwise
the PD structure is copied inlo the PD table in the System Data Area.

andorra. asssAscHI
5-10



Cimcarrent CP/M Programmer's Guide

5.5 Developing and Debugging an RSP

The first RSP yau attempt should be very simple, on the order of complexity of the ECHO
RSP listed in Appendix D. New RSPs should be developed and debugged as if they were
transient pracesses, such as Concurrent CP/M CMD utilities, then converted into RSPs.

An RSP debugging session should proceed like an XIOS debugging session: fitst load
CP/M-86, then invoke DDT-86s+, snd then bring up Concurrent CP/M. The Concurrent
CP/M System Guide provides mare information about running Concurrent CP/M under

5.5 Developtng and Dabugging sa RSP

CF/M-86.

After reading in the CCPM.SYS file under DDT-86, find tbe RSPSEG field of the System
Data Segiuent (SYSDAT). The paragraph address of the SYSDAT is found in the A BASE
field of the Data Group Descriptor in the CCPM.SYS cauunand Ne header. The CMD header
is described in Section 3.2 and the SYSDAT area is described in the S SYSDAT system
call in Section 6. The RSPSEG field contains the paragraph address af the Data Segment
af the first RSP in a linked list of the RSPs included by GENCCPM.

By using the Display Memory (D) command of DDT-86 to shaw memory at the segment
RSPSEG, the name of the first RSP can be identified in the RSP's Process Desciiptor, The
LINK field in the RSP Header, which will be the first word in the RSPSE(s segment, is the
paragraph value of the next RSP's Data Segment. A zero in the LINK fiield means the end
of the list af RSPs. Note that linkage information is lost ance Concurrent CP/M is initislized.
The UNK field of the RSP Header contains the System Data Segment once an RSP begins
execution.

Once the RSP to be debugged is located, the initial code entry point can also bc found.
As discussed previously, the SP field in the RSP's UDA is the offset from the beginning of
the RSP's Data Segment of the thine-word IRET structure. The first word of thc IRET
structure contains the initial value of the IP register when Concurrent CP/M creates the RSP
process. The initial value of the CS register is in the CS field also in the RSP's UDA. Once
this is done, you can set break points in the RSP, similar to setting brcak points in XIOS
system calls.

Fnd of Section 5

a DIGITAL RESEARCH'+
5-II



Section 6
System Calls

This section describes the Concurrent CP/M system calls in tabular form. It is intended
both as an introduction m the calls and as a tuference for use during pmgramming. You
should be familiar with the material in Sections 1 through 5 before proceeding.

The Srst table, 1hble 6-1, describes the categories of Concurrent CP/M system calls and
their general uses. 1ttble 62 summarizes the Concurrent CP/M system calls. Use it as a
quick reference to find the system caU you need while programming. The system calls are
broken down into functional groups. Immediately following is 1ttble 6-3, a cross-reference
showing the system calls in numerical order. Table 64 is an index providing the page taunbers
and figure titles of commonly used data structures. Table 6-5 lists the error codes returned
in register CX.

Q DIGn'AL RESFJgcH+



Concarrsnt CP/M Pregrararee* Guide6 8ystsrn CaUs

'1hbie 4-1. Syatsan CaH Catainries

Vse

C Console System Calls

Category

Thc Console System Calls handle I/O operations far virtual consoles
on a character, string, snd line basis, attach and detach consoles from
processes, snd return or change the number corresponding to the
default virtual console.

DBV Device System Calle

Thc Device System Calls deal with iiags and poHing in mtmaging
system resources�.

DRV Disk Drive System Calls

'Ibc Disk Drive S~ C a l ls manage Concurrent CP/M logical drives.

F Fi le-Access System CaRs

Tbe Fib-Access System CsHa iachxb caHs that operate car Res within
a directory, calls that opemtc rsr nsccsds within Ries, and miscella
neous system csHs related to 51c VQ

L L ist D.vice System CaH.s

1he List Device Bystrnm CsHs vnite characters or strings to the default
list device, attach anti detach the default list device fmm calling
processes, snd return or change tbe rarmber corresponding to the
default list device.

M MP/M-86sts Memory Managmnent System Calls

Thc M ~ M anag ement System Calls sre included for com
patibility with MP/M-86, 11esc calls aHccate snd freememory seg
ments according to thc MP/M-86 scgrncntatios algorithm.

• caQrhL RESEARCH s



6 System CallsConcurrent CP/M Progrsmntsr's Guide

'1itble li-1. (continued)

Category Use

MC CP/M-86 MemoryManagement System Calls

The MC Memory Management System Calls allocate and free
memory segments accordmg to the CP/M-86 segmentation nlgonthm.

P Process/ProgramSystem CaHs

The Process/Prognun System Calls create and terminate processes,
call other processes, and perform other operations on process.

Q Queue Management System Calls

The Queue Management System Calls create, delete, open, read
from, and write to queues.

S System Calls

'IIIe System Calls return various types of systems data, such ss ver
sion numbers and addresses.

T T ime System Calls

The Titne System Calls set the system calendar and clack and return
the time from them in hours and minutes or in hours, minutes, and
seconds.

B DIGITAl RESEARCHo
6-3



g System CaUs Concurrent CP/M Prograrnrlr's Guge

Pu/rrbr>
Der Her

orle 6-2. Concurrent CP/M System Calls

/tfnemorr ic Dejfrritfon

Console I/O System Calla

149 95 AS SIGN

146 92 C ATTACH

147 93

153 99

109 6D

6 06

110 6E

162 A2

C DETACH

Establish owrMnahip af the default vir
tual console to the caibng process; sus
pmd process until console becomes
rrvrulabie.

C ouditiceaily stablish ~ p of t h c
default virtual console by the calling
process; return an error rru,ssage if thc
device is unavailable.

Set or return current String Output
Delimiter. Used with C VrrRITESI'R.

Detnch default virtual consols from the
calling process.

Return the virtual console rsrmber of
the calling process.

Set or return Console mode.

perform Raw mode VO with the default
virtual console.

C~ODE

C RAWIO

I 01 Read a character from the default vir
tual console,

1 0 OA Read an edited line from the default
virtual console.

C READSI'R

• Mlr/rl arsKAacH<



6 Systera CattsConcurrent CP/M Programmer's Guide

'Ihhle 6-2. (continued)

Number
Dec Hex

l 48 9 4 C SET

hfnernonic Definition

C SI'AT

Set or change the default virtual con
sole for the calling process.

Obtain the input status of the default
virtual console.

OB

2 02 Write a character to the default virtual
console.

Write a specified number (block) of
characters to tbe default virtual console.

Write a string to the default virtual con
sole until delimiter.

i l l 6F

Device System Calls

I 33 8 5 DEV SETFLAG

DEV WAITPLAG Wait for a system flag to be set before

Set a system flag.

132 84

l 3I 83

restoring the current process.

Poll a noninterrupt-driven device.DEV POLL

Disk Drive System Calls

38 26 DRV ACCESS

27 1B

Indicate access to speclfled drives.

Get the address of the disk Allocation
Vector.

DRV ALLOCVEC

l 3 GD

DRV DPB

DRV ALLRESET Reset all disk drives.

Return the seginent and offset address
of the Disk Parameter Block for the
default disk of the calling process,

3l 1F

ia Dl GITAL RtsthacH+



S gystas Calls Concurrent CP/M Progmnuner's Gab}a

TEbk 6X. (costthttsed)

Natcher
Dec Hex

48 30

Mttemotttc

DRV~USH

Dejinition

39 27

25 19

101 65

1 4 O E

100 64

28 l c

46 2E

24 I S

3 7 2 5

29 I D

DRV FREE

DRV GFf

DRV RESET

DRV ROVHC

DRV LOGINVEC

DRV GEILABEL

Vfrite internal ptatding blochng/
deblocking data buffers to disk.

Relinquish access to specified drives,

Return the default dxive of the calling
process.

Return the dixcctnry label data byte for
thc specified drive.

Return bit map of logged-in disk drives,

RcM thc specifie drives.

Return bit map vector of drives set to
Read&nly.

Set default drive of calling Iaoccss.

Cxeate or update a directory label.

Sct thc default drive to Read-Only.

Return unallocated space on the spec
ified drive.

DRV SEX

DRV SETLABEI.

DRV SETRO

DRV SPACE

Disk File System Calls

30 I E Sct flic attributes.

1 9 1 3

1 6 1 0

F ATTRIB

F CLOSE

F DELETE

Close file.

Dclcte file.

• DICitrAL RESEARCH+



Concurrent CP/M Praarammer'e Guide d System Calle

'Ihble 6-2. (eorrtlnued)

Huniber
Dec Hex

5 2 3 4 F DMAGET

hfnemonic Definition

26 lA

Return segment and offset address of
Direct Memory Address buffer.

Set the Direct Memory Address offsetF DMAOFF

SI 33

address.

Set Dhect Memory Address buffer seg
ment address.

F DMASEG

45 2D F ERRMODE

42 2 A

Set the BDOS Error mode.

Lock record within file opened in
Unlocked mode.

F LOCK

22 l6 F MAKE Create file.

44 2 C F MULTISEC

33 21

3 6 2 4

20 l4

1 5 OF

I52 98

106 6A

F OPEN

F READ

F PARSE

F PASSWD

F RANDREC

Set the BDOS Multisector Count.

Open file for record access.

Parse an ASCII string and inidalize an
FCB.

Set the defauit password.

Set the Random Record field in the FCB
from the sequential record position.

Read record sequentially.

Read random record.F READRAND

23 l7 F RENAME

1 7 I l

Rename file.

Search for first matching ~ FCB
that matches the specified FCB.

F SFIRSI'

ss DiQTAI RESEARCH~
6-7



6 Syatetn CaDa CeMurrettt CP/M PregranstacA Gute

'able 6-2. (cortttnued)

Nmnber
Dec Hex

35 23

DcpQlioh

99 63

21 15

34 22

32 20

102 66

1 8 1 2

43 2B

103 67

P WRfK

F SIZE

FM NET'

F UNLOCK

F USERNUM

F. TIMEDATE

P WRITEXFCB

P WRfIZiiP

P WIUTEIUQ/D

Return the size of a file.

Scatch fnr ext touching directory PCB
that matches the FCB specified in the
F SFlRST system call.

Return Kc's date and time stamps and
pesstvord Inodc.

'Ihmcate 8le to the speciiied Random
Record Number.

Rcmove record. locks.

Set or return the default user number of
the calling process.

Write records sequentially.

Write nsndom records.

Create or update file's XPCB.

Write random tecotds and zero-fUl atty
previously unallocated data bloch.

40 28

List Device System Calbt

158 9E Establish ovmettthip of thc dcfauit liat
device by the calling process: suspend
thc process until thc device is available.

Cot tditionally cata' owncrshp of the
defsuit list device by the calling process;
return error code if the device is
unavailable.

1 6l A l

• otctTAL RsssAacH+



6 Systeto CallsConcurrent CPiM Programmer's Guide

lhble 6-2. (eontlnttad)

Number
Dec' Hex

159 9F I DEI'ACH

hfnemonic D@nition

Relinquish ownershi p df the default list

164 A4

160 AO

05

L SET

L WRITBBLK

device.

Return the default, list device number
of the calling pmcess.

Change the default list device for the
calling pmcess.

Write a character to the default list
device.

Write the specifIed numb@ of charac
ters (block) to the default list device.

112 70

128 80

MP/M Compatible Memory Allocation System Calls

M ALLOC

129 81 saITIe as 128

Allocate the memory segment be
tween the sizes specified in the Metn
ory Parameter Block to the calling
process.

Free the specified memory segment.130 82

CP/M Compatible Memory Allocation System Calls

54 36

55 37

58 3A

Allocate the maximum amount of RAM
available at a specified addtess.

Free all memory owned by the caUing
process.

Allocate a segment of RAM, as spec
iTied in the MeroOry COnuOl BlOCk, td
the calling process,

MC ALLOC

• s DIGITAL RKSFARCH' •



I Systsru Celt Coorxrrreat CP/M Progrsreraer's Guava

'Mrhl 6-2. (corrtbrwsd)

Nunrber
Dec He x

hfnenronic Definition

MC ALVOCABS

57 39

Allocate a specified amount of RAM,
as abave, but beginning at x specific
address.

Free sn area of RAM beginning at a
specified address, and extending to the
end of the previously-allocated rnem
ory area.

Allocate the maxirrsrm amaurx of RAM
avaHahle in tbe system.

53 35

Process/Program System Calls

157 9D P ~ OR T

47 2P

142 8E

144 90

141 8D

P CU

P CRHATE

PARLAY

P D1SPATCH

'hrrrurtate a proccM specified by rLrurL
or Process Descriptor address.

Load. initialize, and jurnp to the pro
gram specified in the DMA buffer.

interpret and execute tbe specified
command line by calling Cornrsrurd Line
~ t e (C U ) .

Create a subprrmss.

Suspend the calling process for a spec
ified number of system clock ticks.

Parce a ~ opera t ion; give up tbe
CPU resource to the higher priority
prooess ready to run.

Load the specified CMD file in mem
ory; return its base page segment
address.

59 3B

8 oKilrhL axxthacH+
6-10



Concurrent CP/lH ProlrantrneA Gutde 6 System Cath

'Ihble 6-2. (continued)

Ãumber
Dec Hex

156 9C

Mnentonic

PEDA DR

Definirion

145 91

151 97

143 8P

P RPL

P TERM

P PRIORITY

P IRRMCPM

Return the address of the Process
Descriptar of the calling process.

Set the priority af the calling process.

Invoke a system call from a Resident
Procedure Library.

1brminate the calling process.

'Ibrminate calling process uncondition
ally, release all awned resources.

0 00

Queue System Calls

138 8A

136 88

134 86

137 89

135 87

140 8C

DELETE

QUAKE

Q OPEN

Q CWRITE

Conditionally read a message from a
SyStem queue; return error Cade if a
message is not available.

Conditionally vmte a message to a sys
tem queue; return ao ermr code if space
is not available.

Delete a system queue.

Create a system queue.

Open a system queue for subsequent
queue operations.

Read a message from a system queue;
suspend calling process until message
is available.

Q READ

R DIGITAL RESEARCH s
6- l 1



4 Syatsar CaHa Concurrsnt CP/M Programmer's Gutrta

'IhMe 64. (corrtlnsred)

Number
Dec Hex

139 8B

Defirririon

Me a rlasage to a ay!tern queue; aua

perxi caHing prrrcess until apace becorrrsa
• vailable.

System System Calla

$0 3 2

107 68

163 A3

$ BIOS

S OSVHR

SMYSDAT

Return BDOS versirar number, CPU and
operating system type.

CaHspecified CP/M-86 BIOS charac
ter I/O routine.

Return type and version number of
Concurrent CP/M.

Return the Concurrent CP/M system
Serial rarmber.

Return address of the System Data Seg
ment (Sysdat)

154 9A

1lrne SystemCalls

105 69

155 98

Obtain the syasarn calends and clock,
hours and minutes only.

Return current system date and time;
hours, minutes, seconds.

Set internal system calendar and clock
to apccifld value.

T SET

6-]2



Cancrrrrent CP/M Programmer's Guide

6.1 System Call Summary

'Ihblc 6-3 lists thc Concurrent CP/M system caGs in summary form, including the param
ctcrs a process must pass when caGing the system call, and the values thc system returns
to thc process.

Appeadur A lists the Concurrent CP/M system calls by function number, and includes aG
thc information in Table 6-3,

6.1 Syatem CsB Smrmrary

Tisble 6-3. System Call Summary

NnenrcniC Dec Hex Inpur Rel urn' Rlues
Plarrrrnerers

C ASSIGN
C ATTACH
C CATTACH
C DEUMIT
C DETACH
C GET
C MODE

149
146
162
110
147
153
109

C SET 148
C RAWIO 6
C READ I
C READPI'R 10
C STAT 11
C WRITE 2
C WRITEBLK I I 1
C WRITESTR 9

DEV POLL 131
DEV SETFLAG 133
DEV WA!TFLAG 132

DRV ACCESS
DRV ALLOCVEC
DRV ALLRESET
DRV DPB
DRV FLUSH

38
27
13
31
48

9

6 1

94

83
85
84

D 1F

A B 2 6F

26
1B

95
92
A2
6E
93
99
6D

none
none
none
none

none

none

DX = ,ACB

none
none
DX = Con Mode

= OFFFFH
DL = Console
sce def

DX = .Buffer

DL = char
DX = .CHCB
DX = .Buffer

DL = Device
DL = Flag
DL = Flag

DX = drive Vect

none

DX = Out Delim

none

none

none
none
none

none
AX =,Alloc
see def
AX = ,DPB
see def

AX = Rtn Code

none
AX = Rtn Code
AX = Rtn Code

none
AX = Rtn Code
AL = Out Dclim

AL= conk

AX = Con Mode

see def
AL = char
see dcf
AI. = 00/01

30

8 oIclrAI. RESEARCH+
6-13



i. I System Celt granary Crmerrrrcat CP/M yrrettrmmm'h GaMe

Mnemonic

39
25
101
24
37
29
14
100
28

27
19
65
18
25
ID

Hex

DRV~
DRV GFI'
DRV GETLABEL
DRV~ I Nt r 'EC
DRV~ ET
DRV~QVEC
DRV SET
DRV SETLABEL
DRVMETRO

E 64

Table 6-3. (conthrrred)

/nput
Parlrteters

DX = drive Vect

none
DL = Drive rir
DX = .FCB

none
DX = Drive rir
none
DX = drive Vect

AL = Cnr Drive rir
AL = Label Data Byte
AX = Isrgin Vect.
AL = Err Code
AX = R/0 Vect.
see def
AL = Dir Cade
see def

Returned Values

IC

ATTRIB
F CLOSE
FM~
F~MAGE1'
FMMAOFF
XMAS EG
F~ ODE
F~
F~ E
F ~ TISE C
F OPEN
F PARSE
FMASSWD
F~ DREC
F~ D
F READRAND
F RENAME
F SFIRST
F SIZE

16
19
52
26
51
45
42
22
44
15
152
106
36
20
33
23
17
35

IE
10
13
34
IA
33
2D

16
2C
F
98
6A
24
14
21
17
11
23

llone
DX =

DX =
DL =
DX ~
DX =
DL=
DX =
DX =
DX =
DX =
DX =
DX =
DX =
DX =
DX =

DX = .FCB
DX = .FCB
DX = .FCB

Err Made

F SKEXl
F TIMEDATE
F TRUNCATE
F UNLOCK
F USERNUM

18
102
99
43
32

12
66
63
2B
20

.DMA

.DMA Seg

.R23

.FCB
4 af Re:ords
.FCB
.PFCB
.Pass vNard
.FCB
.FCB
.FCB
.FCB
.FCB
.FCB

nore

none
nolle
none
AL = Err Cade
AL = Dir Cade
AL = Rtn Code
AL = Dir Cade
see def

RO, Rl, R2
AL = Err Cade
AL = Err Cade
AL = Dir Code
AL = Dir Cade
RO, Rl, R2
AL = Dir Code
AL = Dir Code
AL = Dir Code
see def
AL = Err Cade
AL = Users

see def
AL = Dir Cade
AI. = Dir Code
AX = DMA Offset

none
DX = .XFCB
DX = .FCB
DX = .FCB
DL = OFFH (get)

= User 8 (set)

• nrorrhL RssEAKHI

6-14



Caucurreat CP/M Prograuuuer's Guide 6.1 System Call Suuunary

hfnemonir Der Hex

Table 6-3, (eouthsued)

Input
Purttmeters

Returned Values

F WRITE
F WRITKRAND
F WRITEXFCB
F WRITKZF

1 ATTACH
L CATTACH
1 DETACH
L GET
L SET
L WRITE
L WRITEBLK

21
34
103
40

158
161
159
164
160
5
112

15
22
67
28

9E
Al
9F
A4
AO

DX = .FCB
DX = .FCB
DX = .XFCB
DX = .FCB

none
none
none
none
DL = List 6t
DL = char
DX = .CHCB

none
none
none

none
AL = list 1

AL = Err Cade
AL = Err Cade
AL = Dir Code
AL = Err Cade

none
AX = Rtn Code

5 70

~ LLO C
M ALLOC
M FREE
MC ABSALLOC
MC ABSMAX
MC ALLFREE
MC ALLOC
MC FREE
MC MAX

128
129
130
56
54
58
55
57
53

80
81
82
38
36
3A
37
39
35

DX = .MPB
DX = .MPB
DX = .MCB
DX = .MCB

none
see def
see def
see def

none
see def
see def

AX = Rtn Code

none
DX = .MCB
DX = .MCB
DX = .MCB

P ABORT
P CHA!N
P CL[
P CREATE
P DELAY
P DISPATCH
P LOAD
P PDADR
P PRIORITY
P RPL
P TERM
P TERMCPM

157
47
150
144
14l
142
59
I56
l45
l5l
l43
0

9D
2F
96
90
8D
8E
3B
9C
91
97
8F
0

none

DX = .ABP
see def
DX = .CLBUF
DX = .PD
DX = sisticks
none
DX = .FCB

DL = Priority
DX =,CPB
DL = Term. Code

none
AX =

none
none
none
none
none
AX = BP Addr
AX = PDAddr

AX = Rtn Code

Iesllit
Rtn Code
Rtn Codenone

6-l5



S.l Syshaa Gal Sassy

TaMe 6 3. (eonthttmd)

Input
Parameters Returned ValuesDec Hex

138 8A DX .QPB
140 8C DX .QPB
136 88 DX = .QPB
1 34 86 DX ~ .Q D
135 8 7 DX = .QPB
137 89 DX = .QPB
1 39 SB DX = .Q PB

AX R t n Code
AX Rt n Code
AX Rm Code
none
AX R t n Code
none

Q CREAD
Q CWRITE
Q DELETE
Q MAKE
Q OPEN
Q READ
Q WRlTE

S BDOSVER
S BIOS
S OSVER
S SERIAL
S SYSDAT

12
50
163
107
154

C 32

6B
9A

1 05 6 9 DX = .TO D
155 9B DX = .TOD
104 68 DX = .TOD

none

none
DX = .BD
none
DX = .serialnmb

T GET
T SECONDS
T SET

AX ~ Version¹
AX ~ BIOS rtn
AX = Version 4
serialnmb set
AX = Sys Data Addr

AL = seconds
TOD filled in
none

Note: System cslis 3, 4, 7, snd 8 are not supported by Concurrent CP/M.

• tnotTAL RBEhRCH+
6-I6



C.l System ERH Saausery

Conventions used in lhble 6-3;

Address of
Number
Assign Control Block
Abort Parameter Block
Address
Bios Descriptor
Base Page
ASCII Character
Character Control Block
Command Line Buffer
Call Parameter Block
Console
Current
Delimiter
Directory
Direct Memory Address

File Control Block

ACB
APB
Addr
BD
BP
Char
CHCB
CLBUF
CPB
Con
Cur
Dclim
Dir
DMA
Err
FCB

Uppercase mnemonics refer to Data Structures; see the function definition. A . before a
Data Structure means the byte offset of thc Data Structure. A Return Code is either 0 for
success or OFFFFH to indicate failure. When the Return Code in AX is OFFPFH, CX is the
Error Code (sce Table 6-5). An error code returned in AL is speciiic to the BDOS system

MCB = Memory Control Block
MPB = Memory Pantmcter Block
Num = Number
Out = Output
PD = Process Dcscriptor
PFCB = Parse Hiensmc Control Block
QD = Queue Desctiptor
QPB = Queue Panunetcr Block
Rec = Record
Rtn = Return
Sys = System
Ibfll1. = IbfIIllaation
TOD = Time of Day
Vect Vec t or

Error

call that was made.

ss ufcjrAL RESFARcN+
6-17



6.l gystsss Cal Sassssary

2-1
2-2
2-3
2-4
2-5
2-6

41
42
4-3

45

3-1
3-2
3-3

5-1
5-2
5-3
54

FCB - File Counol Block
Directory Label Format
XFCB - Extended File Contml Black
Directory Record with SFCB
SFCB Subiields
Diat System Reset

CMD File Header Format
Group Descriptor Format
Concunent CP/M Base Page Values

Initial Program Stack
ConcinTeut CP/M 8080MemoryModel
Concurrent CP/M Small MooryModel
Concurrent CP/Ii/I Compact Memory Model
Jntel Hexadecimal File Formeh

8080 and Small RSP Models
RSP Header Format
RSP Commend Queue Message
RSP Data Segment

ACB - Assign Control Block
Console Buffer Format
Drive, R/0, or Login Vector Structure
DPB - Disk Parameter Block
Disk Free Spam Field Format
PFCB - Parse Filename Cannel Block
MCB - MemoryControl Black
MPB - Memory Psnuneter Block
MFPB - M FREE Parameter Block
APB - Abort Parameter Block

3-3
3-3
3-6

42
4-3
44
45

4-10

5-2
5-3
5-5
5-7

6-21
6-33
644
645
6-63
6.86

6-128
6-129
6-132
6-139

2-10
2-18
2-20
2-24
2-24
2-41

6-l
6-2
6-3
64
6-5
&6
6-7
6-8
6-9
6-10

• oloTAL, srsrARcH~
5-18



Casesrteat CP/M Pnisramam'ls GeMe 6.1 System Call Sunruaary

Table 6-4. (continued)

Figure ?It/e

6-11
6-12
6-13
6-14
&15
6-16
6-17
6-18
6.19
6-20
6-21
6-22

CLI Cominand Line Buffer
PD - Process Descriptor

CPB — Call Parameter Block
QPB — Queue Parameter Block
QD — Queue Descriptor
BDOS Version Number Foriuat
BIOS Descriptor Format
Operating SystemsVersion Number Format
SERIAL Nmnber Format
SYSDAT 'Ihble
TOD Time-of-Day Structure

Page

6-142
6-146
6-151
6-159
& 163
6-168
6-174
6-175
&.176
6-177
6-179
6-185

UDA — User Data Area

Table 6-5. CX Error Code Reports

Error ReportDec Hex

0 OOH
1 01H
2 02H
3 03H
4 04H
5 OSH
6 06H
7 07H
8 08H
9 09H
10 OAH
12 OCH
13 ODH
14 OEH
15 OFH
16 10H
17 11H
18 12H
19 13H

No ermr
System call not impleinented
Illegal system call number
Cannot find memory
Illegal ilag number
Flag overrun
Flag underrun
No unused Queue Descripiors
No free queue buffer
Cannot find queue
Queue in use
No free process dcscriptozs
No queue access
Empty queue
Full queue
CLI queue missing
No 8087 in system
No unusedMemory Descriptors
Illegal console number

8 DKiirAL ~ +
6-19



Ll Blake Cat Sememic

Table 6 5. (continued)

Dec Her

20 14H
21 15H
22 16H
23 17H
24 18H
25 19H
26 1AH
27 1BH
28 1CH
29 I DH
30 I EH
31 I FH
32 20H
33 21H
34 22H
35 23H
36 24H
37 25H
38 26H
40 28H
41 29H
42 2AH

Bad return from BDOS load

Error Report

No Pmcess Descriptor match
No console match
No CLI pmcess
Illegal dislr. number
Iliegal filename
Illegal filetype
Character not ready
Illegal memory descriptor

Bad mturn from BDOS read
Bad return fmm BDOS open

Not owner of resource
No CSBG in load file
Process Descriptor exists on Thread Root
Could not temuuste process
Cannot attach to p m'
Illegal liat device number
Ilhgal password
External teruunaticn occurred
Plxup error upon load
Piag set ignored.

Null command

6.2 Concurrent CP/M System Calls

This secdon premnts detailed information on the Concurrent CP/M system calls. Read the
entue section through before attempting to use the system calls in a program, as many of
them interact with one another.

• 9KilrAL RssrhacHe



CMSSIGNConcurrent CP/M Pralrammrr's Guide

6.2.l Console VO System Calh

C ASSIGN

Assign Default Console Device
To Another Process

Entry Parameters:
Register CL

DX:
DS:

09SH (149)
ACB Address — Offset
ACB Address — Segment

Returned Values:
Register AX:

BX:
CX:

0 if assign "OK"
OFFFFH on Failure
Same as AX
Ezxor Code

+
OO CNS [ MATCH[ PD

+ + +
04 NAME

Figure 6-1. ACB - Assign Control B)ock

ss otarrAL asstAacHi
6-2I



CMSSIGN Concurrent CP/M Progrsmiaerh Guide

Field

CNS

Dtjfnitions

Console to assign

Boolean; if OFFH, thc process being assigned thc console must have
the CNS as its default console for a successful Assign. If OH, no check
is made.

Process ID of thc process being assigned the console. If this field is
zero, a search is made of the Thread List for a process whose name is
NAME. This flcld must be either zero or a valid Process ID, If this
value is uot a valid PD, an error occurs.

8-byte process name to search for. An error occurs if a process by this
name does not exist.

MATCH

Thc C ASSIGN system call directly assigns the specified console to a specified process.
This system call overrides the normal mechanism of the C ATTACH and DE T ACH
system calls. Thc system call returns an error code if a process other than the calling pmcess
owns the console. The system call ignores other processes waiting to attach to the specifled
console, snd they continue to wait until the current owner either calls the C DETACH system
call, or terminates.

Refer to Table 6-5 for a list of error codes teturned in CX.

5 oKilrAL sssshaCH+



Ccuuatrretst CP/M Prugranamr'5s Gush

C ATTACH

Attach Default Console
To Calling Process

Entry Parametas:
Register CL: 092H (146)

The C ATTACH system call attaches the default console to the calling process. If the
console is already owned by the calling process or if it is not owned by another process, the
~T E ACH system call immediately returns with ownership established and verified. If
another process owns the console, the calling process waits until the console becomes available.

Refer to Tbble 6-5 for a list of error codes returned in CX,

• DKitfhl atsshaCH+
6-23



C CATTACH

Conditionally Attach Default
Console 'Ib Calling Pmcess

Entry Psrtuneters:
Register CL: OA2H (162)

Returned Values:
Register AX: 0 i f attach 'QK'

OFPFFH an failure
BX: Same ss AX
CX: Er ror Cade

'lite C CATTACH system call attaches the default console of the calling process anly if
the cansale is currently ututtteched.

If the console is currently attached ta another process, the system call returns a value of
OFFH indicating that the console could not be attached. Ihe system call returns e value af 0
ta indicate that either the console is aheady sttacM to tha process or that it was unattached
and a successful attach operation was made.

Refer ta lhbie 6-5 for a list of error codes returned in CX.



D E L I M IT

Sct Or Return Output Delimiter

Entry Faratnctcrs:
Register CL: 06EH (110)

DX: OFPPPH (get) or
DL: Output Delimiter (set)

Returned Va)ues:
Register AL:

BL:

Output Delimiter or
(no value if set)
Same as AL

A program can set or interrogate the current Output Delimiter by calling ~ E U M IT. If
register DX = OFFPPH; then the current Output Delimiter is returned in register AL. Other
wise, C DELIMIT sets the Output Delimiter to the value in register DL.

C DELIMIT sets the string delimiter for C WRITESTR. When a new process is Iueated,
the default delimiter value is sct to a dollar sign, $. The default delimiter is not inhtuitcd
from the parent process.

8 DIGITAL RESEARCH+
6-2C



Detach Default Console
From Calling Proces

Entry Psnuneterr,
Register Cl N 3 H (147)

Returned Values;
Register AX; 0 i f detach 'OK'

0FFFFH on failure
BX: Same as AX
CX: Hrmr Code

'Ibc GJ)ETACH system call detaches the default console fmm the calling process. If the
default console is not attached to the calling process, no action is taken. If other processes
src waiting to anach to the console, the proces wilh the highest priority attaches the console.
If thcxe is more than onc process with the same priority waiting for the console, it is given
to thc queue writing processes on a first-come, first-serve basis.

Rcfcr to lhblc 6-5 for a list of error codes returned in CX.

6-26



C GET

Return The Calling Process's
Default Console

Entry Paranmters:
Register CL: 099H (153)

Returned Vs! ues:
Register AL: Console number

BL Same ss AL

The C GET system call returns the default console number of the calling process.

• s OKITAL RESEARCH+
6-27



C~ODE Concurrent CP/M Fragrsmmer3 GuMe

~ ODE

Set Or Return Console mode

Entry Psrsn~:
Register CL: 06DH (I09)

DX: OFPFFH (get) ar
Console Mode (set)

Returned Values:
Register AX: Causole Mode or

(no value)
BX: Same ss AX

A paxess can set or intermgate the Console Mode by calling ~ O D E. I f register
DX = OFFFFH, then the current Console Made is ~ in re gister AX. Otherwise,
CJAODE sets the Console Made to the value cantsined in register DX.

• DClrAL tLSMKH+



CHING QDEConcurrent CP iM Prolrammer'e Gntde

The Console Mode is s 16-bit system parameter that determines the action of certain
Console DO functions. Note that the Console Mode bits are numbered fram right to left. The
Cansolc Mode is set to zero when a new process created; it is not inherited from its parent.
The delinitian of the Console Made is

bit 0 = 1 - CTRI C only status far ~ AT.
= 0 - Normal status far ~AT.

bit 1 = 1 - Disable stop scroll, CTRL-S, start scroD, CIK.Q, support.
= 0 - Enable stop scroD, start scroll support.

bit 2 = 1 - Raw console output made. Disables tab expansion far C WRlTE,
C WPZfHiTR, snd C WPZIEBLK. Also disables printer echo,
CTRL-P, support.

= 0 - Normal console output made.

bit 3 = 1 - Disable CIRL-C program termination
= 0 - Enable CTRL C program termination

bit 7 = 1 - Disable CTRL-0 console output byte bucket
= 0 - Enable CTRL-0 console autput byte bucket

6-29



CMA WIO Concurrent CP/M ProNrawmsrla Guide

~ WI O

Perfortn Direct Console VO
With Default Console

Entry Parameters:
Register CL: O6H (6)

DL: OFFH gn put/
Statue) or

OFBH (Status) or
OFDH (Input) or
Character (Output)

Returned Values:
Register AL: ( Input/Status)

(Status)

= OH (No Character)
= Character

= OH - No Chnacter
= OFFH - Ready

= Character

No return value

(Input)

(Output)

BL: Same as AL

The ~W I Q system call allows the calling process to do raw console VO to its default
console. Concurrent CP/M verities that the calling proces owns its default console before
allowing any I/O.

A ptocees calls the C RAWIO system call by passing one of ttuee different values shown
in 1tibie 6-7.

• DKilrAL RESEhKH +
6-3D



CMhWEOConcurrent CP/M Programmer'S Cutde

'Ihbie 6 7. ~W IO Ca l lhg Values

Description

OFFH

OFF.H

OFDH

Console input status cenmsnd (if no ctuuacter is ready, s OOH is returned,
else the character is returned).

Console status command (on return, register AL contains OOH if no
character is ready; otherwise it contains OFFH).

Console input carnmsnd (if no character is ready, the calling process
waits until ane is typed). Input characters are nat echoed to the screen,

If the panuneter is less than OFDH, C RAWIO system call assumes
register DL contains a valid ASCII character and sends it ta the console,

ASCII
character

The C RAWIO system call places the calling pmcess in Raw made. The CTIQ' C, COL-P,
CTRL-S, snd CTRL-0 characters are not acted on by the PIN (Physical Input Process) but
axe passed an to the calling process when C RAWIO is used.

Note: I f thc virtual console is in CRTL-S mode, and the process that owns the virtual
console then performs a C RAW10 call, the CTRL-S state is reset. Characters read with
C RAWIO arc not echoed on the screen, thus allowing passwords and so forth to be
entered in a sccurc manner.

8 nlo ITAL, RESEARCHI
6-31



~ M )

Read A Qumcter From
The Default Console

Entry Parameters:
Register CL: 01H (1)

Returned Values:
Register AL: Character

BL: Same as AL

Ihe C READ syannn call reads a character from the default ccnaole of the ceHmg process.
Before atterapting the read, Concurrent CP/M internally veri6es the ownership of the console.
If the calling process does not own the console, it rehntitushes the Q?U resource until the
calling process can attach to the console. 'Pypically, a pmcess that is created thmugh the
P CLI system call owns its default console when it begins execution.

C READ echoea chartLters read from the console, This includes the carriage return, line
feed, and backspace charactcn. It eapands tab characteN (ClRI I) in columns of eight
characters,

C READ ignores the termination character (CIA-C) if the calling process cannot ter
minate (refer to the P TERM system call). C READ does not return unul a character is
typed on the console. The system suspends the callmg process until a character is ready.

R DIGTJQ. atsrhaCHi

6-32



CMKADSTRConcurrent CP/M Promrammer's GiIlde

Read An Edited Line From'Ihe
Default Console

Entry Panuneters:
Register CL: OAH ( l0)

DX: BUFFER Address - Offset
DS: BUFFER Address - Seginent

The C READSTR system call reads characters from the calling process's default
console and places them into the specified buffer. The format of the buffer is shown in
Figure 6-2. C READSTR performs llne~it ing system calls on the line as it is read from
the console; it completes a line and returns upon receiving a terminator character
(carriage return or line feed) from the console or when the maximutn nutnber of charac
ters is reached. As in the C READ systetn call, ~ EAD STR echoes all graphic
characters read from the console. Concurrent CP/M verifies that the calling process owns
its default console before allowing I/O to begin.

0

MAX INCHARI CHARACTERS ..
+ — + — +

Figure 6-2. Console Buffer Sbrmat

sl tsoiTAL iusEAacHe
6-33



t.MEADSTR Concurrent CP/M Programmer'Is Guide

'lhbie 64. Console Buffe NeM DeihxNon

Fieid D~ i t iort

NCHAR

Maxhmnn number of characters that can be teed into the buffer.
T his value must be initialixed befote calling ihe ~ DI ST R
system call.

Actual number of characters read into the buffer as ftlled in by
the ~ MZl SZR systtan call.

Actual characters read fmm the console as iilhd in by the
C REtd3SH< system call.

CHARAI TERS

~D STR recognizes a number of special characters used in editing the input hne, as
weH as a set of special characters lhat actually contml the calling process.

'ittble 6-9. ~ hLDS IR ~ iiti ng Chtsractartt

Character

RUMDEL

Removes the hit c~ from the line and echoes it.

(CIRL-E)

Echoes new line, a carriage return (CTRL-M), and a line feed
(CIRL-J), to the screen but does Mt affec the ibm buffer.

BACKSPACE (CIRI H)

Removes the lest character from the line and backspaces over that
c~ .

TAB (CIRL-I)

Echoes enough spaces to place the next character position at a tab
atop. 1hb stops tne gxed at every eighth character of the physical
lire.



CLEAD STItConcurrent CP/M Programmer's Guide

Table 6-9, (continned)

FvnctionCharacter

LINE FEED (CTRI I)

'Itrminates the input line. The C READSTR system caIl does not
echo a terminating character, nor does it place the character in the
line bufFer.

RETURN (CTRL-M)

Thmunates the input line.

REDRAW (CTRL-R)

Retypes the current line after echoing a new line.

(CTRL-U)

Removes all of the current line from the line buffer, echoes a new
line, and starts all over again.

(CTRL-X)

Removes all of the current line from the line buffer and echoes
enough backspaces to return to the beginning of the line.

6-35



Sct Thc Calling Proceu's
Default Ccmsole

Entry Panuneters:
Register CL. 094H (148)

DL. Console Number

Returned Values:
Register AX: 0 if successful

OFFFFH on faihne
Same as AX
Error Code

The C SHY system call changes the calling process's default console to the value speciied.
If the console number speciged is not one supported by this particular implementation of
Concurrent CP/M, the system call returns an eoor code, snd does not change the default
console.

Refer to 'Ihble 6-5 for a list of error codes returned in CX.

6-36



Ceecnrrssst CP/M PrtIgraraam"s GaMs

Obtain The Status Of The
Default Console

Entry Parameters:
Register CL: OBH (11)

Returned Values:
Register AL: 01H character ready

OOH not ready
BL: Same as AL

The C STAT system cal! checks to see if a character has been typed at the default console.
lf the calling process is not attached to its default console, the C STAT system call causes
a dispatch to occur and return 00H (the Not Ready condition).

This system caB sets the console to the Nonxaw mode, allowing recognition of special
control characters such as the terminate character; CTRL-C, Use C RAWIO to obtain console
status in Raw mode,

Note: lf b it 0 is set in the Console Mode word, using the C MODE function call,
~T A T only returns AL = 01H when a CTRL-C is typed an the default console.

ss narra sssaecH'
6-37



C~srrmt CP/M Pmgrmnaaa's GaSe

Write A Character To The
Default Console

Entry Psnnnetenr:
Register CL: 02H (2)

DL: ASCIl character

The C ~ syst em call writes the speci%ed character to the calling process's default
console. As in the C READ system caH, Concurrent CP/M verilies that the caUing process
owns its default console before performing the operation. On output, C ~ expa nds
tabs in columns of eight cbaracterI.

• nKirrhL RKSKhKN+
6-38



Ceacarresst CP/M Pregramalr's GRMe

Send Specified String 1b Default Console:

Entry Parameters:
Register CL: 06FH ( I 11)

DX: CHCB Address

C WRITEBLK sends the character string located by the Character Control Block,
CHCB, addressed in register pair DX to the console, If the Console Mode is in the Default
state C WRITEBLK expands tab characters, CTRL-I, in columns of eight characters.

The CHCB format is

bytes 0 - I: Offset of character string
bytes 2 — 3 : Segment of character string
bytes 4 — 5: Length of character string to print

SS DIGITAL RESEARCH+
6-39



Print An ASCII String
1b 'Re Default Console

Entry Parameters:
Register CL: 09H (9)

DX: STRING Address - Offset
DS: STRING Address - Segment

'Ihe C WKTBSTR system call prints an ASCII string starting at the indicated string
address and continuimg until it rashes n dollar sign ($) charactta (024H). S is the default
string delimiter, and can be changed by the DELIMIT system call. C WRITK5iTR ches
this string to the calhng process s default console.

Concurrent CP/M vetlfies that the calling process owD5 the console before wrltmg tha
•tring. C WRITESIR seta the console to a Nonraw state aud uapands tabs in columns of
eight characters, as does the C WPZK system call.

Uae the C WG'H3ZIR system call whenever poasiMe, rather than the • ingle-character
system calls. The CPU overhead involved in handling the first cimarcter is the same as that
for a single-character system call, but subsequent characters require as little as one-fifth the
CPU overhead.



6.2,2 Device System Calht

DEV POLL

Poll A Device

Entry Panuneters:
Register CL: 083H (13I)

Di De v ice Number

Returned Values:
Register AX: 0 on success

OFFFPH on failure
Same as AX
Error Code

'11e DEV POLLsystem call is used by thc XIOS to poll non intcrrupt~vcn devices. It
should be used whenever the XIQS is waiting for a non interrupt event, Ihe calling process
relinquishes the CPU and allows Concurrent CP/M to poll the device at every dispatch. Thc
XIOS contains mutincs for each polling device number. These routines are called through
the DEV POLL system call, and they return whether thc device is ready or not. When the
device is ready, DEV POLL restores thc calling process to thc RUN state and teturns. Upon
return, the calling process knows the device is ready.

Refer to Ihble 6-5 for a list of error codes returned in CX.

8 DIGITAL RESEARCH+



DRV SKTFLAG

Set A System Flag

Entry Parameters:
Register CL 085H (133)

DL: F lag Number

Returned Values:
Register AX: 0 on success

OFFFFH on failure
Same as AX
Error Code

1he DEV S~ & sys tem call is used by interrupt routines to ncdfy the sysrem that a
logical interrupt has occurred. A process waiting for this fiag is placed baclr. into the RUN
state. If there are no processes waiting, then the next prcxms to wait for ttus fisg returns
successfully without relinquishing the CPU. The system call detects an error if the flag bss
abesdy been set, and no process bas done a DHV WAIT~so call to meet it.

Note> If a process waiting for a specific fiag to be set is aborted, the next DEV SETFLAG
call is ignored and sn ermr code is returned in CX. In this case, the interrupt handler should
contre ro set caII DEV SEIFLAG until it successfully sets the tlag IP, and AX = 0 on
mtufn.

Refer to 'Ihhle 6-5 for a liat of error codes returned iu CX.

• oKilTAL s ESTAB~



DEV WAITFLAGConcurrent CP/hs Programmer's Guldh

OKV WAITFLAG

Wait For A System Flag

Entry Parameters:
Register CL: 084H (132)

DL: F lag Number

Returned Values:
Register AX:

BX:
CX:

0 on success
OFFFFH on failure
Sane as AX
Error Code

Thc DEV WA1TPLPQ system call is used by a process to wait for an interrupt. The
pmccss relinquishes thc CPU until an interrupt routine calls thc DEVMETFLAG system
cali, which places thc waiting process in thc RUN state. When DEV WAITFLAG returns
to the calling process, thc interrupt has occurred, or an error has occurred. An error occurs
when a process is already waiting for the flag. If the ling was set before DEV WAITFLAG
was called, the routine returns successfully without relinquishing the CPU. This routine is
usually used by the XIOS. The mapping between types of interrupts and Iiag numbers is
maintained in the XIQS, although Concurrent CP/M reserves flags 0, 1, 2, and 3 for system

Refer to Table 6-5 for a list of error codes returned in CX.

8 DKITAL RESEARCH+
6-43



DEV WAITFLAG Cancnrrcnt CP/h5 Pragranamsrl Gatde

4.2.3 XHek Drive Systssu Cels

The Drive Vector, Read-Ortly Vector, arid Login Vectors are referenced or returned by
several Concurrent CP/ M Disk Drive system calls. The Drive, RO, ar Login Vectors are
16-bit values specifying one or more drives, where the ieast significant bit corresponds to
drive A, and the highwrder bit corresponds to the sixteenth drive, labeled P. The format
of the Drive, RO, and Logiu Vectors is iiiustrated beiow.

+ \ t ~ 4 0 0 0 0 t 4 4 0 +
DRY P 0 H M L K J i H 9 F E D C B A

BIT 'is 14 12 12 11 10 s 8 7 s S A S 2 1 0
• t t t t +

Ngure 4-3. Drive, RO, ur Lagln Vecter Strttcture

• DIQTAL sE5KARCH I



DRV ACCESS

Access Specified Disk Drives

Entry Parameters:
Register CL: 026H (38)

DX: Dr ive Vector

Returned Values:
Register AL: Return Code

AH: Extended Error
BX: Same as AX

Thc DRV ACCESS system call inserts a special open file item into the system Lock List
for each specified drive. While the item exists in thc Lock List, the drive cannot bc react by
another process. The calling process passes the drive vector in register DX. The format of
thc drive vector is discussed at the beginning of Section 6,2,3.

Thc DRV ACCESS system call inserts no items if insufficient free space exists in the
Lock List to support all the new items or if thc number of items to be inserted puts thc calling
process over the Lock List open file maximum. If the BDOS Error mode is in the default
mode (refer to tbc F ERRMODE system call), the file system displays a message at the
console identifying thc error and terminates the calling process. Otherwise, DRV ACCESS
returns tp the calling pmccss with register AL set to OFFH and register AH sct to one of the
following hexadecimal values.

OAX - Open File Limit Exceeded
OBH - No Room in system Lock List

On successful cails, DRV~ CESS returns with register AL set to OOH.

ss olQrhL RESEARCH'
6-45



DRVMLLOCVIC

Get Allocation Vector Addxess
For Ibe Calling Process's Default Disk

Entry parameters:
Register CL: 01BH (27)

Returned Values:
Register AX: ALLOC Address - Offset

ES; ALLOC Address - Segment
BX: Same as AX

Concurrent CP/M maintains an allocation vector in ~ for e ach active disk drive.
Some progrsxns use tbe information provided by the allocation vector to determine the anwunt
of free data space on a drive. Note, however, that tbe allocation information csn be inaccurate
if the drive bas been marked Rend-Only.

The DRV~ OCVEC system call returns the address of the allacation vector for the
curretttly selected drive. If a physical error is encotmtered urban the BDOS Error mode is in
one of the return modes (refer to fhe F ERRMODE system cell), DRVMLLOCVEC returns
the value OFFFFH in AX,

You can use the DRV SPACE system call to dixectly return tbe number of free 128-byte
records on a drive. Ibe Concurrent CP/M utility, SHOW, Qnds a drive's &x space by using
the DRV SPACE system call,



DRVMLLRESKT

Restore All Drives To Reset State

Entry Parameters:
Register CL: ODH (13)

Returned Values:
Register AL: 0 if successful

OFFH on error
BL: Same as AL

The DRV ALLRESET system call testores the file system to a reset state where all the
disk drives are set to Read-Write (refer to the DRV SETRO and DRV~OVEC system calls),
the default disk is set to drive A, and the default DMA address is reset to offset OBOH relative
to the current DMA seginent address. This system call can be used, for example, by
an application program that requires disk changes during operation. You can also use the
DRV RESET system call for this purpose.

This system call is conditional under Concurrent CP/M. If another process hss a file open
on any of the drives to be reset, and the drive is also Read-Only or removable, the
DRV~LLRESET system call is denied, and none of the specified drives are reset (see
Section 2.17).

Upon return, if the reset operation is successful, DRV ALLRESET sets register AL to
OOH. Otherwise, it sets register AL to OFFH. If the BDOS is not in one of the return error
modes (refer to the F ERRMODE system call), the file systtun displays an error message
at the console idetttifying the process owning the first open file that caused the
DRV~LLRESET to be denied.

5 DIGTAt. assrARCH+
6X7



DRV J)PR Coactrrreat CP/M ProSrsmmsrl Gu+s

DRVMFB

Return Address Qf Disk Parameter Black
For Calling Process's Default Disk

Entry Parameters:
Register CL: 01FH (31)

Returned Values:
Register AX: DPB Address - Offset

OFFFFH on Physical Error
Same as AX
DPB Address - Segment

DRV~PB futures the address of the XIOS-resident Disk Parameter Block (DPB) for the
currently selected drive. The calling process can use this 4ddress to extract the disk parameter
values.

if a physical error is encountered when the BDOS Error mode is ane of the Return Error
modes (refer to the FMRRRODB system csl)), DRV~PB returns the value OFFFFH.

The Disk Anuneter Block (DPB) contains the parameters that define the actual disk.

05H

SPT
+

DSM

B SH B L M EXM

OQH

DRM
+

CKSALO AL1

ODH OFF P SH PR M

Hgura 64. DPB - Disk Faraneter Blodt

8 OKiKAL RESEARCH +



DRVMPICoucurreni CP/5l Programmer's Gable

Vhbie 6-10. DPB PMd DelinI5ona

Definition

The number of Sectors Per Tluck equals the total number of physical
sectors per track. Physical sector size is degned by PSH and PRM
described below.

BSH Allocation Block ShiA Factor

BLM Allocation Block Mask

The data allocation black size deterrtuncs'the values of the data
allocation Block Shift Factor aud the allocation Block Mask. The
Block ShiA factor equals thc logarithm base two of the block logical
size in 128-byte records, or BSH = LOG2(BLS). The Block Mask
equals the tunnber of 128-byte records in an allocation block minus
I, or BLM = (2~~BSH) — 1. Rcfcr to thc Concurrent CPIN System
Guuk for valid block sizes and BSH and BLM values.

EXM Extent Mask

The data block allocation size and thc number of disk allocation
blocks dctcrmiae thc value of the Extent Mask. The Extent Mask
determines the maximum number of 16K cxtcnts that can bc con
tained in a directory enuy. It is equal to the maximum number of
16K cxtents pcr directory entry minus one. Refer to thc Concurrent
CPIM System Guide for EXM values.

DSM Disk Storage Maximum

The Disk Storage Maximum defines the total storage capacity of the
drive. This is cqua! to the total number of allocation blocks minus 1
for the drive. DSM must bc less than or equal to 7FFFH. If thc disk
uses 1024 byte blocks (BSH= 3, BLM = 7), DSM must be less than
or equal to 00FFH.

Is OioirhL RESEARCN~



Concurrent CP/Ivl Profrsmmer's Guide

Table 6-10. (contbiued)

Field

DRM Dhectory Maximum

Drfinirion

The Directory Maximum defines the total number of directory entries
for the dxive. This is equal to the total munber of directory entries,
mnms 1, that can be kept on this drive. The directory requires 32
bytes of disk per entry. The maxinann directory allocation is 16
blocks, where the block size is determined by BSH and BLM.

ALO Directory Allocation Vector 0
AL1 Directory AIIocanon Vector 1

Thc Dhectory Allocation Vectors determine the reserved directory
allocation blocks.

CKS Checksum Vector Size

Thc Checksum Vector Size detcsmincs the required length of the,
dnectory checksum vector and the eunlm of directory entries that
the BIKE viill checksum. 'Hm Checksum Vector Size is equal to tbc
number of directory conies divided by 4, or CKS (DRM+ I)l4.
If the media is fixed, CKS might be zero, no storage needs to be
reserved, and the BDOS does not calculate dhectory checksums for
the drive.

The high-bit of CXS (that is, ) = 08000H) is set if the mferenced
drive is considered to be a nonrcmovablc media drive. Note that this
modifies the ru! es for ~ t he d r ive. For more information, refer
to Section 2. 15.

• DKilriu. RESEARCH+



DRVMPSCancurrant CP/lvl Progratutaer's Guide

Table 6-16. (continued)

Field

OFF 11ack Offset

Definition

The 1hek Offset is thc number of reserved tracks at thc beginning
of thc disk. OFF is equal to the track number on which the directory
starts,

PSH Physical Record Shift Factor

The Physical Record Shift Factor ranges from 0 to 5, corresponding
to physical record sizes of 128, 256, 512, 1K, 2K, or 4K bytes. It
is equal to the logarithm base two of the physical record size dividtzl
by 128, or LOO2(sectormize/128),

PRM Physical Reconi Mask

The Physical Record Mask ranges from 0 to 31, corresponding to
physical rcconf sizes of 128, 256, 512, 1K, 2K, or 4K bytes. h
is equal to the physical sector size divided by 128 minus 1, or
(sectormizc/128) — l.

For more information on DPB parameters, rcfcr to thc Concurrent
CPIAf System Guide, Section 5,4.

ss MTAL asszAactt+
6-51



DRV PLUSH

Rush Wiite-Deferred Buffers

Entry Parantetets:
Register CL: 030H (48)

DL: Purge Plug

Returned Values:
Register AL: Enor Flag

BX: Same as AX
AH Pertnanent Bnar

The DRV~ S H system call forces the write of any write-pending records contained in
iaternal blochngfdeblochng buffets. If register DL is set ta OFHi, DRV~S H a lso purges
aG active data buffers after performing the writes. Programs that Iaovide write with read
~ sup port needed to pmge internal buffets ta enstue that verifying reads actually access
the diat inatead of returning data resident in internal data buffers. 'Ihe Concttttent CP/M PIP
utility is sn example of such a program.

Upon return, the system call seta register AL to 00H if the iiush operation is successful.
If a physical ermr is encountered, DRV~ S H p erforms different actions depending on
the BDQS Ertor mode (tefer ta the F~QtMODE system call). If the BDOS Error made is
in the default nmde, the systetn displays a message at tbe console identifying the errar and
terminates the calling process. Otherwiae, it returns ta the calling process with register AL
• et to OPPH and tegister AH set ta one af the fallowing physical error codes:

01H - Disk IIO Error: pm@anent error
02H - Read/Only Disit

• alQTAI, RESP JKH' •
6-52



DRV FREE

Free Specified Dist Drives

Entry Parameters;
Register CL: 027H (39)

DX: Drive Vector

The DRV FREE system call purges the system Lock List of all file and locked record
items that belong to the calling process on the specified drives. DRV FREE passes the drive
vector in register DX.

DRV~ E B does not close files associated with purged open file Lock List items. In
addition, if a process references a purged file with a BDOS system caH requiring an open
FCB, the system cell returns a checksum error. A file that has been written to should be
closed before making a DRV FREE call to the file's drive, or data can be lost, Refer to
Section 2. l7 for more information on this system call.

3I oIGTAL LESEAKM+
6-53



DRV GET

Return The Ceiling Process's Default Drive

Entry Pattuneters;
Register CL: OI 9H (25)

Returned Values;
Register Al.: Dr ive Number

BL: garne as AI

The DRV GET system call returns tbe calling pmcess's currently selected default disk
number. The disk numbers range firom 0 through 15, corresponding to drives A through P.

• DIGTAL kE5KAKH +



DRV GEILhHRLCaaenrssnt CP/M Progras~ G srl s

DRV GKILABEL

Return Directory Label Data Byte
For The Specified Drive

Entry Parameters:
Register CL: 065H (101)

DL: Dr ive

Returned Valrrcs:
Register AL: D i rectory Label Data Byte

AH: Physical Error
BX: Saure as AX

The DRV GETLABEL system call returns the dhectory label data byte for the specified
drive. The calling process passes the drive number in registry DL with 0 for drive A, I for
drive B, continuing through 15 for drive P in a full 16-drive system. The format of the
directory label data byte is shown below:

bit 7 - Require passwords for password protected files
6 - Perform access time and date stamping
9 - Perform update time and date stamping
4 — Perform create time and date stamping
0 - Directory label exists on drive

(Bit 0 is the least significan bit)

DRV GETLABEL returns the dhectory label data byte to the calling process in register
AL. Register AL equal to 00H indicates that no directory label exists on the specifred drive.
If the system call encounters a physical error when the BDQS Error mode is in one of the
return error modes (refer to the F ERRMODE system call), it returns with register AL set
to OFFH and register AH set to one of the following:

01H - Disk I/O Error: permanent error
04H - Invalid Drive: drive select error

6-S5



Return Bit Map Of Logged-in Disk Drives

Butty Paranmters:
Register CL: 018H (24)

Retltrt ted Values:
Register AX: Login Vector

BX; Same as AX

The DRV~ INV E C system call returns the Login Vector in register AX, 1he Login
Vector is a 16-bit valta; with the least signiftcant bit corresponding to drive A, and the high
otder bit corresponding to the l6th drive, drive P. A 0 bit indicates that thc drive is aot
logged-in, while s I bit indicates the drive is logged in. Refer to the beginning cf Section
6.2.3 for a cotnplete description of the Login Vector,

ta ntQrht LK5KAsCH' •
6-56



Reset Specified Disk Drives

Entry Parameters:
Register CL: 025H (37)

DX: Drive Vector

Returned Values:
RegisterAL: Return Code

BL: Same as AL

The DRV RESET system call is used to progrsmmatically restore specified removable
media drives to the reset state (a teset drive is not logged in and is in Read-Write status).
The passed parameter in register DX is a l6-bit vector of drives to be reset, where tbe least
signiiicaut bit corresponds to drive A, and the high-order bit cottesponds to the sixteenth
drive, labeled P. Bit values af 1 indicate that the specified drive is to be reset.. Refer to Section
2.17 for mare information reganhng the use of this system caU.

This system call is canthtianal under Concurrent CP/M. If another process has a file open
on any of the drives to be reset, the DRV~ E I ' system call is denied, and none of the
drives ate reset.

Upon return, if the reset operadon is successf'ul, DRV RESET seta register AL to OOH.
Otherwise, it sets register AH to OFFH. If the BDOS Error mode is not in Return Error mode
(refer to the F~ ODE system call), the system displays an error message at the console,
identifying the process owning the first open file that caused the DRV RESET request to be
denied.

8 M TAL sESFARCH+
6-57



Return Bit Map Of Read-Only Disks

Entry Parameters:
Register CL: 01DH (29)

Returned Values:
Register AX: RO Vector

BX: Saul, as AX

The DRV~VHC system caU returns a bit vector mdicating which drives have thc tem
porary Readily bit set. Tbe Readily bit can only be set by a DW SEHK calL

Nota; When the 6le system detects a change in the media on s drive, it antomaticaGy logs
ia tbs drive nnd sets it to Read-Write.

The farmat of the RQ Vector is analogous to that of the Login Vector. The least significant
bit corresponds to drive A; the most signiiicant bit corresponds to drive P. For a complete
descriptzrn of the RO Vector, Mer to tbe beginning af this section.

• Ki lrAL ahrAactp
&S8



Set Calling Process's Default Disk

Entry Parameters:
Register CL: OEH (14)

DL: Selected disk

Returned Values:
Register AL:

AH.'
BX.'

The DRV SET systeru call designates the specified disk drive as the default disk for
subsequent BDOS file operations. Set the DL register to 0 for drive A, I for drive B,
continuing thmugh (5 for drive P. DRV SET also logs in the designated drive if it is currently
iu the reset state. Logging in a drive sctivates the drive's directory for file operations.

FCBs that specify drive code zero (DR = 00H) automatically reference the currently
selected default drive. FCBs with drive code values between 1 and 16, however, ignore thc
selected default drive and directly refcttmcc drives A through P.

Upon return, register AL equal to 00H indicates the selectoperationwas successful. If a
physical cnor is encountered, DRV SET performs different actions depending on the BDOS
Error mode (refer to the F ERRMODE system cal!).

If the BDOS Ertor mode is in the default mode, the system displays a message at thc
insole, identifying the error and terminates the calling process. Otherwise, DRV SET
returns to the calling process with register AL set to OFFH and register AH set to one of the
following physical error codes:

01H - Disk VO Error: permanent error
04H - Invalid Drive: drive select error

ss csara. sssmce i

6-59



Caeerersat CP/lH Proaraerrrrsri Gulrte

~ Or U pdate A Duectory Label

Entry Parameters:
Register CL 054H (100)

DX: PCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Directory Cade

BX: Same as AX
AH: Physical or Extended Error

The DRV-'SETMZEL systrxn caU creates a directory label or updates the existing direc
tory label for the speci5ed drive. The calling process passes the address of an FCB containing
the narrre, type, and extent @aids to be assigned to the directory label. The name and type
Sdds of the referenced FCB are not used to locate the direcrory label in the directory; they
are simply copied into the updated or created directory label. Byte 12 of the PCB contains
the user's speciiicaticn of the directory label data byte.



DRV~K'f LABELConcurrent CP/1H Prosrammer'a Gatda

'Ee definitian of the directory label data byte is

bit 7 - Require passwords for password ptotected files
6 - Perform access tiIne and date stamping
5 - Perform update time and date stamping
4 - Perfortn create time and date stamping
0- Assign a new password to the direcmry label

(Bit 0 is the least significant bit)

If the current directory label is password protected, the correct password natst be placed
in the first 8 bytes of the current DMA or have been previously established as the default
password (tefer to the F PASSWD system call). If bit 0 of the directory label data byte is
set ta I, it indicates that a new password for tbe directory label has been placed in the second
eight bytes of the current DMA.

The DRV SEILABEL system caQ also requires that the referenced directory contains
SPCBs in order to activate date snd dme stamping on the drive. If an attempt is made to
activate date and time stamping when no SPCBs exist, the DRV SETLABEL system call
returns an ertor code and performs no action. The Concurrent CP/M IMTDIR utility ini
tializes a directory for date and time stamping by placing an SFCB in every fourth entry of
the directary.

Upon return, the DRV SETLABEL system call returns a directory cade in register AL
with the value OOH if the directory label create or update wM successful, or OFFH if no space
existed in the tefetenced directory to create a directory label, It also returns OFFH if date
and time stamping was requested aud the referenced directory did not contain SFCBs. Register
AH is set to OOH in all of these cases.

If a physical or extended error is encountered, the DRV SETLABEL system call performs
different actions depending on the BDOS Error mode (refer to the F ERRMODE system
call), If tbe BDOS Error mode is in tbe default mode, the fiie system displays a message at
the console identifying the error and terminates the calling process. Otherwise, the
DRV SETLABEL system call returns to the calling process with register AL set to OFFH
and register AH set to one of the fo! lowing physical or extended error codes:

Ol H - Disk VO Error: permanent error
02H - Read-Only Disk
04H - Invalid Drive: drive select error
07H - Password Error

6-61



C~ r rena CP/M Prcl~ ~ Gut t le

Sct Default Disk 1b Read-Only

Entry Patarnctetx
Register CL 01CH (28)

Returned Values:
Rcitistcr AL: Return Code

BL: Same as AL

The DRY SEIRO system call provides temporary write protection for the uuretttly ~
disk by marking the drive as Readily. No process csn write to a disk that is in thc Read
Qnly state, You must perform a successful DRV RESFI' operation tc restore a Read-Only
drive to the Read-WHte state (refer to the DRV ALLRHSK and DRV~ Ff system calls).

'Dtc DRV SETRO systctn call is conditional under Concurrent CP/M. If another process
has an open Blc on tbc drive, the operation is dcnicd. and the system call returns the, vahe
OFFH to the csHing process. Otherwise, it returns a 00H, If the BDOS Krmr mode is not in
Return Error olde (refer to the F HRRMODE systetn call), the tile aystetn displays sn erma'
tncessgc at the console, identifying the process owning thc first open Ks that cern@ thc DRV
SETRO request to bc denied.

Note that a drive in the Read-Only state cannot be teset by a process if another process
bas an open file on the drive.

• otolZAL RBEAkOI' •



DRV+PACEConcurrant CP/M Programmer'h Guide

DRVMPACE

Return Free Disk Space On Specified Drive

Entry Parameters:
Register CL: 02EH (46)

DL: Dr ive

Returned Values:
Register AL: Error Flag

AH: Physical Error
BX: Same as AX

First 3 bytes of DMA Buffer filied in

The DRV SPACE system call determines the riumber of free sectors (128-byte records)
on the specified drive. The calling process passes the drive number in register DL, with 0
far drive A, 1 for B, continuing through 15 for drive P. DRY&PACE returns a binary number
in the first 3 bytes of the current DMA buffer. This number is returned in the format shown
in Figure 6-5.

F80 FSt FS2

F80 = LOW BYTE
F81 = MIDDLE BYTE
FS2 = HIGH BYTE

Ftgure 6-5. INsk Free Space Field Formit

Nore that the returned free space value might be inaccurate if the drive has been marked
Read-Only.

e nioITAI, assshacH>
6-63



DRY&PACK Concurrent CP/M Progrsmmsr's Gebss

Upon return, DRV SPACE sets register AL to 00H, indicating the operation wes suc
cessful. However, if the BDOS Error mode is one of the return modes (refer to the
F ERRMODE system call), and a physical ermr occurs, it scut register AL to 0FFH, and
register AH to one of the following values:

01H - Disk VO Error: perinanent ermr
04H - Invalid Drive . drive select error

6.2.4 Fi le-Access Systssn CaBs

Most Ale-access system calls reference a File Control Block (FCB). This data structure is
illustrated in 1hble 2.1. Refer to Section 2.4 for a comprehensive explanation of the FCB
data stntcture, its ini ialization, and usage.

• DIQTAL ssssAKH' •



ATTRIBCanarreut CP/M Programmer% Guide

F ATTRIB

Set 'Ihe Attributes Of A Disk File

Butty Parameters:
Register CL: 01EH (30)

DX: FCB Address - Offset
DS: FCB Address - Segment

R~ Valu es:
Register AL: Directory Code

BL: Same as AL

By calling the ATTRIB system call, a process can modify a fiie's attributes and set its
last zecml byte count. Other BDQS system calls can mterzogate these file pamneters, but
only ATTRIB can change them. The file attributes that can be set or reset by F ATIMB
are F I' through F4', Read-Only (Tl'), Systetn g2'), and Archive (T3'). 'Ihe specified FCB
contains a filename with the appiapriate attributes set or reset. The calling pzocess must
ensure that it does not specify an ambiguous fiiename. Also, if tbe specified file is password
protected, the correct password must be placed in the first eight bytes of the current DMA
buffer or have been previously established as the default password (refer to the F PAS SWD
system calI).

Interface attribute F5' specifies whether an attended file lock is to be maintained after the
F ATTRIB caII. Interface attribute F6' specifies if the specified file's byte count is to be set.
The interface attribute definitions sie listed below:

F5' = 0 - Do not maintain an extended file lock (default)
F5' = l - Maintain an extended flle lock
F6' = 0 - Do nat set byte count (default)
F6' = I - Set byte count

If F5' is set and the referenced FCB specifies a file with an extended file lock, the calling
process maintains the lack on the file. Otherwise, the flle becomes available to other processes
on the system. Section 2.1l describes ertended flle locking in detail.

p oionnL szszhacH~



RDTTRIR Caxxcrersct CP/M PregraxexaeA Gxdde

If interface attribute P6' is set, thc calling process neet sct the CR Scid of tbc raf~
FCB to the new byte count value. A process can access a file's byte count value with the
BDOS F OPEN, F SFIRSI; and PMNEXT system calls. File byte cotmts axe described in
action 2.U.

F~TTRIB searches tbe PCB specified directory far an entry belonging to the current
user number that matdm thc FCB specified nan¹, and type Selds. Ibc system call then
updates the directory to contain the selected indicaton, and if interface attribute F6' is aet,
Ihc spsci6ed byte count vahc. Nate that dxc last record byte count is maintained in the byte
13 of a 6lc's directory FCBa.

File attributes Tl; T2; and T3' are dcfined by Concurrent CP/M aa dcscribcd in Secfion
2.4.2. Aaributcs Fl' thxough P4' of commu4 SIcs are de6ncd aa Compatibility Attributes,
as dcscribcd in Section 2.12. However, for all other Slee, attributes Pl' thxough F4' are
available for definition by the user. Attributes F$' through Pg' axe reserved as Interface
Attributes and cannot bc used as Slc amibtxtcs. Interface aurHetcs sxe described in Section
2.4.3.

An F~TIRIB system call is not performed if the referenced FCB apecifica a file cunently
open for ae¹hcr process. It ia performed, however, if tbc referenced Sic is open by the
calling process in Locked mode. However, the Sle's lack entry is purged when this is done
and the 6le system prevents conthaxed read and write operations on the Sle. P~TIRIB does
not aet the attxS¹xtrs of a Sle cunently open in Readily or Vnloched mode for any process.

Maldng an F ATTRIB system caII for an open file can adversely dFact the perfonnance
of the calling process. For this xeason, you should dose an open Sie before you call thc
F ATTRIB system call,

Upon return, FMTIRIB xetunis a dixectory code in register AL with the value OOH if the
system caU is succesafd, cr OFPH if the Sic speci5ed by tba xuferenccd FCB is uot found.
Register AH is set to OOH in both cases.

• t¹oirAL RsssAKH+



FATTRIBConcurrent CP/M Progrsntntsr' • Guide

If a physical or extended error is encountered, the F ATTRIB system call performs dif
ferent actions depending on the BDOS Ertnr mode (refer to the F~KRMODE system call).
If the BDOS Ermr mode is in the default made, the file system displays a message at the
console identifying the error and terminates the pmcess. Otherwise, it returns tu the culling
process with register AL set to OFFH and register AH set to one of the following physical
or extended error codes:

OIH - Disk VO Error . permanent error
02H - Read-Only Disk

OSH - File open by another process
07H - password Error
09H - Illegal? in FCB

04H - Invalid Drive: drive select error

Is DIQrAL RESEARCH+
647



P CLOSK Concurrent CP/1H Prairammer's Getde

Close A Disk File

Entry Parameters:
Register CL:

DX:
DS:

010H (I6)
KS Address - Offset
PCB Add+a - Segment

Retorted Valuer.
Register AL:

AH:
BX:

Dlxectory Code
Physical cr Extended Error
Same as AX

'Ibe F CLOSE system call perf'orms the inverse cperation of the F OPEN system call.
Tbe te~ FCB tn t ha ve been previously activated by a aucceasful F OPEN ar
F~ t iKB system call. Interface attributes F5' aud F6' specify how tbe file is to be claaed,
as shown below:

F5' '= 0, F6' ~ 0-Bahalt Ches
F5' = G. F6' = I -Extend Ffie Lack
F5' = I, F6' 0- Partial Close
F5' = I, F6' 1- ptutie3 Close

The P CLOSE system call performs the following steps regardless of the interface attribute
specificalion. Fhst, it verifies that the xefexeucasi FCB haa a vaiai checksutn. If the checksum
ia invalid, F CLOSE perfixms nc ection acd returns an caror code.

If the checksum is valid and the referenced FCB contains new information because of write
operation to the FCB, F CLOSE permanently records the new information in dxe dhectcry.
If the FCB does nat contain mw information, the directory update step i • bypassed. However,
F CLOSE always attercpta to locate the M3's ~ nding entry in the directory and
retuxus eu error code if the directory entry cannot be found.

If the F CLOSE system call successfully performs the above steps, it performs different
actions, depending on how the interface attributea are set. In default dose operations,
F CLOSE decremects the file's open count, which is maintained in the file's system Lock
Liat entry. If the open count decrernenta to zero, it ind lcatea that the number of default close
operations for the file matches the number of open operations.

8 DKilrwt. NARCHs



F CLOSEConcurrsat CP/M Programtuer| Guide

If the open count decrenmnls to zero, F CLOSE permanently closes the file by pcrformiug
the following steps. First of all, it rcinoves the tile's item from the systein Lock List. If the
FcB is opened in Unlocked mode, it also purges all record locks belonging ta the file froin
the system Lock List. In addition, F CLOSE invalidates the FCB's checksum to ensure the
referenced FCB is not subsequently used with BDOS system calls that require an open FCB
(for example, F WRlTE).

If the open count does not deciement to zero, F CLOSB simply returns to the calling
process and the file remains opc,n.

For partial dose operations, F CLOSE does not decrement the file's open count and returns
to the calling process. The fil always remains open following a partial close request.

Closing a tile with an extended file lock modifies the way F CLOSE performs a permanent
dose. F CLOSE only honors an extended lock request on a permanent close of a filc opened
iu Locked mode. If these conditions are satisficd, F CLOSE invalidates the FCB's checksum
but maintains the lock item. Thus, although the file is permanently closed, other poses
cannot access the file. Section 2.11 describes extended file lacking in detail.

Upon return, the F CLOSE system call returns a dhectory code in register AL with the
value OOH if the close operation is successful, or OFFH if thc file is not found. Register AH
is set to 0 in both of these cases.

If a physical or extended error is encountered, thc F CLOSE system call performs different
actions depending on the BDOS Briar inode (refer to the FMRRMODE system call). If thc
BDOS Error mode is in the default mode, thc file systcin displays a message identifying the
error at the console and terminates the calling process. Otherwisc thc F CLOSE system call
returns to the calling process with register AL set to OFFH and register AH set to onc of the
following physical or extended error codes:

Ol H - Disk I/O Error: permanent error
02H - Read-Only Disk
04H - Invalid Drive: drive select error
06H - Close Checksum Error

5 DIGITAL RESEAKH+



FMKMTK C'oncarr ent t'P/M Programmer% Gu4le

Delete A Disk File

Entry Psraineters:
Register CL: 013H (19)

DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: D irectory Code

BX: Same as AX
AH: Physical or Extended Error

The F DELETE system call removes files and/ar XFCBs that rnatch the FCB addressed
in register DX. The fileruune and filetype fields can conrain wildcard tile specifications
(question marks in bytes 1 through 11), but byte 0 cannot bc a wildcard as it can be in the
F SFIRST snd F SNEXT system calls. Interface attribute F5' specifiea tbe type of delete
operation to be performed, as shown below:

F5' = 0 - Standard Delete<Default mode)
F5' = 1 - Delete only XFCB's and maintah an extended file lock.

H' any of the files specified by the referenced IICB are password protected, tbe correct
password carat be placed in the first eight bytes of the current DMA buffer or it must have
been previously established as the default password (refer to the F PASSWD system call).

For standard delete operations, tbe F DELETE system call removes all directory entries
belonging ta files that match the referenced FCB. All dist dizectory and data space owned
by the deleted files is retarned to free space and becomes available fcr aUocation to other
files. Directory XFCBs that were owned by the deleted filcs are also removed from tbc
directory. If interface attribute F5' of the FCB is sct to 1, F~ELEIE deletes only the
directory XFCBsmatchingthe referenced FCB.

• DKilr+ RR$8U+H+
5-70



FMELETEConcurrent CP/M Propnmmer'h Guide

Note. I f any of the files matching the input FCB specification fail the password check, ate
Read-Only, or are currently open by another process, then F DELETE deletes no RIes ar
XFCBs. This applies to both types of delete operations.

Interface attribute F5' also specifies whether an extended file lock is to be maintained after
the F DELETE call. If F5' is set and the referenced FCB specifies a fiie with an extended
lock, the calling process maintains the lock on the file. Section 2.11 describes extended file
lacking in detail.

A process can delete a file that it currently hss open if the file is opened in locked mode,
However, the BDOS returns a checksum error if the process makes a subsequent reference
ta the fiie with a BDOS systein call requiring an open FCB. A pmcess cannot delete fiies
open in Read-Only or Unlocked mode.

Deleting an open file can advmely affect the performance af the calling process. For this
reason, you should close an open file before you delete it.

Upon return, the DELETE system call returns a dhectory code in agister AL with the
value OOH if the delete is successful, or OFFH if aa Rle inatching the referenced FCB is
found. Register AH is set ta 0 in both of these cases. If a physical ar extended error is
encountered, F DELETE performs different actions, depending on the BDOS Error mode
(refer ta the F ERRMODE system call).

If the BDOS Error mode is the default mode, dM system displays a messsge identifying
the error at the console snd terminates the calling process. Otherwise, it returns to the calling
process with register AL set to OFFH and register AII set to one of the following physical
ar extended error codes:

01H - Disk VO Error: permanent error
02H - Readi l y Disk
03H - Readily File
04H - Invalid Drive: drive select ermr
05H - File opened by another process or open in Read-Only or Unlocked mode
07H - password Error

k5 DIGITAL RESKAaCHe
6-71



Return ~ Of Di r ect
Memory Access Buffer

Entry Parameters:
Register CL: 034H (52)

Returned Values:
Register AX. DMA Offset

BX. Sane ss AX
ES: DMA Segment

F DMAGET returns the current DMA Bsse Segment address ia ES, with the current
DMA Offset in AX.

• ctQrAL sssKARCH+



F J)MAOF FConcurrent CP/M Pregratnater| Guide

Set The Direct Memory Address Offset

Entry Faratneters:
Register CL: 01AH (26)

DX: DMA Addtets - Offset

DMA is an acmnym for Direct lvlcmory Address, which is often used with disk controllers
that dhectly access thc memory of the computer to transfer data to and from thc disk sub
system, Under Concurrent Cp/M, the current DMA is usually defined as the buffer in memory
where a xecord resides befoxe a disk write and after a disk read operation, If thc BDOS
Multiscctor Count is equal to onc (xcfer to the F MULTISEC system call), thc size of the
buffer is l28 bytes. However, if the BDOS Multiscctor Count is greater than onc, the size
of the buffer xuust equal N ~ i28, where N equals thc Multiscctor Count.

Some BDOS system calls also use the current DMA to pass ~t ee an d to teturn
values, For extunpic, BDOS system calls that check and assign ftlc passwords rcquhe that
tbc password be placed in the current DMA Buff'er, As another example, DRV SPACE
returns its results in the ftxst 3 bytes of the current DMA, When thc curtent DMA is used in
this context, the size of thc buffer in mentory is determined by the specific requirements of
thc system call.

When the P CLI system call initiates a transient prognun, it acts the DMA offse to 080H
and thc DMA Segment or Base to its initial Data Segment. DRV~LLRESET also sets the
DMA offset to 080FL The F~MADFF system call can change this default value to another
memory address. lite DMA address remains at ita cunent value until it ia changed by an
FMMASEG, F DMAOFF, or DRV~LR ESET calL

S DfolTAL RESEARCH+
6-73



Set Direct Memory Access
Segment Address

Entry Ruarneters:
Register CL: 033H (5l)

DX: DMA Segment Address

FMMASEG acts thc segment value of the current DMA buffer address. 'Oe word partun
cter in DX is a paragraph address and is used with the DMA offset value to specify thc 20
bit address of the DMA bttifsr. Refer to the F~MAOPF sylem cali for aMtieal iafmnstlorr,

Note that upon initial program loading, the default DMA base is set to the address of the
user's data segment (the initial value of DS) and the DMA offset is set to 080H, which
provides access to the default buffer in the Base Page.

• M' hL arsshkCH ~



Caacarraul CP/M I'eogrmauur'I GsSe

F ERRMODK

Set BDOS Error Mode For Error Returns

Entry Parameters:
Register CL 02DH (45)

DL: BDOS Ermr mode

The BDOS Error mode is a system parameter maintained for each running process that
determines how the 61e system handles physical and extended errors. Physical and extended
ernus are described in Section 2.1S. The BDOS Error mode hss three states: the default
mode, Return Error mode, and Return and Display mode.

If a physical or extended ermr occuts when the BDOS Error mode is in the default mode,
the BDOS displays asystem message at the console identifying the error and terminates the
calling process.

If s physical or extended error occurs when the BDOS Error mode is in Return Error
mode, the BDOS sets register AL to OFFH, places an error code identifying the physical or
extended enor in register AH, and returns to the calling process.

If a physical or extended error occurs when the BDOS Error mode is in Return snd Display
mode, the BDOS displays the system message before returning to the calling process, and
sets registers AH and AL as in the Return Error mode.

The F ERRMODE system call sets the BDOS Error mode for the calling process to the
tnode specitied in register DL. If register DL is set to OFFH, the mode is set to Return Ermr
mode. If register DL is set to OFEH, the mode is set to Return aud Display mode. If register
DL is set to any other value. the mode is set to the default tnode.

s s DlulfAL ~ +
6-75



FMOCX Cenetursnt CP/M Progra»»sA Gulls

Lock Records In A Disk File

Eery Paranmters:
Register CI . 02AH (42)

DX: PCB Address - (offse
DS: PCB Address - Segment

Returned Values:
Reghrier AL E nor Code

AH: Physical Error
BX: San» as AX

The P LOCK system ceQ allows a process to estahHah temporary ownership ta particular
records within a file. Thi • system call is only aupparted far files open in Unlocked made. If
n is called far a Sle open in Locked ar Readily mode, no lacJdng ection ia performed and
a succesaM result is returned. This provides compatibility between Concurrent CP/M and
CP/M-86.

Tbc calhng process pssase tbe address of an FCB in which the random record QeM is filled
with the Random Record Number of tbe firat record to be lacked. The tsimber of records ta
be lacked is deterrruned by the EDOS Multussctor Count (refer to thc F~LT I SEC system
caU), The current DMA naist also contain the 2-byte File ID returned by F OPEN ar
PM' & w ban the referenced HCB waa opened. Note that thc File ID is only returned by
tbe F OPEN snd F~VR system call wbeu the Open mode is Unlocked.

Interface attribute FS' spadfiea tbe type of hck to perform. Interface attrihue F6' specifies
whether neon@ have to exist in order to he locked, The F~ K in t erface attribute defi
nitions are listed below:

PS' = 0- Hxchudve lock (default)
F5'= I - Shared lock
F5' = 0 - Lock existing records only (default)
F6' = I - Lock logical records.

These options are described in detail in Section 2.14.

6-76



F J,OCstCanswrrsat CP/M Programmer's Gaids

F~ vcri f f cs that a lacking confiict with another process does not exist for each af
the records to bc lacked. In addition, if F UXX is called with attribute F6' reset, it also
verifie that each record nuiuber to bc lacked exists vnthin the specificd file. Bath testa are
made before any records axe locked.

Most F LOCK requests require a nsw entry in the BDOS system Lock List. If there is
insufficient space in the system Lock List to satisfy thc lack ~ , or i f the process record
lack Ihnit is exceeded, then F LOCK docs not lock any iecords and returns sn error code
ta the calling process.

Upon return, thc F LOCK system call sets register AL to OOH if the lock operation is
successful, Otherwisc, register AL contains onc of the fallowing ermr codes:

OIH - Reading unwritten data
03H - Cannot close current extent
64H - Seek to unwritten extent
06H - Random Record Nmnber out af range
OSH - Record lacked by another process

OAH - FCB Checksum Erxar
OBH - Unlocked file verification error
OCH - Process record lock liinit exceeded
ODH - Invalid File ID
OEH - No Rcoin in system Lock List

OPFH - Physical error; iefcr to register AH

The system call returns error code OIH when it accesscs a data block that has not been
previouslywritten.

The system calI returns ermr code 03H when it cannot close the current extent prior to
moving ia a ncw extent.

The sys lcm call returns error cade 04H when it accesses an extent that has not been created.

The system call returns error code 06H when byte 35 (R2) of ihe referenced FCB is greater
than 3,

The system call returns ermr code 08H if thespecified record is locked by another process
with an incompatible lack type.

• nlairAL srsshsc H' •
6-77



FJ OCK Conaarsut CP/M Progrsramer's GuMe

The system call returns error code OAH if tbe referenced PCB failed the PCB checklnn

The system call returns error code OBH if the BDOS cannot locate the referenced PCB's
dhectory entry when attempting tu verify that the FCB contains current information.

The system call returns error code OCH if performing the luck request would require that
the process consume mote than tbe maximum allowed mnnber of system Lock List entries.

The system call returns error cade ODH when an invalid Pile ID is placed at the beginning
of the cunent DMA.

Thc system call returns error code OEH when the system Lock List is MI and performing
the lock request wouM require at least one new entry.

The system call returns error code OFFH if a physical error is encountered, and thc BDOS
Ermr mode is either Return Error mode or Return and Display Error mode (refer to the
F~ ODE s ystem cali). If the Error mode is in tbe default mode, thc system displays a
message at thc console idendfyiug thc physical error and terminates thc calling process.
When the system call returns a physical error to the calling process, it is identiticd by register
AH as shown below:

OIH - Disk I/O Error: permanent cnar
04II - Invalid Drive: drive sclcct error

e ototrAL atssAactt~



Concurrent CP/M Programmer's Golds

~t e A Disk File

Entry Psnuneters:
Register CL:

DX:
DS:

OI6H (22)
FCB Address - Offset
FCB Address — Segment

Returned Values:
Register AL: Directory Code

Physical or Extended Ertor
Same as AX

AH:
BX:

The F MAKE system call creates a new directory entry for a lile under the current user
number, It also creates an XFCB for the file if the referenced drive has a directory label that
enables password protection on the drive, and the calling process assigns a password to the
Se.

The calling process passes the address of the FCB with byte 0 of the FCB specifying the
drive, bytes l through 11 specifying the filename and liletype, and byte 12 set to the extent
number. Byte l2, the EX fiield, is usually set to 00H. Byte 32 of the FCB, the CR Iield, mast
be initialized to 00H, before or after the F MAKE call, if the intent is to write sequentially
from the beginning of the file.

Interface attribute FS' speci6es the made in which the file is to be opened. Interface
attribute F6' speciiies whether a password is to be assigned to the created Iile, The interface
attributes are summarized below:

FS' = 0 - Open in LocM made (default)
F5' = 1 — Open in Unlocked made
F6' = 0 — Da nat assign password (default)
F6' = 1 - Assign password ta created file

I 0[GlTAL atsEAaCH'~
6-79



Cmaarsat CP/M Proyaxaaisri Gunk

When «ttribute P5' ia set ta I, the calhng process nsxst place the password in the first 8 bytes
of tbe current DMA hdfsr and set byte 9 af the DMA buffer to the password mode. Nate
that P~ K an i y inteixogates attribute P6' if the referenced drive'k dhectory label has
enabled password support. The XFCB password mode is sumnuuized below:

Bit 7 - Read mode
Bit 6 - Write mode
Bit 5 - Delete mode

The FUvfAKE system call xeturns with an crmr code if tbc referenced PCB names a file
that currently cxiats in thc direettsry under the Curreru user number. If there is any pOSSihility
of duplication, an PMELETE call should precede the P 3VQK call,

If dtc make fil oper«non is success&, it acdvates the referenced PCB for record operations
(opcoS the PCB) snd initiaiireS bOth the dirac«Xry entry and thc refexeMed FCB to an empty
file. It ahe Compute« a checkaum Rnd «Reigns it tO the PCB. BDOS syatcin calls that require
an open FCB (for example, F WRITE) vcrif'y that the FCB checksum is valid. before per
forming their operation. If the file is opened in Unlocked mode, F MAlK also sets bytes
RO and Rl in the FCB ta a two-byte value c«IIed the FIIc ID, The Pile ID is a reqaixed
parameter far thc BDOS Lack Record and Unlack Record system calls. Nore that the
P~ E sy s tem calI imtiaiises all IIIc «ttributes ta 0.

The BDOS file system also creates an open fi.le item in the system Lock List to record s
successful P~K E oper«tion. While this item exists, no other process can delete, rename,
truncate, or set the file atlxibutes of this file.

A creation and/or update stamp is made for the created file if thc reiexenccd drive contains
a directory label that enables cxeathm and/ar update time and date stamping and the FCB
extent number is equal ta 0.

P~ E als o cieates an XFCB fOr thc created file if the referenced drive Cantsine a
directory label that enables password protection, interface attribute P6' of the PCB is l, and
the PCB is an cahot zero FCB. In addition, P MAKE also assigns the pssswaxd and password
mode placed in the first nine bytes of thc DMA to the XFCB.

Upan return, the P MAKE system call returns a directory code in register AL with the
value 00H if thc ma!re operatian is successiul, or OPPH if no directory space is available.
Register AH is sci to 00H in both cases.

I oiairAL RESEARCH' •



Coceument CP/M Programmeri Guide

If a physical or cxtendcd error is cncountcnxl, the F~VK system call performs different
actions depending on thc BDOS Error mode (refer to the F~GtMODE system call), If the
BDOS Error mode is in the default mode, thc system displays a mcssagc at the console
identifying thc error and terminates thc calling pmccss, Othcrwisc, it returns to thc calling
process with register AL sct to OFFH and register AH set to one of the foUovring physical
or extended error codes:

Ol H - Disk I/O Error: permanent error
02H - Read-Only Disk
04M - Invalid Drive . drive select error
08N - File Already Exists
09H - Illegal? in FCB
OAH - Open Pile Limit Exceeded
OBH - No Room in system Lock List

as nKirrAL IlssthRCH+



F~ I Z XSIC Ccecerrms CP/M Program~'e Guttle

Set BDOS Multisector Count

Entry Parameters:
Register CL: 02CH (44)

DL: Number of Sectors

Returned Values:
Register AL: Return Code

BL: Same as AL

The P~ULTISEC system call provides logical record blocktng under Concurrent CP/M.
It enables a process to read and write from I to 128 logical records of 128 bytes at a time
during subsequent BDOS read and write system calls. It also speci6cs thc number of 128
byte records to bc locked or unlocked by the P~ and F UNLOCK system caUs.

P MULTISEC sets thc Multiscctor Count value for the calling process to the value passed
in rcgistcr DL. Once sct, thespecified Multlsector Count mmains in effect until the caU
ing process makes another F~ TIS EC ~ ctdi estd changes tbe vahte. Note that the
P CU system call acts the Multisector Count to onc when it initiates a transient prouss.

The Multiscctor Count affects BDQS error reporting for the BDOS read and writesystem
caUs, With the exception of physical errors, if an error occurs durhtg these system caUs and
the Multiscctor Count is greater than onc, the system returns the number of mcords success
fully processed in register AH.

Upon return, the system call sets register AL to OOH if the specified value is in the range
of 1 to I28. Otherwise, it sets register AL to OFPH.

• ntotrht LKsshttcHI



FMpENConcurrent CP/M PrograrumEA Gtdds

F OPEN

Open A Disk File

Entry Parameters:
Register Cl OFH (lS)

FCB Address - Offset
FCB Address - Segment

DX.'
DS:

Returned Values:
Register AL: Directory Code

Physical or Extended ErrorAH:
BX: Same as AX

The F OPEN system cail activates the FCB for a file that exists in the disk directory under
thc currently active user number or user zem. The calling pmcess passes the address of the
FCB, with byte 0 of the FCB specifying the drive, bytes 1 thmugh 11 specifying the filename
aud filetypc, and byte 12 specifying thc extent. Byte 12 is usually set to zero.

Interface attributes FS' and F6' of the FCB specify ihc mode in which the file is to be
opened, as shown below:

FS' = 0 , F 6' = 0 - Open in Locked mode (Default mode)
FS' = 1, F6' = 0 - Open in Unlocked mode
FS' = 0 or 1, F6' = 1 - Open in Read-Only mode

If the file is password protected in Read mode, the correct password nnst be placed in the
first eight bytes of the current DMA or have been previously established as the default
password (refer to the F PASSWD system call). If the current record field of the FCB, CR,
is set to OFFH, the F OPEN system cali returns the byte count of the last record of the file
in the CR ficld. Thc last record byte count for a fil can be set using the FMTrRIB system
cail.

Nota: Thc calling pmccss must sct thc CR field of thc FCB to OOH if thc filc is to be
accessed sequentially from the first record.

5 uKiriAL RESEARCH+
6-83



Concurrent CP/M Pxcgramaerb GaMe

The F OPEN system call petfortns the following steps fcr Slee apeued in lacked ar Read
Only mode. If the curxcnt user is nmuexa and the file tn be apeued does not exist under tbc
cuneuf user number, the F OPEN systetn call searches user 0 for tbe Sle. If the file exists
under user 0 and has the system attribute P2') set, the Sle is opened under user 0. The Open
mode is aatamatically set to Read~y wbeu this is dane.

The F OPEN system call also performs the following action for film opened in locked
mode. If the file has thc Read&a]y at tribute (T! 'j sct, thc Open mode is automatically set
ta Read-Only. Note that Read-Only mode iinplics the file can be concurrently accessed by
other processes lf they also open the filo in Read-Only made.

If the open operation is successful, F OPEN activates the user's FCB for record operations
es follows: F OPEN copiea the relevant directory infattnatian ftatn tha matching directory
FCB into bytes DO dnaugh D15 of the FCB. It aho computes a checksum and assigns it to
tbe FCB. AU BDOS system calls that require an open FCB (for example, F~ D) v e r i fy
that tbe FCB checksum is valid befare performing their operation.

If the fllc is opened in Unlocked ntode, the F OPEN system call seta bytes RO and Rl of
the FCB ta a two-byte value caHcd the File ID. The Ke ID is a iequhed parameter for tbe
F~ K a u d F UNLOCK system calls. If the Opou mode is forced to Read-Only, F OPEN
sets ittterface attribute F8' ta 1 in the user's FCB, In additian, the system call sots attribute
PT' to 1 if the xe6arauced Sle Ia password protected in Vrxta mode aad tbe carxect pasaexcrd
waa nut passed in tbe DMA or did not match the default password. 'Ihe BDOS does nat
support write operations far an activated FCB if interface attribute Fl' or FS' is sct to l.

'Ile BDOS Sle system also creales an open Sle item in tbe system Lock List to record a
• uccessftd apen file operation. While this item exists, no other process can delete, rename,
ur modify the Sle's attributes. In addition, this item prevents other processes from opening
tbc 6le if the flle is opened in Lacked mode. It also requires that other processes match thc
fiie's Open mode if the flle ia opened in Unlocked ar Read-Only mode. 'Ihis item remains in
tbc system Lack List until the Sle is pertnancntly closed or until tbc process that opened tbc
file ternuxuttes.

When tbe open aperatian is successful, the F OPEN system call also makes an access
dme and date stsxnp for the opened Sie when thc following conditions are satisfied: the
referenced drive has a dixectory label that requests access date and tine stamping, thc FCB
extent fleld is equal to zero, and tbc refcrenccd drive is Read-Write.

• aKitrAL RBEARCH' •



F OPENConcurrent CP/M Programnrer's Guide

Upon return, F OPEN returns a dhectory code in register AL with the value OOH if the
open is successful, or OFFH if the file is not found. Register AH is set to 0 in both of these
cases. If a physical or extended error is encountered, the F OPEN system call performs
different actions depending on the BDDS Error mode (refer to the FMRRMODE system
call). If the BDOS Error mode is in the default mode, the system displays a message iden
tifying the error at the console and terminates the process. Otherwise, F OPEN returns to
the calling process with register AL set to OFFH snd register AH set to one of the foliowing
physical cr extended error codes:

OIH - Disk VO Error: permanent error
04H - Invalid Drive: drive select error
05H - File is open by another process or by the current process in an incompatible

0/H - Password Error
09H - Illegal? in FCB
OAH - Open File Linut Exceeded
OBH - No Room in system Lock List

mode

ss DKITAL RESEhRCH+



FP ARSE Cuuewrertt CP/M Proaruruuter's Guide

R PARSE

Parse An ASCII String
And Initialize An FCB

Entry Parameters:
Register CL: 098H (152)

DX. 'PPCB Address - Offse
DS: PFCB Address - Segment

Returned Values'.
Register AX'. OFPFIrH if error

0 if cnd of filename string
0 if end of ltncadEtresS Of next item
to parse
Same as AX
Error Code

BX:
CX:

FILENAME FCB ADR

Figure 64. PFCB-Puree FNsnarrts ControlBIOEk

• nIOITAL RESEAaote
6-86



PARSEConcurrent CP/lH Programmer's Gukla

'lhMa 6-11. PFCB FieN IMlnIOm

DescriptionField

FILENAME Offset of an ASCII file specification tn parse. The offset is relative
to the same Data Segment as the PFCB.

Offset of a File Control Block to initialize. The offset is relative to
tbe same Data Segment as the PFCB.

%am F PARSE system call parses an ASCII filc specification (FILENAME) and prepares
a File Control Block (FCB). The calling process passes the address of a data structure called
the Parse Filenaine Control Block, (PFCB) in registers DX and DS, The PFCB contains the
offset of the ASCII filcname string followed by the offset of the target FCB.

F PARSE assumes the file spccification to be in the following form

(D;} FILENAME (, TYP} (;PASSWORD}

where those items enclosed in curly brackets are optional.

The PARSE system caH parscs the first file specification it finds in the input string. First
of all, it eliminates leading blanks and tabs. F PARSE then assumes the file specification
ends on the first delimiter it encounters that is out of context with the specific field it is
parsing. For instance, if it finds a colon (.), and it is not the second character of the file
spccification, the colon delimits the whole file specificatio.

6-87



Cenelerent CP/M Programmer'I Gallic

The F~B sys tem call recognizes the following characters sa delimiters:

space
tab
return
null

(semicolon) - except before password Geld
(equal)
(less than)
(gteater than)
(period) accept after iilename and before iiletype
(colon) - except hefom 51ename and after drive
(comma)
(vertical bar)

[ ( le f t sqwue bracltet)
] (r i ght squam braclmt)

lf the F PARSE system call encounters a nongraphic c~ in t h e range I through 31 not
listed above, it treats the character as an error.

The PEARSE system call initialises the apeciiled FCB as shown in TaMc & 12.

• raQTAl RE5EARCHa



PARSEConcurrent CP/M Frogrsinmera Gutds

Zhhle 6-12. FCB Irtlthlhatlon

Byre number

byte 0

byn: 1-8

byte 9-1 l

byte 12-IS

byte 16-23

The drive field is set to the specified drive. If the drive is not specified,
the default value is used. O= default, I =A, 2=B, etc.

The name is set to the specified fllensme. All letters are converted to
uppercase. If the name is not eight characters long, the remaining bytes
in the filename field src padded with blanks. If the filename has an
asterisk (~), all iemainiug bytes in the filename field are filled in with
question marks (?). The systeru call returns an error if the filename is
more than eight bytes long.

The type is set to the specified filetype, If no type is specified, the type
fleld is initialized to blanks. All letters are converted to uppercase. If
the type is not three chartscters long, the reinaiuing bytes h the filetype
fleld are padded with blanks. If an astrnisk is encountered, all remain
ing bytes Me filled in with question marks. The systeiu call returns an
enur if the type fleld is mote than 3 bytes long,

Filled in with zeros.

The password field is sct to the specified password. If no password is
specified, this field is initialized to blanks. If the password is not eight
characters long, remaining bytes are padded with blanks. All letters
are converted to uppercase. 'HN system call returns an error if the
password field is more than eight bytes! oug,

Reserved for system use.byte 24-31

If an ermr occurs, F PARSE returns OFFFFH in registrs' AX indicating the error.

0 Qrsfhl. RE56hncH+



Concia'raut CP/M Pmgraaiasr'b Gutde

On a successful parse, the F~E sys tem call ~ t he n ext item in ths FKZNAME
string. It scans for tbe hst chuacter that follows trailing blanhs and tabs. If the character is
a lba feed (OAH), a carnage iutnrn (ODH), or a null character (NH), it returns a 0 iudicatmg
Ihe end of the FlLEYAMB string. If the next character i • a delimiter, it returns the address
of ths debmiter. If the text character is not a delimiter, it returns the address of the Srst
traiTing bhudc or tab.

lf the FMARSB system cail is to be used to parse a subsequent 53ename in the FILENAMB
stang, the returned address sbouM be advanced over the delniuter before piscmg it m the
FPCB.

Refer to lhble 6-5 $or a list of etror codes returned in CX.

5 NQTAL assthacH+



Establish A Default Password
For File Access

Entry ParanMters:
Register Cl.: 06AH (106)

DX: Password Address - Offset
DS: Password Address - Segment

'Ae FMASSWD system call allows a process to specify a password value before a Me
protected by the password is accessed. When the Gle system accesses a password-protected
gie, it checks the current DMA, snd the default password for the ~ value . If either
value matches the file's password, full access to the file is allowed.

Concurrent CP/M maintains a default passwoid for each pnmss running on the system.
A new process inherits its initial default password from its parent, the process creating the
uew process,

Note: Changing the default password does not affect other processes currently running on
the system,

'lb make an F~ASSWD call, the calling process passes the address of an eight-byte field
containing the password,



Return The Random Record Number Of The
Next Record Tb Access in A Disk File

Entry Panunetera:
Register CL: 024H g6)

DX: PCB Address - Offset
DS: FCB Address - Segment

Returned Values: Random Record Field of FCB Set

The P~ REC system call returns the Random Record Number of tbe next record to
be accesrmd from a Ke that has bean read or written ssqueiitiaHy to a particular point. The
system call returns this value in thc Random Record fiaM, bytes RO, Rl, and R2, of the
addressed PCB. Re F~ i N DREC system call can be useful in two ways.

First, it is often izcessary to initially read snd scan a sequential file Lo extract the posilrions
af various ksy fieMs. As each kay is encountered, P~ R E C is caGed to compute the
random record poaMon fur tha data correaporahng to this key. if tha data urnt size is 128
bytes, the resulting record amber minus one is placed into a table with the key for later
retrieval.

A6cr scanning the enthe file and tabularizing the keys and their record numbers, you can
move directly to a particular record by performing a random msd using the corresponding
Ra@km Record Number that was saved eadier. Tbs schema is easily geuarahxad when
variable record Iengdts are involved. ~ thc p rogram need only store the buffer relative
byte position ahng with the lay and record number in order to fmd the exact starting position
of the keyed data at s httar dme.

GR E C ca n also be used when switching from asequential read or write to a random
read or write. A file is sequentially acceaad to a particular point in the file, F RANDRBC
is called to set tbe record nmnber, and subsequent randmn read and write operations contiiaie
from the next record ln the file.

1 ntnirsi. ssMAacki



Concurrent CP/M Programmer'5 GuMe

Read Records Sequentially
From A Disk File

Entry Parameters:
Register CL:

DX:
DS:

014H (20)
PCB Address - Offset
FCB Address - Segment

Returned Values:
Register AL: Error Code

AH: Physical Enor
BX:- Same as AX

The F READ system call reads the next I to 128 12!l-byte records from a file into mem
ory, beginning at the current DMA address. Tbe BDOS Multisector Count (refer to the
F~ LTl SEC system cail) determines the auinber of records to be read. The default is
one record. The addressed FCB must have been previously activated by an F OPEN or
F MAKE system csII.

F READ reads each record froin the current record (CR) field in the FCB, relative to the
current extent, then automatically increments the CR field to the next record position. If the
CR field overflows, then F READ automatically opens the next logical extent and resets the
CR fleld to zero for the next read operation. The calling pocess must set the CR field to 00H
following the open call if tbe intent is to read sequentially from the beginning of the file.

Upon return, the F READ system call sets register AL to zero if the teed operation is
successful. Otherwise, register AL contains an error code identifying the error as shown
below:

01H - Reading unwritten data (end-of-file)
08H - Record locked by another process
09H - Invalid FCB
OAH - FCB Checksum Error
OBH - Unlocked file veriflcation error

OFFH - Physical error, refer to register AH

ai olGJTAL RERhRCHI
6-93



Cencmmt CP/M PrcgrausmcA Grdas

'Htesystem caII returns err'' code OIH if no data exists at tbe next record position of tbe
filc. The uo data situation is usually encountered at the end of a fiic. However, it can also
occur if you try to read a data block that has not been previously wrhtm or an extent that
baa not been crested. These 847anons sre usually restricted to filles created cr appended with
thc BOOS random write system calls (F WRHERAIW and F Vi%ITEZP).

Tbesystem call returns enor code 08H lf the calling pmceu ~ to re ad a record
locked by another p m' w i th an exclusive lock. This mar code Is only returned for fiies
opened m Unlocked mode.

Tbe system call returns error code 09H if the FCB ia invalidated by a previous F CLOSE
aysteln call that returned an enur.

Tbe system caII returns enor code OAH if the referenced FCB failed the K33 checksum
test.

Thc system calI returns enor code OBH if the BDOS cannot locate tbe PCB's directory
entry when attcmptmg to vaify that the refaenced PCB contain cunent information. Tbe
s ystem call only returns this cnor for fiIcs opened in U~ mode .

The system call returns error code OFFH if a physical enor I • encountered snd the BDOS
Enor mode is in one of thc return modes (refcr to the FMRRMODE system call). If the
Enor mode ia In the default mode, the file system displays a message at the console identifying
the pbyaicaI enor and tcrnunates the calling process. When the system call returns a physical
error to the calling pnxess, it is identificd by register AH as shown below:

OIH - Disk I/O Error: permanent error
04H — Invahd Drive: drive seIect orna

On sll enor returns, except for physicalenor returns (AL = 255), F~ seta register
AH to the number of records successfully read befme the enor was encountered. TMs value
can range from 0 to 127 depending on the cunent BDOS Multiaector Count. It is always set
to zero when the Mul~ Cou n t ia equal to one.

• uKirrAL sssrARcH'+



FmaADRANOCanamrsnt CP/IVI Pragramnisr1 Guide

Read Raadom Records
Fram A Disk File

Entry Paratnems:
Register CL: 021H (33)

DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Error Code

AH. Physical Error
BX: Same as AX

The F~ DRA N D system call is similar to the F READ systetn call except that the
read operation takes place at a particular Random Record Number, selected by the 24-bit
value constructed from the three-byte, RO, Rl, R2, field beginning at position 33 of the
FCB. Note that the sequence of 24 bits ia stared with tll least significant byte Grat, RO, the
middle byte next, Rl, and the high byte last, R2. The Randotu Record Number can tange
kom 0 to 262,143. This conespands to a maxiruum value of 3 in byte R2.

'ib read a file with the F READRAND system cail, the calling process must first open the
base extent, extent 0. This ensures that the FCB is properly initiahzed for subsequent randoin
access operations. The base extent might or might not cantain any allocated data.

The F READRAND system cail reads the record specified by the random record field into
the current DMA address. F READRAND automatically seta the FCB extent and current
recard number values, EX and CR, but unlike the F~ sys tem call, it does not advance
the current record number. Thus, a subsequent F READRAND call rereads the same record.
After a random tead operation, a file can be accessed sequentially, starting from the current
randomly accessed position. Haweva; the last randomly accessed record is reread or rewritten
when switching from random to sequential mode.

If the BDOS Multisectar count is gteater than one (refer ta the F MULTISEC system
cali), F READRAND readsmultipleconsecutive records into memory beginning at the
current QMA, F READRAND autarnaticaliy increments the RO, Rl, R2 field of the PCB
to read each record. However, it restores the FCB's Random Record Number to the first
tecard's value upon return ta the calling process.

1 MTAL aasahscH+
6-95



FMEADRAÃB Con~su( CP/M PregrsauesA GeMs

Vpon return, F READRAND acts regurter AL to 00H if the zead operation ia successful.
Otherwise, register AL contains aae of tbe foilawhzg error codes:

OI H - Reading unwrittea data
03H - Cannot close current extent
04H - Seek to unwritten axteat
06H - Random Record Number out af range
OSH - Record locked by another process
OAH - PCB Checksum Error
OBH - Unlocked file verificatio error

OFPH - Physical erzar; refer to register AH

The ayslem ca0 returns error code 01H when it accesses a data block not previously written.
This may indicate an endwf-file (BOP) condition.

The system cali returns error code 03H when it cannot close the current extent prior to
moving ta a new extent.

The system calI zetuzze ezznr code 04H when a zead random operation accesses sn extant
that has not been created.

The system ca0 nstuzus ema cade 06H wbau byte 35 9Q) of the zefiszseced PCB ia greater
than 3.

The system call returns error cade 08H if tbe calling proces ~ ta re ad a record
locked by another ptoceta with an exclusive lock. This erzor cade ia anly returned for files
opened in Unlocked mode.

The system call returns error code OAH if the referenced PCB failed the FCB checksum

Tbe system call returns ermr code OBH if the BDQS cannot locate the FCB's directory
entry when attempting ta verify that the referenced PCB contains cuzzent information, Ths
system call only returns this ezzcr for files apeu in Unlocked mode.

• DKiB'AL RESBgCH+



FMEADRANDConcurrent CP/M Programmer's Guhle

The system eaII returns error code OFFH if a physical emr is encountered snd thc Bing
Error mode is in onc of the return modes (aehr to the F~ HOD B systctn caQ). If the
Error mode is in the default mode, thc Sc system displays a message at the console identifying
thc physical error snd terminates thc caHing pmcess. When a physical error is returned to
the calling process, it is identified by the four Iow-order bits of tcgistcr AH as shown below:

01H - Disk I/O Error: pcrnumcnt error
04H - Invalid Drive: drive select error

On all error tcturns except for physical error returns, AL = 255, F~ RAND sets
register AH to the munbcr of tccords successfully read before the error was encountered.
'IMs value can range from 0 to 127 depending an the current SDOS Multisoctor Count. It
is always set to zero when the Multisector Count is equal to one,

6-97



Concxsr ant CP/M Pregrsxaasr'a Golds

Entry Panunctcrs:
CL 017H (23)
DX: FCB Addxess - Oifset
DS: FCB Address - Scgrrent

Retuxued Values:
Register AL; Directory Code

BX: Same as AX
AH: Physical or Extended Erxm

Tbe F~ AME system caH uses tbc referenced FCB to change aII directory cntrics of
the fiie spccified by the dxive aud filcnamc io bytes 0 to 11 of the FCB to the fileuame
apccified in bytes 17 thxough 27.

If thc file spco{ficd by the first fiicname is password-protcctcd, the correct password must
be placed in the fixat eight bytes of the current DMA buffer, or have been previously estab
lished as the default password (refer ro the F~ WD s y stem caH).

Tbc caUing process must also ensure that the filcuames spccified in the FCB sxe valid and
unambiguous, and that the new filcname does not alxeady exist on the drive. F~ AME
uses tbc drive code at byte 0 of the FCB to sehct tbe drive. Tbe drive code et byte 16 of the
FCB is ignored.

Interface attribute FS' apccifica whether an exteadcd foe kek ia to be maintained after the
ATTRIB call as shown below:

FS' = 0 - Do not maintsm an extended fil lock (default)
FS' = I - Maintain an extended fiic lock

If FS' is set and the referenced FCB spccxfies a file with an extended file lock, the calling
process maintains the lock on the fil, Otherwise, the fil becomes available to other processes
on the system. Section 2. l I describes extended file lockmg in detail.

• DKilrA{. axsshacH+



FILENAMECoansrrsat CP/M Programiasr'a Gutde

A process can renainc a file that it has open if the fil is open in locked mode. However,
thc BDOS returns a checksum cixor if thc process subsequently refercnccs thc file with a
systcxxi call requiring an open FCB, A file open in Read-Only or Unlocked mode cannot be
rcniuned by any process,

Renaming an open file can adversely affect tbe performance of the calling process. For
this reason, you should close an open filc before you rename it.

Upon return, tbc RENAME system call returns a dixectory cade in rcgistcr AL with
the value 008 if the renainc is successM, or OFFH if the file named by the first filcnamc in
the FCB is not found. Register AH is sct to OOH in both of these cases. If a physical or
cxtrsidcd error is encountered, the F~ A M B system call perforxns dilferent actions depending
on the BDOS Exxor mode (refer to thc F~RRMODE system call). If the BDOS Error mode
is in thc default mode, thc systcin displays a message at thc console identifying the error,
and terminates the process, Otherwise, it returns to the calling process withregis' Al, set
to OFFH and with register AH set to one of thc following physical or extended crmr codes:

OIH - Disk I/O Error: permanent error
02H - Read-Only Disk
03H - Read-Only File
04H - Invalid Drive: drive sclcct error
OSH - File. open by another process
0/H - Password Error
08H - File Already Exists
09H - Illegal? in FCB

5 oioirAL sssMacHs



FAFIRST CoeeLarcet CP/M ProlrsiaiesA Guide

Find Thc First File %hat Matches
'Ilie Specified PCB

Entry Parameters:
Register CL: 011H (17)

DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Valves:
Register AL: Directory Code

BX: Same as AX
AH: Physical or Batendcd Error

Tbe F SFIR$1' system call scans the duectory for a rnatch with the referenced FCB. Two
types of searches can be performed. For standard searches, Ihc calling process initialixes
bytes 0 thxough 12 of tbe reference FCB, with byte 0 speciiying the drive directory to be
searched, bytes I through ll specifying tbe file or files to be eeamM for, and byte 12
• pacifying ths extent. Byse 12 is ttauaiiy sot to 00H. An ASCII ciuestiou mark (53, or 03FH
hausdesimal) in any of the bytes 1 thxough 12 ~ all e n tries an tbe dixectory in the
corresponding position. lexis faality, called ambiguous fi! e reference, csn be used to search
far nailtiple files on the dixectory. Wbcn called in the standard mode, F SFIRSI' scans for
the first file entry in the specified directory that match the FCB and belongs to the mirrent
user number.

The PMF1RST system call also initializcs the FMNEXT system call. After the
FAFI RST system call has located the first directory entrymatchingthe referenced FCB,
FMN EXT can be called repeatedly to locate all remaining matching entries. in terms of
execution sequence, however, the FMNEXT call must fol)ow either a FAFIRST or
FMNEXT call with no other intervening BDOS file-access system calls.

If byte 0 of the referenced FCB is set to a question mark, F SFIRST ignores the remainder
of the referenced FCB and hcates tbc first directory entry residing on thc current default
drive. All remaining directory entries can bc located by making multiple F SNEXT csils.
lMs type of search operation is not usually made by application programs, but it does provide
complete flexibiTity to scan all dhectory entries, Note that this type of search operation must
bc performedto access a drive's directory label,

ss usoITAL asssAaos+



FMFIRSTConearrsnt CP/M Programmer's Gntds

Upon return, the F SFIRSI' system cali returns a directory code in register AL with the
value 0 to 3 if the search is successful, or OFFH if s matching directory entry is not found.
Register AH is set to zero in both of these cases. For successful searches, thc current DMA
is also Kied with the dbectory record containing the matching entry, and the relative starting
position is AL ~ 32. Thc directory information can bc extracted from the buffer st this
position.

If the directoryhas been initialized for date and tim» stamping, then an FCB resides in
every fourth directory entry, and successful directory codes arc restricted to the values 0 to
2. Far successful searches, if the matching directory record is an extent zero entry, and if
an SFCB rcsidcs at offset 96 within thc current DMA buffer, then thc contents of
(DNA Address+ 96)= 021H, and thc SFCB contains thc time and date stamp informa
tion and password mode for thc file. This information is located at thc relative starting
position of 97+ (AL ~ l0) within thc current DMA in the following format;

0 - 3: Create or Access Date and Time Stamp Field
4 - 7: Update Date and Time Stamp Field
8: p assword Mode Field

Refer to Section 2.8 far morc information about SFCBs.

If a physical error is encountered, the F SFIRFf systein call perfarins different actions
depending on the BDOS error made (refer to the F ERRMODE system call). If the BDOS
Error mode is in the default mode, the system displays a message identifying the error at the
consale and terminates the calling process. Otherwise, it returns ta the calling process with
register AL set to OFFH and register AH set to onc of the following physical error codes:

01 H — Disk VO Error: permanent error
04H — Invalid Drive: drive select error

6-IOl



S I Z E

Compute The Size Of A Disk File

Entry Parameters:
Register CL 023H (35)

DX: FCB Address - Offset
DS: FCB Address — Segment

Returned Values:
Register AL: Di ~ Cade

BX: Same as AX
AH: Physical ar Extended Error

Random Record Field of FCB Set

The F SIZE system call determines the virtual file size. This is the address of the record
immediately following the cnd of the file. The virtual slzc of a file corresponds to the physical
size if the file is writtcn sequentially. If the file is written in random mode, gapa might exist
in the allacation, and the filemight contain fewer records than the indicated size, For example,
if a iiagie record with recatd raunber 262,143, the Concurtsint CP/M maxirrsnn, is written
ta a file using the F WRXI'.HILiQTD system calf, then the virtual size af the flle is 262,144
records even though only onc data block is actually allacated.

'1b compute file size, the calling process passes the address af an FCB with bytes RO, Rl,
and R2 present. 'Ae F SIZE system call sets thc random record field of the FCB to the
Random Record Nuinber + 1 of the last record in the file. If the R2 byte is set to 04H, and
RO and Rl are both zero, then the file contains tbc maxiiraun record count, 262,144,

A process can append data ta thc cnd of an existing flle by calling F SIZE to set the
rarid om recoid position to the end of file, and then performing a sequence of random writes.

Note: The file need not be open in order ta usc F SIZE. However, if thc file is open in
Locked mode and it has been extended by the calling process. the fil must be closed before
F SIZE is called. Otherwise, F SIZE returns an incorrect file size. F SIZE returns the
correct size for flies open in Unlocked mode and Read-Only made,

• M iAL arsasaCH+
6-102



Concurrent CP/M Progrsiomer's GuMs

Upon return, F SIZE returns a 00H in register AL if thc file specified by the referenced
FCB is found, or a OFFH in register AL if the file is not found. Register AH is set to 00H
in both cases.

ff a physical or extended error is encountered, F SI2E performs different actions depend
ing on the SDOS Error mode (refer to thc F ERRMODE system call). If the BDOS Error
mode is in thc default mode, thc system displays a message at the console identifying the
error snd teriniuates the process. Othcrwisc, F SIZE returns to thc calling process with
register AL set to OFFH snd register AH set to one of the following physical or extended
error codes:

OlH - Disk VO Error: permanent error
AH - invalid Drive: drive select ermr
09H - Elcgs! '7 in FCB

6-I03



Find A Subsequent File That Matches
The Specified FCB Of A Previous

F SFIRKOrF SNRXT

Bntry Paratnetera:
Register CL: 012H (18)

Returned Values:
Regiater AL: DiteeaSry Code

BX: gene as AX
AH: Physical or Extended Hrtor

The F SNBXT system call is identical to FMPIRSI' except that the dixectoty scan can
thiues fmm the last entry that was matched. F SEXT returns a directory code in regrater
AL, analogous to P SPIRSI'.

Nate: In execution sequence, a P SNEXT call must follow either an F SFIRSI' or another
F SNEXT with no other intervening BDOS Qle-access system calls.



Return File Date Stamps
And Password Mode

Entry Parameters:
Register CL: 066H (102)

DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register Al,: D i rectory Code

AH: Physical Error
BX: Same as AX

The F TIMEDATE system call returns the time and date stamp information and password
mode for the specified file in byte 12 and bytes 24 through 31 of the specified FCB. The
caliing process passes the address of an FCB in which the drive, filename, and type fields
have been defined,

If F TIMEDATB is successful, it sets the following fields in the referenced FCB

byte 12 p assword mode field

bit 7 - Read mode
bit 6 - Write mode
bit 5 - Delete mode

Byte 12 equal to 0 indicates the file has not been assigned a password,

byte 24 - 27 XFCR Create or Access titus stamp field
byte 28 - 31 XFCB Update time stamp field

6-105



F TMEDATE Coectersnt CP/M Program|seA Guhte

Upon teturu, F TlhKDATE teturus a ditectory code in register Al. with the value 00H
if the operation is successful, or OFFH if thespecified file is not found. Register AH is set
to 00H in both of these cases. If a physical or extended error is encountered, F TIMBDA'K
performsdifferent actions depejtding on the BDOS Error mo}e (refer to the F ERRMODE
system cell). If the BDOS Error mode ia in the default mode. the system displays a mes.
sage at the console identifying the ertnr and termhuttea the calling process. Qtherwiss,
F llMEDATE returns to the calling process with register AL set to OFFH and register
AH set to oue of the followhg physical ever codes'.

OIH - Disk VO Error: permanent error
04H - Invalid Drive: drive select error
09H - IIlegal / in FCB

a ourM. aaaaaacHi



F TRUNCATEConcuirant CP/M Pragrsmmsri Gidds

%xncste File

Entry Parameters:
Register CL: 063H (99)

DX: FCB Address - Offset

Returned Values:
Register AL:

AH:
BX:

Directory Code
Physical or Extended Error
Same as AX

The F 'IRUNCATE system call sets the last record of a fiilc to thc Random Record Number
contaned in the referenced PCB. 7hc calling program passes the address of the FCB in
register DX with byte 0 of the FCB specifying thc drive, bytes 1 thxough 1 1 specifying the
filename and filctypc, and bytes 33 thxough 35 (RO, Rl, and R2) specifying the Iast record
of the file. The last record number is a 24-bit value, stored with the leastsignificant byte fiist
(RO), the middle byte next (R 1), and the high byte! ast (R2). This value can range from 0 io
262,143 (03PFFFH).

If the filc spccified by the referenced PCB is password-protected, the correct password
must have been placed in the first eight bytes of the cuixcnt DMA buffer, or have been
previously established as the default password (rcfcr to the F PASSWD system call).

Interface attribute FS' specifies whether an extended file lock is to be maintained after the
F TRUNCATE call, as shown below;

FS' = 0 - Do not maintain an extended file lock (default)
FS' = 1 - Maintain an extended filc lock

If P5' is sct and the rcfctenccd FCB specific a file with an extended file lock, thc calling
process maintains thc lock on thc file. Othcrwisc, thc file becomes available to other pmccsses
on thc systcin. Section 2.11 describes extended file locking in detail.

F TRUNCATE requixcs that thc Random Record Number fiel of thc referenced FCB
specify a value less than the curxcnt file size. In addition, if the file is sparse, the random
recoxd field inust specify a region of the file wbexe data exists.

6-107



P TRVXChTE Concurrent CP/M Programaa l Cukk

A process can truncate a 6le that it currently has open if the 6le ia opened in inched mode,
and the 6le has not been extended during the open session. However, the BDGS returns a
checksum emu if the process mahss a subsequent reference to the 61e with a BDOS system
cau nquiring an open PCB. A ptocess cannot truncate 6ies open in RO or Unlocted mode.

'Itutuating an open 6le is not recomrwnded under Concurrent CP/M. P TRUNCATE
truncates a 6lc based on the 6le's state in the threctory. If a process attempts to truncate at a
region of the 6ie that has been auocated in memory bst has not been recorded in the directory,
F TRUNCATE returns an error. Even when successful, an open 6le truncate can adversely
aissct the performance of the calling process. For these reasons, you should close an open
Ke before you truncate it.

After comphtion, F TRUNCATE returns a diretory code in register AL with the value
00H if the operation is successM or OPFH if the 6le is not found or if the record number is
invalid. In both cases register AH is set to 00H.

If a physical re extended nna' is encountered, F 'IRUNCATE performs different actions
depending on the BDOS ermr mode (refer to F~GMODE). If tbe BDOS error mode is
tn the default mode, a message ldeGClfymg the ernx ls d15played at fhe console and the
program is terminated. Otlmrwise, F TRUNCATE returns to the calling program with reg
ister AL sat to OPFH and register AH set to ooe of the following physical or extended arrta
codes s

OlH - Disk I/O Error; permanent error
02H - Read/Only Dbk
03H - Read/Only Pile
04H - Invalid Drive: drive select error
05H - File Cunently Open
06H - Qnse Checksum Ermr
07H - PaaswMd Error
08H - Ke Already Exists
09H - illegal 7 in PCB
OAH - Open File limit Exceeded
0BH - No Room in System Loclr. List

• DISTAL RERAR&' •



p UNLOCKConcurrent CP/M Programmer% Gstde

Unlock Records In A Disk File

Entry Parameters:
Register CL: 02BH (43)

DX: PCB Address - Offset
DS: PCB Address — Segment

Returned Values:
Register AL: Error Cade

AH: Physical Error
BX: Same as AX

The F UNLOCK system call unlocks one or more consecutive records previously locked
by the P LOCK system call. This system calI is only supported for files open in Unlocked
mode. If it is called for a file open in Locked cr Read-Only made, no unlacking action occurs
and a successful result is returned. Record locking and unlocking is described in detail in
Section 2. l4.

The calling process passes tbe address af an FCB in which the Random Record Field
is filled with the Random Record Number of the first record to be unlocked. The number
of records ta be unlocked is determined by the BDOS Multisector Count (refer to the
F MULTISEC system cell). The current DMA must contain the 2-byte File ID returned by
the F OPEN or F MAKE system call when tbe referenced FCB was opened, Note that the
File ID is oaly returned by F OPEN ar F MAKE when the file open made is Unlocked.

If interface attribute FS' is set to I, F UNLOCK unlocks all locked records belonging to
the calling process. The P UNLOCK interfis.e attribute definition is listed below:

FS' = 0 — Unlock iecords specified by Random Record Number and BDOS

FS' = I - Unlock all lacked recoitis.
Multisector Count (default)

ss rsonAL kCSKhRf H+
6-109



P VNLOCK Coartnraat CP/M Progrirnerjr Guide

F UNLOCK ignores the FCB Random Record fieki and the BDOS Multiscctor Count
when FS' is set.

F UNLOCK does not unlock a record that ia currently locked by another process.
However, the system cail does aot return an error if a process attempts to do that. Thus, if
the Multiaectar Count ia greater than one, F UNLOCK unlocks aII records locked by the
calling process, skipping those records locked by other processes.

Same P UNLOCK rapMata require a mw entry in the BDOS system Lack List. If there
is insu%cient apace in the system Lack Liat to satisfy the P UNLOCK request, or if the
process record Lack List limit is exceeded, then P UNLOCK deca aot unlock aay records
aad returns an error cade to the calling process.

Uponreturn, P UNLOCK seta register AL ta OOH iF the unlock operation was successful.
Otherwise, register AL contains one of tbe following error codes:

01 H - Reading unwritten data
O3H - Cannot close current extent
G4H - Seek to unwritten extent
06H - Random Recatd Number ant of range
OAH - PCB Checksum Brror
OCH - Pracaaa record Lock Liat limit exceeded
ODH - Invalid Rle ID
OEH - No mom in system Lack List

OPFH - Physical error refer to register AH

'Ibc system call returns error code 01 H when it acccsses a data block which has nat been
previously written.

Thc system call returns error code 03H when it cannot close the current exfeat prior to
moving ta a ncw extent.

Thc system cali returns error code 04H when it acccsses an extent that hss not been ~ .

Thc system call returns error code 06H whca byte 3S (r2) for a list of the referenced FCB
is greater than 3,

The system cali returns error code OAH if the referenced PCB failed thc FCB checksum
rest.

'n DGTAL RKSEAKHt
6-110



F UNLOCKConcurrent CP/M Programmer's GuMc

The system call returns error code OCH if performing the unlock request would require
that the process consume more than the maxinsnn allowed number of system Lock List
entries.

The system call renuns error code QDH when an invalid Pile ID is placed at the beginning
of the current DMA.

The system call returns error code OHH when the system Lock List is full and performiug
the unlock request would require at least one new entry.

The system call returns error code OFFH if a physical error was encountered and the BDOS
Endor mode is one of the return modes (refer to the FMRRMODE system call). If the Ertor
mode is the Defimlt mode, the system dispIays a message at the console identifying the
physical ermr and terminates the calling process, Whan the system call returns a physical
error to the calling process, it is identifjred by register AH as shown below:

01 H - Disk I/O Ermr: pcrnuuumt error
04H - Invalid Drive: drive select exmr

6-111



F USERMM

Sct Or Return The Calling Process's
Default User Number

Entry Paxametets:
Register CL: 020H (32)

DL: OPPH to GE1 User Number
User Number to SET

Returned Values:
Register AL: Current User Number if GET

BL Same as AL

A pmccss can change or interrogate ita current default user tembcr by calling
P USEItNUM. 1f register DL = OPPH, then thc aystetn call returns the value of this user
number in reghter AL. The value can range from 0 ta OFH. If register DL is not OPPH, then
the system call changes the default user taunber to the value in DL, modulo 010H (tbc high
nibble af DL is ~ aff ).

Under Cancurtent CP/M, a new process ~ i ta i n i t ial default user taunber from ita
ptcent, the process creating the new process. Changing the default user number docs not
change the user cade of the parent. On the other band, all child processes af the calling
process mberit the new user number.

This convention is demonstrated by the operation of the TMP. When a command is typed,
a new process is created with the same user number as that of the TMP. If this new process
changes ita user number, the 'IMP is unaffected. Once tbe ncw ptocess ternunates, the TMP
displays the same user number in its prompt that it displayed before the command wsa cnteted
and the child process was created.

• otatrAL RsasAscH+



P %RITZConcurrent CP/M Progrsaxiner'h Guide

Wiite Records Sequentially
To A Disk File

Entry Parameters:
Register CL: 01SH (21)

DX: FCB Address - Offse
DS: FCB Address - Segment

Returned Values:
Register AL: Erxor Code

AH: Physical Error
BX: Same as AX

The F WR1TE system call writes I m 128, 128-byte data records beginning at the curxent
DMA address into the tile nsined by the specitied FCB. Thc BDOS Multisector Count (refer
ta the F MULTISEC system call) detcrmixu's the number of 128-byte records that axe written.
The default is one record. An F OPEN or F MAKE system ca!I must have previously
activated the referenced FCB.

F WRY places thc record into thc 61c at thc position indicated by the CR byte of the
FCB, and then automatically increments the CR byte to the next record position. If the CR
field overflows, thc system call automatically opens or creates the next logical extent and
resets the CR fiicld to OOH in preparation for the next write operation. If F WRITE is used
to writ to an existing file, then thc newly written xecards overlay those aheady existing in
the file. 'Ihc calling process must sct thc CR field to 00H following an F OPEN or F MAKE
system call if the intent is to write sequentially from the beginning of the file.

F WRITE makes an update date and time stamp for the file if the following conditions
are mct: the referenced drive hss a directory label that requests update date and time stamping,
and the file has not already been stamped for update by a previous F MAKE ar F WRITE
system call.

6- i13



Concxnrsat CP/M ProaraaaerI Guide

Upon return, the F WRITE sysnnn call sets register AL to OOH if the write operadon is
succeuhl. Otherwise, ~ AL amt aim an error code identifying tbe error as shown
Mow:

OIH - No available dixectory space
02H - No available data block
088 - Record locked by ~ pro c NN
09H - Invalid FCB
OAH - FCB Cbedmm Error
OBH - Unlocked file verificatio exxor

OFFH - Physical error; xefer to register AH

The system caII returns ermr code 018 when it attempts to create a new extent that requixes
a new directory entry, and no available dixectory entries exist on thc ~ d isk d r ive,

Tbe system call returns erxor code 02H when it attempts to aIIocate a new data block to
the file, and no unallocated data blocks exist ou thc selected disk drive.

The system call returns error code OSH if the callhg pxocae attempts to write to a record
hrked by another process, ox a record locked by dN calling process in shued mode. The
• ystem call returns this error only for files open in Unlocked mode.

%he system call returns mar code 09H if the FCB is invalidated by a previous F CLOSE
system csU that returned an error.

The system call returns error code OAH if the referenced FCB failed the FCB checksutn
test,

The system caIl returns error code OBH if the BDOS cannot locate the FCB's directory
entry when attempting to verify that the referenced FCB canby current information. Tbe
system call returns this error only for files open in UnIocked mode.

8 ntotrht, assaAacH~



F WRITEConcurrent CP/M Programme'a Gutda

The system call returns error code OFFH if a physical erxvr was encountered snd the BDOS
is in Return Error mode or Retuxn and Display Error mode (refer to the F ERRMODE
system call). If the Error mode is the Default mode, the system displays a message at the
console identifying the physical error and terminates the calIing process. When the system
call returns a physical etmr to the calling procem, it is identified by register AH as shown
below:

Oln - Disk VO Error; permanent exxtr
CM - Read/Only Disk
03H - Read/Only File or

File Opened in Read/Only Mode or
File password pmtected in Vhite mode

04H - Invalid Drive; drive select tnxor

On all error returns except for physical erxvr returns (AL 255), F WRITE sets register
AH to the ruunber of records succeu&liy written befoxe the error wm encountered. This
value can xange from 0 to 127, depending on the current BDGS Multisector Count. It is
always sct to zero when the Multixector Count is equal to one.

• tantra aweary
6-115



P WRITXRAND CeuCrareet CP/M Programmer'S GrLtds

Write Random Records
To A Disk File

Entry Psranlctrna'.
Register CX.. 022H (34)

DX: FCB Address - Offset
DS: FCB Address - Segment

Rearrtid Values:
Register AL: Hrnn Code

AH: Physical Error
BX: Same as AX

The F WIGTHRQC) system call is anal ogaus ta the F READRAND system call, except
that data is written to ths disk from the current DNA address. If the disk extent snd/or data
block where the data is to be written i • nat already allocated, thc BDOS automatically
performs the allocation before the write ~ n con t inues.

In order to write to a file using the F AVRJZEVDD system call, the calling procctN rrsrst
first open thc base extent, extent 0. This easures that the FCB is pmperly initialhcd for
subsequent random access operations. If the Qle is empty, the caUing process must tzcstc thc
base extent with the FMIAIGi system call bcfare an F WRITEI4QlD system call. Thc base
extent might or might not crxrtain data. but it records the Kc hl the directory so that it csn
be displayed by the DIR utility. If a process docs not open cxteru 0 and allocates data to some
other cxteat, the file is invisible to the DIR utility.

'Ile F WRITERAND system call sets the logical extent and current record positions to
correspond with the random record being written, but does nat change tha Random Record
Number. Thus sequential read or write operanons can follow a random write, with the current
record being reread or rewriaen as the calling process switches fram random to sequential
mode.

F WRITEIqAND makes an update date and thne stamp for the filc if thc fogowing con
ditions Nc met; the referenced drive has a dhectory label that requests update date and time
stamping, aud thc file has not ahnuiy beenstampedfor update by a previous F MAKE or
F WRAC system call.

5 aurN, mneme
6-116



F WRITERANDConcwrerrt CP/M Progrerrrrrrer's Guide

lf the BDOS Multisector Count is greater than one (refer to the F MULTI8EC system
call), the F WRITERAND system caII writes multiple consecutive records from memory
beginning at the current DNA address. The system call sutomaticalIy increments the RO,
RI, snd R2 field of the FCB to write each record. However, it restores the FCB's Random
Record Number to the first record's value upon return to the calling process.

Upon return, the F WRPIBRAND system call sets register AL to OOH if the write oper
ation is successful. Otherwise, register AL contains one of the following error codes:

02H - No availabIe data block
03H - Cannot close current extent
OSH - No availabIe dbectory space
06H - Random record number out of range
08H - Record locked by another process

OAH - FCB Checksum Error
OBH - Unlocked file verification error

OFFH - Physical uxor refer to register AH

The system call returns error code 02H when it attempts to allocate a new data block to
the file. No unaUocated data bIocks exist on the selected disk drive.

Thc system caI! returns error code 03H when it cannot close the current extent before
moving to a new extent,

Thc system call returns error code 05H when it attempts to create a new extent that requires
a ncw directory entry and no available directory entrics exist on the selected disk drive.

The system call returns error code 06H when byte 35 (R2) of the referenced FCB is greater
than 3.

The system call returns error code 08H if the calling process attempts to write to a record
locked by another process, or a record locked by the calling process in shared inode. The
system call returns this error only for filcs open in Unlocked mode.

The system call returns crier code OAH if the referenced FCB failed the FCH checksum
test.

Thc system call returns error code OBH if the BDOS cannot locate the FCB's directory
entry when attempting to verify that the referenced FCB contains current information, The
system call returns this error only for files open in Unlocked mode.

ss DKirAL sssKARCNe
6-117



P-WRtTERAk0 Canserrsnt CP/M Programmer's Gable

Thc system call returns error code OFFH if a physical arras is encountered and the BDOS
Enor mode is in one of the return modes (refer to thc F~ ODE s ystem call). If the
Error mode is in the default mode, the systetn displays a message at the console identifying
the physical error and terminates the calling process. When a physics! error is returned to
thc calling process, it is idcutigcd by register AH as shown below:

OIH - Disk VO Error: permanent cnor
02H - Read/Only Disk
03H - Read/Only Ke cr

File Opened in Read/Only Mode or
File password protected in Write mode

04H - Invalid Drive: drive select error

On all error returns, except for physical ator returns (AL = 255), F WRJI'BRAND sets
register AH to the number of records successhlly written before the error was encountered.
This value can range fmm 0 to 127 depending on the current B13OS Multisector Count. It
is always set to zero when the Multisector Count is equal to one.

• otQTAt, sssshacH+
6-1 l8



p WRITKXFCSCamurreat CP/M Progrsinmer's CulCh

F WRITEXFCB

Write Extended File Control Black
Of A Disk File

Entry Parameters:
Register CL: 067H (103)

DX: FCB Address - Offset
DS: FCB Address - Segna:nt

Returned Values:
Register AL:

AH:
BX:

Directory Code
Physical or Extended Error
Same as AX

Thc F WRITEXFCB system call creates a new XFCB or updates the existing XFCB for
thc spccificd file. The calling process passes the address of an FCB in which thc drive, name,
type, and extent fields have been defined. The FCB extent field, if set, specifies the passward
mode and whether a new password is to be assigned to the file. The format of the extent field
byte is shown below:

FCB byte l2 (EX) XFCB password mode

bit 7 - Read mode
bit 6- Write mode
bit 5 - Delete mode
bit 0 - assign new password to the Gle

If the FCB is currently password-protected, the correct password inust reside in the first
8 bytes of the current DMA or have been previously established as thc default password
(refer to the F PASSWD system call). If bit 0 is set to I, thc new password must inside in
the second 8 bytes of the current DMA.

Note: l i e F WRITEXFCB system call does not rueste or update an XFCB if the XFCB
specifies a file open by another process, However, a process can update or create an XFCB
for a 6lc that it has open in Locked mode,

5 DKilrAL sssrhaclt+
6-119



P lvVRITgPXCI Coocmveet CP/lH Progrsmaer's Golda

Upon return, F WIQTH&CB returns a directory code in register AL with the vahe 00H
if the XFCB create or update was succesahl. F WRITEXFCB returns OFFH in register AL
if no directory label exisied on the specified drive, or the Iiiespecified inthe PCB was not
found, or no space existed in the dhectory to create an XFCB, or if the drive is not password
enabled. F WRH'EXFCB also returns OPFH if passwords ate not enabled by the speciSed
drive's directory label. Register AH ia aet to OOH in all of these cases.

If a physical or extended error is encountered, F WRTIEXPCB performs different actions
depending on the BDOS Error made (refer to the FO ODS system call). If the BDOS
Ermr mode is in the defaQt mode, the system displays a message at the console identifying
the error and tenniruues the calling process. OthervGse, P WRITKKPCB returns to the
calling process with register AL aet to OPPH and register AH aet to one of Ihe following
physical or extended error codes:

Ol H - Disk VO Error: permatent error
02H - Read/Only Dialr.
04H - Invalid Drive: drive select error
05H - Pile open by another ptocess, or open in Read-Only or Unlocked mode
07H - Password Error
09H- llleipd rm PC3

5 ototrht Mourn+



Cmcsnvsnt CP/M Progrunttstar's GtsQe

Whte A Randam Record Ib A Diat File
And Pre|fili New Data Blocks Mth Zeros

Entry Patamctcta:
Rcgistcr CL 028H (40)

DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values;
Register AL:

AH;
BX:

Error Code
Physical Enor
Same as AX

The F WRITEZF system call is similar to the F WIVPEV&lD system call, with
the exception that it fills a previously unallocated data block with zeros (OOH) bcforc writing
the record. If this system call has been used to cteate a fil , rccorrh accessed by an
F READRAND system call that contain ati zeros identify unwritten random rcconh,
Unwritten random records in allocated data blocks of files created using the F WRTPERAND
system call contain uninitialized data.

e ototra. assasacH»
6-121



5.2.$ Liat Xteviee I/O 8ystcm CaUs

Attach The Default List Device
Ib Thc Calling Process

Entry ptuamctcta:
Register CL: 09BH (158)

The ATTACH system caH attaches the default list device of thc calling process. If the
liat device is alteady attached to same other process, thc calling process telintluishca thc CPU
until the other process dctachea fmm the list device, When the list device becoam iree, and
the calling process ia the highest priority process waiting for thc liat device, thc attach
operation occurs.

Refer to 'Ittble 6-S for a Hst of ermr codes ~ i n CX.

• MIl l asashaop



Conditionally Attach To The
Default List Device

Entry Pamneters:
Register CL: OA1H (161)

Returned Values:
Register AX:

BX:
CX:

0 if attach 'OK'
OPFFFH on failure
Same as AX
Error Code

The L CATTACH system call attaches the default list device of the calling process only
if the list device is currently available.

If the list device is currently attached to another pmcess, the system call returns a value
of OFFH, indicating that the list device could not be attached. The system call returns a value
of OOH to indicate that either the list device is already attached to the process, or that it was
unattached, and s succestdul attach operation was made.

Refer to 'Ihble 6-5 for a list of error codes returned in CX.

5 Nntrht asMhaCH+
6-123



Detach The Default List Device
From The Cailing Frocess

Entry Farsrneters:
Register CL 09PH (I59)

Returned Values:
Register AX: 0 if detach 'OK'

OPPFFH ou failure
SX: Same ss AX
CX: Brrtrr Code

T he LJ>El'ACH system call detach' the default list device of the calling ~ . If t h e
list device is not currently attacM, no action takes place.

Refer to liLble 6-5 for a l ist of error codes ~ i n CX.

I NQrAL srsEARCH+



I GET

Return The Calling Process's
Default List Device

Entry Partmeters:
Register CL: OA48 (164)

Returned Values;
Register AL: L ist Device Number

BL: Same as AL

The L GET system call returns the default list device number of the calling process.

P tsotrAL asstAKH+



Set 1he Calling Process's
Default List Device

Entry Paametetx
Register CL: OAOH (160)

DL: L ist Device Number

Ths I SET system call sets the default list device for the calling process.

Refer to Table 6-5 for a list of error codes returned in CX.

• oKtrAL RKSEAkQi+



Write A Cltaracter Ib The
Default List Device

Entry Parameters:
Register CL. OSH (5)

DL: Character

The L WRITE system call writes the speci6ed character to the default list device of the
calling process. Before writing the character, the system internally calls ATTACH to verify
that the calling process owns its default list device.

ss DIQTAL assshscH+
6- I 27



L WR1TXILK Ceuerursut CP/M Progrera~> t'utrte

Send Spcci5cd Character
String to Default List Device

Entry Parsunetcra:
Register (X,: 070H (112)

DX: CHCB Address

L WRITEBLK sends the clraructer string specified in the Character Control Block(CHCB)
and addressed in register pair DX to the logical list device, Lsl'.. 'Ihe CHCB format is

bytes 0 - 1: Offset of character string
bytes 2 - 3: Segment of character string
bytes 4 - 5: Length of character string to print

6.2.6 Memory System CaUs
There are turo classes of Memory System Calla in Concurrent CP/M. Thc first class

supports the MF/M-86 memory allocation scheme and contains two system calls,
hLALLQC and hL3'REE. The second ches contains aix system calla, M~BS,
M~ LLF R EE, M~ LLO C , M~ L LOC ABS, MCl. REE, and MLBAAX. 'lycee
system calls support the CP/M46 memory allocation scheme.

Nose: Ibe CP/M-86 memory calls are also supported under MP/M-86.

Many of the Memory system calls uac the Memory Control Block (MCB) or the Memory
Paperer Block (MPB) to pass parameters to and from the operating system. Thc format,
structure and example programmingequates for these data structurea are presented below,
along with example listings.

BASE i LEBGTB i EST
+ + +

Figure 6-7. MCB • Mrmory Control Block

• olctrAL R sKARCH' •
6-r 28



L WRnaSLKCoyaarrrcet CP/M Prtgrsmnamb Goklt

'Tkhle 6-13. MCS Hdd Dnfhdtiem

BASe Ibe Segment Addnss of the beginmng of thespeciemnxxy segment.

Length of the Memory Segment in paragraphs. The IZNGTH field is
Net to the number of parsiirnphs wanted.

The EXT Seki is umsoi but must be available,

t t tttt t t t t t t t t t t t t t t t t t t t f t t t t t t t t t t t t t t t t t t t t t t t
I

I

Memory Control Block Definition
I

• ttttt tt t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t
I

mcb base equ w ord pt r 0
stcb lengt h equ w ord pt r mcb b ase + w o r d
incb ext equ byte ptr mcb length + word

stcb len equ mob ext + by t e

Listing 6-1. Memory Cont@A Sleek Dsiiniiion

I I I
Figure HL MPS - Memory Parameter Stock

5 DKjlTAL RgpgCHt



F WRLTXSLK Consiersat CP/M ProgranmeA Gait

Table 6-14 MPS FhM DeMSoaa

Dsscriptfon

SI'ART if nonMH, sa absolute request st this psriigraph

mnthnuin mommy needed (psrsyaphs)

mssinnnn memory wanted ipinegrsyhs)

thee fields nsist be 00H; disy me used internally.s 0000H

• s %%%%%%%%%% % % % % % %% % %%% %%% % % % % %%%'%%%%%%% %% %% %%% % s'%%%%%

• %

Memory Paraseter Block Definition

• %%%%%% % % % % % % %% % % % * % % % % % % % % t % % % % % % % % % % % % % % % % % % % % % % % % % %

a p~ t a r t
t op~ i n
s p~ a x
top~ dr
ispb flags

sipb len

; mpb flags definition

sf load
sf share
sf code

equ

equ
equ
equ
equ
equ

00001b
OOQORb
0000421

0word ptr
word ptr
word ptr
word ptr
word ptr

mph flags + word

s tpb star t + w o r d
s tpbmin + word
sp~ax + w o r d
xpb pdadr + word

equ
equ
equ

LMng 6-2. Memory Ptiremeter Bhck Dt5alttos

8 NQTAL smhkCH+



B L O CCmaartst CP/M i~m me's Gehh

Allocate A Memory Segment

Entry Parameters;
Register CL: 080H or 081H (128,129)

DX: MPB Address-Offset
DS: MPB Addtess4egment

MPB fiilcd in

Returned Values:
Register AX: 0 on success

BX: Sans. as AX
CX: Error Code

OFFFFH on failure

MPB start filled in

lbe M ALlXK system call allows a ptognun to allocate extra memory. A successful
allocation allocates a contiguous memory segment whose icngth is st least the MIN and no
more than the MAX number of paragraphs specified in the MPB, The START fiel of the
MPB is modified to be thc shLrting paragraph of thc memory scgtnent. The MIN and MAX
fields ate modifie to be thc length of thc memory segment in paragraphs. Memory Segments
can bc explicitly released thmugh the M FREE system call; Concurrent CP/M also releases
all mctnory owned by a process at termination.

Note: MIN snd MAX fields must be explicitly filled in. The MAX value must bc greater
than or equal to the MIN value.

Refer to Table 6.5 for a list of error codes returned in CX.

P motthL agagN+



Free A ~ Segme nt

Entry Parameters:
Register CL: 082H (130)

DX: MFPB Address - Offset
DS; MFPB Addxess - Segment

Returned Values;
Register AX:

BX:
CX:

0 on success
OFFFFH on failure
Same as AX
Ermr Code

START ' 0000H

The M FREE system call releases memory starting at the SI'ART paragraph to the
end of a single previously aUocated segment that contains the SI'ART patagraph. If the
SI'ART paragraph i • the same as tbst returned in the MPB of a memory allocation call,
then hLFRBB releases the whale memory segment. 'Ihe e 0000H field must be initialized

Refer to 1hble 6-f for a liat of error codes returned in CX.

• DIQrAL REMAaCH+
5-132



MCMBSALLOCConcurrent CP/M Pregrstamer| Guttle

MC ABSALLOC

Allocate A Memory Segment
At A Specified Address

Entry Parameters:
Register CL: 038H (56)

DX: MCB Address - Offset
DS: MCB Address - Segment

Returned Values:
Register AL:

BL:
CX:

0 on success
OFFH on failute
Same as AL
Error Code

The MC ABSALLOC system call allocates a memory area that starts at the address
specified by the BASE field. The memory axes's length is specified by the LENGTH field of
the MCB. Upon return, register AL contains a OOH if the request was successful, and a OFFH
if the memory could not be allocated. If the calling process already owns the requested
memory, no error is returned. This assures compatibility with CP/M-86.

Refer to Tabie 6-5 for a list of error codes returned in CX.

8 ntolrAL atsthacH4
6-I 33



lrICMjtSMAX Coaem eat CP/M Proiralmers GuMe

Allocate Maximum Memory Available
At A Specified Address

Entry Parameters:
Register CL: 036H (S4)

DX: MCB Address - Offset
DS: MCB Address - Segment

MCB base EGad in, MCB length
set to max tstmber of paragraphs
wanted

Returned Values:
Register AL: 0 on success

OFPH on failure
BL: Same ss AL
CX: Error Code

MCBUength set ta actual rsunbcr
of paragraphs allocated

In <P/M-86, system call 036H does nat allocate memory, but under Concurrent CP/M,
this system call aGacates memory, ~ oth e r processes are cceqmting for common mem
ory. For compatibility with CP/M-86, M~S ALLO C (system caII 56) docs uot return an
error 1f there ts a memory segment allocated at the absolute atidless.

MC ABSMAX is used to allocate the largest possible region at the absolute paragraph
boundary given by the BASE geld of the MCB, for a maxirnun of LENGTH paragraphs. lf
thc allocation is successful, the system call sets the LENGTH to the actual length. Upon
return, register AL has thc value OFFH if na memory is available at thc absolute address,
and 00H if the @quest was succcssfuL

Rcfcr to lhble 6-5 for a list of error codes rcturncd in CK.



Free All Memory Owned
By The Calling Process

Entry Parameters:
Register CL: 03AH (58)

In the Concurrent CP/M environment, thc M~ L L PREE system caU releases all of the
calling process's memory except thc User Data Area (UDA), This system call is useful for
system processes and for subpmccsscs that share thc memory of another process.

Note: This systetn call should not be used by processes running progratns loaded into the
'Ihmsient Pxogram Axe (TPAs).

• DKtrAL asshxacH+
5-t35



MC~ LOC

Allocate A Memory Segment

Entry Parameters:
Register CL: 037H (55)

DX: MCB Addmas - Offset
DS: MCB Achhee - Segment

MCBUength illled in

Returned Values:
Register AL: 0 an success

OFPH on failure
BL: Same sa AL
CX: Error Code

MCB b a oedm

The M~ t L LOC system call allocates a tnemory area whose size is the LENGTH field
of the MCB. M~ LL OC returns the base psragrayh address of the allocated region in the
usa'a MC8. Upon return, register AL contama a 00H if the request was successful, snd s
OPFH if the memory could not be allocated.

Refer to Table &.5 for s list of error codes returned in Cx.



M EE K

Free A Specified Memory Segment

Entry Panuneters:
Register CL: 039H (57)

DX: MCB Address - OfFset
DS: MCB Address - Segment

MCB base, MCB eat filled in

Returned Values:
Register AL: 0 i f successful

OFFH on failure
BL: Same as AL
CX: Error Code

'lee MC FREE system caII is used to release memory areas allocated to the program.
The value of the EXT field of the MCB controls the operation of this system call. If
EXT = OFFH, then the system call releases all memory areas allocated by the calling
program. If the EXT field is OOH, the system call releases the memory area beginning at
the specified BASE and ending at the end of the previously allocated memory segment.

Refer to 'Ihble 6-5 for a list of error codes returned in CX.

8 DIGITAL aL%eCH+
6-137



Allocate Maxinam Memory Available

Entry parameters
Register CL: 035H (53)

DX: MCB Address - Qffset
DS: MCE Address - Segment

(MCBUength contairN maximum
nmnber of psntgrsphs wanted)

Returned Vahes:
Register AL: 0 an Nxcess

0PPH on fsilsre
BL S ame as AL
CX: Ermr Cade

(MC~ a se fiUed in, MCILhngth
set to actual number af paragraphs
allocated)

In CP/M-86, system call 035H does aot allocate memory, but 1mder Concurrent CP/M,
tins system cali allocatesmemory because other processes are competing for connnon ment
ary. For compatibility vrith CP/M-g6. M~ SAI L Q C (system call 56) dans not return an
srtnr if there is a tnemoty segment sllocsted at the ~ add r ess.

MC MAX allocates the largest available ~ regi on that i • less than or equal ta ths
LENGTH iield of the MCE in paragraphs. If the ailacatian is successful, the system call sets
the RASE to the base paragraph address of the available ates snd LENGTH to the paragraph
length. Upon return, register AL has the value OFPH if no memory is available, snd 00H if
Ihe request vsts successful. The system caH sets the EXT to I if there is additional memory
far aIiacatioa, and 0 if no additional memory is available.

Refer ta lhble 6-5 for a list af error codes returned in CX.

• ntalrAL ELSKAKH+



ABORTCoaeureut CP/M Programmer'a Gtdde

6.i.7

'ibrminate A Process
By Name Or PD Address

Entry Parameters:
Register CL: 09DH (157)

DX: APB Address - Offset
DS: APB Address - Segment

APB filled in

Returned Values:
Register AX: 0 on success

0PFH on failure
BX: Same as AX
CX: Enor Cade

TERMPD

NAME
— 4 t + + — 4

Figure 6-10. AFB - Abort Fartaaeter Bhek

• QoffAL Ithaca+
6-139



PD Process Dcscriptor offset of thc preen» to bc rerrniesred. If this field ia
zero, a match ia auernlrtcd with the NAhK and CNS flelds to flnd the
pmceaa. If this fleld ia nouzero, tbe NAME and CNS flelda are ignored.

'lbrrnination Code.'Ale fleld correaporrda to the termination code of the
P TERM aystenr cail. If the low-order byte of TERM is OFFH,
P ABORT can abort a specified syarcnr process; if the terrrrirratlon
code is not OFPH, thc system call can only terminate a user pneum. (A
system pmcesa ia ident@ed by thc SYS flag in the Proceu Deacriptor's
PLAG fleld.)

This fleld is reserved for system use aud must be set to zero.

Default console of process to be aborted. If the PD fleld ia 0, the
P~ RT s y stem ceil scans tbe ~ L ist for a PD with the same
NAME and CNS fleids as specifled in the APB. P~O RT only aborts
the flrat pmceas that it fluds. Subsequent calla asrat be made to abort all
pmceaaea with 6» san» NAME and CNS.

Name of the pmcesa to be aborted. Combined with rhe CNS 6eld, the
NAME fleld ia used to flnd the process to be aborted. 'Ma is only used
if the PD fleld is 0.

• 00H

Tbe P~ORT system call permits a pmceaa tc terminate another speciflcd proce». 'Ibe
calling pmccsa passes the address of s data structum called au Abort Parruurass Block,
iuitialized aa described above.

If the Process Descriptor address is krrorm, it can bc fliied in, and tbe process name and
console can bc omitted. Othsrwisc, the Process Descriptor address held should be a 00H and
the pmceas uarr» and console rrarst bc speciflcd. In rdther case, the calling process rrarst
supply thc tenrunatiou code, which is the same parameter passed to thc P TERM system
calL

Refer to 1hble 6-$ for a list of error codes returned in CX.

• nKilrAL CE$KARCH+



P CHAIN

Load, Initialize And Jurnp
To SpcciSed Program

Entry Parameters;

DMA Buffer; Command Linc

Returned Values;
Register AX; OFFFFH - Coul not Gnd

Register CL: 02FH (47)

Coiiunand

The P CHAIN systeln call prov!des a iileails of chaltilng flonl one ploglain to the next
without operator intervention. Although there is no passed panuneter for ttus call, the calling
process must place a command line ternunated by a 0 byte in the default DMA buffer,

Under Concurrent CP/M, the P CHAIN system caU releases the memory of the calling
process before executing the command. The command is processed in the same manner as
the P CLI system call. If the command wansnts the loading of a CMD flle and the memory
released is large enough for the new program, Concurrent CP/M loads the new pmgram into
the same memory aiba as the old program. The new program is run by the same process that
rau the old prognun. The ruune of the process is changed to reSect the new program being

Fhnuneter passing between the old and new programs is accomplished through the use of
disk files, queues, or the command line.'He command line is parsed and phced in the Base
Page of the new prograin in the manner documented in the P CLI system call.

Thc P CHAIN system call returns an error if no CMD file is found. If a CMD Sle is
found, snd an error occurs after it is successfully opened, the calling process terminates, as
its memory has been released.

6-14l



Coueevern CP/iM Propaamar'b Gush

Entry Fararneters:
Register CL 096H (150)

DX: CLBUP Address - Ol1aet
DS: CLBUP Adchess - Segment

Returned Values:
Register AX: 0 on a|recess

OFPFFH on error
Error Code

0 t 2 s 128 129
/ /

+ / j
'QOH COMMAND X X 'ODN

1rlgure 5-11. CLI Cor~ U ue S rrthe

0 raulrAL asasAKH~
6-t42



PAULIConeurrsut CP/M FroSrurumm's GuMs

'Ihhlc 6-16. Cutnmarid Lhsc Badnrs lrIeM BelniNaes

Field

saOH

COMMAND

Must be set to zero for system use.

1-128 ASCII characters terminated with a null character.

The P CLI system call obtains an ASCII command fram tbe Command LiM Buffer
(CLBUF) snd then executes it. If the calling process is attached to its default virtual console,
the P CLI system call assigns the virtual cansale ta either the newly created process, or to
the Resident System Proces (RSP) that acts on the command. The calling praceu must
reattach to its default virtual console before accessing it.

P CLI calls PARSE to parse the cauunand line. If an error occurs in F PARSE,
P CL1 returns to the caUing proceu with thc error code set to thc same code that
PEARSE returned.

If there is no disk specificatio for the command, P CLI tries to open a system queue
with the same name as the command. If the open operation is successful, and thc queue is
an RSP-type queue, P CLI then writes the conunand tail ta the RSP queue. If the queue is
full, the system call returns an cnor code to the calling process. The P CLI function also
attcinlxs to assign the calling process's viirtusI consale to a process with the same name as
the RSP queue, If thc RSP queue cannot be found, the CLI assumes the command is on disk
and continues.

The P CLI system call opens a file with the filename being the command and the filetype
being CMD. If the command has an explicit disk s pecification, aud the F OPEN system call
fails, P CLI returns an error code to the calling process. If there is no disk specification
with the command, P CLI attempts to open the command fil on the system disk. If the
F OPEN system call succeeds, P CLI checks the file to verify the SYSTEM attribute is
on. This search order is discussed iu Section 2.9.1 of the Concurrent CP/hf User's Guide. If
this second F OPEN fails or if the DIR attribute is on, P CLI returns an error code to the
calling process.

Once the P CLI system call succeeds in opening the command file, it calls the P LOAD
system call. Thc P LOAD system call finds, aud then loads the file into an appropriate
memory space. If P LOAD encounters any ermrs, the P CLI system call returns to the
calling process with the error code sct by the P~AD system call.

S DlalTAL RESEARCHs
6- l43



PAULI Cenearrsnt CP/M ProaraieiaaA Getds

h successM load ctxmtian estsbilisbes the connnand file in roemory with its Base Page
partially initialized. 'Ge P CU system call then centimes paring the command tail to aet
up the Base Psge values frora OMH to OPPH.

P CLl initializes an mused Process Descriptor from the inteinai FD table, a UDA(tctpanded
UDA if 8087 procetaing is raquhed) and a 96-byte stack area. The VDA snd stack are
dynanncally allocated froin manana. P CU then calls the P (%BATE system call. If
P CLI encounters an error in any of Ihese steps, it en)eases sII menory segments aliocated
fcr the new' conznand. ss well ss the Process Descriptor, and then returns with the apptu

error code set.

Once the F CREATE system caII returns successMIy, the P CLI system call assigns the
calling ptoceta's default virtual console to tbe new pmceu and thea returns.

The calling pmcess should set its priority to iess than the TMF (198) if it wants to attach
to the virtus1 console after the created process releases it. Once the calling process has
successfully xeattached, it should set its primity back to 200.

Refer to 'Ihble 6-5 for a liat of error codes returned in CX.

• DICITAi RESKAscH+



Concurrent CPiM Programmer's Guide PMRKAT<

Qeate A Process

Entry Parameters:
Register CL: 090H (144)

DX: PD Addxess - Offset
DS: PD Address - Segment

PD iilled in

Returned Values:
Register AX: 0 on success

BX: Same as AX
CX: Error Code

0PPFFH on failure

The P CREATE system call allows a process to create a subprocess within its own memory
atua. The child process shares all memory owned by the calhng pmcess at the time of the
P (BLATE call. If the Pmcess Descriptor (PD) is outside of the operating system axes,
the system copies it into a PD from the internal PD Ihble. 'nte systeta call returns an error
code if there axe no more unused Pos in the table.

The User Data Area (UDA) can be anywhere in memory but is requited to be on a paragxaph
boundary. The only time the system copies the PD is if it is not within 64k of the System
Data Segment.

Ptocess Descriptors, as well as Queue Descriptors and Queue Buffers, are required to be
within the System Data Segment because they axe linked together on various system lists or
sxe used by more than one process. Becntse of this, they cannot be in the Thmsient Process
Area (i%A), where they cannot be protected.

More than one process can be created by a single P CREATE call if the LINK ftcld of
the PD is nonzero. In this case, it is assumed to point to another PD within thc same Data
Segment. After it creates the Iirst process, the system call checks the Process Descriptor's
LINK fteld. Using this linked liat of PDs, a single P CREATE call can create multiple
processes.

• DIGITAL RKSEARCHe
6-145



Cuscarrexa CP /M I'regrsmsse% Gable

Nate: Ibc P CREA'1K sysuuu call docs cot chccit the vaMty af the PD addresses passed
by thc caHing pmccss. An invalid PD address csu cause Couctuteut CP/M to crash if no
hutiuurc tucumry protection is available ou tbc system.

Refer tu Table 6-5 for a list of error codes tuturned iu CX.

LINK STAT PRIOR FLAGTHREAD

NAME

UDA, ' DISK U SE R RES ERVED MEM10

RESERVED

CNS R ESE R
VED

PARENT

SFLAG
+

RESERVED
4 +

RESERVED28
+ t + +

• tsulrAL sssthacH+



COnCerrani CP/M Pragraininsr'S Guide

Tiable 6 I7. FD Hehl Deglatthna

Field

LINK

De/Initio'

THREAD

Link field for insertion on current system list. If this field's initial value
is nonzeto, it is assumed to point to another PD. This field is used to
create more than one process with a single Create Process cail.

Link field for insertion on Thread List. Initializcd to be zero (0).

Current Proces activity. Initialized m be zero (0). Activity codes are
listed below:

STAT

00 RUN

01 POLL

02 DELAY

06 Read Queue

lhe ptMess is ready to run, The SI'AT field is always
in this state when a process is examining its own
Process Descriptor. The PD is on the Reedy List.
The currently running process is always at the head
of Ready List.

The process is polling a device. The PD is on the
Poll List.

The process is delaying for a specified number of
system ticks. The PD is on the Delay List.

The process is waiting to read a message from a
system queue that is empty. The PD is on the Read
Queue List whose root is in the Queue Descriptor
of the system queue involved.

The process is waiting to write a message to a sys
tem queue whose buffer is full. The PD is on the
Write Queue List, whose root is in the Queue
Descriptor of the systein queue involved.

07 Write Queue

Ql DIGITAL RESEARCH+
6-147



PMRKATK Concurrent CP/M Prograuunsr's Guide

TaMe & 17. (continued)

DtjTnilianRaid

08 FLAGWAIT T h e process is waiting for a system flag to be set.
The PD is in the fiag table entry of tbe flag it is
waiting far.

09 CIOWAIT Tbe p rocess is waiting to attach to a character I/O
device (umsole ar list) while another process owns
it. The PD is on CQUBUB list whose mat is in the
Character Cantmi Black of the device in question.

Current priority. Process scheduling i • done based on this fieM. Typical
user programs run at a priority of 200. 0 is the best priority, and 255 is
the worst priority. The following is a list af priMity assignnwmts used
by mast Concurrent CP/M systems. User prixesaes priorifles should be

PRIOR

from 200-254.

Initialization Process
Interrupt Handles
hystem Processes
Undefined
Undefined
Terminal Message Process
Undefined
Default Priarity For Thnsients
User Processes
Idle Process

2-31
32-63

64-190
191-197

198
199
200

201-254
255

Bit field of flags determining run-time characteristics af a process. Ini
tialize as needed. hll undocutmented ilags are used internally or Ne
reserved for system use.

001H SYS System Process. Has privileged access to various
features of Concurrent CP/M. This process can only
be termhiated if the terinination code is 0FFH. This
process can access restricted system queues. This
flag is turned aff if the calling process is uot a sys
tem process.



PMRKATKConcurrant CP/M Programmer's Guide

Table 6.17. (continued)

DefinitionField

002H KEEP This process cannot bc terminated. This flag is turned
off if thc calling process is not a system process.

004H KERNEL T h i s pmcess resides within the operating system.
Tbis flag is turned off if the PD is not within the
opening system.

010H TABLE This PD is copied into the PD from the PD table.
When this process terminates, the PD is rccyclcd
into the PD table.

NAME

8000H 8087 This pmmss is sn 8087-running process.

Process Name. Eight bytes, all eight bits of each byte are used for
matching process names.

Segment address of this process's User Data Atua. Initializcd to be the
number of paragraphs fmm the beginning of the calling process's Data
Segment. The User Data Area contains pmcess information that is not
needed between processes. It also contains the System Stack of each
process. Refer to the UDA description below.

UDA

Current default diskDISK

USER Current default user number

Root of linked list of Memory Segment Desctiptots that are owned by
this process. Initialized to zero, except for reentrant or shared code RSPs.

Second Flag. If bit 0 of SFLAG (OIH) is set, the system suspends this
process whenever it is switched out to the backgmund and runs it only
when it is switched in to the foreground.

PARENT Proc ess that created this process. The P CREATE system call sets this
value at process creation. The parent fleld is set to zero if the parent
terminates before the child.

6-149



FLOREATE Caecwreut CP/M Programmer' s GuMe

Tabk 6-1'/. (eonthtned)

Deflect(ioner/a
CNS Current default console's number. Initialized to be the default console

number.

Current default list device's tsnnber. Initialized to be the default list
device number.

RESERVED R eserved for internal use. These field nwst be initialized to zero (0).



P.XREATRConcurrent CP/Nl Programmer' • Gukle

+
00H

08H

RESERVED O M A OFFSET RESERVED

RESERVED
+ +

10H

18H

RESERVED

RESERVED
4 4 4 — 1~

20H AX ex DX

28H Dl
+

SI

CX
+

SP
+

SP

RESERVED

RESERVEDRESERVED
+~

INT 038H
4 + I

RESERVED
~ +

INT 4

INT 1
+

INT 3
+~

RESERVED48H
+

CS ~ S5ES

INT 225INT 224
+

+ + $ + + + +

4 + +
RESERVED

8FH

U SER SY S T E M S T A C K

F8H FFH

100H

158H

CW

RESERVED

RESERVED

RESERVED

+ + + +
RESERVED

+ + 4.

+ + + t + ~ +
+ + -k 4 4

t ~ ~ 4 — + + +

+ ~ ~ 4

Figure 6-13. UDA - User Data Area

QpttoIIaI
803r

Extension

15FH

The length of the UDA is 256 bytes (352 bytes if 8087 processing is required), and it must
begin on a paragraph boundary.

8 DIGITAl RESEARCH»
6-151



PMRXATR Concurrent CP/M Programmer's Gubts

Field

DMA OPFS

Defieinon

AK,BX,CX,DX,
DI,SI,BP

The initial DMA OFFSET for the ncw pmcess. Thesegment
address of the DMA is assumed to be the serac as the initial
Data Segment (refer to DS below)

The inidal register values for the new' pmcess. These sre typi
cally sct to zero.

The initial stack pointer for the new process. The stack pointer
is relative to thc initial Stack Segment (refer to SS below). 'Ihe
initial stack of the new process must be inltiaiixed with the offset
of the fbst instruction to be executed by the new process.'Ae
word that the stack pointer points to is thc initial instruction
pointer. Two words must follow Cte initial IP, which is ill)cd in
with the inMal Code Scgnent (refer to CS below) and the initial
lings. The inithd ibtgs arc sct to 0200H. which means that inter
rupts are on, and sli other 5ags are off. Concurrent CP/M starts
a ncw process by executing an Interrupt Retoru instructitnt with

SP

the initial stack.

Nota: This stack area is disdnct fmrn tbe User Syslem Stack
at the end of thc UDA,

Low Memory

SS SP

(CS)

Staclt Initialization Area

0 oRITAL RESEhRCHi

0-1S2



CREATEConcurrent CP/M Frogmnmer's Gidde

Table 6 lg. (continued)

Field

INTO, INT l,
INT 3, INT4

Definition

CS,DS,
ES,SS

INT 224,
INT 225

The initial interrupt vectors for the 6rst 6vc interrupt types can
be set by Ming in these fields. The 6rst word of each 6eld is
thc Instruction Pointer (IP), and the second word is thc Code
Segment (CS) for a list of the interrupt routine that services
these interrupts. Those 6elds that axe zero are initializcd to bc
thc same as the caHing pmcesm interrupt vectors. These fields
axe typically initializcd to be 0,

The initial segment addresses for the ncw procure axe taken fm m
these 6elds. Those 6eids that arc zero are initislized to bc thc
same as the caHing process's Data Segment,

Interrupts 224 and 225 axe used to comnauucatc with Concur
rent CP/M by typical programs. These interrupt vectors sic
initialized to bc the same as the calling process if these values
are zero. The ability to change these values allows a ran-timc
system to ~ Canc unent CP/M calls that its children make.
The suggested protocol is to keep INT 225 pointing to the Con
current CP/M entry point snd changing INT 224 to point to an
internal routine. When a child process does an INT 224, the
internal routine can filter calls to Concurrent CP/M using INT
225 for the actual Concurrent CP/M call.

All reserved fields are used internally and must be initializcdRESERVED
to zero.

USER SYSTEM
SI'ACK

CW~

This is the stack area used by the pmccss when it is in the
operating system, The SP variable in the UDA should not point
to this area.

Control word for 8087 ptocessar. Processes bypassing the P
CLI or P LOAD system call must set this word to 03PPH.

Status word for 8087 processor. Processes bypassing the P CLI
or P~A D systein call must sct this ward to 0000H.

SW4'

sPart of optional 8087 Extension. lf the 8087 flag is set in the SFLAG field, this
6-paragraph extension inust be included for the 8087 environment.

8 DIGITAL axssARCH+
6-153



PARLAY

Delay For Specified
Number Of System TIcks

Entry Pararnetenu
Register CL: OSDH (141)

DX: Number of SystemTicks

The FMBLAY sysnnn cali causes the calling process to wait until the spcci5.cd tatmber
cf system ticks bas occurred. 'Hm F~ELAY system call avoids thc necessity of progrttrrnned
delay loops. It aUows other processes to use the CPU ~ whi le the calling process

The length of the system tick variesamong installations. A typical system tick is 60Hs
(16.67 millisecoach). In Etude, it ia likely to bc 50Hs (20 milliseconds). The exact length
of the system tick can be obtained by needing the TICKS/SEC value from the System Data
Segment (refer to thc S SYSDAT system call),

There is up to one tick of uncertainty in the exact amount of time debtycd. This is due tu
thc F~ELAY system call being called asyncbroncualy from the actual thee hase. Tbe
P DELAY system call is guaranteed to delay thc calling process at least the number of
ticks specificd. However. wbcu the calling process is mscbeduled to run, it might wait quite
a bit longer if there arc higbo priority processes waidng to run. The P~KAY system cao
is used primmi1y by programs that need to wait specific amounts of time for VO events to
occur. Under these conditions, the caUing process usually has a very high priority leveL If
a process with a high priority calla the P DELAY system call, the actual delay is typically
within a system tick of the amount of dme wanted.

• utGrAL RESEhRCHI



P~ hICH

P DlSPATCH

Cail Dispatcher

Enny Parameters:
Register CL: 08EH (l42)

The P~ISPATCH system calI forces a reschedule of pmcesses that are waiting ta run.
Normally, dispatches occur at every systemtick interrupt (usuaHy 60 times a second), and
whenever a process releases a system resource.Dispatchingalso occurs whenever a process
needs a system resaurce that is not currently available. A CPU-bound process runs for no
more than one system tick before a dispatch is forced. The dispatch occurs at the nextsystem
dck.

The Cancunent CP/M Dispatcher is priarity driven, with round-robin scheduling of equiv
alent-prunity processes. When a process calls the P DISPATCH system call, it is resched
uled, so that processes with higher ar equivalent priorities are given the CPU before the
calihtg process obtains it again. The calling process regains control of the CPU resource
when it becomes the highest priority prccess again.



Gmmva& CP/M Preg~r h G etsis

Bntry Parameters:
Register CL: 03BH (59)

DX: FCB Address - Offset
DS: PCB Address - Segment

Returned Values:
Register AX:

BX:
CX:

Base Page Address
GFFFFH on enor
Same as AX
Brror Code

The P~ syst em call loads a disk CMD type 61c into memory. Upon entry, register
DX contains the offset, relative to DS, of a successfully opened PCB that specific the CMD
6ie to load. Upon return, register AX haa the value OFFFFH if the prognun load failed.
Otherwise, AX cautaim tbe paragraph address of tbe Base Page belonging to the loaded
program. Tbe paragraph address and length of each gtnnp loaded from tbe CMD Sle is found
in the Base Page. See Sections 3.2 and 3.3.

Note that before calling P LOAD, the calling process must establish the DMA ackhesa of
whee the CMD 61e ia to be loaded. This is axampliabed with F~MASBG sad F~MAOFF.

Nose: Open the CMD 61e in ResdOmly mode and close it once the load is completed.

Refer to 'Ihbie 6-5 for a list of error codes returned in CX.

OCTAL RESEIRCH' •



P PDA,DR

Return The Address Of The
Calling Process's Process Descriptor

Entry Parsrne~:
Register CL: 09CH (156)

Returned Values:
Register AX: PD Address - ~

ES: PD Address - Segment
BX: Same as AX

'Ihe P PDADR system call obtains the address of the calling ptocess's Process Descriptor,
For a description of the format of the Process Descriptor, refer to the P CREATE system
call.

0 DIGFhL assshac Hi

6-157



Set'Ihe Priority Of
The Calling Process

Entry Psrame ters:
Register CL: 091H (14S)

DL: Priority

The P PRIORITY system call sets the priority of the calling process to the spscified veins.
This system call is useful in situations where a process needs to have a high priority during
sn initialization phase, bnt aftcrwtlrds can run at s lover priority.

'Ilte best or highest priority is OOH, while the worst or lowest priority is OFPH. 'Ibmsient
proces are lnitialized to run at CSH (200 dechnsl) by the P CLI system caD.

n OIGTAL ksSEARCH+
6-J58



PRPLConcurrent CP/M Progrsjmner'0 Guide

P ~ L

Resident hooeduxe Library

Entry Parameters:
Register CL: 097H (151)

DX; CPB Address-Offset
DS: CPB Addtess - Segment

Returned Values:
Register AX: 01H if RPL not found

RPL return par~
BX: same as AX
CX: Ermr Code
ES. RPL return segment if addr

+ t t + + +
NAME

+ + + + +
PARAM

Hpre 6-14. CPB - Call ParaNteter Block

III DKjiTAL RESEARCH>
6-159



APL Correrrrrerrr CP/M Prograarrrrarb Gutds

'lhhla 6 19. CPS FleM Dethalthrtta

Ffdd

NAME Name of Resident Procedure, eight AKZ chamcters

Psnunetcr to send to the Resident Procedure

P~ L permits a process to call a system call in an optional Resident Procedure Library
j,'RPL).

P~ op ens a system queue with the specified name. If Ihc Q OPENsystem call suc
ceeds, P~ c h ecks thc queue to verify that it is an RPI type queue. If either the Q OPEN
fails, or if it is not an RPL-type queue, P~L returns to the calling process with an error
co5e s

P RPL reads a message from thc queue that contains the address of thc specified system
call. It then places thc PARAM freld of thc CPS in register DX, and places the calling
process's Data Segment address in register DS. P~L performs a Far Call instruction to
thc a4hee it obtains fnrm the queue message. Upon return harn the RPL, the system call
copies thc BX register to the AX reghrtcr and then returns to the calling proces,

Note The P~ L system call does not write the address of the Resident Procedure back
to the queue.'lire Resident Prrrcerhrre itself must do this. If thc Resident Procedure ia to be
reentrant, it must write thc mcssagc into the qucuc upon entry. If it is to be serially reusable,
the procedure must write thc mcssagc just before returning.

Refer to 'lhble 6-5 for a list of error codes returned in CX.

6-l60



lbrminate Calling Process

Entry Parameters:
Register CL: 08FH (143)

DL: Tbrm Code

Returned Values:
Register AX: OFFFFH on failure

BX: Same ss AX
CX: Error Code

TI1e P TERM system call terminates the calling process. If the termination code ia not
OFFH, the system call can only terminate a user process. If the termhladon code is OFFH,
the system call can terminate the caUing pmcess even though the process's SYSTEM flag is
on. P lVJ64 cannot terminate a process with the KEEP Hag on, If the tertnination is
successful, the system call releases the mutual exclusion queues owned by the process. It
also teleases all memory segments owned by the pmcess, and returns the Process Descriptor
to the PD table.

A process can own one or more of the following resources: memory segments, consoles,
printers, mutual exclusion messages, and system Lock List entries that record open Nes and
locked records, When a process terminates and releases its resources, these resources become
available to other processes on the system. For example, if a terminating ptocess releases a
system console, the console is usually given back to the console's TMP. This occurs when
the TMF is the highest priority process waiting for the console.

lf the system caM returns to the calling process, the P ARM call has failed for one of
two teasons. Either the process has the KEEP flag on, or it has the SYSIKM flag on, and
the termination code is not OFFH.

6-161



P TERMCPM Conasvele cP/M Progrmaaar'ls Geek

Entry Panamtera:
Register CL 00H (0)

Returned Values:
Register AX: OFFFFH on failme

BX: Same aa AX
CX: Error Code

The P TSRMCPM system call termnetea the calhng laoceas, mhaelng all system resources
owned by the process.

P TBRMCPM ts implemented mternaUy by calling P TBRM with the termiaetion code
set to 00H.

Under CP/M-S6, the P THRMCPM system call has a further argument that allows a
process not to release ita ~ . Thi s argument places a piece of cods into ~ t hat
becomes an innrface for later programs, Concurrent CP/M does not include this option.
Memory segments are not recovered by the system until all prccesaea that own the memory
segment hwe released it,

Refer to Table 6-5 far a liat of returned error codes.

OnKiFN aESKARCH~



P TgRWCPMConcurrmt CP/M ProgramInsr'Is Gutde

6.X.S Queue System Calla

Queue system calls under Concurrent CP/M use the Queue Parameter Block data structure
to pass parameters to and from the operating system. Listing 6-3 shouts the structuxe of the
Queue Parameter Block and the equates for its Relds.

' 0000H QUEUEID 0000H BUFFEA

NAME
+ + t p +

Figure 6-15. QFS - Queue Parameter Block

lhbla 6-20. QPB Beld Dettnttlona

DescriptionField

QUEUEID

* 0000H

BUFPER

Queue number geld; ftlled in by a Q OPEN operation

Reserved for internal use: Inust be initialized to zero

Offset address of Queue Message Buffer

Name of Queue for Q OPEN operationNAME

SS DIGITAL RESEARCH+
6-163



P TKRMCPM Concurrent CP/M Progrsmmer3 Gutde

% %%%% % % % % % % % % % % % % % % % % % % % % %% % % % % % % % % % % % % % % %% % % % % % % % % % %

• %

QPB — Queue Parameter Block Definition

00 000 0 H que uei d 000 0 H buf f er

08 name

queueid — Queue ID, addrees of QD
buffer — addreee to read/wr i t e i n t o / f r o m
name — name of queue (for open only)

• %

P

• %%+%% % % % + % % % + % % % % % @ % % % % % % % % % % % % % % % %% • %%%% % % % % % % % % % % % %

qpb 0
qpb queueid
qpb buffer
qpb name

qpb len
qnaaeiz

equ
equ
equ
equ

w ord pt r 0
word ptr qpb 0 + w ord
w ord ptr qpb queueid + 4
byte ptr qpb buffer + word

qpb nese + qnaae1z
8

equ
equ

Llsthg &3. Queue Parameter SloeL' DeMtiea

• NGtThL QSEARCH+



Q CREADConcurrent CP/M Prapamtaer| Guide

Q CREAO

Conditionally Read A Message
From A System Queue

Entry Parameters:
Register CL: 08AH (138)

DX: QPB Address - Offset
DS: QPB Address - Segment

QPB qucueid Med in by previous
Q OPEN
QPB bufTer sct to message buffer
offset

Returned Values:
Register AX: 0 on success

BX: Same as AX
CX: Error Code message in buffer

OFFFFH on failure

The Q CREAD system call is analogous to the Q READ system call, but it returns an
mmr code if there ate not enough messages to read, instead of waiting for another process
to write to the queue.

Refer to Table 6-5 for a list of error codes returned in CX.

0 DIGITAL RESEARCH+



CooditionaHy Write A Message
Ib A Systeza Queue

E ntry ~ ters :
Register CL: 08CH (140)

DX: QPB Address - Offset
DS: QPB Address - Segment

QPB qucucid fiHcd in by previous
Q QPBN
QP~u ffcr set to message buffer
offset message in current DMA
buffer

Returned Values:
Register AX: 0 on success

BX: Same as AX
CX: Error Code

OPPPFH on failure

The Q CtVRITH system call is analogous to tbe Q WRITB system caII, but it returns an
nzar code if there is uot enough system queue buffer space fur the message to bc written,
sstead of waiting for another process to read fxom the queue.

Refer to 'able & 5 for a liat of error codes returned in CX.

• olQTAL FBEhRCH~
i l66



Q DELETE

Delete A System Queue

Entry Parameters:
Register CL: 088H (136)

DX: QPB Addtess - Offset
DS: QPB Address - Segment

QPB~ueueid Sled in by a
previous Q OPEN call

Returned Values:
Register AX: 0 on success

BX: Same as AX
CX: Error Cade

OFFFFH on failure

The Q DELETE system call removes a system queue from the system, The system returns
error codes if the queue cannot be deleted or if the queue has not been ~ pri o r to the
DE L ETE call.

Refer to Table 6-5 for a list of etTor codes returned in CX.

5 M TAL RESEARCH+
6-l67



QUAKE Coneurrsst CP/M Prograutmsr's Gutdr

Q MAKE

Make A System Queue

Entry Panuneters:
Register CL: 086H (134)

DX: QD Address - Offset
DS: QD Address - Segment

QD hlled in

Returned Values:
Register AX: 0 on success

SX; Sante as AX
CX: Er ror Code

QFFFFH Qn failure

OOOOH
+

NAME
I
I

FLAGS
+

QOOOH
+

MSGLEN

' OQOOH
+

NAME ..

NMSGS
+

' OOQOH
+

BUFFER

Figure 6-16. QD • Queue Dsecrl~r

5 ntQtrht KKSKAncN' •



QWhKECaacurrsnt CP/M Ftogrammert Cuidh

liable 6-21. Qnene Dsscrlptas IrieM Ddhitkssa

Field Definition

NAME

NMSGS

MS GLEN

Queue Flags. Thc bits are deflned as follows

0001H - Mutual exclusion queue
0002H - Cannot bc deleted
0004H - Rcstrictcd to system processes
0008H - RSP message queue
0010H - Used internally
0020H - RPL addxess queue
ONOH - Used internally
0080H - Used internally

Remaining flags reserved for future usc

8-byte queue name. All 8 bits of each character ate matched on a
Q OPEN call.

Number of bytes in escb logical message

Maximum number of logical messages to bc supported. If thc number
of messages written to the queue equals this maximum, no mate mes
sages are allowed until s message is read,

Adchem af thc queue buffer. This buffe est be (NMSGS " MSGLEN)
bytes long. The address is an offse relative to tbc DS register. This
flcid is unused if the QD resides outside of the System Data Segment.
Vjpically this flcld is 0 if the queue is being created by a transient
program. RSPs that ctestc queues must initialim this fleld to point to
a buffer, The Data Segment of as RSP's queue is considered part of
the System Data Segment unless it is beyond 64k of the beginning of
the Systun Data Segment.

For internal use. Must be initialled to zero.* 0000H

R ntalrhL stSEARCH+



Concaxeet CP/M Progrsxeersrl Guhk

Every system qmm under Coi:uncut CP/M is assochuad with a Queue Descriptor that
xxiidcs wirhin the Concurxeut CP/M System Data Segment. h the Q~AKB system call,
the calling process paams thc adrbees of a Queue Dcscriptor. If this Queue Descriptor is
within the Concurrent CP/M System Data Segment, thc system uses it directly for thc System
Queue. If the Queue Desoriptor is outside of the System Data Segment, thc syNtnn obtains
a Queue Dcscriptor fxom an internal Queue Dcscriptor taie. If there are no unused Queue
Dcscriptors in the internal table, the system call returns an error code.

Refer to 'Ihble 6-5 for a list of error codes returned in CX.

The buffer for a system queue must also rodde within the System Data Axes. For non
00H length buffers, resident buffcrs Nc used directly. Tbe system obtains a buffer from the
Queue Buffer Area if the buffer docs not reside within the System Data Segment.'Ils: size
of the buffer is calculated from the NMSGS and MSGLHN fields. Tbe system call returns
an error code if there is not enough unused buffer area leA to ecmunnahLte this new buffer.

All system queues uast have unique names. Tbe system cell returns an error code if a
systexu queue already exists by the given name.

Under Concurrent CP/M, all system queues must be explicitly opened (refer to tbe
Q OPSYsystem call) before being used to reed or writetxessages or to delete the queue.

• DKITAL axsshacH+
6-170



Q OPEN

Open A System Queue

Entry Parameters:
Register CL 08 7H (135)

DX: QPB Address - Offset
DS: QPB Address - Segment

QPB name filled in

Returned Values:
Register AX: 0 on success

BX: Same as AX
CX: Er ror Code

OFFPFH ou failure

QPB qucueid filled in

All system queues under Concurrent CP/M must bc explicitly opened before a read, write,
or delete operation can bc done. The Q OPEN system call examines each existing system
queue and atteiupts to match the umph in (he QPB with the name of a system queue. All
eight bytes of ihc iuunc usist match for a successful open, All bits of each byte are examined.
If the open operation is successful, thc Q OPEN system call modiilcs the Queue ID Picld
of the QPB. Once the the queue is opened, subsequent reads, writes, or a delete are allowed.

Refer to Thbic 6-5 for a list of error codes returned in CX.

• DOTAL sESEAacHa
6-171



Reed A Message From A System Queue

Entry Parameters:
Register Ci 089H (137)

DX: QPB Address - Offset
DS: QPB Address - Segment

QPILqucueid filled in by previous
Q OPEN
QPILhuffer set to ntessage buffer
offset

Returned Values:
Register AX: 0 on success

BX: Same ss AX
CX: Hrror Code ntesssge in buffer

OFPFFH on failure

The Q~ syst em call reads a message fmm a system queue that was previously
opened by the cslling pmocu. 'Ibe system call returns an error code if ths queue wss not
previously opened or if tire system queue has been deleted since the Q OPEN call. If there
are nat enough messages to reed from the queue, the calling process waits until another
process write into the queue before returning.

Refer to lhbie 6-5 far a hst of error codes returned in CX.

0 MrhL kssshscB+
6-172



Write A Message 'Ib A System Queue

Entry Psramcters:
Register CL: 08BH (139)

DX; QPB Address - Offset
DS: QPB Address - Segment

QPB~ucucd fdlcd in by previous
Q OPEN
QPB buffer sct to message buffer
offset

Returned Values:
Register AX: 0 on success

BX; Sere as AX
CX: Error Code

OFFFPH on failure

The Q WRITE system call writes a message to a system queue that was previously opened
by thc calling process. The system call returns an error code if the queue was not pteviousiy
opened or if the system queue has been deleted since the Q OPEN call. If there is not enough
buffer space in thc queue, the calling process waits until another process reads from the
queue before writing to the queue and returning.

Refer to 7able 6-5 for s list of error codes returned in CX.

6-l73



5.2.9 System Information System CaDe

Return BDOS Version Number

Entry Psnuneters:
Register CL: OCH (12)

Returned Values:
Register AL: 31 (BDOS Version 3.1)

AH: 14 (Concurrent CP/M)
BX: Same as AX

Tbe S BDOSVER system call teturns the BDOS tile system version munber, allowing
version-independent proiirtunming.

AL Hlph Nibble • BD08 Version Number

AL Low Nibbl •= 8008 Revlalon Level

AH Hlph Nibble CPU Type

0 = 8050
t • 8055

AH l.ow Nibble = 08 Type

0 • CP/M
t = MP/M
4 ~ Concurrent CP/M
5,7 to 8 = Reeerved

2 v CP/M w/network! np
8 = MP/M w/networklnp
5 = Concurrent CP/M

w/networklnp

Figure 6-17. BDOS Vere' Nmuber 1ibrtnat

6-174



C~trrast CP/M Prstgranamr'0 GaMe

S~IOS

Call BIOS Character Routine

Entry Panuneters:
Register CL: 032H (50)

DX: BIOS Desc. Addr. - OIfset
DS: BIOS Deac, Addr, - Segment

Returned Values:
Register AX: BIOS Return

BX; Same as AX

CX

Figure 6-18. BIOS Descripter Format

The S BIOS system call is provided under Concurrent CP/M fcr compatibility with pro
grams genenued under CP/M-86 that use this system cali (Function 50). Under Concurrent
CP/M, only routines that interface with character devices ate supported. The arguments to
character routines such as CONIN and LIMNI' must be converted to those appropriate for the
Concurrent CP/M XIOS. Refer to the Concurrent CP/M System Guide for further information
about the XIOS.

Note: Calls to the XIOS Console Status, Input, and Output system calls do not go to the
XIOS if the referenced device is a virtual console.

8 DKitrhj arsEAacH~
6- l75



C~ rt e t CP/M Pragral~'b ~

Return The Version Of Current
Concurrent CP/M System

Entry Parameters:
Register Cl OA3H (163)

Returned Values:
Register AX; Version Number (01431H)

BX; Same as AX
CX; Error Code

Thc S OSVER system call pmvides information that allows version-independent pro
gramming, Thcsystem call returns a two-byte value, with AH set to 014H for Concurrent
CP/M, and AL sct to the Co~ t CP / M version level. The AH register contains a value
sct to the type of operating system. A value of 01431H indicates Concttrrent CP/M 3.1.

Refer to 'Ihble 6-5 for a list of enter codes returned in CX.

AL High Nibble Concurrent GP/M-se Version Number

AL Low Nlbbl • • Concurrent CP/M Rwlelon Level

AH High Nibble GPU Type

0 8050
t t togtt

AH Low Nibble • 08 Type

O~ CP/M
t ~ MP/M
S • Concurrent CP/M
E.r tc P Reeenred

2 CP/M w/networking
S MP/M w/networking
6 = Concurrent CP/M

w/networking

Figure 6-19. Operating System Version Number Format

• DtolrAL aESEAaCHe
6- l76



Return Current System'a
Serial Number

Entry Parameters.'
Resister CL 06BH (107)

DX: SERIAL Address - Offset
DS: SERIAL Addrem - Sestnent

Returned Valuer.
SERIAL filled in

0 1 2 3 1 5

Figure 6-20. SERIAL Number Format

S SERIAL returns the Concuttent CP/M serial eunber to tbe addressed, six-byte SERIAL
i ield as a six-byte ASCII ~ .

E DlGITAL RKSfARCH+



LSYSDAT Concurrent CP/M Prcaranrar sr3 Guide

S~ DAT

Return Address Of 'Ibc
System Data Segment

Entry PsrarrM.ters:
Register CL: 09AH (154)

Returned Values:
Register AX: Sysdat Address - Oifset

ES: Sysdat Address - Segment
BX: Sarrl as AX

The S SYSDATsystem call returns the address of the System Data Segment of the calling
process. The System Data Segment contains all Process Descriptors, Queue Descriptcrs, the
roots of system lists, and other intcnud data that Concurrent CP/M uses.

Figurc 6-21, illustrates the SYSDAT 'lhhlc and its zelda.

• MT AL kESKARCH~
6-17tt



8&YSDATCannrrent CP/M Programmer's Guide

+ + + + < +
RESERVEDSUP ENTRY

+ 4 ++
RESERVED

RESERVED
4 + + + 4

10k
+ 0 + + + + 4.

+ + t t + +
RESERVED

RESERVED80H
+ + + +

XIOg ENTRY XIOS INIT88H
I

RESERVED
+ I +

PDISPDISPATCHER

lOH

NLCB

CCPMSEG RSPSEG

N SYS
FLAGS DISK

ENDSEG

MMP

RESER
-VED

RESER
-VED

NVC NS

DAY
FILENCCS

80H TEMP
DISK

TICKS
/SEC CCB FLAGSLUL

MDUL PUL QUL
4.

MFL
+

QMA

70H

78H

RESERVED

VERSION

80H

+

RI R
4

TOD TOO
H R BAI N

DLR

THRDRT

VERNUM

NOON
DEV

DRL
+

QLR
+

CCPMVERNUhll

NLST NCIO
DEV DEV

PLR

MAL

TOD DAY
+

LCBTOD
SEC

OPEN FILE LOCK
MAX

OPEN
MAX

RESERVED

OWNER J%87 RESERVED

90H

88H XPCNSRESERVED

RESERVEDO FF&087 SEG& 0 8 7

Bgure 6-21. SYSDAT %able

8 DIGTAL RESEARCH+
6-179



Concurrent Cp/M Prognatnrner'h Gnltte

Field

SUP ERIRY

PDISP

XIOS IN1T

XIOS ENTRY

DISPATCHER

Double ward address of the Supervisor entry point for inter
module couutatnicatinu. All internal system calla go through
this entry point.

Double-word address of the Extended VO System entry point
for intermodule communication. All XIOS functiau calls ga
through this entry point.

Double-ward address af the Extended VO System Initialuation
entry point. System hardware ini ialization tabes place by a
call through this entry point.

Double-wottt address of the Dispatcher entry point that handles
intent returns, Executing a Far Jump to this address is etluiv
alent ta executing an Interrupt Return instruction. The Dis
patcher routine causes a dispatch to occur and then executes
an Interrupt Retttrn. All registers are pteserved and one level
of stack is used. This hcadon should be used as an exit point
by all XIOS intnrrttpt Srtddets that uae the DBV SBTItjLAQ
system call.

Double-ward address of the Dispatcher entry point that causes
a dispatch to occur with all registers preserved. Once the dis
patch is done, a RETP instruction is executed. Executing a
JMPP PDISP is equivalent to executing a REfF ittatruction.
This location should be used as en exit point whenever the
XIOS releases a mourm that might be wanted by a waiting
ptocess.

Starting paragraph of the operating system area. This is also
the Cade Segment of the Supervisor Module.

Ruagraph Address of the fitst RSP in a linked! ist of RSP Data
Segments. The first word of the data segment points to the next
RSF in the list. Once thc system has been initial ized, this field

RSPSEG

18 Zeta,

• otolrg arsspLxcHr
6- l80



SMYSDATCOneurrenr CP/lH Pregraairner's Guide

Table 6-22. (continued)

Field

ENDSEG

Fxplanor ion

MMP

NLCB

NCCB

NVCNS

N FLAGS

SYSDISK

DAY FILE

TICKS/SEC

LVL

TEMP DISK

First paragraph beyond the end of the operating system area,
including any buffers consisting of uninitialized RAM allo
cated to the operating system by GENCCPM. These' include
the Directory Hashing, Disk Data and XIOS ALLOC buffers.
These buffer areas, however, are not part of the CCPM.SYS
file.

Number of virtual consoles, copied from the XIOS Header by
GENCCPM.

Number of List Control Blacks, copied from the XIOS Header
by GENCCPM.

Number of Character Control Blocks, copied from the XIOS
Header by GENCCPM.

Number of systeiu flags as specified during GENCCPM.

Default system disk. The CLI looks on this disk if it cannot
open the command file on the user's current default disk. Set
during GENCCPM,

Maxirnurn memory alhwed per process, Set during GENCCPM.

Day FIIe option. If this field is OFFH, the operating system
displays file logging information on system consoles at each
command. Set during GENCCPM.

Default temporary disk. Programs that create temporary files
should use this disk, Set during GENCCPM.

The number of system ticks per second,

Link list root of unused Lock List items.

Address of the Character Control Block Table, copied from the
XIOS Header by GENCCPM.

CCB

5 DIGITAL RESEARCH'
6-18 I



~Y SDAT Concurrent CPiiVI Pralrannner'h Guide

Table 6 2 . (continued)

Field Explanu/ion

QLR

DLR

DRL

PUL

QUL

QMAU

MDUL

THRDRT

VERNUM

VERSION

Address of the Flag Table,

Unk list root of unused Memory Descriptors,

Lhk list root of free memory partitions.

Lhk list root of imused Pmcess Descriptors.

Link list root of unused Queue Descrlptors.

Queue Buffer Memory Allacatian Unit.

Ready List Root. Linked list of PDs that sre ready ta ruu.

Delay List Root. Link list ef PDs that are delaying for a spec
ified umber of system ticks.

Dispatcher Ready List. Tbmporsry holding place for PDs that
hase just bean made ready to run.

Poll List Root. Linked list of PDs that are polling an devices.

Thread List Root. Linked list of sll current PDs on thesystem.
The list is tluesded through the THREAD field of the PD
Instead of the LINK field.

Queue Liat Root. Linked list of all Systssu QDs.

Link list of active memory allocation units. A MAU is created
fram oue or morememory partitions.

Address, relative to CCPMSBG, of version string.

Concurrent CP/M version number (system call l 2 ,
S BDOSVER).

Concurrent CP/M version mmber (system call l63, S OSVER).CCPM VERNUM

6-182



S rtVSDATConcurrent CP/M Programmer'I Guide

Table 6.X2. (continued)

Fie(d

TOD DAY

Explana(ion

TQD HR

TOD SEC

NCIODEV

NLZI'DEV

TOD MIN

NCONDEV

OPEN FILE

OPEN MAX

LOCK MAX

Time-of-Day. Number of days since 12/31/77.

'Ilmc-of-Day. Hour of thc day.

Time-of-Day. Minute of the hour.

Time-of-Day. Second of the minute.

Number of XIOS consoles, copied from the XIOS Header by
GENCCPM,

Number af XIOS list devices, copied fram thc XIOS Header
by GENCCPM.

7btal rsnnber of character devices (NCONDEV + NLSH3EV),

Offset of the List Control Block Table, copied from the XIOS
Hcadcr by GENCCPM.

Open File Drive Vector. Designates drives that have open files
on them. Each bit of thc ward value reprcscnts a disk drive;
the least significant bit represents Drive A, and so on through
the most significant bit, Drive P. Bits which are set indicate
drives containing open files,

Maximum number of lacked records per process. Set during
GENCCPM.

Maximum number of open disk files pcr process. Sct during
GENCCPM.

Specifics 8087 information. If sct to OFFFFH, the system
assumes there is no 8087 in thc system. If sct to 0, there is an
8087 but no onc owns it. If set to any other value, the system
assumes that this value is the PD offset of the 8087 current
process.

OWNER 8087

8 DmlrAL RESFARCH' •
6-[83



~Y SDAT Concurrent CP/M Prosrammer'a GuMa

Table 6 22. (continued)

FIr/d

XPCNS

OFF 8087

KvpIartal/on

Specifics the number of physical consoles.

Offset of the hardsc~fependent 8087 interrupt vector. If you
supply your own 8087 exception handler routine, store the
offset of your exception hillier routine st this offset sdthcsa.

Segment address of the hard~ pen d ent 8087 interrupt
vector. If you supply your ourn 8087 exception handler routine,
store the segment addtesa of your exception handler routine at
this aegtnent address.

SEG 8087



Coucurreot CP/h4 Programmer'I Guide

T GET

Get System Time And Date

Entry Parameters:
Register CL: 069H (105)

DX: TOD Addtess - Offset
DS: TOD Address - Segment

Returned Values:
Register AL: Seconds

TOD filled in
(Days, Hours and Minutes only)

DAY AMOUR MI N SEC

Figure 6-22. TOD - Timemf.Day Structure

a mana. atstAacH~
6- t85



T GET Consonant CP/M Programmer's GuMs

'Itsble 6-23. 'Hued-Day FieM Dalnitleua

Field

DAY

Definition

The number of days since 12/31m. 'He day is stored as a 16-bit integer.

The current hour of the current day. The hour is represented as a 24 hour
cluck in 2 binary coded decimal (BCD) digits.

The current minute of the current hour. lie minute is stored as 2 BCD
digits.

The current second of the current minute. The second is stored as 2 BCD
digits.

HOUR

The T GEI' system call obtains tbe system internal thne and date. The calling process
passes the address of a four-byte data strucuue that receives the time and date values. This
system call is equivalent to the TMECONDS system cail, except that it does not return the
SECONDS field of the internal time.

8 OKilTAL RESEARCH+
6-186



TM@CONDSGsac»rrtsk C F/M Pr»gra~ G »M»

T SECONDS

Get Current System Time And Day

Entry Parameters:
Register CI 0 9EH (155)

DX: TOD Address - Offset
DS. ' TOD Address - Segment

Returned Values.
TOD glled in
(Days, Hours, Minutes, and Seconds)

The T SECONDS system call returns the curtent encoded tine and date (including sec
ands) in the TOD structure passed by the calling process.

• DKtrAL RESEARCH+
6-187



C ~arrsak CP/M Preara~ Gal b e

Set System 11me And Date

Entry Panuretera:
Register CL 068H (104)

DX: TOD Address - Offset
DS: TOD Address - Segroent

The T SEf systelll caH sets the systeminternal tMe and date. The calling process passes
the addtess of a 4-byte structure containing the time and date speciiication.

'Ibs date is represented as a 16-bit integer wfth day 1corresponding to January 1, 1978.
The time is ~ ted as two bytes hours snd mirartea stored as hvo BCD digits.

Under Concnrrent CPfM, this system cail also sets the second field of the system time and
date to 00H.

Ssd of Sscriort 6

• MTAL RrsshacH+
6-I38



Appendix A

Function Number
System Call Summary by

This appendh lists the Concurrent CP/M system calls by function number including the
pamnsters a process must pass when calling the function, and the values the function returns
to the process.

Tttbla A-I, Systant Call Summary by Function Number

Dec Hex

0 0
I I
2 2
5 5
6 6
9 9
10 A
1 1 B

P TERMCPM
~ D
C WRITE
L WRITE
C RAWIO
C WRITESTR
C READSTR
~ AT

none
none
DL = char
DL = char
see def
DX = .Buffer
DX = .Buffer

Mnemonic Input Ptttrtmeters Retttrned Msfrtes

AX = Rtn Cade
AL = char

none
see def

1 2 C
1 3 D
14 E
1 5 F
16 10
17 l l
18 12
19 13
20 14
21 15
22 16
23 17
24 18
25 19
26 IA
27 I B

S BDOSVER
DRV ALLRESET
DRYS ET
F OPEN
F CLOSE
FMFIRST
FMNEXT
F DELETE
F READ
F WRITE
F MAKE
RENAME
DRVMOGINVEC
DRV GET
FMMAOFF
DRV ALLOCVEC

none

none
none
AL =

DX =

DX =

DX =

none
DX =
DX =
DX =
DX =
DX =
none
none
DX =,DMA

.FCB
,FCB
,FCB
.FCB
. FCB

Drive 8
.FCB
,FCB
. FCB

none
see def
AL = I if ready

= Oifnnt ready
AX = VetMondt
see def
see def
AL = Dir Code
AL = Dir Code
AL = Dir Code
AL = Dir Code
AL = Dir Code
AL = Err Code
AL = Err Code
AL = Dir Cade
AL = Dir Code
AX = Login Vect.
AL = Cur Drive
none
ES:AX = Allac Addrnone

sr a(GlrAL sKSEARCH+
A-1



Conearrent CP/M Programme> QatdeA System Celt Sammat7

Hex

IC
1D
IE
IF
20

Table A-1. (continued)

1nput Parurnerers

28
29
30
31
32

M'nent onic

DRY ETRQ
DRV ROVEC
FMTIRIB
DRY PB
F USERNUM

none
lion»
DX = .FCB

DL = OFFH (get)
= User 4 (set)

36
37
38
39

33
34
35

26
27
28
2A
2B
2C
2D
2E
2F
30
32
33
34
35
36
37
38
39
3A
3B
63

F~ RAND
F WRITERAND
PRIZE

F~ DREC
DRY~ ET
DRYNESS
DRV~
F WRITEUP
F~
F UNLOCK
F ~ TISE C
F~IRMODE
DRY&PACE
P CHAIN
DRYADS H
SBIOS
XMAS EG
FMMAGET
M~ AX
M~ SMAX
M~ IX C
M~ BS ALLQC
M~ EE
M C~L R I E E
P~ D
F TRUNCATE
DRVMETLABEL
DRV t3FTLABEL
F TIMEDATE
F WRITEXFCB
TMEI'

42
43
44
45
46
47
48
SO
51
52
53
54
SS
56
57
58
59

100
101
102
103
104

none

DX =,F'CB
DX = .F'CB
DX ~ .FCB
DX D r ive 4
DX ~ .XFCB
DX ~ .XFCB
DX ~ .TOD

DX =,FCB
DX = .FCB
DX =,FCB

DX ~,FCB
DX ~ drive Vect
DX = drive Vcct
DX ~ drive Vect
DX = .FCB
DX = .FCB
DX = .FCB
DL= ttt of Records
DL E r ror Made
DL = Drive ttt
sec def

DX = .BD
DX = .DNA S»g

DX = .MCB
DX ~ .MCB
DX = .MCB
DX = .MCB
DX =,MCB

sce def
AX = R/0 Vect.
see def
ES:AX = DPB Addr
AL = User dt
tlone
AL = Err Cade
AL E r r Code
RO, Rl, R2
AL D i r Cade
RO, Rl, R2
AL E r r Code
none
none
AL = Err Cade
AL = Err Code
AL = Err Code
AL ~ Rtn Code
hme
see def

see def
AX = BIOS Rtn

ES;AX = DMA Addr
see def
aec dcf
se» def
see def
see def
none
AX = BP Addr
sce def
AL = Dir Code
AL L a bel Dsts Bine
AL = Dir Code
AL = Dir Code
none

/returned Values

67



A System Call SummaryConcurrent CP/M Programmer's Guide

105
106
107
109

Her

69
6A
6B
6D

T GET
F PASSWD
~E RIAL
~ ODE

AAenronk

111
112
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

110

6F
70
80
81
82
83
84
85
86
87
SS
89
SA
SB
SC
SD
SE
SF
90
91
92
93
94
95
96
97
98
99
9A
9B
9C

C DELIMIT

C WRIIEBLK
WRITEBLK

M ALLOC
M AJ.LOC
M FREE
DEV POLL
DEV WAITFLAG
DEVA ETFLAG
Q MAKE
Q OPEN
Q DELETE
QMEAD
Q CREAD
Q WRITE
Q CWRITE
P DELAY
P DISPATCH
P TERM
P CREATE
P PRIORITY
C ATTACH
C DETACH
~ ET
C ASSIGN
P CLI
APL
F PARSE
C GET
SMYSDAT
T SECONDS
P PDADR

DX = .
DX = .
DX =

.

DX = .
DX =

.

DX=.

DX
DX
DX =

•

Same as
DX =

.

DL = Dc

DL = Fl

Table A-I. (Coatirrtred)

Input Paranreters

DX =
DX =
DX =
DX =

. TOD

. Password

.scrialrls
Con Mode
OFFFFH
Out Delirn
OFFFFH
CHCB
CHCB
MPB
above

MPB
vice
ag

DL = Fl ag
DX =

. QD
QPB
QPB
QPB
QPB
QPB
QPB

DX = 4s

none
none
DL =

DX =

DX =

DX =

DX =

Irene
DL =

DX =

DL =

none
none
DX = .TOD

Console
.ACB
.CLBUF
.CPB
.PFCB

ticks

Tenn. Code
.PD
Priority

none
none
none
none

none
AL = seconds

serial dt

AX = Rtn Code

none
AX = Rtn Code

AX = Rtn Code

none
AX = Rtn Code
AX = Rtn Code

nane
none
AX = Rtn Code

none
none
AX = Rtn Code
Same as above
none
none
AX = Rtn Code
AX = Rtn Code

none
AL = Out Delim

AX = Con Mode

none
AX = result
see def
AL = conk
ES:AX = Sys Data Addr
TOD SIcd in
ES;AX = PD Addr

Returned Va/ues

none

st oicrrm assshaor'
A-3



Concurrent CP/iM Programner's GaMeA System Call Itummry

Table A.-L (continned)

Der Hex Mnemonic

157 9D A B OR T
158 9 8 A TTACH
I S9 9 F LJ 3ETACH
160 A O ~ F I'
161 A I L CA BAL'ACH
162 A 2 C CA%TACH
163 A 3 S OSV BR
164 A 4 L GET

Input Parameters Retur ned Valves

DX = ,ABP
none
none
DL = Liat dt
none
none
none
noae

AX = Rtn Cade
none
oane
none
AX = Rto Code
AX ~ Rtn Code
AX = Version 4
AL = List 1



A System Call Suinmary

Conventions used in Appendix A:

ACB
Addr
APB
BD
BP
Char
CHCB
CLBUF
Con
CPB
Cur
Delim
Dir
DMA
Brr
FCB
MCB
MPB
Num
Out
PD
PFCB
QD
QPB

Rtn
Sys
Ter In.
TOD
Vect

Rec

Address of
Nmnber
Assign Control Block
Address
Abort Parameter Block
Bios Descriptor
Base Page
ASCII &atacter
Chnacter Control Black
Command Line Bdfer
Console
Call Pamneter Block
Curten.t
Delimiter
Directory
Direct Memory Address
Error
File Control Block
Memory Control Block
Memory Parameter Block
Nuinber
Output
Process Descriptor
Parse Filename Control Block
Queue Descriptar
Queue Parameter Block
Record
Return
System
Termination
Tune of Day
Vector

e DKilrhL RK%NKHI

A-5



Appendix B
ASCD and Hexadecimal Conversions

'lltis appendix contains tables of the ASCII symbols, including their binary, decimal, and
hexadecimal converaione,

'Itsble B-1. ASCII Sysabnis

Meaning Symbol

BEL
BS

CR
DC
DEL
DLE
EM
ENQ
EOT
ESC
ETB
ETX
FF

bell

cancel

acknowledge

backspace

carriage return
device control
delete
data link escape
end of medium
enquiry
end of transmission
escape
end of transmission
end of text
form feed

FS
GS
HT
LF
NAK
NUL
RS
SI
SO
SOH
SP
SIX
SUB
SYN
US
VT

file separator
group separator
horizontal tabulation
line feed
negative acknowledge

record separator
shift iu
shift out
start of heading
space
start of text
substitute
synchmnous idle
unit separator
verticai tabulation

null

Binary

0000000
0000001
0000010
000001 l
0000100
0000101

Thble B-2. ASCII Conversion Table

Dsci mal

000
001
002
003
004
005

Hexnck cimal

00
01
02
03
04
05

ASCl1

NUL
SOH (CTRL-A)
STX (C IRL-B)
ETX (C IRLZ )
EOT (CTRL-D)
ENQ (CIRL-E)

5 DmnAL RESEARCH+
B-1



1 ASCII end Hexedecheel Convereloae Concurreat CP/M Progremmer'e Gute

Decimal

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043

Nnarr

0000110
0000111
0001000
0001001
0001010
0001011
0001100
0001101
0001110
0001111
0010000
OOIN)OI
0010010
0010011
0010100
0010101
0010110
0010111
0011000
0011001
0011010
0011011
0011100
0011101
0011110
0011111
0100000
OIOml
0100010
0100011
0100100
0100101
0100110
0100111
0101000
0101001
01010IO
010]OII

'Ihble $-2. ( canthal)
Hrxadtcima!

06
07
08
09
OA
OB
OC
OD
OE
PF
10
11
12
13
14
15
16
17
18
19
IA
IB
IC
ID
IE
IF
20
21
22
23
24
25
26
27
28
29
2A
2B

A SCIl

(CTRL-F)
(CTRL-G)
(CTRL-H)
(CTRL-I)
(CTRL-I)
(CTRL-K)
(CTRI L)
(CTRL-M)
(CTRL-N)
(CTRL 0)
(CTRL-P)
(CTRL-Q)
(CTRL-R)
(CTRL-S)
(CTRL-T)
(CTRL-U)
(CTRL-V)
(CTRL' )
(CTRL-X)
(CTRL- Y)
(CTRL-Z)
(CTRL-[)
(GIRL-)
(CTRL-j)
(CTRL-")
(CTRL= )
)

ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
EH3
CAN
EM
SUB
ESC
FS
GS
RS
US
(S FACE

Rl MTAL RESh%2e
8-2



$ ASC11 and Hexedecjtnel ConverejonsCOncurrent CP/M PregreInmer'e Cutie

1Je ritual

044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059

Bktar I'

0101100
0101101
OI01110
0101111
0110000
011MOI
0110010
0110011
0110100
0110101
0110110
0110111
0111000
0111001
0111010
Ollloll
Olll j00
Olll l o l
O jll l l o
O lll l l l
1000000
100000l
1000010
10000II
1000100
1000101
1000110
10001II
1001000
1001001
10010IO
l001011
1001100
l00110l
1001110
lOOlll l
1010000

1IEMe 8-2, (enntjrmed)

Hexadecimal

061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080

2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B

3D
3E
3F
40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50

ASC11

7
0

A B C D E F G H I J K L M 1/

0 P

$~ DIGITAL RESEARCH+
B-3



5 A8C]l and Hexadeetma] Cmveee]0ae Cottcaneat CP/M Progranuaet'e Gu]de

Draimul

08]
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
l02
103
104
105
106
107
108
109
110
111
]12
II3
114
115
]16
117

Snub
1O]OOO]
]O]0010
10]00]]
]0]O]00
]0]Ol0]
]0]OI]0
10]OI]I
1011000
1011001
1011010
1011011
]011100
1011101
10]]110
10]I.111
1100000
1]00001
1100010
1100011
l]00]00
l100101
l100110
l100111
II01000
I.101001
1101010
I.10101I
IIO]100
1101101
1101110
1101III
]110000
]110001
1110010
1110011
]]10100
Il]OIOI

Kbja I-X ( coettheaee])

Huxadrrimui

65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75

Q 64

5]
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5H
5F
60
61
62

0

h It

a b

f 8

I n

P r

C

d
e

z

U V

R 8 T

W X Y

A I

ASCII

Q

t
U

• NQTAL ABEAM' •



B ASCll end Hexadeelmel ComerslonsConeorren( CP/M Progremmer'e GuMe

Decimal

118
119
120
121
122
123
124
125
126
127

Binary

1110110
1110111
1111000
1111001
1111010
1111011
1111100
1111101
1111110
1111111

Xhble B-2. (conlhned)

Heradecirnai

76
77
78
79
7A
7B
7C
7D

Z
Y

V W

DEL

ASCII

7F

B-5



Appendix C
Error Codes

'table C-1. Coomrrent CPM Error CotIea

Code 4 Definitio

13
14
15
16
17
18

9
10
12

0 1

2 3

4 5 6 7 8

NO ERROR
FUNCTION NOT IMPLEMENTED
ILLEGAL FUNCTION NUMBER
CAN'T FIND MEMORY
ILLEGAL SYSTEM FLAG NUMBER
FLAG OVERRUN
FLAG UNDERRUN
NO UNUSED QUEUE DESCRIPIORS LEFT IN QD TABLE
NO UNUSED QUEUE BUFFER AREA LEFI'
CAN'T FIND QUEUE
QUEUE IN USE
NO UNUSED PROCESS DESCRIPTORS LEFT IN PROCESS
DESCRIPTOR TABLE
QUEUE ACCESS DENIED
EMPTY QUEUE
FULL QUEUE
CLI QUEUE MISSING
NO 8087 IN SYSTEM
NO UNUSED MEMORY DESCRIFI'ORS LEFI IN
MEMORY DESCRIPTOR TABLE
ILLEGAL CONSOLE NUMBER
CAN'T FIND PROCESS DESCRIPTOR BY NAME

CONSOLE DOES NOT MATCH
NO CLI PROCESS
ILLEGAL DISK NUMBER
ILLEGAL FILE NAME
IlLEGAL FILE TYPE
CHARACTER NOT READY
ILLEGAL MEMORY DESCRIPTOR
BAD LOAD
BAD READ
BAD OPEN

19
20
21
22
23
24
25
26
27
28
29
30

0 OlGITAI. %SEARCH+
C-I



Code 4

3l
32
33
34
35
36
37
38
40
41
42

Definition

NULL COMhfAHD
NOT OWNEBt
NO CODE SBGMENT IN LOAD PILE
ACTIVE PROCESS DKSCRIPIQR
CAN'T TERMINATE
CAN'T ATTACH
ILLEGAL LKI' DEVICE NUMSER
ILLEGAL PASSWORD
EX'IBRNAL TERhIINATION OCCUItRBD
FIXUP ERROR UPON LOAD
FLAG SBT IGNORED

End of Appendix C

• M TAL RKQAKH+
C-2



Appendix 0
ECHO.A86 Listing

IisUng D-l. ECHO.A86

ECHO - Resident System Process
Print Command tail to console

DEFINITIONS

ccpmint
c writestr
c detach
c set
q make
q open
q read
q write
p priori t y

pd.len

;ccpm entry interrupt
;print string
;detach console
;set default console
;create queue
;open queue
;read queue
;«rite queue
;set priority

equ 224
equ 9
e qu 14' f
equ 148
equ 134
equ 135
equ 137
equ 139
equ 145

equ 48 ;].eng th of Process
Descriptor

p cns
p disk
p user
p lis t
ps run
pf keep

rsp top
rsp pd
rsp uda
rsp bottom

qf rsp

equ
squ
squ
equ
squ
squ

squ 0
s qu 010 h
s qu 040 h
e qu 140 h

squ 08h ;queue RSP flag

byte ptr 020h ;default ons
byte ptr 012h ;default disk
byte ptr 013h ;default ussr
byte ptr 024h ;defau)t l i s t
0 ;PD run status
2 ; PD nokill flag

;rap offset
;PD offset
;UDA offset
;end rsp header



0 ECHO.Ass LMng Cmcwrect CP/M Programmer's GuMe

Uedng D-l. (continued)

o cpa:

;open ECHO queue

GSEG
arg O

ict ccpaint
ret

aov ol,q asks I aov dx,offset qd
eall cops

aov cl,q apsn ! aov dx,affect qpb
anil ceps

• ov al,p priarity I aav dx,200
cull cops

;create E080 queue

;set priarity ta noraul

;ES paiats ta SYSMT

loop:

aov ee,adetsea

;forever

• ov al, q read I nov dx, of feet qpb
call cops

;read cadtail froa queue

;set default values froa PD

;p disk =0-l5
;sake dish- I-l6

eov hx, pdedr
aov dl,ee:p disk[bx]
inc dl ! aov disk,dl
eov dl,es:p user[bx]
aov User,dl
• ov dl,es:p list[bx]
• ov list,dl
aov dl,es:p cnsibxj
aov console,dl

8 DM'AL %SEARCH~
D2



Concurrent CP/M ProgramIner'R Guide D ECHO.A56 UstlIIE

L!sting D-l. (contlmned)

;set detanlt console

sov cl,C SET ! call ceps
sov dl,console

;scan cmdtail and look for '5' or 0.
;when foIInd, replace w/ cr.lf,'»'

lea bx,cmdtail ! mov al,'$' ! sov ah,9
mcv dx,bx ! add dx,l31

cmp bx,dx ! ja endcmd
cmp [bx],al ! je endcmd
cmp [bx],ah ! je endcmd

inc bx ! jmpe nextchar

nextchar:

endcmd:
mov byte ptr [bx],13
mov byte ptr 1[bx],10
mov byte ptr 2[bx],'$'

,write command tail

lea dx,cmdtail ! sov cl,C lSITESTR
call ccpm

mov dl,console
mov cl,c detach ! call ccpm

;done, get next command

;detach console

jmps loop

DATA SEGMENT

TE DIGITAL RESEARCH+



Concurrent CP/M Pragranueer'I GTMeD KcHO.Age Lletlus

Lhtlni D-l. (contfnned)

DSEG
o rg rep t o p

dT 0,0,0
dT 0,0,0
dT 0,0

sdataeg

o rg rep p d

I' T
db
db
IT
db
dT
db
db
dT
dT
db
IT
db
db
db
db
IT

0,0
pa run
190
pf keep
'ECHO
offset uda/lOh
0,0
0,0
0
0,0
0,0
0
0
0,0,0
0
0,0,0
0,0,0,0

nRRQ

; l ink. thread
; status
; priority
; flags

; uda eeg
; disk, user
; load dsk,uer
; nes
; dvraot,Tait

; oonsole

, 'liat

• DIGITAL RESFAkCH'+
p-4



C~ e rcat CPIM ProereIRIner'a GaNe

Liatlng D-l. (continued)

rsp udaofg

dw
dw
dw
dw
dw
dw
ds
dr
de

dI
de
dw

rsp bottom

rb

O,offset dms,0,0

O,O,O,O
O,O,O,O
O,O,O,O
O,O,O,O
O,O,O,O
a,a,offset stack tos,a ;30h
0,0,0,0
o,a,o,o ;40h
O,O,O,O
O,a,a,o
0,0,0,0
0,0,0,0 ;6ah

;0

org

131 ;queue buffer

;l ink
;net,org
;flags

;msglen
;nmsgs
;dq,nq
; msgcnt, msgcut
;buffer addf.

; 5ah

qbuf

qd de
db
dw
db
dw
de
dw
dw
dw

0
0,0
qf rsp
'ECHO
131
1
0,0
0,0
offset qbuf

; Rah

;name

Jl DIGITAL RESEARCH'
D-s



D ECHO.A$6 Lhthg Coarorrest CP/lH Propasnmer'I Gukle

stack

piadr
cmdtail

stack tos

rb

ds
dr
dr

dw
dr
de
dw

rb
db

db
dr
dv
ds
db

Lletlng D-l. (eontlnned)

lRS

Occcch,Ococch,Occcch
Ooocch,Ococch,Occcch
Occach,0aocch,Occcch
Occcch,Occcch,Occoch
Occaah,0occcb,Oocoah
offset naia ; start offset
0 ; start seg
0 ; init flags

1
1R9
13.10, '4'

0,0
0
1
offset ydadr
'ECHO

; /PB Buffer
; starts bere

;suet be zero
;queue ID
',nnsge
;buffer addr.
;nese to open

cansale
;disk

; l ist

db
db
db
db

;user

end

&d of Appsedir D

• clCiITAL RESEARCHI



A.ppendix E
SOS7 Exception Hand1ing

This appendix includes an example of an 8087 interrupt handling routine to demonstrate
thc requncmcuts far using the 8087 processor. Refer to Intel's iAPX 86,88 Urer'r Manual
far a description of 8087 exception handling in the section on "8087 Numeric Data Pmccssor".

ln order to guarantee the data integrity for each 8087 process in the multitasking envi
ronment, any user-deiined exception handler must adhere ta a minimum sequence of steps
within the exception handler.

l. Save the 8086 environment of the 8086-running proceta.

2. Save the cnvimnment of the 8087-running process. 'Ee 0%%ER 8087 Acid in
SYSDAT will contain thc offset of the 8087-running process (sce description of
SYSDAT in Section 6 with thc SMYSDAT system call),

3. Clear the 8087 interrupt request bit in thc status word,

4. Disable the 8087 interrupts.

5. Clear the HC interrupt (this instruction is hardware-dependent).

6. At this point, you might want to modify the 8087 environment image saved in step
2 above.

7. Before enabling the 8086 interrupts, restore the 8087 environment with its status
word's interrupt request bit cleared. lf the environment is not restored before 8086
interrupts are enabled, and sn interrupt occurs (! ike a tick), a different 8087 process
can gain control of the 8087 and swap in its 8087 context. On a second interrupt,
or on an IRET instruction, the 8086-running process that happened to be executing
the exception hsntller code is brought back into 8086 context and writes over thc
new 8087 context.

The user program, which uses its own exception handler, must replace the system's
interrupt vector with its own. Once this is done, the system swaps this vector into
memory every time the program comes back into 8087 context. The address of the
interruptvector is in the SYSDAT table at offset AOH (thc description af thc SYSDAT
Table is included in the description af the SMYSDAT system call in Section 6),

The default exception handler aborts those 8087 pmgrams that have enabled 8087
interrupts and that generate a severe error (such as stack underrun, divide by zero,
and so forth). Any other errors are ignored by the default exception handler.

• DIGTAL RBEhKH+
E-1



K SOSV Exccpthn Handlhg Coacurrcut CP/M Programmer'e Guide

UsLhg E-1. $087 ExceytjceI Hsadlimg

I

; 808T interrupt routinendpint:

This exception handler is non-specific and
ie meant as an example
default. It is assumed that if the 8087
programmer has enabled 8087
interrupts aud has specified exception flags
in the coutrol word, then
the programmer has also included an
exception handler to talse
specific actions within the program
before continuing in the 80PT.
This handler will ignore ncn-severe
errors (overflow,etc) and will
terminate processes with severe errors
(divide by zero,stack violation).

0 X ITAL RESKhKH+



K 80$7 Exception HandlingConcurrent CP/M Programmer'a Guide

Ueting E-I. (continued)

; SAVE CURRENT DATA SEGNENT
GET XIOS DATA SEGNENT

; DO STACK SWITCH FOR 8086 ENVIROQENT
; SAVE

; SAVE THE 8086 REGISTERS

push ds
mav de,sysdat
mav ndp sereg,ee
mav ndp spreg,ep
mav ss,sysdat
mav sp,offset ndp tos
push ax! push bx
push ax! push dx
push di! push si
push bp! push es
mav es,sysdat
FNSTENV env 808T
FWAIT
FNCLEX
xor ax,ex
FNDISI
mav a1,020h
out 060h,el
mov al,020h
out 058h,al
call in 8087

; NOW SAVE THE BOFf ENVIRONNENT
; SAVE 808V PROCESS INFO

,' CLEAR ITS INT %QUEST BIT

; DISABLE ITS INTERRUPTS
; SEND 2 INTERRUPT ACKNOWLEDGES — l FOR
; ONE FOR RASTER PIC, ONE FOR SLAVE

; IN 8087 WILL CHECK THE 8087 ERROR
; CONDITION. ZF ERROR IS SEVERE, IT
; WILL ABORT, ELSE IT WILL RETURN WITH
; NO CHANGES,
CLEAR ITS STATUS WORD FOR ENV RESTORE

; RESTORE THE 8086 ENVIRONNENT

mov bx,offset env 8087
sov byte ptr 2[bxT,O
pop es' pap bp
pap si! pop di
pop dx! pop cx
pap bx! pop ax

sov es,ndp scrag
mov sp,ndp spreg
FLDENV env 8087
FWAIT
pap ds

; SWITCH BACK TO PREVIOUS STACK

; RESTORE 8087 ENV WlTH GOOD STATUS

; RESTORE PREVIOUS DATA SEGNENT
iret

ee DIGITAL RESEARCH'
E-3



E $0$7 Kcceplmon HasdNae Concurrent CP/M Preerammer'a Guide

LhInE K-'i. (coathued)

I

in 8087:

entry: DS - SYSDAT
Only neer-speoifie4 error oonditions generate
interrupts froa the BOST.

sov bx,ovner 80F(
test bn,bx
Jz end 8T
• ov ei, offset env 8087 ;
• ov ax, statusvfsi7
test ex,03ab
]nz end FT
or p flag[bx),080b

GET THE PROCESS DESCRXPTOR
CHECK IF OINER HAS ALREADY
TERNINATND
IF IT'S A SEVERE ERROR, TERNINATE

IF NOT SEVERE, RETURN L CONTINUE
3h = UNDER/OVERFLON.PRECISION,

AND DENORMALIZED OPERAND
NOT 3A ZERO DIVIDE OR INVhLID
OPERATION (STACK ERROR)

end P7:
ret

Sad ofAppcadir E

• ENQTAL RKSEhRCHO



Glossary

Base Ftsge: Memory region between 0000H and OlOOH relative ta the beginning of the
Data Segment used ta hold system parameters. Bsm Page serves primarily as an' interface
region between user programs. Note that in the 8080 Madel, the cade and data are intermixed
in the cade segment.

BCD: Acronym for Binary Coded Decimal, Representation of dechnsl numbers using
binary digits. See 'Ihble B-2 for representations of ASCII codes.

BDOSr Basic Disk Operating System (BDOS). The BDOS manages the Concurrent
CP/M file structure and executes moat of the Concurrent CP/M system calls.

black: Basic unit of disk space allocation under Concurrent CP/M. Each disk drive has a
fixed block size (BLS) defined in its disk Parameter Black in the XIOS. The block size can
be 1K, 2K, 4K, 8K, or 16K of consecutive bytes. Blocks ate numbered relative to zero on
a disk, Blocks are aot shared between files.

Boolean: Variable that can have only two values; usually interpreted as true/false or
on/off.

Checksum Vector (CSV): Contiguous data area in the XIQS with one byte for each
directory sector to be checked, that is, CKS bytes. A Checksum Vector is initialized and
maintained for e~ch logged-in drive. Each directory access by the system results in a
checksum calculation that is comparedwith that in the Checksum Vector. If there is a
discrepancy, the drive is set to Read-Only status. This prevents the user From inadvertently
switching disks without logging in the new disk with a CTRL-C. If not logged in, the new
disk is treated the same as the old one, and you can destroy data on it if you write to it.

CIO: Character I/O (CIO) Module. The CIO inodule handles all character I/O to and from
consoles snd list devices.

CLI: Command Line Imerpreter. The P CLI system call interprets the command requested
in a command line and performs the system calls needed to open a process, load the cominand
file, snd execute the code.

IDIClrhL arsr/NCHI
Glossary-I



Cmrcrrrrent CP/M Programarer's GaMe

CMD: Fi lctype for Concurrent CP/M command files. These me rnachine language obit
modules reedy to be loaded and executed. Any fil with this type can be executed by simply
typing the filename after the drive prompt. For example, thc program PIP.CMD can be
executed bysimplytyping PIP.

comltraradt Set of rlstllctions that ale executed when tile comrfland nant is typed after'
the system prompt. These iirstructiois can be built in the Concurrent CP/M system or can
reside on disk as a file of type CMD. Concurrent CP/M commands consist of three parts;
the command name, rhc command tail, and a carri ag return.

consoler Primary I/O device used by Concurrent CP/M. The console usually consists of
a CRT screen for displaying output and s keyboruri for input.

control character: Nonprinting ASCII character produced on the console by holding down
tbe COL (CONfRQL) Irey while striking the character kgb. CTRL-H means hold down
CTRL and press H. Control chrracters are sometunes hdicated using the up-arrow symbol
<"), so CTRI H can be represented as *H. Certain control characters are treated as special
commands by Concurrent CP/M.

DefanIt Buffer: 128-byte bufFer maintained at 0080H in the Base Page. When the CLI
loads a CMD file, it hitializes this buffer to the command tail, that is, any cherubs typed
ger the CMD file name. The firs byte at 00$giH contsiaa the length of fhe command tail
while the command trdl itself begins at 0081H. A binary zero terminates the conunand tail
value. The I cornmrurd under DiyIrre inifiralizes this buffe in the samewry as the CI.I,

Default IrCB: One of two FCBs maintained at 005CH and 006CH in the Base Page. The
P CU system call initializes the first default FCB fmrn the first delimited field in thc
command taO and initielizes the second defisrit FCB fiusn the next field in the command
tail.

delimiters: ASCII characters used to separate constituent parts of a filc specification. The
P CLI system call recognizes certain delimiter chuacters as: . = ; < > ' blank, and

carnage return. Scvcral Concurrent CP/M commands also treat; [] 0 , and $ as delimiter
characters. It is advisable io avoid thc use of delhniter characters and lowercase characters
in ill enames.

directory: Portion of a disk containing entries for each file on the disk snd locations of
the bilks allocated to the fiies. Each file directory curry is in the form of a 32-byt» FCB,
although one file can have several entries, depending oa its size. Drc maximum number of
directory cntrics supported is specified in the drive's Disk Parameter Block.

• otoirAr. amuaue
Glossary-2



Concurrent CP/M Progrmnmcr's Guide

directory entry: 32-byte entry associated with each disk file. A file can have more than
one directory entry associated with it. Tliete are four directory entries pcr diiectory sector.
Directory entries can also be referred to as directory FCBs,

disk, diskette. Magnetic media used for mass storage of data in thc computer system. The
term disk can refer to a diskette, a removable cartridge disk, or a fixed hmd disk,

Disk Parameter Block (XIPB): Table residing in the XIOS that defines the characteristics
of a drive in thc disk subsystem used with Concurrent CP/M. Tltc address of the DPB is in
the Disk Parameter Header at DPbasc + OAH, Dtives with the same characteristics can use
the same DPB. However, each logical drive must have its own Disk Parameter Header and
DPB. The address of the drive's Disk Parameter Header must be returned in registers HL
when the BDOS calls the SELDSK entry point in the XIOS, DRV~PB returns the DPB
address.

Disk Paracmter Header (DPH): 16-byte aiba in the XIOS containing information about
the disk drive snd a scratchpad area for certain BDOS operations. Sec the Concurreer
CP/hf System Guide for further details.

extent (EX): 16K consecutive bytes in a file. Extents are numbered froin 0 to 31. One
extent can contain I, 2, 4, 8, or 16 blocks. EX is the extent number ficld of an FCB and
is a one-byte field at FCB + 12, where FCB labels the first byte in the FCB. Depending
on the Block Size (BLS) and the maximuin data Block Nuinber (DSM), s directory entry
contains I, 2, 4, 8, or 16 extents. The EX field is usually set to 0 by the user, but contains
the current extent nutnber during file I/O. The term "Extent Folding" describes directory
entries containing more than one extent. Iu CP/M version 1.4, each FCB contained only
one extent.

FCB: See File Control Block.

filot Collection of data containing from zero to 242,144 records. Each record contains 128
bytes snd can contain either binary or ASCII data. Files consist of one or more 16K cxtents,
with 128 records per extent.

File Control Block (FCB): Thirty-six consecutive bytes maintained and updated by system
calls for file I/O. The FCB fields are described in Section 2.4.

hex 5ie tortnati Absolute output of ASM86 for the Intel 8086. A HEX filc contains a
sequence of absoiute records, which give a load address and byte values to be stored starting
at the load address (refer to Section 4.3).

st DIGITAL RESEARCH >
Glossary-3



Concurrent CP/ivl Programmer's GuideGicsssry

VO: Acronym for Input/Output operations or routines hsndlhig the input and output of
data in the computer system.

logical drive: Logically distinct region of a physical drive. A physical drive can be
divided into one or more logical drives, and designated with specific drive references (such
as a: or f:). Thus. at the user interface, it appears that there are several disks in the system.

MEN: Memory Module. 'Ae Memory Module handles all memory management calls by
methods transpuent to your applications program.

parse: Sepante a command line into its syntactic parts.

queue: Data structure used by the ills system to keep track systein information, such as
pracems ready to run, locked Siss, and resources cunently in use by processes. Processes
also use queues to comnanucats with onc another. The BDOS system calls create and maintain
(pIeues.

Read~ : Con d i tion in which a logical disk drive can be read but not written to. A
drive can be sct to Read-Only status by using the SEI' utility. TMs protects thc user from
switching disks without sxecudng a disk react. Piles can also bc set to Resd&nly status
with the SEF utility or the ATTRIB sylcm cail. Read-Only ia often abbreviated as
R/O.

record: Smallest unit of data in a disk @le that can be read or written. A record consists
of l28 consecutive bytes whose byte displacement in a file is thc product of the Record
Number times l28. A 128-byte record in a tile occupies onc 128-byte sector on thc diskette.
lf the blocking and deblocking algorithm is used, several records can occupy each disk

reentrant code: Code that can be used by one process while another is already executing
it. Reentrant code must not bc self-modifying; it nest be pure code that does not contain
data. The data for reentrant cade can be kept in a separate data area or placed on the stack.

RSPt Reserved System Process, An RSP is a Concurrent CP/M utility included within
Concurrent CP/M during the execution of GENCCPM.

RTM: Real Time Monitor. Thc RTM is the nucleus of Concurrent CP/M, managing queues
snd flags, polling devices, and dispatching and suspending processes. App! ication prognuns
gain access ta RTM functions through systein calls.

8 oKtrg, ssssAacHe
Glassary4



Concurrent CP/M Programmer's Guide

sectarc Unit of data read from and written to the disk by the XIOS. The sector size is
dependent on the disk drtve hardware and is usually a power of two, such as 256, 512,
l024, or 2048 bytes, These disk sectors are refened to as Host Sectors.

sottrce ale: ASCH text file usually created with a text editor that is an input file to a
program, such as a compiler, assembler, or a text formatter.

attack: Reserved area of tnernoty where the processor saves the teturn address when it
receives a Call instruction. When the processor encounters a Return instruction, it testotes
the current address on the stack to the instruction Pointer. Data such as the contenN of the
registers can also be saved on the stack ou a first-in-last-out basis. The Push instruction
places data on the stack and the Pop instructian removes it. 8086 stacks are 16 bits wide;
instructions operating on the stack add and retnove stack items one word at a t'une. An item
is pushed onto the stack by decrementing the stack pointer (SP) by 2 and writing the itetn
at rhe SP address. In other wattis, the stack gmws downward in memory.

8VP: The Supervisor (SUP) manages connnunicatious behmm pmcesses and the aperadng
system kernel, and between other aperating system modules. All systetn calls ate intercepted
by the SUP.

hack: Concentric ring on the disk; the standatti IBM single density disks have 77 tracks.
Each track consists of a ftxed number of numbered sectors. Tracks are numbered from 0 to
one less than the number of tracks on the disk. Data an the disk media is accessed by
combinations of track and sector numbers,

TMP: Terminal Message Processes. The TMPs are Resident System Processes that inter
cept command lines fratn the virtual consoles, check for ertors, snd pass on executable
requests to the CLL The TMP prints the prompt and some system error messages on your
console. Each virtual console has an independent TMP heading defining the console's envi
tttnment, including the default disk, user number, printer, and console,

transient command ilier File of type .CMD stored on disk, Such files must be loaded
into the system each time they are executed, and therefore execute more slowly than Resident
System Processes (RSPs), which are an integral part of the operating system and execute
rapidly. Ttansiettt commands are created with the GENCMD utility; RSPs are included in
the operating system during execution of GENCCPM.

aaert Logically distinct subdivision of the directory. Each directory can be divided into
l 6 user numbers.

Glossary-5



Coacuneat CP/M ProgranunsA Gutds

wiIdcard: h '7 or • ctuuacter. The BDOS directory sNuch calls matches 'l with any singk
character and ~ with multiple characters. Refer to the FMFIRSI' snd FMNEXT system
calls for further details.

XIOS; Extended I/O System. In Concurrent CP/M, the BDOS is tbe invariant file-handling
system, which operates independent of the tuudware implementation. The XIOS is the
customizabk I/O interface conilgined for your hardware system by the system manufacnner.
The XIOS is similar to the BIOS in CP/M and CP/M-86, but it has been extended to implement
virtual consoles and associated feature.

&d oj'Glossary

Glossary-6



Index

8080 and Small RSP Modeis, 5-2
8080 keyword, 46
8080 Memory Model, 1-12, 3-5, 3-7,

exception handling, 3-3
8087 Flag

PD, 54
processor, 3-2
support, 1-2, 3-2

96-byte initial stack, 3-1
file reference, 2-7

ASM46 utility, 2-9
asterisk, 2-6
attribute bits, 2-11, 2-14
attribute

compatibility, 2-31
file, 2-14
interface, 2-14
interface F5', 2-30
interface F6', 2-30

AX
UDA field, 6-152

A Base, 34, 5-11

4-1, 4-3, 5-2, $4

absolute address, 47
ACB — Assign Control Block

(Figure 6-1), 6-21
access stainp, 2-24, 6-84
address

Flag Table, 646
inaximum, 4-7
PD, 6-157
queue buffer, 6-169
System Data Seginent, 6-178
version string, 6-182

Ahhhh parameter 4-7
ALO, 6-50
ALI, 6-50
AHocation Block Mask, 649
Allocation Block Shift Factor, 649
allocation vector, W39, 646
ambiguous reference, 24, 6-16
APB — Abort Parameter Block

Archive, 6-65
attribute, 2-15

1-9, 2-1

B value, 4-7
background, 1-10
backslash, 2-6
backspace, 6-32
BACKSPACE, 6-34
base extent, 6-11, 6-116
Base Page Initialization, 3-5
Base Page, 43, 6-141, & 144

Compact Model, 4-5
initial Data Segment, 3-1
Small Model, 44

BASE
MCB, 6-129

Basic Disk Operating System, 14,

BDOS, 1-4
BDOS Error Codes, 247
BDOS Error mode, 6-45. 6-75
BDOS file system, 2-1
BDOS Multisector Count, 6-113
BDOS physical errors. 2-44

(Figiire 6-10), 6-139

Index-I



BP

BDOS

BDOS revision level, 6-174
BDOS Version Number Format

(Figure 6-17), 6-174

Concurrent CP/M, 1-9
• ingle-tasking CP/M-86, 1-9

Bhhhh parameter, 47
BIOS, 1-11
BIOS Dcscrlptor Format

(Figure 6-18), 6-175
bit map, 6-56
BLM, &49
blocking/deblocking, 2-38, 6-52

VDA field, 6-152
BSH, &49
BVFFBR field, 5-10

size, 5-10, 6-73
BUFFBR

QD field, &.169
QPB field, 6-163

buÃers
disk data, 6 181
XIOS ALLOC, 6-181

burst made, 2 34
BX

VDA field, 6152
byte count, 2-37, 2-38, &45, 643

CLI

m8, 640, 6-84

6-128, 6-148, 6-150, 6-181

CCB, 1-10
SYSDAT field, 6-181

CCPM.SYS file, 5-11, 6-180
CCPMSEG, 6-182

SYSDAT field, 6-179
CCPMVKRNUM

SYSDAT field, 6-182
Character Control Block, 1-10, 6-39,

character device, 6-175, 6-183
Character I/O Module, I<, I-IO
CHARACTERS

~E A D STR, 6-34
CHCB format, 6-39, 6-128
checksum, 2 1 I, 2-17, 2-27, 2-33, 4-12,

Checksum Vector Size, 6-50
Checksum Vector Size field

DPB, 2-40
checksum verification, 2-27

disable, 2-33
child process, 5-10
CIO, 14, 1-10
CIOWAIT

Activity cade, 6-148
CKS, 650
CKS field

Disk Parameter Black, 1-11
CLBVP, 6-143
CLI, 1-11, 6181
CL1 Command Line Buffer

(Figure 6- l I ), 6-142

handling RSPs, 54
CI.OCK, 1-8
CLOCK pracess, l-2, l-8
clock ticks, IA
Close Checksum error, 2-33, 2%5
CMD, 1-12
CMD filetype, 6-143

C optian
SYSTAT, 1-14

C(onsale) option, 1-15
C(onsoles) option

SYSTAT, 1-14
CSeg, 4-11
Call Parsimeter Black, 6-159
carriage return, 2-9, 6-32, 6-33, 6-34,

6-90

Index-2



COMMAND

6-156

(Figure 3-1), 3-3

concurrent file access, 2-35
conditional queue write, 6-166
canditional read

queue, 1-7
conditional write

queue, 1-7
CON IN, 6-39, & 175

Model (Figure 4-4), 4-5

Concurrent CP/ M Virtual/ Physical

CMD file, 2-9, 4-1, 4-6, 5-5, 6 141,

CMD File Header Format

CNS
APB field, 6-140
AS S IGN system call, 6-22
PD field, 6-150

Code Group Descriptor, 3-2, 5-2
Code Segment, 3-2, 6-152, 6-153

Supervisor, 6-180
Command Linc Buffer, 6-143
Command Linc Intcrprcter, l-l 1, 3-1
Command RSP, 5%, 5-5, 56
COMMAND TAlL

RSP Command Queue Message,
5-5

Cl.l Command Line Buffer, 6-142
Compact Meinory Model, 3-5, 45
Compact Model, 1-12, 4-2, 45
campatibility attribute, 2-15, 2-31

definition, 2-32, 2-33
COMPATMODE option

GENCCPM, 2-32
compute file size, 2-2
Concurrent CP/M Compact Memory

Concurrent CP/M Functional
Modules (Figure 1-2), 1-3

Environments (Figure I-I), I-!
Concurrent CP/M Base Page Values

(Fjgurc 3-3), 3-6

6-33

6-128

CONOUT:, 6-39
console, 1-11

, Console Buffer Format (Figure 6-2),

console I/O, 1-10
Console I/O System Calls, 64, 6-21
consale

input, 6-131, 6-175
mode, 6-39
number, 6-36
nuinber of XIOS, 6-183
number of SYSDAT, 6-184
Output, 6-175
status, 6-31, 6-175
system calls, 6-2
virtual, 6-181

contiguous memory segment, 6-131
Continous display option

SYSTAT, 1-14, 1-15
control characters, 2-6
Control Word

UDA 8087 extension, 6-153
copy number

RSP, 5-3
CP/M Compatible Mcinory

CP/M-86 compatibility, 6-175
CP/M-86 memory allocation scheme,

CPB, 6-160
CPB — Call Parameter Block

(Figure 6-14), 6-159
CPU type, 6-174, 6-176
CR byte, 6-113
CR field, 3-7, 6-79, 6-83, 6-84, 6-93,

CR field of FCB, 6-66
CR field

FCB, 2-12, 2-38
CS, 6-153

Allocation System Calls, 6-9

6-96

Index-3



&37

CS field
FCB, 2-1 I, 2-38

CS register
Small Model, 44

CS
UDA field, 6-I 53

CSEG directive
ASM46, 44

CTRIA:, 1-10, 1-15, 5-8, 6-3 l, 6-32,

disable, 6-29
enable, 6-29

CTRL-E, 6-34
CTRI H, 6-34
CTRL-I, 6-32, 6-34, 6-39
CTRL, 6-34, 6-3S
CTRL-hf, 6-34, 6.35
CTRL-O, 1-10, l-i 1, 6-31

disable, 6-29
enable, &29

CTRL-P, 1-10, l-l I, 6-29, 6-31
CTRL-Q, 1-10

disable, 6-29
enable, &-29

CTRL-R, 6-35
CTRL-S, I-IO, I-l I, 6-31

disable, 6-29
enable, 6-29

CTRL-U, 6-35
CTRL-X, 6-35
CTRL-Z at EOF, 2-9
curient DMA, 6-61, 6-91, 6-96, 6-101
current DMA address, &-113
current DMA buffer, 6-107
Current output Delimiter, 6-25
cui rent processes, l-13
current record field, 6-93

FCB, 2-12
current record position, 3-7
current user number, 2-17, 6-149
current process activity, 6-147

CW
UDA 8087 extension, 6-IS3

CX Error Code Reports, 6-19
CX error codes, 1-13
CX

UDA field, 6.152
AS S IGN system call, 6-22
AT TA CH system caH, 6 22, 6-23
C CATTACH system call, 6-24
CJ)EUIvIIT system call, &25, 6-40
DE T ACH system call, 6-22, 6-26
C GET system call, 6-27
C-MODE, 3-1, M7
~O DE call, 1-11
C MODE system call, 6-28
~A W I O, 6-37
C RAWIQ call, I-II
~A W I O system caH, 6-30
~E A D aystein caH, 6-32, 6-33, 6-38
~E A D STR call, 1-10
~E AD STR system call, 6-33
~E T system caH, 6-36
~T A T , 6-29
~T A T system call, 6-37
C WRITE, 6-29
C WRITE system cail, 6-38
C WRITEBLK, 6-29
C WRITEBLK system calL &39
C WRITESTR, 6-25, 6-29
C WRITESTR system call, 6-40

DO-D I S field
FCB, 2-12

data arcs, 2-!, 2-8
data block size, 24
Data Group Descriptcr, S-2, 5-11
Data Record, 44, 4-l0
Data Sc8ment, S-l

inde s4



6-61

6-149

6-126, 6-127

6-150
defauIt mode

BDOS Error mode, 6-75
Locked mode, 2 26
password, 2-3, 2-23, 6-91, 6-107
TMP, 2-23

Delay List, 1-6,1-9, 6-147, 6-182
DELAY

Activity code, 6-147
Delete mode, 2-22
delimiters. 2-6, 6-88
Device System Calls, 6-2. 6-5, 6-41
DEV POLL system call, I-l I, 6-41
DEV SETFLAG, 6-42, 643. 6-180
DEV WAITFLAG, 1-8, 6-42, 6-43

Data Structures Index, 6-18
date and time, 1-2
date and time stamps, 2-3, 2-18, 2-24,

DATE utility, 2-25
Day file option, 6-181
DAY FILE

SYSDAT field, 6-181
DAY

TOD field, 6-185
days

nuinber of, 6-183, &18S
DDT-86, 5-11
Default Close, &Wig
default console, 6-26, 6-27, 6-150

ATTACH, 6-23
C CATTACH, 6-24

default disk, 1-11, 6-47, 6-54, 6-59,

default DMA base, 6-74
default DMA buffer, 3-8, 6-141
default drive, 2-3, 2-5, 3-7
default error mode, 1-10, 243
default list device, 6-122, 6-! 23, 6-124,

default list device number, 6-125,
6-44

6-55, 6-60

2-18

6-48, 6-49

DI
VDA field, 6-152

DIR attribute, 6-143
DIR utility, 2-1, 2-15
Direct Memory Address, 6-73
direct video mapping, 3-8
Directory Allocation Vector 0, 6-50
directory area, 2-1

code, 246, 248, 6-17
code definitions, 248
entry, 6-79
label, 2-3, 2-18, 2-19, 2-20, 6-5S,

6-60, 6-113
directory label data byte, 2-19, 2-20,

Directory Label Format (Figure 2-2),

Directory Maximum. 6-50
Directory Record with SFCB

(Figure 24), 2-24
directory space, 2-1
directory write operations, 2-38
Disk Data buffers, & 181
disk directory area, 2-8
disk drive organization, 2-8
Disk Drive System Calls, 6-2, 6-5.

Disk File System Calls, 6-7
Disk Free Space Field Format

(Figure 6-5), 6-63
Disk I/O error, 244
Disk Parameter Block, 1-1 1, 240,

Disk Reset, 6-51
Disk Storage Maximum, 6-50
Disk System Reset (Figure 2-6), 24l

DP field, 6-149
disk

temporary, 6-181

DISK

ssoloirAL szszhRCHe
Index-5



Dispatcher, 1-5
Dispatcher entry point, 6-180
Dispatcher Ready List, 6-182
DISPATCHER

SYSDAT field, 6-180
DL field

directory label, 2-19
DLR

SYSDAT field, 6-182
DMA address, 2-3, 3-1, 6-156
DMA base, 3-1
DMA Buffer, $4, 5-9, 6-73
DMA OFFS

UDA field, 6-152
DMA offset, 3-1, 6-72, 6-152
DMA

default address, 647
DPB, 240, 648
DPB — Disk Parameter Block

(Figure 64), 648
DR FCB field, 6-59
DR fraid

directory label, 2-19
FCB, 2-11
XFCB, 2-21

Drive Code
FCB, 2-11

drive code
XFCB, 2-21

drive
directory label, 6- l01
field. 6-89
reset, 2-39, 241
specifier, 2-5
status, 2-2, 2-3

Drive Vector, 644
Drive

R/O, or Login Vector Structure
(Figure 6-3), 644

SYSDAT field, 6-182

653

6-55

6-47, 6-62

2-42, 645

640

244, 647, 6-58, &42

DRM, 6-50
DRV 2-2
DRVMCCESS system call, 2 39,

DRVMCCESS call, 242
DRVMLLOCVEC system call, 646
DRVMLLRESET, 3-1, 6-73
DRVMLLRESET system call, 2-39,

DRVMPB system call, 648
DRVWLUSH system call, 6-52
DRVMREE, 2-29
DRVMREE system call, 2-39, 242,

DRV GET system call, 6-54
DRV GETLABELsystem call, 2-20

DRVMOGINVEC systcrn call, 6-56
DRVMESET, 2-40, 3-1
DRVMESET caIl, 1-11
DRVMESET operation, 240, &42
DRVMESET system call, 2-39, 6-57
DRVMOVEC system call, 647, 6-58
DRV sIET system caII, &59
DRVMETLABEL system call, 2-19,

DRVMETRO system call, 240, 242,

DRVAPACE, 6-73
DRY%PACE system call, 646, 6-64
DS aod ES registers

Small Model, 44
DS

UDA field, 6-153
DSEG directive, 4-4
DSM, &50
DX

UDA field, 6-152

DRL

8 urGTAL sssEhacH+
index-6



E(xit) option, 1-15
SYSTAT, 1-14

ECHO, 54
ECHO RSP, 5-1, 5-3, 5-11
ENDSEG

SYSDAT field, 6-181
EOF, 6-12
EOF (CTRL-Z), 2-9
error codes, 1-13, 246, 247
error flag, 247, 249
error handling, 2-43
Error mode, 2-3, 2-43
ES

UDA field, 6-153
EX field, 6-79

FCB, 2-II
exception handling

8087, 6-184
exclusive lock, 6-76
exclusive locks, 2-35
exit point, 6-180
EXM, 6-49
EXT

MCB, 6-129
Extended Address Record, 4-9, 410
extended error codes, 249
Extended Error Module, I-l0
extended errors, 243, 245, 246
extended file lock, 2-30, 6-15, 6-107
Extended I/O System, l4
Extended I/O System entry point,

Extended Input/Output Systein, 1-1!
extent, 6-93
Extent Mask, 649
extent number

FCB, 2-11
Extra Segments, 5-1

6-6S, 648

107, 6-! l I

F7', 2-17
F8; 2-17
Far Jump instruction
Far Return, 3-l, 4-2, 4-3
FCB, 2-9, 6-17, 644

F I' compatibility attribute, 2-32
Fl'-F4', 2-IS
F I '-F4' compatibility attributes, 2 32
F I'-P4' file attribute, &65
F I'-F8', 2-14
Fl-F8 field

FCB, 2-I)
F2' compatibility attribute, 2-33
F3' attributes, 2-36
F3' compatibility attribute, 2-33
F4' compatibility attribute, 2-33
FS', 2-17
F5' interface attribute, 2-30, 2-35,

FS' interface attribute, 6-70
F5' interface attribute, 6-76, 6-79, 6

F5' interface attribiite, 2-36
FS'-F8', 2-16
FS'-F8' at tribute, 6-66
F6', 2-! 7
F6' interface attribute, 2-27, 2-30,

2-36, 2-38, &45, 648, 6-83

6-180

ss niGTAL atsshacH 4

Index-7



6-84, 6-109

FCB — File Control Block
(Figure 2-1), 2-10

checksum. 2-29
checksum verification, 2-33
drive code, 6-59
extent number, 6-80
format, 2-! 7
initialization, 2-12
length, 2-10
usage, 2-12
verification, 241

FCB
File Narnel, 3-7
File Name2, 3-7

FCBADR
PFCB, 6-87
file access, 2-35

concurrent. 2-35
• hared, 1-10

File Already Exists error, 2-46
file attributes, 2-14, &65
fik byte counts, 2-37
File Control Block, 2-9, &44
File Currently Open error, 2%5
File field

XFCB, 2-21
iile header

CMD, 3-2
File lD, 2-12, 2-26, 2-35, 6-76, 6-80,

File lock, 6-14
extended, &45, 6-68

file locking, 1-9
extended. 2-30

file logging information, 6-181
file open modes, 2-26
File Opened in Read/Only Mode

file
organization, 2-8
security, 2-27
size, 2-8
specification, W5
system, 2-1, 2-18, 2-37
system calls, 2-3, ~

File-Access System Gills, 6-2, ~
filename, 2-1, 6-89

field, 2-1, 2-5
fik size,

maximum, 2-8
filetype, 2-1, 689

FCB, 2-11
filetype conventions, 2-7
filetype field, 2-5, 2-6, 2-11

XFCB, 2-21
Flag 1

tick flag, 1-9
Flag 2

second flag, 1-8
FLAG fleM

PD, 6-140
flag 1P, 6-42
flag numbers, 643
Flag Table

address, 6-182
FLAG

PD field, 6-149
flag

Process Keep, l-l 1
SYS, 6-140

flags 0
I,? and 3, 643

FLAGS field, R4 5-9
flags

initial, 6-152
FLAGS

QD iield, 6-!69
flags

queue, 6-169

error, 2-45

index-8



FLAGS
SYSDAT field, 6-182

FLAGWAIT
Activity cade, 6-149

IIuah buffers, 2-39
Function 0, 6-162
Function I, $.32
Function 2, 6.38
Function 5, 6-127
Function 6, 6-30
Function 9, MO
Function 10, 6-33
Function 11, 6-37
Function 12, 6-174
Function 13, 6-47
Function 14, 6-59
Function 15, 6-83
Function 16, 6-68
Function 17, 6-100
Function 18, 6-104
Function 19, 6-70
Function 20, 6-93
Function 2l, 6-113
Function 22, 6-79
Function 23, 6-98
Function 24, 6-56
Function 25, 6-54
Function 26, 6-73
Function 27, 6-46
Function 28, 6-62
Function 29, 6-58
Function 30, 6-65
Function 31, 6-48
Function 32, 6-112
Funclian 33, 6-95
Function 34, 6-1! 6
Function 35, 6-102
Function 36, 6-92
Function 37, 6-57
Function 38, 6-45
Function 39, 6-53

Function 40, 6-121
Function 42, 6-76
Function 43, 6-109
Function 44, &82
Function 45, 6-75
Function 46, &k3
Function 47, 6-!41
Function 48, 6-52
Function 50, 6-175
Function 51, 6-74
Function 52, 6-72
Function 53, 6-138
Function 54, 6-134
Function 55, 6-136
Function 56, 6-133
Functian 57, 6-137
Function 58, 6-135
Function 59, 5-156
Function 99, 5.107
Function 100, 640
Function 101, 6-55
Function 102, 6-105
Function 103, 6-119
Function 104, 6-188
Function 105, 6-185
Function 106, 6-91
Function 107, 6-177
Function 109, 6-28
Function 110, 6-25
Function I I I, 6-39
Function 112, & 128
Function 128, & 13l
Function 129, 6-131
Functian 130, 6-132
Functian 13l, 6-41
Functian 132, 6-43
Function 133, 6-42
Function 134, 6-l68
Function 135, 6-171
Function 136, 6-167
Function 137, 6-I 72

i UotGthL RESFARCHe
Index-9



2-39, 6-68

6-80

Function 138, 6-165
Function 139, 6-173
Function 140, 6-166
Functian 141, 6-154
Function 142, 6-1$5
Function 143, 6-161
Function 144, 6-14$
Functian 14$, 6-1$8
Functian 146, 6-23
Function 147, 6-26
Function 148, &-36
Function 149. 6-21
Functian ISO, 6-142
Function 151, 6-159
Function 152, 6-86
Function 153, 6-27
Functi an 154. 6-178
Function 15$, 6-187
Function 156, 6-157
Function 157, 6-139
Furrction 158, 6-122
Function 159, 6-124
Function 160, 6-126
Functian 161, 6-123
Fuo.ctian 162, 6-24
Functi an 163, 6-176. 6-182
Function 164, 6-125
5 ' interface attribut», 6-76
F 2 .2
ATTRI B system call, 2-14, 2-30,

2-31, 2-38, &65, 6-83, 6-98
CLOSE system call, 2-30, 2-33,

DELETE system call • 2-30, 6-70,

F DMAGET system call, 6-73
F DMAOFF, 6-156
F~MAOFF system call, 5-6, 6-74,

F-DMASEG, 6-73, 6-156
F DMASEG system call, 5-6, 6-74

6-10S

6.107

6-96

2-31, &418

6-45, 6-75

&76, 6-82

6-65, 6-91, 6-107

F TIMEDATE system call, 2-25,

F TRUNCATE system call, 2-30,

F UNLOCK, 2-35

F PARSE system call, 24, 3-1, 6-87,

F PASSWD, 6-98
F PASSWD system call, 2-23, &41,

F RANDRECsystem call, 6-92
F READ system caII, 2.34, 6-93
F RKADRAND system call, 2-34,

F RENAME systcrn call, 2-12, 2-30,

FMFIRST system call, 2-14, 2-15,
2-20, 2-23, 2-2S, 2-38, M6, 6-70,
6 100

FMIZE system call, 6-102
FMNEXT system call, 2-14, 2-15,

2-20, 2-23, 2-25, 2-38. 6-66, 6-70.
6100, 6-104

2-21, 2-2? 2-27, 2-38, 6-79, 6-93,
6-113

693, 6.95, 6-113

F OPEN call • 2 26
F OPEN system call, M, 2-10, 2-14,

2-26, 2-27, 2-31, 2 38, 6-66, 6-83,
6-93, 6-109, 6-113, 6-143

6-143

F ERRMODE system call, 2-29, 2A9.

F FLUSH system call, 2-39
F LOCK, 2-3S
F LOCK system cali, 2-26, 2-34, 2-36,

F MAKE, 676
F MAKE system cail, 2-10, 2-I4,

F MULTISEC system call, 2-34, 6-82,

F OPEN, 6-76

6-7$

0 ororrhL arsshacHI
IrMtex-l0



HOUR
TOD field, 6-186

6-112

6-94, 6-102, 6-116

2-22, 6-119

F UNLOCKsystem call, 2-26, 2-34,
2-35, 2-36, 2-37. 6-84, 6-109

F USERNUM system call, 2-17,

F WRITE system call, 2-34, 6-113
F WRITERAND system call, 2-34,

F WRITEXFCB system call, 2-21,

F WRITEZF system cali, 2-34, 6-94,
6-121

6181

H86 filetype, 4-6
Hard Disk, 6-51
hardware initialization, 6-180
Header Record. 3-3

CMD file, 4-1, 47
header

RSP. 5-2
HEX file, 4-6, 47
highest priority process, 1-6
hour of day, 6-186

G

G Form, 3-3
G Type field, 3-2
GENCCPM, 2-29, 3-1, 5-1, 5-3, 5-11,

GENCMD, 4-6, 4-9, 5-2
generic category, 2-7
Group Descriptor, 3-3
Group Descriptor Format

(Figure 3-2), 3-3
G Length, 3-4
G Max.3-4
G Min, 3-4

6-65

Illegal? in FCB error, 2-46
independent group, 3-7
initial flags, 6-152
initial stack area, 4-2
initial stack

8080 model, 42
initial values

instruction pointer, 41
segment registers, 4-1
stack pointer, 4-1

initialization
hard ware, 6-180

initialize directory, 2-39
Instruction Pointer, 43, 6-153
INT 0, 6-153
INT I, 6-153
INT 3, W53
INT 4, 6-153
INT 224, 1-12, 6-153
INT 225, 6-153
intel hexadecimal file format, 49
Intel utilities, 47
Intel
small madel, 41

interface attribute
F5', 6-68, 6-70, 6-83
F6', 6-70, 6-83
F7', 6-84
F8', 6-84

interface attributes, 2-14, 2-16, 2-27,

Interrupt Return instruction, 6-152,

interrupt returns, 6-180
interrupt vectors, 6-153

6-180

Index-II



interrupt
logical, 1-2
physical, )-2
types, 6-43

interrupts enabled, 5-9
Invalid Drive error, 2-44
)0 CQNIN

X]OS, I-10
)P, 6-153
IP flag, 642
)P register, 4-3

Sma)1 Model, 44
IP

instruction painter, 6-152
IRET instruction, 5-9
IRET structure, 5-) I

JMPF PDISP instruction, 6-180

6.126, 6.127

LENGTH
MCB, 6-129

lin,c feed, 2-9, 6-32, 6-33, 6-34, 6-90
Iinewditing, 6-33, 6-34
L) NK fie)d, 6-146, 6-182

RSP header, 5-7, 5-11
Link list root, 6-181
Link liat

memory allocation units, 6-182
LINK

PD fic)d, 6-147
LIST, 6-175
List Control B)ock, 1-10, 6-181, 6-183
liSt deviCE,, l-l I, 6-122, 6-)23, 6-124,

List Device I/O System Calls, 6-122
List Device System Calls, 6-2, 6-8
)ist devices

number of XIOS, 6-182
List field

process descriptar, 1-11
liat I/O, 1-10
LIST

PD field, 6-I.50
lock existing records only. 6-76
Lock List, 2-27. 2-28, 2-29. 2-30, 2-33,

2-37, 2-41, 242, 645, 6-53, 6-77,
&4], 64)5, 6-110, 6-161, 6-181

KEEP Flag, 5-8
KEEP flag, 5-9, 6-149, 6-161
KERNEL flag, 6-149

label
directory, 2-18

last record byte count, M5
last record number, 6-107
LCB, 1-10

SYSDAT field, 6-183
Ld Addr, 4I I
Least Recently Used arder, 3-2

lock logical records, 6-76
lock operations, 2-36, 2-37
Locked, 2-2
Lacked mode, 2-26, 2-30, 6-19, 6-80,

locked records
rnaxirnum number, 6-183

locks
exclusive, 2-35
shared, 2-35

LOCY MAX
SYSDAT field, 6-)83

log-in drive, 2-3

6.83

• DIGTAL REs EhaCM+
Index-12



log-inoperation,2-39
logged-in, 2-39
logical console, 6-37, 6-39
logical drives, 2-8
logical extent, 6-113
logical interrupt, 1-2, 6-42
logical list device, 6-128
logical message, 6-169
logical record size, 2-37
Login Vector, 6-44, 6-56
lowercase, 2-6, 2-7
LRU. 3-2
LST.', 6-128
LUL

SYSDAT field, 6-181
ATTA CH , 6-127
AT T ACH system call, 6-122
I CATTACH system cail, 6-123
I DETACH system call, 6-124
I GET system call, 6-125
~E T system caII, 6-126
L WRITEsystem call, 6-127
I WRITEBLK system call, 6-128

M value, 44
M80 byte, 3-7
machine cade

Small Madel, 44
make system queue, 6-168
MAL

SYSDAT field, 6-182
MATCH

ASSIG N systein call, 6-22
MAX number of paragraphs, 6-131
MAX

C READSTR, 6-34
MPB, 6-130

6-2, 6-3

2-41, 2-42

(Figure 6-7), 6-128
MCB — Mcrnory Control Block

M~ BS A L LOC system call, 6-133
MCABSMAX system call, 6-! 34
MCALLFREE system call, 6-135
MCALLOC system call, 6-136
MC FREE system call, 6-137
MC MAX system caII, 6-138
MDUL

SYSDAT field, 6-182
media change, 2-3, 2-29, 2-39, 240,

media
nonremovable, 6-50

MEM, 14, 1-9
MEM field

Process Descriptor, 5-4
MEM

DP field, 6-149
memory, 3-7
memory allocation, 1-13
Memory Allocation System Calls

MP/M Compatible, M
CP/ M Compatible, 6-9

memory allocation units, 6-! 82
Memory Control Kock, 6-128

Definition, 6-129
Memory Descriptors

unused, 6-182
Memory Management System Calls,

Memory Management Module, 14
memory model, 41

RSP, 5-1
Memory Module, 1-9
Memory Parameter BIock Definition,

memory partitions
free, 6-182

memory protection, 6-146
Memory Segment Descriptors, 6-149

6-130

Index-13



memory

6-128

Memory Systeni Ce]]s, 6-128

absolute, 6-134
initialiration, 3-l
largest avai]able region, 6-138
maximuin per process. 6-181

Ines sage
length. $-10, 6-169
maximum number, 6-169
zero-length, 1-8

MFL
SYSDAT field, 6-]82

MFPB — M FREE Parameter Block
(Figure 6-9), 6-132

Mhhhh parameter, 4-7
MIN length, 6-131
MIN

MPB, 6-130
TOD field, 6-185

minimum memory value, 4-8
minimum memory requirement, 4-7
minute of hour, 6-183, 6-185
MMP

SYSDAT field, 6-! 81
modes

file open, 2-26
MP/M Compatible Memory

A]Iocation System Cal]s, 6-9
MP/M-86 memory allocation scheme,

MPB — Memory Paraineter Block
(Figure 6-8), 6-129

QD field, 6-169
multi-user, l-l
multiple programs, 1-2
Multisector count, 2-3, 2-34, 2-35,

2-36, 6-12, 6-13, 6-73, &76, 6-82,
6. 93, 6-] l7, 6-1]8

Multisector I/O, 2-34
mutual exclusion queues, 1-7, ]-8

NAME field, 5-8
directory label, 2-19
APB field, 6-]40
CPB field, 6-160
AT TA CH, 6-23
DP field, 6-149
PD, 5-3
QD field, 6-169
QPB field, 6-163
queue, 6-169
RSP PD, 5-8

NCCB
SYSDAT f]e]d, 6-181

NCHAR
C READSTR, 6-34

NC1ODEV
SYSDAT field, 6-183

NCONDEV
SYSDAT field, 6-183

NCP byte
field, 5-3
RSP header, 5-3

networking interfaces, 1-5
NFLAGS

SYSDAT field, 6-181
NLCB

SYSDAT field, & 181
NLSTDEV

SYSDAT field, 6-]83
NMSGS

QD field, 6-169
no data, 6-94

MX queue. ]-8
MXdisk, 1-8
hLALLOC system call, 6-131
hLFREE system call. 6-13I, 6-132

MSGLEN

Index-l4



246
No Room ln System Lock List error,

non-8080 model, 3-7
noninterrupt<riven devices, 641
Nonremovable Media Drives, 6-50
null character, 6-90
NVCNS

SYSDAT field, 6-181
NVCNS field, 5-3

0

OFF, 6-50
OFF 808/

SYSDAT, 6-184
OH86 utility, 4-9
one second flag

Flag 2, 1-8
open disk files

maximum number, 6-183
open file, 2-2
Open File Drive Vector, 6-183
Open File Limit Exceeded error, 2-46
open mode, 2-2, 2-26
open verification, 2-29
OPEN FlLE

SYSDAT field, 6-183
OPEN MAX

SYSDAT field, 6-183
Operating Systein Version Number

Format (Figure 6-19), 6-176

6-78, 6-98

Pl Len, 3-7
P2 Len, 3-7
PARAM field

CPB, 6-160
PARAM

CPB field, 6-160
parameter passing, 6-140
PARENT

PD field, 6149
parent/child relationship, 3-8
parentheses, W
parse file specification, 2-3
Parse Filename Control Black, 6-86
partial close, 2-30, 2 33, 5N
password, 2-1, 2-2, 3-7, 6-61, AS,

default, 2-3, 2 23
length, 3-7
mode, 6-79, 6.105

password error, 2-4S
password field, 2-5, 6-89

directory label, 2-19
Password field

XFCB, 2-21
password protection, ! -10, 2-3, 2-22,

password support, 2-18
PD, 1-5, S-i
PD — Process Descriptar

(Figure 6-12), 6-146

6.80

OS type, 6-174, 6-176
os version, 6-176
Output Delimiter, 6-25

queue message, 1-8
OWNERS!087

SYSDAT, 6-183

PD address, 6-157
PD table, 6-145, 6-149, 6-161
PD

APB field, 6-!40
ASSI GN , 6-22

PDADDRESS
RSP Command Queue Message,

5-5

owner

Index-IS



6-145, 6-146, 6-! 61, 6-178

PDISP
SYSDAT field, 6-180

permanent drive, 2-39, 240, 2<2
PFCB — Parse Filename Control

Block (Figure 6-6), 6-86
Physical and Extended Errors, 2-49
physical error, 243, 249, 2-50
Physical Input Process, 1-10, 6-31
physical interrupt, 1-2
Physical Record Mask, 6-50
Physical Record Shift Factor, 6-50
physical records, 2-38
PIN, l-10, I-I I, 6-31
PIP utility, 2-IS, 2-34
PLR

SYSDAT field, 6 182
PM field

XFCB, 2-21
Poll List, 6-147
POLL

Activity code, &.147
List Root, 6-182

printer, 1-11,
echo, 6-29

priority
highest, &- I 58
lowest, 6-158
transient process, 5-4, 6-ISB

PRIORITY field, S-8
PRM, 649, 6-51
process, 1-2, 2-28, 2-35
Process Descriptor, 1-5, 5-1, 6-144,

address, 1-8, 6-140, 6-157
Process Dcscriptor

initialization, 3-1
unused, 6-182

Process ID
AS S IGN 6-22

Process Keep f)ag, 1-11

5 ll

P CREATE, 6-145

46, 6-I43, &156

process name, 6-149
aborted, I-B
priority, 6-154
privileged, 5-i0
register values, 6-l52
resources, 6-161
scheduling,6-148

Process/Program System Calls, 6-3,

program, 1-2
ProgramFlag

CMD header record, 3-2
PSH, 6-49, 6-5 I
PUL

SYSDAT field, 6-i82
ABORT , 1-11
ABORT system call, 6-140
CHAI N system call, 2-17, 6-l41
P CLI system call, 1-5, 2-6, 2-7, 2-17,

2-32, 3-1, 4-2, 4-3, 44, 45, 5-4,
5-5, 5-6, 6-32, 6-73, 6-82, 6-143,
& 144

P CREATE system call, 3-1, S-I, 5-4,

P~ELAY system call, 1-9, &154
P~ISPATCH system call, 6-155
PMOAD system call, IZ, 3-5, 4-2,

P PDADR system call, 5-5, 6-157
P PRIORITY system call, 54, &-I58
P RPL system call, 6-160
P TERM, 3-1. 4-2, 6-l62
P TERM systein call, 6-32, 6-140,

P TERMCPM, 4-2
P TERMCPM systein call, 6-162
P TERMCPM

CP/ M-B6, 6-162

5-8, 5-10, 6-146, 6-149, 6-157

6 l41, 6-161

s xf fR sssssscHo
Index-16



QD — Queue Descriptor (Figurc 6-16),

QLR
SYSDAT field, 6-182

QMAU
SYSDAT field, 6-182

QPB, 6-171
QPB — Queue Parameter Block

(Figure 6-15), 6-163
qualified reset, 2W
question inark, 2-6
queue buffer, 1-7, 6 145, 6-169
queue dcscriptcr, 1-7, 1-8; 6-147,

unused, 6-182
queue flags, 6-169

ID Field, 6-171
List Root, 6-182
Management, 1-7
Management System Calls, 6-3
message, 1-6, 1-7
Message Buffer, 6-163
name, 1-7, 6-163, 6-! 69
Parameter Block, 5-10, 6-163
System Calls, 6-12, 6-163

QU EU ID
QPB field, 6-163

QUL
SYSDAT field, 6-182

Q CREAD system call, 5-5, 6-165
Q CWRITE system call, 5-5, 6-166
Q DELETE system call, 5-9, 6-167
Q MAKE system call, 1-7, 5-10, 6-168
Q OPEN, 5-5, 6-163
Q OPEN calI, 6.172, 6-173
Q OPEN system call, 6-160, 6-170,

Q READ, 1-6

6-172

6-168

6-168

6-173

Q READ system call, 5-5, 6-165,

unconditional, 1-8
Q WRITE, 1-6
Q WRlTE system cali, 5-5, &166,

R/0 drive test, M2
R/0 Vector, 6-58
R0

Rl field, File ID, &80
Rl, R2 field, 6-18
RI,R2 field, FCB, 2-12
R I,R2 fields, 6-92

random, 2-2
read, 2-9, 6-12

Random Record Field, 2-36
FCB, 2-35

Random Record Number, 2-9, 2-37,
3-8, 6-76, 6-92, 6-96, &102, 6-109,
6-111, 6-117

FCB, 2-12
raw console output, 6-29

mode, 6-31
RC field

FCB, 2-11
XFCB, 2 21

read message, 6-172
read mode, 2-22, 6-80, 6-105
Read Queue List, 6-147
read record, 2-2, &93

6-171

index-l7



resident system process, l-2, 3-1, 5-1,Readily, 2-2, 2-40, &415
mode, 2 26
attribute, 2-15, 2-26
attribute Tf', l544
attribute ll', 2 15
drive, 662
file, 2-11, 6-76
mode, 2-35, 6 83
Vector, M4

Read. Write, ~
Read-Write, 647
Read-Write state. &42
Read/Only Disk error, 2M

File error, 2-44
Ready Ust, 1-5, 14, 1-7, 1-9, 6-147
Ready List Root, 6.182
nssdy process, 1-5
Real<ime Monitor, 14, 1-S
real%me proceas control, 1-2

window, 1-13
Rec Len, 4-11
Rec Mark, 411
Rec Type, 4-11
record blacking, 2 38, 6-82
recoid count

file, 2-9
first, 2-9
locking, 2-28, W6
physical, 2-38
size, 2-2, 2-37
unlocking, 2-36

REDRAW, 6-35
reentrant, & 149, 6-160
reentrant RSP, 5-4
register AL, 2-47
register contents preserved, l-l3
register initialization, 5-8, 5-9
removable drive, ~ , ~ 2

drive, 2-39
Resident Procedure Library, 6-160

resources

5-9

6-143

process, 6-161
RESTR1CTED flag, 5-10
RETP instruction, 4-2, 6 180
RETURN, 635
Return and Display Error mode, 2-43
Return end Display mode

BDOS Error mode, 6-75
return codes, 247
Return Error made, M3, 2A9

BDOS Error mode, 6-75
Revision Level, 6-176
RLR

SYSDAT field, 6-182
roots of system lists, 6-178
round-robin scheduling, 6-155
RPL, 6-160
RS field

FCB, 2-11
RSP, 1-2, 6-143

bit, 5-9
CMD Header Ro:ord, S-2
ECHO, 5-1
first, 6-181
multiple copies, 5-3
shared code, M
8080 Model, 5-2, 5-3
Small Model, 5-2, 5-4

RSP Command Queue, 5-4, 5-5, 5-6,

reset

ss nioiTAL assshacH4
Index-18



(Figure 5-3), 5-5

SI
S2 fields, directory label, 2-19
S2 fields, XFCB, 2-21

screen switch, 1-10, l-l I
SDATVAR field

RSP header, 5-3
SEC

TQD field, 6-186
second flag, 1-8
second of minute. 6.183, 6-186
seconds, 6-187
Sectors Per Track, &49
security

file, 2-27
segment addresses, 6-153

RSP Command Queue Message

Data Segment (Figure 5-4), 5-7,
6-l80

Flag, 5-5
header, 5-2, 5-3, 5-6, 5-7
Hcadcr Format (Figure 5-2), 5-3
memory models, 5-1
Process Descriptor, 54, 5-8
qucuc, 6-143
stack, 5-9
type, 3-1
UDA, 5-6, 5-7

RSPSEG field, 5-11
RSPSEG

SYSDAT field, 6-180
RTM, 1-4, 1-5, 1-8
RUB/DEL, 6-34
RUN state, 6-41
RUN

Activity code, 5-147
running process, l-l, 1-5

Segment Base Address, 4-9
segment register initialization, 4-2
SEG&087

SYS OAT, 6-184
sequential, 2-2

access, & 12
I/O processing, 2-34
read, 2-9
write, 6-79

serial number, 6-177
SERIAL Nurnbcr Format

(Figure 6-20), 6-177
SET command, 2-23
SET utility, 2-32, 2-33
SFCB, 2-18, 2-24, 6-17
SFCB Subfields (Figure 2-5), 2-24
SFCBs, 6-61
shared code, 1-2, 3-2

file access, 1-10
file system. 1-2
List, 3-2
RSPs, 6-\49
locks, 2-35, 6-77

Sl
UDA field, 6-152

single-user, I-l

physical records, 2-38
record, 2-2, 2-37

Small Memory Model, 3-5, 4-4
Small Madel, 1-12, 4-2
source files, 2-9
SP field

UDA, 5-9, 6-152
sparse file, 2-9
SPT, 6-49
SS and SP registers
Small Model. 4-4
UDA Iield, 6-153

stack area, 6-144
stack pointer, 6-152

size

ss DKrrhL assfhacHe
Index- l9



Stack Segment, 5.1, 6.1S2
stack

RSP, S-9
start address, 4-7, 49
START field, 6-131
START paragraph, 6-132

MPB, 6-130
STAT

PD field, 6-147

reset, 2-39
Status Word

UDA 8087 extension, 6-153
string delimiter, 6-40
SUP, 1-4, 1-5
SUP ENTRY

SYSDAT field, 6-180
Supervisor, IA, I-S

Code Segment, 6-180
entry point, 6-180

• uspendcd process, 1-5
SW

UDA 8087 extension, 6-153
• witch screen, I-l I
synchronization, 1-2
SYS Hag, 5-8
SYS flag, 6-140, 6-148
SYSDAT Table (Figurc 6-21), 6-179
SYSDAT, 2-25, 5-11

H(elp) option, 1-14
M(emory) option, 1-14, 1-15
SYSDAT field, 6-181

SYSDISK
SYSTAT, 1-14

Q(vcrview) option, 1-15
P(roccss) option, 1-15
Q(ucues) option, 1-15
U(ser Proccsscs) option, 1-15

System, 6-6S
system attribute, 2-15
SYSTEM attribute, 6-143

system attribute t2', 684
system ca!Is 3, 6-1, 6-18, 6-21

conventions, 1-12
system call register initialization, 1-13
System Call summary, 6.14
System Data Area, 5-7, S-10
System Data Segment, 5-11, 6-145,

address, 6-178
system disk, 6-143

default, 6-181
System file, 2-11

user-zero, 2-15
SYSTEM fiag, 6-161
system

flags, 6-181
generation, S- I
lists, 1-5, IW
process, 6-148
processes, 1-2
queue, 1-2, 1-13, 6-170
Status, 1-14
System Calle, 6-3, & 13
ticks, 6-162, 6 155
ticks pcr second, 6-181
time and date, 6-185
timing, 1-8, 1-9
tracks, 2-8

S BDOSVER, 6-182
S BDOSVER system call, 6-174
S BIOS system call, 6-17S
S OSVER, 6-182
S OSVER system call, 6-176
~E R I AI. system caII, 6-177
K SYSDAT system call, 5-7, 6-178

6-170

Index-20



Tl', 2-15
Tl' attribute, 2-26
T I'-T3', 2-14, &65

FCB, 2-11
T2', 2-15, 2-18
T3', 2-15
TAB, 6-35, 6-90

characters, 6-32
expansion, 6-29, 6-38, 6-39

TABLE flag, 6-149
TEMP DISK

SYSDAT field, 6-181
TERM

A P 8 field, 6 139
Terminal Message Processes, 1-11
Terminal Message Processor, 1%, 3-1
termination

character, 6-32, 6-33
code, 6-139, 6-161, 6-162

THRDRT
SYSDAT field, 6-182

THREAD
field, 6-182
list, 6-22, 6-139, 6-147
List Root, 6-182
PD field, 6-147

tick flag, 1-9
Tick Interrupt Handler

XIOS, 1-8, 1-9
TICKS/ SEC

SYSDAT field, 6-181
time and date, 1-2, 1-8, 6-105, 6-185,

time of day, l-8
time stamp

directory label, 2-25
Time System Calls, 6-3, 6-I3
timing functions, 1-2

6-112, 6-161

6-187

TQD SEC

6-145

(Figure 6.22), 6.185

TMP, IP, 1-1 I, 2-17, 3-1, 5-5, 5-9,

priority, 6-144
RSP, 5-3

TOD — l )me&-Day Structure

TOD DAY
SYSDAT field, 6-183

TOD HR
SYSDAT field, 6-183

TOD MIN
SYSDAT field, 6-1&3

SYSDAT field, 6 183
TPA, 6-145
Track Offset, 6-51
Transient Execution Models, 41

Process Area, 6-145
processes, 1-2, 1-5
program, 1-12, 3-I

truncate file, 2-1, 2-2
TS1 field

directory label, 2-19
TS2 field

directory label, 2-19
type field

directory label, 2-19
XFCB, 2-21

TYPE utihty, 2-9
T GET system call, 2-25, 6-186
T SECONDS system call, 6-187
TMET system call, 6-188

U

UDA, 1-5, 1-6, 5-1, 6-135, 6-144,

UDA — User Data Area (Figure 6-23),

UDA SEGMENT field, 5-8
6-151

ss n)nlrAL RESEARCH +
index-21



& 114

6-145, 6-149, 6-15I

UDA
8087, 3-1. 3-2
initialization, 3-I
PD field, 6-149
RSPs, 3-1

unallocated data block, 6-12l
unconditional read

queue, 1-7
unlock operations, 2-36

records, 6-111
unlocked, 2-2

mode, 1-10, 2-12, 2-26, 2-35, 2-37,
679, 642

unused Process Descriptors, 6-182
unused Queue Destu iptors, 6-182
unused Memory Descriptors, 6-182
unwritten random records, 6 121
update date and time stamp, 6-17,

update stamp, 6-80
field, 2-19
time stamp, 2-24

Upper Segment Base Address, 4-12
USBA, 412
User 0, 2-18, 6-83
user attributes, 2-15
User Dets Area, 1-5, 3-1, 5-1, 6-135,

RSP, 5-9
user default disk, 6-181

directories, 2-17
number, 1-1 I, 2-1, 2 3, M2
number conventions, 2-17
terminal, I -I
zero, 6-82

user processes priorities, 6-148
User System Stack, 6-152
USER SYSTEM STACK

UDA field, 6-153
USER

PD field. 6-149

1-10

user-zero system files, 2-15

VBRNUM
SVSDAT field, 6-182

version number, 6-174, 6-182
version string address, 6-182
version

os, 6-176
VERSION

SVSDAT field, 6-182
VINQ, I-I I
virtual cansole, l-l, 1-2, 6-I75, 6-181
Virtual Console Input Queue, I-I I
Virtual Console Screen Management,

Virtual Console Screen Manager, I4
virtual environments, 1-1
virtual file size, 6-18
Virtual OUTput processes, I-IO
VOUT, 1-10

wildcard filespecifications,6-70
window

real-time, I-13
write data records, 6-113
write, 6-173
write mode, 2-22, 6-80, 6-105

Queue Liat, 6-147
record, 2-2
sequential. 6-79
zeroes, 6-121

8 OGTAL SSSAARCH+
Index-22



X value, 4-8
XFCB, 2-18, 2-20, 6-79, 6-81

Extended File Control Block
(Fisure 2-3), 2-20

Create or access time stamp field,
6-105

password mode, 6-119
Update time stamp field, 6-105

Xhhhb parameter,4-7
X1OS, 14, 1-10, 1-11, &41, 6-43,

ALLOC buffers, 6-181
ENTRY, 6-180
Header, 6-181

X1OS 1N1T, 6-180
X1OS 1nitialization entry point, & 180
XPCNS

SYSDAT, 6-184

& 175

Zeroes, 4-11

WDIGIThL RESEARCHe
index-23


